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Abstract

Hintergrund: In der personalisierten Medizin verfolgt man den Ansatz, dass nicht jede
Behandlung fiir alle Patienten gleich wirkt. Eine statistische Methode zur individuellen Be-

handlungswahl, stellt die Entwicklung von prédiktiven Biomarkern dar.

Methoden: In dieser Arbeit wird eine Methode von |[Matsui et al.| (2012) mit einem neuen
Ansatz zur Entwicklung von hochdimensionalen Biomarkern anhand von omics-Daten ver-
glichen. Der neue Ansatz stellt im Gegensatz zu der Methode von Matsui et al.| (2012)) eine
multiple Herangehensweise mittels Lasso-Schétzer dar. Dabei wird sowohl ein einschrittiges
als auch zweischrittige Verfahren betrachtet. Um den Treatmenteffekt zu testen werden Per-

mutationstests vorgestellt. Wobei die Verfahren unterschiedliche Hypothesen betrachten.

Ergebnisse: Eine Simulationsstudie zeigt, dass die Vorhersagegenauigkeit durch den mul-
tiplen Ansatz verbessert werden kann. Der neue Ansatz erkennt mehr der wahren Effekte
und lasst den falschlicherweise geschétzten Effekten nicht so viel Einfluss zukommen wie die
Methode von Matsui et al.| (2012). Dabei hiangen die Ergebnisse aller Methoden stark von

den vorhandenen Effekten in den Daten ab.



Inhaltsverzeichnis

(1  Einleitung]

[2 Statistische Methoden der personalisierten Medizin|

B Dl onl

10
10
13
20
24
24
25

31
31
33
35

50

52



Abbildungsverzeichnis

(1 Beispiele ROC Kurven| . . . . . . .. . ... . 23
2 AUCs der vier Schatzmethoden| . . . . . . . . . .. ... ... 0. 36
[3 AUCs der vier Schatzmethoden tiber alle Settings| . . . . . . ... ... ... 37
|4 Richtig positive Haupteftekte|. . . . . . . . . .. .. ... 38
(5 Falsch positive Hauptettekte] . . . . . . . . ... .. ..o 39
(6 Richtig positive Interaktionseftekte| . . . . . . . ... ... ... 41
[7 Falsch positive Interaktionseftektel . . . . . . . . . ... ... ... ... 42
(8 Odds Ratios der richtig erkannten Haupteftektel . . . . . . . . ... ... .. 44
[9 Odds Ratios der falsch positiven Haupteftekte] . . . . . . . . ... .. .. .. 45
(10 Odds Ratios der richtig erkannten Interaktionseftekte] . . . . . . . . . . . .. 47
(11 Odds Ratios der falsch positiven Interaktionseftektel . . . . . . . . . . . . .. 48
(12 Vergleich der zwei Pradiktionsmodelle tir die Methode von Matsui|. . . . . . 52
(I3 Verteilung der Treatmentvariablel . . . . . . ... ... ... ... ... ... 53
(14  Verteilung der Zielvariable| . . . . . . . . ... ... o000 54

[ Konfusionsmatrixl . . . . . . . . . ... 21
2 Ubersicht der Simulationssettings| . . . . . . . . . ... ... ... ... ... 34
[3 Richtig und talsch erkannte Eftektel . . . . . . . . . . ... .. ... ... 34

ii



1 Einleitung

Die Medizin und ihre Behandlungsstrategien entwickeln sich stets weiter. In neuen For-
schungsbereichen riickt der Patient mit seinen individuellen Eigenschaften in den Mittel-
punkt. Hierbei spricht man von individualisierter bzw. personalisierter Medizin. Dieser Be-
handlungsansatz versucht zum einen genetische und klinische Eigenschaften von Patienten
zusammen zu betrachten und nutzt zum anderen das aktuelle Wissen tiber die biologischen
Vorgénge von Krankheiten, um darauf basierend eine patientenspezifische Behandlungsstra-
tegie zu entwickeln (Ma et al.l 2015). Chen et al| (2015, S. 1121) beschreiben das Ziel der
personalisierten Medizin folgendermafien: ,Precision medicine will provide clinicians with
new tools, knowledge and therapies to select which treatments will work best for which pa-
tients®.

Ein Hilfsmittel um entscheiden zu kénnen, welche Behandlung fiir welchen Patienten am
besten geeignet ist, konnen sogenannte Biomarker sein. The National Institut of Health
definiert Biomarker (biological Marker) als , A characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes, or phar-
macologic responses to a therapeutic intervention“ (Atkinson et al. 2001, S. 91). Dabei
handelt es sich oft um Produkte von Organismen wie Enzyme, Hormone oder Ionen, die in
Probenmaterial wie venosem Blut oder Urin festgestellt werden konnen (Bracht) 2009). In
der modernen Krebstherapie werden Biomarker bereits genutzt, doch auch bei anderen Er-
krankungen konnten sie wichtige Informationen fiir Diagnose, Prognose und Therapie liefern
(Bracht, 2009)). Je nach Verwendung in der Medizin unterscheidet man dabei verschiedene
Arten. In dieser Arbeit besteht Interesse an sogenannten prognostischen und pradiktiven
Biomarkern.

Prognostische Biomarker erlauben Aussagen iiber die voraussichtlichen Heilungschancen
und/oder den Krankheitsverlauf ungeachtet jeglicher Behandlungen (Bracht, 2009; Chen
et al., 2015)).

Und préadiktive Biomarker geben entweder Auskunft tiber die Wahrscheinlichkeit zukiinftig
an einer Krankheit zu erkranken oder tiber das voraussichtliche Ansprechen auf eine be-
stimmte Behandlung (Bracht, [2009)), wobei hier Letzteres von Interesse ist.

Bei der personalisierten Medizin konnen somit pradiktive Biomarker mafigebend fiir die
Entscheidung der Therapiewahl sein. Die Erforschung und Validierung neuer Biomarker ist
folglich fiir die Medizin von grofler Bedeutung.

Dank der omics-Technologien stehen hierfiir grole Datenquellen zur Verfiigung, die Informa-
tionen iiber Genexpressionen enthalten. Diese omics-Technologien stammen aus modernen

Fachbereichen der Biologie, ,[...] die sich mit der Analyse von Gesamtheiten dhnlicher Ein-



zelelemente |[...] in einer lebenden Zelle beschiftigen (Guthke, |[2010)). Beispielsweise wird bei
der Genomik ein sogenanntes Genom (= gesamte genetische Information eines Organismus)
betrachtet oder bei der Proteomik alle Proteine eines Proteoms (Guthke, 2010). Diese Tech-
nologien erzeugen Datensdtze mit mehreren Tausend Variablen, weshalb man es in der Regel
mit hochdimensionalen Daten zu tun hat. Somit ermdglichen diese Daten auch die Entwick-
lung hochdimensionaler Biomarker im Gegensatz zu den bisher meist niedrigdimensionalen,
wenn nicht sogar univariaten Biomarkern.

Dazu bedarf es jedoch neuer statistischer Methoden, weshalb sich diese Arbeit mit dem
Schétzen und Testen individueller Behandlungseffekte bei hochdimensionalen Biomarkern
befasst.

In Kapitel [2| werden dazu zunéchst derzeitige statistische Methoden aus dem Bereich der per-
sonalisierten Medizin kurz betrachtet und der Nutzen dieser Arbeit eingeordnet. Der erste
Teil von Kapitel |3| befasst sich anschlieend mit dem Schétzen individueller Behandlungs-
effekte. Dabei wird zunéchst ein Ansatz von |Matsui et al. (2012) und danach ein neuer,
davon inspirierter, Ansatz vorgestellt. Der zweite Teil von Kapitel |3| setzt sich mit dem Tes-
ten dieser Behandlungseffekte auseinander. Nach der Beschreibung des Permutationstests
von Matsui et al| (2012), werden Moglichkeiten aus der Literatur aufgezeigt, wie man fir
den neuen Ansatz eine etwas andere Nullhypothese ebenfalls mit Permutationstests testen
konnte. Kapitel 4] befasst sich mit einer Simulationsstudie zum Vergleich der unterschiedli-
chen Schétzmethoden. Kapitel |5 schlieft dann die Arbeit mit einem Diskussionsteil ab.

2 Statistische Methoden der personalisierten Medizin

Wie in der Einleitung bereits beschrieben wurde, geht es bei der personalisierten Medizin
darum, fiir jeden Patienten die beste Therapie zu finden. Dazu gibt es verschiedene statisti-
sche Ansétze, die helfen sollen fiir jeden Patienten die richtige Behandlungswahl zu treffen.
Um den neuen Ansatz aus dieser Arbeit besser einordnen zu kénnen, wird in diesem Kapitel
ein kurzer Uberblick iiber bisherige statistische Methoden im Bereich der personalisierten
Medizin gegeben. Grundlage fiir diesen Uberblick bieten vor allem zwei Reviews von |Chen
et al.| (2015) und Ma et al.| (2015).

Chen et al. (2015) geben in ihrer Arbeit einen statistischen Uberblick beziiglich der Entwick-
lung von pradiktiven Biomarkern indem sie unterschiedliche Methoden vorstellen.

Bisher wurde meist angenommen, dass ein Medikament entweder fiir alle Patienten wirkt
oder fiir keinen. Mit dem heutigen Wissen aus der molekularen Biologie zieht man nun auch
in Betracht, dass lediglich eine Subgruppe der Patienten von einem Medikament profitie-

ren konnte. Deshalb werden pradiktive Biomarker entwickelt, um bei der Behandlungswahl



Patienten zu identifizieren, die auf eine bestimmte Therapie ansprechen. In diesem Kontext
werden mehrdimensionale Biomarker betrachtet.

Chen et al. (2015) gehen von einem klinischen Experiment mit einer Treatment- und einer
Kontrollgruppe aus. Hierbei liegen fiir jeden Patienten omics-Daten vor, die vor der Be-
handlung gemessen wurden. Es wird nun angenommen, dass das Medikament nicht fir alle
Patienten gleich wirkt, sondern sich die Stichprobe in zwei Untergruppen unterteilen lasst.
Es existiert folglich eine Gruppe von Patienten, die auf die Therapie ansprechen (¢*) und
eine Gruppe von Patienten, die nicht auf die Therapie ansprechen (¢~). Um feststellen zu
koénnen, welcher Patient in welche Gruppe gehort, werden pradiktive Biomarker entwickelt.
Nach (Chen et al| (2015) setzt sich die Entwicklung von prédiktiven Biomarkern aus drei
Schritten zusammen. Dabei gehen sie in jedem Schritt auf unterschiedliche Anséatze der kon-

kreten Umsetzung ein.

1. Im ersten Schritt der Biomarker Identifikation geht es darum genetische Variablen zu
erkennen, die sich zur Bildung eines mehrdimensionalen pradiktiven Biomarkers eig-
nen konnten. Unabhangig davon, ob es sich bei der Zielvariable um eine binare, stetige
oder eine Uberlebenszeit handelt, wird davon ausgegangen, dass innerhalb der Treat-
mentgruppe gt Patienten einen besseren Erwartungswert der Zielvariable haben als g~
Patienten. Denn ¢ Patienten profitieren von der Behandlung und somit verbessert sich
ihr Gesundheitszustand durch die Behandlung. Das heifit sie leben beispielsweise linger
oder ihr Tumor schrumpft. Bei g~ Patienten dagegen kann mit Hilfe der Therapie kei-
ne Verbesserung erzielt werden. Daher wird auch angenommen, dass g* Patienten in
der Treatmentgruppe einen besseren Erwartungswert der Zielvariable haben als g™
Patienten aus der Kontrollgruppe. Pradiktive Biomarker sollen nun unterschiedliche
Behandlungseffekte bei den Patienten vorhersagen. Das heifit g™ Patienten, die auf die
Therapie ansprechen, unterscheiden sich in ihrem Messwert beziiglich des préadiktiven
Biomarkers hinsichtlich der g~ Patienten, die nicht auf die Therapie ansprechen. Um
feststellen zu kénnen, welche genetischen Variablen sich als pradiktiver Biomarker eig-
nen, wird fiir jede Genexpression ein eigenes generalisiertes lineares Modell geschéatzt.
Eine Moglichkeit ist es lediglich die Messwerte der Treatmentgruppe zu betrachten
und jeweils zu tiberpriifen, ob der Haupteffekt der Genexpression einen signifikanten
Einfluss auf die Zielvariable hat (Chen et al.l 2015). Denn unter allen behandelten
Patienten, ist bei denjenigen ein besserer Response zu beobachten, die auf die Behand-
lung ansprechen, da diese zur g+ Gruppe gehoren. Um diese schliefSlich zu identifizieren
eignen sich die genetischen Variablen, die einen Einfluss auf die Zielvariable haben. Die

Menge der genetischen Variablen mit einem signifikanten §-Koeffizienten bildet dann



die Menge U der potentiellen pradiktiven Biomarker.

Da klinische Studien héufig eine Treatment- und eine Kontrollgruppe besitzen, wird
auch oft ein generalisiertes lineares Modell mit allen Beobachtungen geschétzt, das
dann den Haupteffekt des Treatments und der genetischen Variable, sowie die Inter-
aktion der beiden enthélt (Chen et al., 2015). Ob eine Genexpression als pradiktiver
Biomarker in Frage kommt, ist folglich nicht mehr vom Haupteffekt der Genexpressi-
on, sondern vom Interaktionseffekt zwischen Genexpression und Treatment abhéngig.
Dieses Vorgehen ist deutlich intuitiver, da es das Zusammenwirken von Treatment und
genetischer Variable direkt in Form der Interaktion schétzt.

Freidlin und Simon (2005) schlagen dagegen vor, ein Modell zu fitten, das zwar die
Interaktion enthélt aber nicht den Haupteffekt der genetischen Variable. Um zu ent-
scheiden welches Modell den Vorzug erhélt, bedarf es laut |Chen et al.| (2015) noch

weiterer Studien.

. Im zweiten Schritt geht es darum die Patienten in die ¢* und g~ Gruppe einzuteilen,
um eine Behandlungswahl treffen zu konnen. Da die wahren Label, g7 und ¢~, nicht
bekannt sind, stellt eine klassische Subgroup Selection eine Herausforderung dar (Chen!
et al., 2015)).

Handelt es sich bei der Zielvariable um eine bindre Variable, werden oft die Aus-
priagungen der Zielvariable als Label genutzt. Das heifit man geht davon aus, dass
zum Beispiel bei Eintreten einer Schrumpfung des Tumors, der Patient als g+ Patient
betrachtet werden kann. In diesem Fall werden die iiblichen Methoden, wie logistische
Regression, Klassifikationsbdume oder Random Forests fiir die Vorhersage der Klas-
senzughorigkeit genutzt. Dabei ist allerdings zu beachten, dass es sich hierbei nicht
um wahre Labels handelt. Denn die beobachtete Outcomevariable stellt vielmehr eine
bindre Zufallsvariable dar, mit den Erwartungswerten der Gruppen als Wahrschein-
lichkeiten fiir g™ bzw. ¢~. Es konnte sich beispielsweise der Tumor aus einem anderen
Grund verkleinert haben und nicht wegen der Behandlung, das heifit der Patient wiirde
falschlicherweise mit ¢ gelabelt werden. Somit kénnen auch falsch gelabelte Beobach-
tungen vorliegen, die die Subgroup Selection behindern (Chen et al., 2015)).

Handelt es sich jedoch um eine stetige Outcomevariable oder um eine Uberlebenszeit,
miissen andere Methoden herangezogen werden. Dazu stellen (Chen et al.| (2015) ver-
schiedene Methoden vor.

Ein moglicher Ansatz ist es zunéchst einen pradiktiven Score anhand der Menge U
des ersten Schrittes, die alle Variablen mit einem signifikanten §-Koeffizienten enthélt,

zu bilden (Chen et al., 2015). Dieser pradiktive Score stellt folglich einen mehrdimen-



sionalen Biomarker basierend auf mehreren pradiktiven Genexpressionen dar. Ist U
nicht zu grof}, wird ein multiples Regressionsmodell mit allen Genexpressionen aus U
gefittet. Sind es zu viele genetische Variablen in U, sollte eine dimensionsreduzierende
Methode, wie eine Hauptkomponentenanalyse, vorgeschaltet werden. Die gewichtete
Summe der Ausprigungen der Genexpressionen und der zugehorigen [-Koeffizienten
aus der multiplen Regression, bildet dann den pradiktiven Score fiir jeden Patienten.

Eine Alternative stellt die Methode von Matsui et al. (2012)) dar, die zur Score-Bildung
mehrere einfache anstatt ein multiples Regressionsmodell benutzt. Dieser Ansatz wird
in Kapitel noch genauer vorgestellt.

Anschliefend muss zur Gruppeneinteilung der stetige Score dichotomisiert werden, in-
dem ein Cutoff-Point gesucht wird, der die Patienten in zwei Gruppen teilt (Chen
et al.; 2015)). Dieser Cutoff-Point kann anhand von Percentilen des pradiktiven Scores
oder durch vorher festgelegte Grenzwerte der Zielvariable definiert werden. |Jiang et al.
(2007) schlagen eine Methode fiir quantitative Biomarker vor, die einen Schwellen-
wert fir die g™ Gruppe entwickelt und validiert. Dabei entwickelt diese Methode nicht
nur einen Cutoff-Point durch Maximieren der Log-Likelihood Teststatistik tiber alle
moglichen Cutoff-Points, sondern testet gleichzeitig auch, ob es einen overall Treat-
menteffekt fiir die gesamte Population gibt.

Andere Ansétze nutzen laut Chen et al. (2015)) Klassifikations- und Regressionsbaume
um die Patienten in homogene Gruppen beziiglich des Nutzens der Behandlung zu
splitten. Jedoch werden hier in der Regel mehr als zwei Gruppen gebildet.

Und schliefllich stellt die ASD Methode (adaptive signature design) bzw. die CVASD
Methode (cross-validated adaptive signature design) noch eine weitere Alternative dar
(Freidlin and Simon| 2005; Freidlin et al.; 2010). Diese Methode basiert auf bindren
Zielvariablen, kann aber laut [Freidlin et al., (2010) fiir Uberlebenszeiten verallgemei-
nert werden (wie es im Prinzip die Methode von Matsui et al| (2012) macht). Hier
werden die Patienten mit Hilfe von Odds Ratios den Gruppen zugeteilt. Dazu wird
fiir jede genetische Variable aus U anhand der Regression ein Odds Ratio geschétzt.
Jeder Patient von dem eine vorher definierte Mindestanzahl an genetischen Variablen
ein Odds Ratio grofler einem bestimmten Grenzwert hat, wird dann der Biomarker-
positiven Gruppe zugeordnet. Der Unterschied zwischen der ASD Methode und der
CVASD Methode liegt in der Einteilung in Trainings- und Testdaten. Bei der ASD
Methode wird nur eine einmalige Unterteilung vorgenommen und bei der CVASD wird
eine Kreuzvalidierung vorgenommen. Auf den Nutzen solcher Unterteilungen wird im

3. Schritt naher eingegangen.



3. Im dritten Schritt geht es darum den klinischen Nutzen des pradiktiven Biomarkers zu
bewerten. Chen et al.| (2015)) schildern hierbei zwei Teile.
Der erste Teil besteht darin die Vorhersagekraft des Klassifikators zu bestimmen. |Chen
et al.| (2015) nennen hier unter anderem zwei gingige Vorgehensweisen fiir bindre Out-
comevariablen und Survivaldaten. Bei bindren Zielvariablen wird die Giite der Vor-
hersage meist tiber Anteile an richtig zugeordneten Beobachtungen definiert. In der
Medizin werden hier in der Regel die Sensitivitdt und die Spezifitiat betrachtet, die in
Kapitel noch genauer definiert werden. Bei Uberlebenszeiten wird betrachtet wie
gut der pradiktive Score die Untergruppen trennt. Dies geschieht mit dem Logrank-
Test, welcher iiberpriift, ob die Uberlebenskurven der beiden Gruppen sich signifikant
voneinander unterscheiden. Neben diesen zwei géngigen Methoden finden sich in der
Literatur noch einige weitere Moglichkeiten, auf die hier nicht eingegangen wird. Un-
abhéngig des Skalenniveaus der Zielvariable wird die Beurteilung der Vorhersage des
priadiktiven Biomarkers meist mit Hilfe von Trainings- und Testdaten vorgenommen
(Chen et al., 2015). Die Entwicklung des pradiktiven Biomarkers wird anhand der
Trainingsdaten durchgefiihrt und danach wird dieser auf die Testdaten angewendet,
um dessen Performance zu beurteilen. Bei der sogenannten Kreuzvalidierung, die bei
der CVASD Methode bereits erwahnt wurde, werden die Daten mehrmals in Trainings-
und Testdaten unterteilt. Wie zuvor beschrieben wurde, ist es eine methodische Her-
ausforderung die Patienten den zwei Gruppen zuzuordnen. Genauso schwierig stellt
sich die Evaluierung des Klassifikators aufgrund der fehlenden Labels dar. Weshalb
Chen et al. (2015)) diesen Teil der Entwicklung von pradiktiven Biomarkern als beson-
ders schwierig bezeichnen.
Der zweite Teil der Beurteilung des klinischen Nutzens besteht darin den geschatzten
Treatmenteffekt zu testen. Dabei interessiert man sich oft sowohl fiir einen Effekt in
der gesamten Population als auch fiir Effekte in der Untergruppe ¢g*. Dazu dienen die
folgenden Hypothesen (der Subgroup Analyse) (Chen et al., 2015):

e HOO: es gibt allgemein keinen Treatmenteffekt in der gesamten Population.

e HO1: es gibt keinen Treatmenteffekt in der g™ Gruppe.

e HO02: es gibt keinen Treatmenteffekt in der g— Gruppe .
Dazu wird entweder die gesamte Stichprobe betrachtet oder nur einzelne Untergruppen.
Das héngt davon ab, welche Hypothese getestet werden soll. Je nachdem welche Ergeb-
nisse die Tests liefern, konnen unterschiedliche Riickschliisse gezogen werden. Erhélt

man beispielsweise fiir HO1 ein signifikantes Ergebnis, aber fiir HOO keines, spricht das

daftir, dass es nur in der g+ Gruppe einen Treatmenteffekt gibt (Chen et al., [2015).



Es gibt allerdings noch andere Moglichkeiten den Treatmenteffekt zu testen, die hier
nicht betrachtet wurden. In Kapitel werden beispielsweise Permutationstests vor-
gestellt um die Interaktionen zwischen den genetischen Variablen und dem Treatment

auf Signifikanz zu testen.

Wiéhrend dem eben beschriebenen Prozess der Entwicklung von prédiktiven Biomarkern
kann es an zwei Stellen zu multiplen Testproblemen kommen (Chen et al| 2015).

Zum einen im ersten Schritt bei der Identifikation von potentiellen Biomarkern. Denn hier
wird fiir jede genetische Variable ein einzelnes Regressionsmodell geschétzt und anschliefend
der interessierende -Koeffizient auf Signifikanz getestet. (Chen et al.| (2015) schlagen an die-
ser Stelle die Adjustierung der FDR (false discovery rate) vor, anstatt den globalen Fehler 1.
Art zu adjustieren. Die FDR ist definiert als der Erwartungswert des Anteils der falsch po-
sitiven Testergebnisse an allen positiven Testergebnissen (Benjamini and Hochberg, 1995)).
Der Ansatz der FDR lasst vergleichsweise mehr signifikante Ergebnisse zu, was bei einer
groflen Menge von Variablen wie bei omics-Daten vorteilhaft ist (Chen et al., 2015). Daftr
muss jedoch ein kleiner Anteil an falsch positiven Ergebnissen in Kauf genommen werden.
Dies sollte bei der Entwicklung von préadiktiven Biomarkern allerdings verkraftbar sein, da
hier laut |Chen et al.| (2015) das Weglassen von wichtigen Variablen einen grofleren Einfluss
auf die Performance des Klassifikators hat, als das Hinzunehmen von unwichtigen Variablen.
Zum anderen taucht das multiple Testproblem im dritten Schritt beim Testen des Treat-
menteffekts auf, da hier mehrere Hypothesen getestet werden. Zwei mogliche Losungsanséatze
stellen die Adjustierung der p-Werte zum Beispiel anhand der Bonferroni-Adjustierung oder
das Testen der Hypothesen in fester Reihenfolge (fixed sequence testing) dar (Chen et al.
2015)). Freidlin and Simon| (2005)) schlagen eine weitere Alternative vor, um den globalen
a-Fehler des Designs kontrollieren zu konnen. Dieser setzt sich hierbei aus zwei Teilen zu-
sammen « = a1 +ae. Der Signifikanztest beziiglich des globalen Treatmenteffekts wird dabei
zum Signifikanzniveau «; zu Beginn der Analyse mit allen Patienten durchgefithrt. Und der
Signifikanztest innerhalb der Patienten, die der g*-Gruppe zugeteilt wurden, wird zum Ni-
veau ap durchgefiihrt. Freidlin and Simon| (2005) wéahlen beispielsweise a = 0.05 und nehmen
mit oy = 0.04 und ay = 0.01 eine 80%/20% Aufteilung vor.

Ma et al. (2015) stellen in ihrem Paper sogenannte Behandlungsregeln, auch ITR (indivi-
dualized treatment rules) bezeichnet, vor. Hier ist es auch das Ziel anhand der Eigenschaften
des Patienten zu entscheiden, welche Therapie die bessere fiir ihn ist. Jedoch ist die Heran-
gehensweise etwas anders. Die Idee der I'TR ist es die Behandlungsergebnisse von zwei zur
Auswahl stehenden Therapien zu vergleichen. Dazu wird die Differenz der Erwartungswerte

der Zielvariable gegeben die Therapieform und weiterer Kovariablen betrachtet. Diese Ko-



variablen konnen verschiedene Eigenschaften des Patienten sein, wie Alter, Geschlecht oder
auch genetische Variablen. Kovariablen mit einem Einfluss auf die Zielvariable werden hier
als Biomarker bezeichnet. Wobei der Einfluss der Variablen bei diesem Ansatz in einem ge-
meinsamen Modell gefittet wird und nicht anhand lauter einzelner Regressionen. Je nachdem
ob es sich dabei um einen Haupt- oder Interakionseffekt handelt, werden sie als prognostisch
oder pradiktiv angesehen. Dabei wird in diesem Fall kein stetiger Score aus diesen gebildet,
sondern der Erwartungswert anhand eines Modells, das diese Variablen enthélt geschétzt.
Ma et al.| (2015)) weisen darauf hin, dass die Modellwahl an das Skalenniveau der Zielvaria-
ble und die Dimensionalitit der Daten angepasst werden muss. Bei einem bindren Outcome
wird beispielsweise haufig die logistische Regression verwendet und bei Survivaldaten das
Cox-Modell oder das AFT Modell (accelerated failure time), das auf die proportional hazard
Annahme verzichtet. Liegen hochdimensionale Daten vor wird meist auf Variablenselekti-
on durch beispielsweise Lasso zurtickgegriffen. Aulerdem weisen Ma et al| (2015)) noch auf
fortgeschrittene Methoden hin, die zum einen eine robustere Inferenz bei Misspezifikation
erzielen und zum anderen auf Techniken aus dem Bereich Machine Learning zurtickgreifen.
Dabei werden auch hier die Daten in Trainings- und Testdaten aufgeteilt, um die Koef-
fizienten der Kovariablen auf Basis der Trainingsdaten zu schétzen und dann anhand der
geschéitzten Koeffizienten die ITR auf die Testdaten anzuwenden und zu evaluieren.
Oftmals reicht es jedoch nicht, wenn die neue Therapie nur fiir einen Unterschied zwischen
den Behandlungsergebnissen sorgt. Also wenn beispielsweise durch die neue Therapie die
Uberlebenszeit verlingert wird oder der Tumor geschrumpft wird. Sondern es wird ein Mi-
nimum an Verbesserung verlangt, um die Aussage treffen zu konnen, dass die neue Therapie
fiir den Patienten besser ist als die herkémmliche. Das heifit der Unterschied der Erwartungs-
werte soll nicht nur ungleich Null sein, sondern einen vorher festgelegten Wert iiberschreiten,

damit die Verbesserung als klinisch relevant angesehen wird.

Wie dieser kurze Methodentiberblick gezeigt hat, ist es eine komplexe Aufgabe fiir die Sta-
tistik, der personalisierten Medizin hilfreiche und valide Hilfsmittel an die Hand zu geben.
Weshalb in diesem Bereich noch viel geforscht wird. Gerade die Entwicklung von mehrdi-
mensionalen Biomarkern scheint ein vielversprechendes Forschungsfeld zu sein. Genau aus
diesem Grund wird in dieser Arbeit zunéchst eine interessante Methode dazu von [Matsui
et al. (2012) und anschliefend ein neuer Ansatz vorgestellt. Dieser basiert auf der Idee von
Matsui et al.| (2012) und versucht diese durch eine abgeénderte Herangehensweise zu optimie-
ren. Dazu werden dhnlich wie bei|Chen et al.| (2015) beschrieben, erst die hochdimensionalen
Biomarker geschatzt, dann eine Vorhersage anhand dieser Biomarker gemacht und dessen

Resultat evaluiert. Schlieflich soll der Treatmenteffekt noch getestet werden.



3 Theorie

3.1 Notation

Bevor die im Folgenden betrachteten Theorien vorgestellt werden, wird zunéchst die in dieser
Arbeit geltende Notation eingefiihrt. Hierbei werden Vektoren mit fett gedruckten Kleinbuch-
staben und Matrizen mit fett gedruckten Groflbuchstaben dargestellt.

Es liegen Daten von insgesamt n Patienten vor mit dem Index ¢ = 1,..,n. Die Zielvariable
Y sei bindr mit den unabhingigen Auspriagungen y = (yi,...,y,)T € {0,1}. Es werden zwei
Behandlungen betrachtet, eine neue Behandlung (Treatment) und eine herkémmliche oder

eine Behandlung mit Placebo (Kontrolle). Die zugehorige Treatmentvariable 7" sei

1, Treatment

i =

0, Kontrolle

mit den Auspragungen t = (¢, ..., t,)". Die Kovariablenmatrix X, enthélt die Werte der
p omics-Variablen fiir alle n Patienten. Wobei p > n gilt, dies bedeutet es liegen mehr Ko-
variablen (Genexpressionen) als Beobachtungen (Patienten) vor. In diesem Fall spricht man
auch von hochdimensionalen Daten. Der Vektor x; = (21, .., Zn;)7 mit j = 1,...,p enthalt
dabei die stetigen Auspragungen der j-ten genetischen Variable X fiir alle n Beobachtungen.
Wie in Kapitel |2| angesprochen, sollten die Daten idealerweise in Trainings- und Testdaten
unterteilt werden. Dies bringt den Vorteil, dass kein Modell geschétzt wird, das sich zu sehr
an die beobachteten Daten anpasst. Denn um unverzerrte Schétzungen zu erhalten sollte
die Stichprobe, die zur Modellbildung verwendet wird, unabhéngig der Stichprobe, die zur
Beurteilung der Performance verwendet wird, sein (Baek et al., 2009). Das heifit man konnte
den Datensatz in zwei Teile unterteilen und dann einen zur Schitzung und den anderen
zur Validierung nutzen, wie es beispielsweise bei der ASD Methode gemacht wird (Freidlin
and Simon, 2005)). Da es sich jedoch bei dem hier verwendeten Datentyp der omics-Daten
um hochdimensionale Daten handelt, bedarf es fiir die Entwicklung der Biomarker einer
moglichst grofien Stichprobe (Freidlin et al., 2010). Daher bietet es sich an, statt den Daten-
satz nur einmal in Trainings- und Testdaten aufzuteilen, dies mehrmals zu machen, was der
Kreuzvalidierung entspricht. Dadurch kann gewissermafien die komplette Stichprobe fir die
Schétzung und fir die Validierung genutzt werden (Freidlin et al., 2010).

Die Methode von Matsui et al.| (2012)) sowie der neue Ansatz nutzen daher die Kreuzvalidie-
rung. Die Vorgehensweise der Kreuzvalidierung und die zugehorige Notation werden daher

ebenfalls kurz beschrieben. Bei einer K-fachen Kreuzvalidierung wird folgendermaflen vor-



gegangen (Baek et al.| 2009):
1. Splitte den Datensatz zuféllig in K (etwa gleichgrofie) Teile.
2. Nutze K — 1 Teildatensétze (Trainingsdaten) zur Schiatzung der Biomarker.

3. Berechne die Biomarker mittels dieser Schétzung fiir den iibrigen Teildatensatz (Test-
daten).

4. Wiederhole 2. und 3. fiir alle £ = 1, ..., K Teildatensétze.

3.2 Schatzen

In diesem Abschnitt wird zunéchst beschrieben wie die priadiktiven und prognostischen Bio-
marker gebildet werden. Da sich die Biomarker im Folgenden aus mehreren genetischen
Variablen zusammensetzen, werden sie auch héufig als Scores bezeichnet.

Dazu wird erst der Vorschlag von Matsui et al.| (2012)) gezeigt und dann der daraus resultie-

rende neue Ansatz.

3.2.1 Methode von Matsui

Ziel der Studie von Matsui et al.| (2012) ist es die Empfanglichkeit von Patienten fiir Krebs-
behandlungen vorhersagen zu kénnen, um fiir jeden Patienten die geeignete Behandlung zu
finden. Dazu sollen genetische Scores oder auch (hochdimensionale) Biomarker entwickelt
und validiert werden. Dabei werden zum einen die allgemeinen Risiken, reprasentiert durch
einen prognostischen Score, und zum anderen die unterschiedlichen Empfanglichkeiten fiir
die Behandlung, reprasentiert durch den préadiktiven Score, betrachtet.

In einer randomisierten Studie soll nun die Treatmentgruppe (T), die die Behandlung er-
halten hat, mit der Kontrollgruppe (K), die ein Placebo erhalten hat, verglichen werden.
Insgesamt werden p pretreatment (= vor der Behandlung gemessen) Genexpressionen, eine
Treatmentvariable und ein bindrer Outcome von n Patienten betrachtet. Wobei mit p > n
hochdimensionale Daten vorliegen. Urspriinglich haben Matsui et al. (2012) als Outcome
Uberlebenszeiten betrachtet. Um jedoch die Simulation in Kapitel 4] zu erleichtern wird hier
nur eine bindre Responsevariable (Event eingetreten oder nicht eingetreten) angenommen.
Das heifit die Methode von Matsui et al.| (2012) wurde so angepasst, dass sie fiir bindre Zielva-
riablen anwendbar ist. Dabei wurde vor allem das Cox-Modell fiir Uberlebensdaueranalysen

durch eine logistische Regression fiir die Analyse von bindren Outcomes ersetzt.
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Logistische Regression

Wenn die Zielvariable nicht stetig sondern binér ist, verwendet man anstelle der normalen
linearen Regression eine binare Regression. Fahrmeir et al.| (2009) leiten diese folgendermafien
her. Da es sich bei dem Erwartungswert einer bindren Variable um eine Wahrscheinlichkeit
handelt, mochte man bei bindren Regressionsanalysen den Effekt der Kovariablen auf die
(bedingte) Wahrscheinlichkeit

T, = P(yz = 1|I‘i1, ---wrip) = E(’yl|$21, ...,.Tip)
fir y; = 1 gegeben die Kovariablen modellieren. Eine lineares Modell

i = Bo + Bixa + ... + BpTip = 1

bringt unter anderem den Nachteil mit sich, dass der Wertebereich nicht wie bei Wahr-
scheinlichkeiten zwischen 0 und 1 liegt. Wobei 7; den linearen Prédiktor bezeichnet. Daher
wird bei bindren Regressionsmodellen die Beziehung zwischen der Wahrscheinlichkeit 7; und
dem linearen Pradiktor 7; iiblicherweise mit Hilfe einer Verteilungsfunktion h dargestellt.
Hierdurch gelten fiir den transformierten linearen Pradiktor dieselben Eigenschaften wie fiir
Verteilungsfunktionen. Dies garantiert, dass der Wertebereich [0, 1] eingehalten wird.
Wahlt man fiir A die logistische Verteilungsfunktion, erhélt man
exp(n;) exp(Bo + frxia + ... + Bpip)

mi = h(1;) = L+ exp(n;) 1+ exp(Bo + Przis + - + Byy) "

das sogenannte logistische Regressionsmodell. Zur besseren Interpretation formt man dieses

meist um und erhélt die logarithmierte Chance

log (1 & Z) = log (1—(Py(yl:)1)> = Bo + iz + ... —f—ﬁpxip

bzw. die Chance

Py, =
1_(py(yii)1) = e:vp(ﬁ())efp(ﬁﬂu) S e:pp(ﬁpxip)_

Die Chance setzt folglich die Wahrscheinlichkeit fiir y; = 1 und fiir y; = 0 ins Verhéltnis.
Dabei hat exp(3;) einen multiplikativen Einfluss. Erhoht sich beispielsweise x;; um eine Ein-
heit, so verdndert sich die Chance multiplikativ um den Faktor exp(5;) (bei Konstanthaltung

aller anderen Kovariablen).
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Score-Bildung
Fiir die Bildung des préadiktiven Scores schlagen |Matsui et al.| (2012) folgendes vor:

1. Schétze fiir jede Genexpression X;, j = 1, ..., p, ein eigenes Modell, hier eine logistische

Regression wie in Gleichung ,

20) el“p(nfj)) _ exp(ﬁéj) + /B(Tj)tz‘ + 5£j)xij + 5§j)ti$ij)
1+ el’P(Wi(])) 1+ e:cp(ﬁ(()j) + ﬁ,fﬂ)ti + 59)5%' + 5§J)tﬂij)

(2)

wobei 7 die Wahrscheinlichkeit P(yz(j) = 1|X; = 245, T = t;) darstellt. Also die
Wahrscheinlichkeit, dass die Outcomevariable Y den Wert 1 annimmt gegeben die
Genexpression und das Treatment. Auflerdem bezeichnet 77,0 ) den linearen Prédiktor
im j-ten Modellmit Béj ) dem Intercept, 653 ) dem Haupteffekt des Treatments, 69 ) dem
Haupteffekt der betrachteten Genexpression und ﬁéj ) dem Interaktionseffekt zwischen
Treatment und Genexpression. Das j in der Formel [2| ist erforderlich aus dem Grund,

da fiir jede Genexpression (Kovariable) ein separates Modell gefittet wird.

2. Teste mit Hilfe des Wald-Tests fiir jedes Modell die Hypothese Hj: Béj ) =0 gegen
Hi: Béj) # 0 mit o = 0.001 (Matsui et al., 2012). Das heifit teste auf Signifikanz der
Interaktion zum Niveau 0.001.

Dieser Test basiert auf der Wald-Statistik v). Diese wird berechnet indem man den
Schétzer quadriert und durch seine Varianz teilt. Asymptotisch ist die Wald-Statistik
unter der Nullhypothese y?-verteilt (Fahrmeir et al., 2009)
o= B o s

Var(s)
Matsui et al. (2012)) nutzen in ihrem Paper eine standardnormalverteilte Teststatis-
tik als Gewicht. Lasst man den Schatzer unquadriert und teilt an Stelle der Varianz
des Schéatzers durch seine Standardabweichung erhédlt man die standardisierte Wald-
Statistik z(): _

216

L) - P24 N(0,1).

VVar(3Y)

Alle Genexpressionen X; mit signifikantem Interaktionseffekt bilden die Menge

Q= {j | p-Wert von Béj) <aVj}.

3. Bilde den pridiktiven Score UM nach Matsui et al.| (2012) fiir Patient i als gewichtete

Summe der Auspriagungen der Genexpressionen aus der Menge §2; mit der zugehoérigen
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standardisierten Wald-Statistik z des Interaktionseffekts:

M __
U~ = Z 2 Tig-

geE

. Bilde den prognostischen Score W nach Matsui et al|(2012) fiir jeden Patienten i.
Dabei ist das Vorgehen analog zu den ersten drei Schritten, jedoch ohne Betrachtung
des Treatments (Matsui et al.,[2012). Das heifit es werden ebenfalls logistische Einfach-
regressionen gefittet, die jedoch lediglich den Haupteffekt der jeweiligen Genexpression

X schatzen:
J(C) el‘p(m(”) _eap( (()])"'557)%3‘)

Cdteapn?)  1+eap(BY + 8V y)

Anschlieend wird hier 69 ), der Haupteffekt der Genexpression, mit Hilfe des Wald-
Tests auf Signifikanz getestet. Anhand der standardisierten Wald-Statistik,

30)
MO N S ) N(0,1)

VVar(BY)

hier zur besseren Unterscheidung mit s bezeichnet, wird folglich die Nullhypothese
Hy: ij) = 0 auch mit o = 0.001 getestet.

0y = {j | p-Wert von BY < o Vit

bildet hierbei die Menge der signifikanten Genexpressionen. Schlieflich wird der pro-
gnostische Score fiir Patient ¢ in Form einer gewichteten Summe der Genexpressionen
aus {2y und ihren zugehorigen standardisierten Wald-Statistiken s des Haupteffekts
gebildet:

WM =37 s25y.

geQ2

Nachdem die beschriebenen Schritte fiir alle £ Teildatensétze der Kreuzvalidierung durch-

gefiihrt wurden, hat nun jeder Patient ¢ einen prédiktiven und einen prognostischen Score,

die fiir weitere Analysen verwendet werden kénnen.

3.2.2 Neuer Ansatz

Matsui et al. (2012) betrachten alle Genexpressionen einzeln, indem sie fiir jede Genexpressi-

on eine eigene Einfachregression schétzen, die den Einfluss lediglich dieser Genexpression auf

die Responsevariable ohne Hinzunahme weiterer Kovariablen schéitzen soll. Dabei entsteht
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allerdings das Problem des multiplen Testens, wie es auch schon in Kapitel [2[ kurz erlautert
wurde. Matsui et al| (2012) scheinen dieses durch ein allgemein klein gewéhltes Signifik-
anzniveau o = 0.001 abschwéchen zu wollen, anstatt eine explizite Korrektur der p-Werte
vorzunehmen. Ma et al| (2015) kritisierten ebenfalls die bisher oftmals univariaten Heran-
gehensweisen, da dadurch gemeinsame Effekte von potentiellen multiplen Biomarkern un-
beriicksichtigt bleiben. Der neue Ansatz stellt daher eine multiple Alternative zur Schétzung

der Biomarker dar.

Lasso-Regression

Wie zuvor angesprochen, handelt es sich bei omics-Daten um Datensatze mit mehreren
Tausend Variablen. Bei dieser hohen Anzahl an Kovariablen liefern herkémmliche Parame-
terschéitzungen in einem multiplen Regressionsmodell keine zufriedenstellenden Ergebnisse
beziiglich Vorhersagegenauigkeit und Interpretierbarkeit (Tibshirani, 1996)). Ubersteigt sogar
die Anzahl der Kovariablen die der Beobachtungen ist ein lineares Modell gar nicht mehr
schétzbar. Deshalb wird hier die sogenannte Lasso-Regression (least absolute shrinkage and
selection operator) von [Tibshirani (1996) angewendet. Diese Methode schrumpft die Koeffi-
zienten und setzt dabei einige auf Null. Dadurch wird die Interpretation vereinfacht, da die
wichtigsten Effekte, d&hnlich wie bei der Subset Selection, selektiert und nicht mehr durch
viele kleine Effekte verschleiert werden. Vergleichbar mit der Ridge Regression sorgt das
Schrumpfen der Koeffizienten fiir eine stabilere Schatzung, was die Vorhersagegenauigkeit
verbessert. Damit vereint Lasso die Vorteile der Subset Selection und der Ridge Regression.
Die Outcomevariable sei hier zunichst Y € R. Ansonsten werden weiterhin p Kovariablen
und n Beobachtungen betrachtet. Die iibliche Annahme von entweder unabhéngigen Beob-
achtungen oder bedingt unabhéngigen y;’s gegeben den x;;’s mit 1 =1,...,nund j =1,...,p
sei ebenfalls getroffen. Zuséatzlich wird hier angenommen, dass alle Kovariablen standardi-
siert sind, so dass %ZLI z;; = 0 und %Z?:l x?j = 1 gilt. Bei der Lasso-Regression , wie
bei der normalen Regression (OLS), die Residuenquadratsumme 7" (y; — B0 — X5 8;i;)
minimiert (Fahrmeir et al.; 2009)), jedoch unter einer Nebenbedingung. Die Definition von
Lasso sieht dann folgendermafen aus (Tibshirani, (1996 Hastie et al., 2009):

Bo,BERPFL \ ;1

A~ n P
(Bo, ) Lasso = argmin (Z@z — By — Z 5;'%;]')2)
=1
p (3)
unter der Nebenbedingung Z 18] < t,

J=1

wobei ¢ ein nichtnegativer Skalar ist. Die Nebenbedingung von Lasso sorgt folglich dafiir, dass

die Summe der Betriage der g-Koeffizienten einen bestimmten Wert ¢ nicht iiberschreitet.
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Dadurch miissen einige [-Koeffizienten entweder geschrumpft oder sogar auf Null gesetzt
werden, was eine Reduzierung auf die relevanten Effekte bewirkt. Die vorherige Standardi-
sierung der Kovariablen garantiert dabei, dass alle -Koeffizienten gleichermafien durch die

Nebenbedingung bestraft werden.

Der Lasso-Schatzer lasst sich mit Hilfe der Lagrange-Methode auch in penalisierter Form

mit dem Penalisierungsparameter A darstellen (Hastie et al. 2009):

PN . 1> p P

(607 B)Lasso = argmin a Z(yz - 60 - Z ﬁjajij)Q + A Z ’BJ' )
Bo,BERPH i=1 j=1 j=1

mit A > 0. Umso grofer man A (bzw. umso kleiner man t) wahlt, desto stérker ist die

Bestrafung oder Schrumpfung. Zur optimalen Wahl von A wird oft auf ein Kreuzvalidie-

rungsverfahren zuriickgegriffen (Hastie and Qian) |2014).

Im Falle einer bindren Outcomevariable Y = {0,1} wird, wie bereits erwahnt, hiufig die

logistische Regression verwendet. Der Lasso-Schitzer maximiert dann die Log-Likelihood

anstatt die Residuenquadratsumme zu minimieren. Wie bereits definiert, ist 71 = P(Y =
o o e:l?p(ﬁo—‘rz‘?:l ﬁjX]') o . _ _ 1

11X =x) = 1+exp(ﬁo+i§.’:15jxj) und analog 1 — 7 = P(Y = 0|X =x) = (Bt ST )’

Die Dichte von einer Realisation y; der Zufallsvariable Y sieht dann folgendermaflen aus

(Fahrmeir et al., 2007):

flyilm) = P(Y = y;|m) = 7% (1 — mr) 7%,

Die Likelihoodfunktion ist dann die Dichte unabhéngiger und identischer Wiederholungen
(Fahrmeir et al., |2007):

n

L(7) = f(W1, e yalm) = Fn]m) - oo flyalm) = [] 7% (1 — )%,

=1

o . - . exp(Bo+Y7_, Bix;)
Logarithmiert man diese Likelihoodfunktion und setzt - TeapFo t 3 )

folgende Log-Likelihood:

ein, erhélt man

-

@
I
=

I(m) = log(L(m)) = > _wi-log(m) + (1 —y;) - log(1 — )

I
&

s
I
—

- (Bo+ D) wiiBy) — log(1 4 exp(Bo + D 2i;55)).
=1

J=1
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SchlieBlich ergibt sich mit dieser Log-Likelihood die folgende penalisierte Form des Lasso-
Schétzers fiir logistische Regressionen (Hastie et al., |2009):

(B, B) Lasso = argmax (Z (i - (Bo+ D Bjwiy) — log(1 + exp(Bo + > Bjwiy))| =AY |5j|> :
0,8€ERPTL \ ;=1 j=1 j=1 j=1
(4)

Es ist noch anzumerken, dass es sich bei dem Lasso-Schatzer um keine geschlossene Form
handelt (und durch die L; Penalisierung die Lésung nicht linear in y; ist)(Hastie et al., [2009).
Um die quadratische Gleichung zu 16sen gibt es verschiedene Algorithmen. Das Paket glmnet
nutzt beispielsweise einen Algorithmus mit CCD (cyclical coordinate descent) (Hastie and
Qian, [2014).

Idee des neuen Ansatzes

Bevor der neue Ansatz formal definiert wird, soll zunéchst die Idee kurz beschrieben werden.
Statt vieler Einfachregressionen wie bei |Matsui et al.| (2012), soll hier eine Lasso-Regression
geschéitzt werden und dann auf Basis dieser Variablenselektion die Scores gebildet werden.
Das heifit alle Genexpressionen kommen als Kovariablen mit ins Modell, was den Vorteil
hat, dass auch die Zusammenhangsstruktur der Kovariablen beriicksichtigt werden kann.
Ein weiterer Vorteil ist, dass hier kein multiples Testproblem mehr entsteht, da die Varia-
blenselektion nicht mehr unter Anwendung von statistischen Signifikanztests geschieht. Alle
Genexpressionen mit einem Haupteffekt ungleich 0 werden Teil des prognostischen Scores.
Dieser stellt eine gewichtete Summe der Ausprigungen dieser Genexpressionen mit ihren
zugehorigen S-Werten dar. Analog setzt sich der pradiktive Score aus der Summe der Aus-
pragungen der Genexpressionen mit ihren zugehorigen Interaktionseffekten zusammen. Die
[-Koeflizienten konnen hier als Gewichte verwendet werden, da die Lasso-Regression auf
standardisierten Werten basiert und somit auch die daraus resultierenden Koeffizienten stan-
dardisiert sind. Das heifit die Grofle der Koeffizienten hangt nicht von der Skala, auf der die
beobachteten Werte gemessen wurden, ab. Diese Standardisierung erfolgt bei der Anwen-
dung mit dem R-Paket glmnet intern (Hastie and Qian) 2014)). Das heifit die Werte werden
zur Schatzung standardisiert und anschliefend wieder zurtick transformiert. Die resultieren-
den Koeffizienten sind somit ebenfalls standardisiert, werden aber anschlieSend auch auf die
urspriingliche Skala zuriick transformiert, so dass sie als Gewicht fiir die urspriinglichen Wer-
te geeignet sind.

Die erste intuitive Variante dieses Ansatzes erfolgt einschrittig. Einschrittig bedeutet dabei,
dass gleich im ersten Schritt sowohl alle Haupteffekte der Genexpressionen als auch ihre

Interaktionen mit dem Treatment mit in die Lasso-Regression aufgenommen werden. Die-
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se Vorgehensweise bringt den Nachteil mit sich, dass durch das einschrittige Vorgehen die
Moéglichkeit besteht, dass die Interaktionen zu viel Bedeutung in der Schatzung bekommen.
Daher werden zusétzlich zweischrittige Anséatze vorgeschlagen.

Zweischrittig bedeutet dabei, dass Haupteffekte und Interaktionen in zwei aufeinander fol-
genden Schritten betrachtet werden. Im ersten Schritt wird eine Lasso-Regression geschétzt,
die nur die Haupteffekte der Genexpressionen enthélt. Damit soll sichergestellt werden, dass
zunachst moglichst viel Streuung anhand der Haupteffekte erklart wird und erst im zwei-
ten Schritt die Reststreuung mit Hilfe der Interaktionseffekte erklart wird. Dadurch wird
verhindert, dass den Interaktionen zu viel Bedeutung zukommt. Damit die Interaktionen
nur die Reststreuung erkldren, wird der lineare Pradiktor des Haupteffektmodells des ersten
Schrittes als Offset fiir das Interaktionsmodell des zweiten Schrittes verwendet. Im zweiten
Schritt stellt sich dabei die Frage welche Interaktionen ins Modell aufgenommen werden
sollen. Haufig wird die Meinung vertreten, dass nur Interaktionsterme ins Regressionsmo-
dell aufgenommen werden sollen, wenn auch die zugehorigen Haupteffekte im Modell sind.
Das bedeutet in diesem Fall, dass lediglich Interaktionsterme von Genexpressionen mit ei-
nem J-Koeffizienten ungleich 0 aus dem ersten Schritt mit in das Modell aus dem zweiten
Schritt aufgenommen werden diirfen. Nachteil dieses Vorgehens ist es, dass durchaus nicht
alle Genexpressionen, die einen Interaktionseffekt mit dem Treatment haben, auch einen
Haupteffekt auf die Zielvariable haben miissen. Inhaltlich bedeutet das, dass nicht nur gene-
tische Variablen, die fiir den prognostischen Score von Bedeutung sind fiir den préadiktiven
Score relevant sein konnen. Bei diesem Ansatz konnte somit die Gefahr bestehen, dass wichti-
ge Genexpressionen fiir den pradiktiven Score verloren gehen. Weshalb eine weitere Variante
des zweischrittigen Ansatzes betrachtet wird. Diese lésst im zweiten Schritt alle Interakti-
onsterme zu. Dadurch erscheint diese Variante inhaltlich gesehen sinnvoller.

Welches Verfahren zu bevorzugen ist und in welchen Situationen wird schliefSlich mit Hilfe

der Simulationsstudie in Kapitel 4 untersucht.

Genaues Vorgehen

Wie oben bereits beschrieben wurde, werden die Kovariablen vor der Schitzung der Lasso-
Regression standardisiert. Da es sich bei der Treatmentvariable um eine bindre Variable
handelt, kann diese nicht sinnvoll standardisiert werden. Deshalb wurde hier der Haupteftekt

des Treatments vorab anhand einer normalen logistischen Regression ohne Penalisierung wie
in Gleichung ([2]) geschétzt

log < i ) = Bo + Brti = 1] (5)

1—7'('1'
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und der daraus resultierende lineare Pradiktor 7! fir die darauf folgenden Lasso-Regressionen
als Offset verwendet. Inhaltlich lésst sich dieses Vorgehen folgendermaflen interpretieren. Es
wird erst betrachtet welchen Anteil der Streuung das Treatment ungeachtet anderer Einfluss-
faktoren erkléren kann und dann wird versucht die Reststreuung anhand der genetischen
Variablen zu erklaren. In den folgenden Modellen findet sich daher kein Parameter fiir das

Treatment, da dessen Haupteffekt bereits im Offset enthalten ist.

Das einschrittige Verfahren

Wie bereits beschrieben, werden beim einschrittigen Verfahren alle Haupt- und Interak-
tionseffekte auf einmal ins Modell aufgenommen. Damit ergibt sich nach Formel der

Lasso-Schéatzer

.. n P p
(Bo, B) Lasso = argmax (Z [yi (Bo+ Y Bl + Y B (tiwyg) + 1))
j=1 =1

Bo,BERZPHL \ ;1

p P
—log(1+ exp(Bo+ 3 B wi; + 3 Bl (tiwyg) + )] (6)

j=1 Jj=1
P
O CHEREH) )
j=1

mit 7 = (B, ..., BT dem Parametervektor der Haupteffekte und Bl = (5, o BT dem

Parametervektor der Interaktionseffekte.

Die zweischrittigen Verfahren

Hier wird zuerst das Haupteffektmodell

60 ﬂGRerl =1 =

(307 3)Lasso = argmax (Z |: 60 + Zﬁ ng + 771)

log(1 4 ep(Bo + 3 By +10)] (7)

Jj=1
a H
Jj=1

mit dem Offset n' aus Gleichung geschatzt. Im zweiten Schritt wird anschliefend das
Interaktionsmodell mit dem resultierenden linearen Pridiktor n? = Sy + Z;’:l(ﬁf Tij) + 0
aus dem Haupteffektmodell als Offset gefittet.
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Version I
Sei S = {j|f]" # 0 Vj} die Menge der Kovariablen mit einem j-Koeffizienten ungleich
Null. Dann sieht bei der ersten zweischrittigen Version das Interaktionsmodell des zweiten

Schrittes folgendermafen aus

n

(BO; B)Lasso = argmax (Z [yz : (60 + Z ﬂsl(tzxzs) + 77?)

Bo,BERPHL \ j—1 seS

_ lOQ(l + exp(ﬁo + Z ﬁsl(tzxzs) + 77?))} (8)

SES

—Azwg),
sesS

dabei gilt ﬂJI = 0 fur j ¢ S. Dieses ldsst also nur Interaktionseffekte von Genexpressionen

mit einem Haupteffekt ungleich Null zu.

Version 11
Die andere zweischrittige Version lasst im zweiten Schritt alle Interaktionen zu. Somit ergibt

sich dieses Interaktionsmodell:

(607 B)Lasso = argmax (i [yz : (BO + Z le(tzxz]) + nzh)
=1

Bo,BERPHL \ ;1

— log(1+ exp(fo+ 3 Bl(tizig) + 1) (9)

j=1
A Iﬁf\)
j=1

Score-Bildung
Wie bei der Idee des neuen Ansatzes bereits beschrieben, bilden die Scores die gewichteten
Summen der Auspriagungen der Genexpressionen mit den zugehorigen Haupt- bzw. Interak-

tionseffekten.
Der pradiktive Score fiir Person ¢ berechnet sich somit nach dem neuen Ansatz folgender-

maflen und wird mit U; bezeichnet:
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Der prognostische Score fiir Person ¢ berechnet sich analog:
" Ar
j=1

Wobei je nach Schétzung der Lasso-Regressionen einige [5-Koeffizienten gleich Null sind und

somit die zugehorigen Genexpressionen nicht in die gewichtete Summe eingehen.

3.2.3 Pradiktionsmodell

In diesem Abschnitt werden zwei Pradiktionsmodelle vorgestellt, die im Simulationsteil ge-
nutzt werden um die Ergebnisse der unterschiedlichen Methoden zur Score-Bildung zu ver-
gleichen.

Ahnlich wie bei Chen et al.| (2015) beschrieben sollen anhand der in Kapitel [3.2] geschitzten
Scores die Auspragungen der Zielvariable vorhergesagt werden. Die bereits beobachteten
Werte dieser Outcomevariable dienen dann als Label, um tberpriifen zu konnen wie gut die

Vorhersage ist.

Methode von Matsui

Bei dem Ansatz von Matsui et al.| (2012)) werden dazu, wie bei der Score-Bildung, die aus der
Kreuzvalidierung gebildeten Trainings- und Testdaten genutzt. Anhand der Trainingsdaten
wird ein Pradiktionsmodell geschétzt und anschliefend die Pradiktionsgenauigkeit des Mo-
dells auf den Testdaten evaluiert.

Das Préadiktionsmodell ist somit wieder ein logistisches Regressionsmodell und sieht folgen-

dermaflen aus:

B + Brt; + BrwM + BouM + Bat,uM
szp(yl:1|T:tZ,WM:w£V[,UM:U,M)— exp(/60+ﬁT +ﬁlwz +BQUZ +63 U,L )

g 693]9(30 + Brti + Blsz + B2UZM + BStiuzMy
(10)

wobei m; die Wahrscheinlichkeit darstellt, dass y; den Wert 1 annimmt, gegeben die Werte
der Kovariablen T, W™ und UM. Die geschiitzten Koeffizienten By fiir den Intercept, By fiir
den Haupteffekt des Treatments, 3; fiir den Haupteffekt des prognostischen Scores, (s fiir
den Haupteffekt des pradiktiven Scores und 33 fiir den Interaktionseffekt zwischen Treatment
und préadiktivem Scores stammen dabei aus einer Schiatzung auf den Trainingsdaten.

Man konnte sich an dieser Stelle auch iiberlegen das Priadiktionsmodell ohne den Haupteffekt
des pradiktiven Scores zu schétzen, da es bei diesem eigentlich nur um die Interaktion geht.
Abbildung [12]im Anhang vergleicht die beiden Optionen und zeigt, dass kaum Unterschiede

bestehen.
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Neuer Ansatz

Da der neue Ansatz zur Score-Bildung bereits die aus den Trainingsdaten geschéitzten (-
Koefhizienten als Gewichte nutzt, muss hier das Pradiktionsmodell nicht mehr explizit ge-
schiatzt werden. Die Vorhersage kann dann folgendermaflen fiir jede Beobachtung aus dem

Testdatensatz berechnet werden:

_exp(n; + Bllwy + .+ Bllag + Bloa + ...+ Blfxip)
L+ exp(n! + B wi + ... + BHip + flon + ... + Bé%'p)’

P(y; = 1|x;,t;)

wobei man die geschiitzten Koeffizienten BH = (BH, ..., Bf)T und BI = (B, ..., BI{)T aus der
Lasso-Regression des einschrittigen Verfahrens (@ bzw. der zweischrittigen Verfahren (([7)),
, @D) erhélt. Die Schatzung des Intercepts und des Haupteffekts des Treatments stecken
in dem linearen Préadiktor 7', der aus dem vorab gefitteten logistischen Regressionsmodell
(5) resultiert.

Eine Moglichkeit die Performance des Préadiktionsmodells darzustellen ist die Konfusions-
matrix, wie sie in Tabelle [1| zu sehen ist (Pepe, 2003; |Swets, 1988).

Tabelle 1: Konfusionsmatrix

Label 0 Label 1
Vorhersage 0 | richtig negativ (TN) falsch negativ (FN) | TN 4+ FN
Vorhersage 1 | falsch positiv (FP)  richtig positiv (TP) | FP + TP
TN + FP FN + TP n

Diese zeigt die richtigen (TP und TN) und die falschen (FP und FN) Vorhersagen. Wurde
beispielsweise bei Patient ¢ Genesung beobachtet, es gilt also y; = 1 und somit hat Patient
1 das Label 1, und die Vorhersage besagt 0 also keine Genesung, so handelt es sich um eine
falsche Vorhersage in Form eines falsch negativen Ergebnisses. Betrachtet man den Anteil
falscher Pradiktionen (££ J]\“,F M), so erhilt man den Missklassifikationsfehler.

Aus dem oben definierten Préadiktionsmodell erhdlt man jedoch zunéchst nur Wahrschein-

lichkeiten dafiir, dass die Zielvariable Y den Wert 1 annimmt und noch keine Entscheidung
iiber die Auspriagung 1 oder 0. Dazu muss vorher noch ein sogenannter Schwellenwert festge-
legt werden, der angibt ab welcher Wahrscheinlichkeit die Auspragung der Zielvariable auf 1
gesetzt wird (Pepe, [2003). In der Praxis wird dieser Schwellenwert haufig intuitiv bei 0.5 oder
nahe 0.5 gewéhlt. Je nach gewahltem Schwellenwert konnen sehr unterschiedliche Ergebnis-
se herauskommen und sich folgendermaflen auch unterschiedliche Missklassifikationsfehler

ergeben. Eine Moglichkeit der grafischen Darstellung der Vorhersagekraft fiir verschiede-
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ne Schwellenwerte, stellt die sogenannte ROC (receiver operating characteristic) dar (Pepe),
2003;; Swets, [1988). Die ROC Kurve bildet dabei den Anteil der richtig Positiven gegeniiber
dem Anteil der falsch Positiven ab.

Zwei Begriffe, die man in der Medizin haufig in diesem Zusammenhang hort und in Kapitel
genannt wurden, sind die Sensitivitdt und die Spezifitidt (Pepe, [2003).

Sensitivitat ist die bedingte Wahrscheinlichkeit, dass 1 vorhergesagt wird, gegeben das
wahre Label ist 1 = P(Vorhersage = 1|Label = 1). Als Schatzer dient der Anteil richtig
Positiver (TPF): TPF = TPTJF%.

Spezifitit ist die bedingte Wahrscheinlichkeit, dass 0 vorhergesagt wird, gegeben das wahre
Label ist 0 = P(Vorhersage = 0|Label = 0). Als Schétzer dient der Anteil richtig Negativer
(TNF): TNF = -5

Die ROC Kurve bildet hierbei die Sensitivitdt auf der y-Achse und (1 - Spezifitdt) auf
der x-Achse fur alle moglichen Schwellenwerte (vom kleinsten bis zum gréfiten) ab. (1 -
Spezifitat) ist dann 1 — TNF = % = F'PF, also der Anteil der falsch Positiven (FPF).
Bei einem guten Vorhersagemodell verlduft die ROC Kurve in einem grofien Bogen iiber
der Winkelhalbierenden. Ein schlechtes Vorhersagemodell hat eine ROC Kurve eng an der
Winkelhalbierenden liegend. Abbildung 1| verdeutlicht dies anhand zwei fiktiver Beispiele.
Zum Vergleich von ROC Kurven wie in Abbildung [1| wird auch haufig die Flédche unter den
Kurven herangezogen. Das sogenannte AUC (Area under the curve) fasst somit die ROC
Kurve in einem Wert zusammen indem es die Flache unter ihr angibt(Pepe, 2003)). Damit
stellt das AUC ein Maf, das ebenfalls zum Vergleich von verschiedenen Pradiktionsmodellen
herangezogen werden kann, aber unabhéngig der Wahl des Schwellenwertes ist, dar.

L, bezeichne die Menge der Beobachtungen mit Label 1, also y; = 1 und L, die Menge
der Beobachtungen mit Label 0, also y; = 0. Angenommen man zieht aus jeder Gruppe
zufillig eine Beobachtung, dann gibt das AUC die Wahrscheinlichkeit an, dass m; von der
Beobachtung aus L; grofer ist als m; der Beobachtung aus Ly (LeDell et al., 2015). Somit
lasst sich das AUC folgendermaflen empirisch berechnen(LeDell et al| 2015):

1 nog ni

Yo (7 > ),

non 5= 551

AUC =

mit ng der Anzahl der Elemente aus Ly und n; der Anzahl der Elemente aus L; und I der
Indikatorfunktion, die zéhlt wie oft 7; > 7; gilt. Das AUC nimmt im allgemeinen Werte

zwischen 0.5 (unbrauchbares Vorhersagemodell) und 1.0 (perfektes Vorhersagemodell) an.
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ROC Kurven — Beispiele

_—— — —

0.8

Sensitivitat (TPF)
0.4
|

0.0

| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

1-Spezifitat (FPF)

Abbildung 1: Die blaue ROC Kurve (gestrichelte Linie) stellt eine bessere Vorhersage als
die rote Kurve (durchgezogene Linie) dar, da sie die rote Kurve dominiert.
Das heifit die blaue Kurve ist immer tiber der roten Kurve. (Quelle: eigene
Berechnungen)

Da die Analyse jedoch auf Kreuzvalidierung basiert, soll hier nicht das AUC iiber alle Be-
obachtungen berechnet werden, sondern das cvAUC (cross validated AUC). Das heiit ein
AUC, das die K-fache Aufteilung in Trainings- und Testdaten beriicksichtigt. Bezeichne
dazu B}, ..., BX wie bei LeDell et al.| (2015) die K Unterteilungen in Trainings- und Test-
daten, wobei BF € {0,1}". Die Beobachtungen der k-ten Testdaten sind dann gekennzeich-
net durch {i : Bf(i) = 1} und die Beobachtungen der zugehérigen Trainingsdaten durch
{i : B¥(i) = 0}. nf = X0, I(y; = 0)I(B*(i) = 1) bezeichnet dann die Anzahl Beobach-
tungen aus dem k-ten Testdatensatz mit y; = 0 und nf = 0 I(y; = 1)I(BE(i) = 1) die
Anzahl Beobachtungen aus dem k-ten Testdatensatz mit y; = 1.

Fiir einen einzelnen Testdatensatz {i : B*(i) = 1} der Kreuzvalidierung sieht das AUC nach
LeDell et al.| (2015)), folgendermaflen aus:

”0 ”1

A/U\Ck kZZIﬂ]>m

nonlz 1j=1

Das cvAUC tber alle Testdaten der K-fachen Kreuzvalidierung ist dann als Mittelwert aller
AUCs der einzelnen K Testdaten definiert (LeDell et al., 2015)):

k
1 K o nl

CWC_KZAU@ =2 LSS 1 > 7). (11)

k= 1n0nlz 1j=1
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3.3 Testen

GeméB |Chen et al.|(2015) gehort es zur Entwicklung von pradiktiven Biomarkern dazu, dass
man den Treatmenteffekt nicht nur schétzt sondern auch testet. Dabei konnen verschiedene
Hypothesen interessant sein. Dieses Kapitel beschreibt dazu erst den Permutationstest von
Matsui et al. (2012) und anschlieBend welchen Test der neue Ansatz anstreben wiirde. Dabei
werden zwei Permutationstest vorgestellt, die fiir die Umsetzung des Tests von Nutzen sein

konnten.

3.3.1 Methode von Matsui

Matsui et al. (2012) testen in ihrem Paper die Nullhypothese,

HY! - es gibt fiir die gesamte Population keinen Treatmenteffekt = H) : By = 33 = 0.

Dazu stellen sie den Treatmenteffekt durch eine Funktion W(u*) vom prédiktiven Score UM
dar. Da es sich in diesem Unterkapitel bei allen Scores um die Scores nach Matsui et al.
(2012) handelt, wird zur besseren Lesbarkeit im Folgenden auf den Index M verzichtet. Die
an das bindre Setting angepasste Funktion fiir einen Patienten ¢ sieht dabei folgendermafien

aus:

_ Ply; = 1]t; = 1) P(y; = 1|t; = 0)
WW”_hw<1—P@f—um—1»_JW<1—P@f—Hu—OQ

= (Bo + Br - 1 + Brw; + Bou; + Bau; - 1) — (Bo + B - 0+ Brw; + Pou; + Bsu, - 0)
= B¢ + Psu;.

WU (u;) steht fur die Differenz der logarithmierten Chancen. Eine Chance, auch odds genannt,
stellt dabei die Wahrscheinlichkeit fiir y; = 1 ins Verhéltnis zur Wahrscheinlichkeit fiir ; = 0
(Fahrmeir et al., 2009). Eine Chance groer 1 bzw. eine logarithmierte Chance groBer 0 be-
deutet, dass bei gegebenen Kovariablenwerten die Wahrscheinlichkeit fiir y; = 1 grofier ist als
fiir y; = 0. Steht beispielsweise y; = 1 fiir Genesung, so wiirde ¥(u;) > 0 bedeuten, dass mit
Treatment die logarithmierte Chance auf Genesung grofer ist als ohne. Es gibt folglich einen
Behandlungseffekt oder -nutzen fiir Patient ¢ mit dem pradiktiven Score u;. Die Schétzungen
der p-Koeffizienten erhélt man dabei aus dem vorher beschriebenen Pradiktionsmodell .
Um die Nullhypothese 2-seitig zu testen, schlagen [Matsui et al.| (2012)) einen Permutationstest
mit der Teststatistik

T:/@@mu
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vor. Die Schétzung von T unter Hy wird dabei durch Permutation des Treatments erzielt.
Das heifit die Eintrage der Spalte mit den Treatmentwerten werden zuféllig umsortiert.
Dann werden wie zuvor die Scores fiir jeden Patienten und die zugehorigen [-Koeffizienten
geschétzt und anschlieflend die \i/(uz) berechnet. Dieses Vorgehen wird mehrmals wiederholt
und schliellich kann ein p-Wert tiber die Anzahl der Permutationen mit 17" > T,,, gebildet
werden. Wobei T, fiir die Teststatistik der urspriinglich beobachteten Daten steht. Tritt

T > Tys zu haufig auf weist dies auf keinen Treatmenteffekt hin.

3.3.2 Idee des neuen Ansatzes

Liegt das Interesse nicht am globalen Treatmenteffekt wie in H}?, sondern ausschliefilich
am Interaktionseffekt zwischen dem Treatment und den genetischen Variablen, sieht die

interessierende Nullhypothese folgendermaflen aus:
H{ : es gibt keine Interaktionen = Hj : B3 = 0, fir alle genetischen Variablen.

Um wirklich nur den Interaktionseffekt ohne den Haupteffekt auf Signifikanz zu testen, kann
der eben beschriebene Permutationstest nicht ohne weiteres verwendet werden. Denn ein
einfaches Permutieren des Treatments zerstort nicht nur die Struktur der Interaktionen, son-
dern gleichzeitig auch die Struktur des Haupteffekts des Treatments. Daher werden andere
Methoden des Permutationstests benotigt, um vergleichbar wie bei [Matsui et al.| (2012) die
neue Nullhypothese testen zu konnen.

Dazu werden im Folgenden zwei Permutationstests fiir Interaktionen vorgestellt, die fiir die

neue Nullhypothese addquater erscheinen.

Permutationstest von Werft et al.

Werft et al.| (2012) schlagen einen PRR Test (permutation of regerssor residuals) zur Iden-
tifikation von prédiktiven Biomarkern vor. Dabei verfolgen sie einen genweisen Ansatz. Das
heifit sie betrachten fiir jede genetische Variable ein einzelnes generalisiertes lineares Modell

und testen auch fiir jede genetische Variable einzeln die Nullhypothese
Hy et es gibt keine Interaktion = Hy' /" ﬁéj) =0, j=1,...,p,

wobei der Interaktionseffekt ﬁéj ) fiir die j-te Genexpression aus dem folgenden Modell stammt,

. . . . q .
E(Y) =8 + 9T + 8V X; + 89T X, + 3 84,04,

s=1
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das hier in ganz allgemeiner Form dargestellt wird, so dass je nach Daten die passende
Linkfunktion f einfiigt werden kann. Zusatzlich zu den genetischen Variablen X;, j =1,...,p,
und der Treatmentvariable T', werden hier noch mogliche weitere Kovariablen O,, s =1, ..., q,
wie klinische Eigenschaften der Patienten beobachtet.

Da dieser Ansatz jede genetische Variable einzeln betrachtet, tritt hier erneut das multiple
Testproblem auf. Werft et al| (2012) greifen dabei ebenfalls auf die Adjustierung der FDR,
die in Kapitel [2| kurz beschrieben wurde, zurtick.

Die Idee des Tests ist es die interessierende, zu testende Grofie durch die Residuen aus einem
Modell von allen anderen Variablen auf diese interessierende Grofe zu ersetzen. Das bedeutet

es wird erst ein Modell

E(XT) =1 + 40T + 99X, + 3480,
s=1
mit dem (stetigen) Interaktionsterm der genetischen Variable und der Treatmentvariable
als abhéngige Variable gefittet. Die Koeffizienten dieses Modells sind dabei zur besseren

Unterscheidung mit v’s dargestellt. Die daraus resultierenden Residuen

r=X;T — (3 + 49T + 47 X; +Z%
s=1

sind geméaf} ihrer Definition unkorreliert mit den Kovariablen, aber korreliert mit der abhéang-
igen Variable, in diesem Fall also dem Interaktionsterm. Da das Maximum der Likelihood-
funktion das gleiche ist, egal ob man fiir das generalisierte lineare Modell die Residuen r
als erklarende Variable einsetzt oder die eigentlich beobachtete Kovariable, in diesem Fall
den Interaktionsterm, hat das zur Folge, dass auch der Likelihood-Ratio-Test (LR Test) auf
das selbe Ergebnis kommt, wenn man statt dem eigentlichen Interaktionsterm die Residuen
verwendet (Werft et all 2012).

Werft et al. (2012) berechnen also zunéchst den p-Wert p fiir die urspringlichen Daten
anhand des LR Tests

L( 0(]))

2

L(3Y)

LR(X;) = —2log( ). (12)
Wobei 530' ) den Interaktionsterm unter der Nullhypothese (also in diesem Fall gleich Null)
bezeichnet und Béj ) den geschétzten Interaktionseffekt des Modells mit den Residuen anstelle
des Interaktionsterms.

Anschliefend werden die Residuen immer wieder randomisiert r;, b = 1,..., B und die p-
Werte p; mittels dem LR Test berechnet.

Schlielich ist der p-Wert p; fiir die j-te genetische Variable des PRR Tests nach |Wertt et al.
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(2012) folgendermaflen definiert:
I(py, <p
pj = M

Dabei zahlt die Indikatorfunktion I wie viele p-Werte nach Randomisierung der Residu-

en kleiner gleich dem p-Wert der beobachteten Daten sind. Je seltener dies auftritt, des-
to wahrscheinlicher ist es, dass es sich bei dem beobachteten Interaktionseffekt um einen
tatsachlich signifikanten Effekt handelt. Denn werden nach der Zerstérung der Interaktions-
struktur iiberwiegend grofiere p-Werte beobachtet, spricht das dafiir, dass der kleine p-Wert
der urspriinglich beobachteten Daten nicht zufillig beobachtet wurde.

Aufgrund der univariaten Herangehensweise ist diese Methode jedoch nicht optimal fiir die
Testidee des neuen Ansatzes, der versucht aus der univariaten Methode von Matsui et al.
(2012) einen multiplen Ansatz zu machen. Vielleicht wére es aber eine Méglichkeit, um mit
der Methode von Matsui et al. (2012)) die Nullhypothese H zu testen, was auch interessant

sein konnte.

Permutationstest von Wang et al.

Wang et al.| (2015) schlagen einen Permutationstest vor, der die Nullhypothese testen soll,
welche besagt, dass es keine Interaktionen gibt. Das heifit hier wird nicht fiir jede Kovariable
ein eigener Test durchgefiihrt, sondern fiir alle gleichzeitig. Dadurch werden im Vergleich zur
vorher betrachteten Methode von |Werft et al.[(2012) alle verfiigbaren Informationen genutzt
und die Wahrscheinlichkeit auf ein falsch positives Ergebnis durch die vielen Kovariablen
nicht erhoht (Wang et al., 2015]).

Der Test ist fiir randomisierte Studien mit Z (> 2) verschiedenen Behandlungen anwendbar.
Von den insgesamt n beobachteten Patienten haben jeweils n,, z = 1, .., Z, die Behandlung
z erhalten. Dabei handelt es sich bei den Beobachtungen um unabhéngige und identisch ver-
teilte Zufallsvariablen des Zufallsvektors (Y, T, Xy, ..., X,,). Die hier betrachtete Zielvariable
Y ist stetig und die Treatmentvariable T" ist dummykodiert mit der Referenzkategorie Z. Da-
bei hat die Matrix T mit der dummykodierten Treatmentvariable die Dimension (Z —1) x n
und die Kovariablenmatrix X hat die Dimension p x n.|Wang et al.| (2015]) stellen folgendes

lineares Modell auf:
y=a T+ B X +~+'T X + €, € L (T, X"), (13)

mit den Parametervektoren a fiir die Behandlungseffekte, 8 fiir die Haupteftekte der Kovaria-
blen und - fiir die Interaktionseffekte zwischen Behandlung und Kovariable. €y L (T7, XT)

bedeutet, dass der zufallige Fehlerterm unabhéngig vom Treatment und den Kovariablen ist.
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Mit ® wird das Kronecker Produkt dargestellt. Dieses Modell stellt eine verallgemeinerte
Form des bisher betrachteten Modells beim Schéitzen der Biomarker dar, da es mehr als
zwei Behandlungsformen zuldsst und kann somit fiir mehrere Biomarker verwendet werden.
Die interessierende Nullhypothese von Wang et al.| (2015) ldsst sich dann folgendermafien
darstellen:

HV™™9 . 65 gibt keine Interaktionen = Hy ™ : v = 0,7 1)px1.
0 g 0 Y (Z-1)p

Wang et al.| (2015)) betrachten zunéchst fiir jede Behandlung z ein einzelnes lineares Modell
y = ﬂ(z)TX +e€, €, L X, (14)
wobei die oben definierte Nullhypothese sich dann dquivalent darstellen lasst durch:
HY ™. W = =&

Das bedeutet, wenn die Haupteffekte der Kovariablen in den Modellen getrennt nach den
Behandlungen gleich sind, gibt es keine Interaktionseffekte. Denn in diesem Fall scheint der
Effekt der Kovariablen tiber alle Behandlungsformen gleich zu sein. Dies verdeutlichen Wang

et al.| (2015) nochmal durch folgende Umformung;:

5(2) _ ﬁ+’7(z)’ firz=1,...,.Z2—-1
,B(Z) = B.

Wobei 4(*) ein Vektor der Interaktionseffekte der Behandlung z mit den p Kovariablen ist.
Fiir die Referenzgruppe Z wird dabei kein Interaktionseffekt geschétzt.

Wire die Anzahl der Kovariablen im Verhéltnis zu den Beobachtungen klein (n > p), dann
ware es eine Option das lineare Modell und das Modell

y=a T+ BTX + ¢ (15)

unter der Nullhypothese, also ohne Ineraktionen, zu schiatzen und anschlieffend einen Likeli-
hood-Ratio-Test vergleichbar wie in durchzufithren. Ist jedoch die Anzahl der Kovaria-
blen grofl im Verhéltnis zu den Beobachtungen, sodass in den Modellen und mehr
Parameter geschatzt werden miissen wie es Beobachtungen gibt oder es gilt ohnehin n < p,
dann sind die Modelle und nicht schétzbar und somit ist der Likelihood-Ratio-Test
nicht mehr anwendbar (Wang et al., 2015). Daher schlagen Wang et al. (2015) einen Permu-
tationstest vor, bei dem es auch moglich ist eine Variablenselektion vorzunehmen.

Dabei wird die Permutation folgendermafien durchgefithrt (Wang et al., 2015)). Das Modell
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unter der Nullhypothese kann derart umgeformt werden
_ T
y=a T +e¢, (16)

wobei hier € = B X + ¢ gilt, da sich die Reststreuung durch das Weglassen der Haupteffekte
der Kovariablen um die erkliarte Streuung dieser Effekte erhoht. Betrachtet man dazu die
iibliche Definition des Fehlerterms ergibt sich e =y — a”’T = 87X + €, L T|X. Das heift,
der Fehlerterm aus ist unabhéngig vom Treatment gegeben die Kovariablen. Da es sich
um eine randomisierte Studie handelt, sind T und X ebenfalls unabhéngig voneinander. Es
gilt somit T 1 X. Kombiniert man diese Unabhangigkeitsannahmen, erhédlt man, dass das
Treatment sowohl vom Fehlerterm, als auch von den Kovariablen unabhéngig ist. Damit

ergibt sich, wenn man € =y — a’T einsetzt,
T1l(y—a'T,X). (17)

Im ersten Schritt ersetzen Wang et al. (2015) in der urspriinglichen Datenmatrix D =
(Y, T,X) die Werte der Zielvariable durch die Residuen aus Modell (16]). Dadurch erhalten
sie die transformierte Datenmatrix D = (y —a®'T, T, X). Aufgrund der Unabhingigkeiten
aus kann nun die Spalte mit dem Treatment permutiert werden, wahrend die ande-
ren Spalten mit den Residuen und den Kovariablen gleich bleiben, was die Datenmatrix
D! = (y — aTT, T¢ X) ergibt. Die beiden Datensitze D und DY werden als gleich wahr-
scheinlich angesehen (Wang et al., 2015)). Im letzten Schritt werden dann die randomisierten
Residuen wieder zurticktransformiert in die beobachteten y-Werte und man erhélt den Daten-
satz f)f_l) = (Y, T% X). Wobei dieser wieder gleich wahrscheinlich ist, wie der urspriinglich
beobachtete Datensatz D. Sei T' eine beliebige Teststatistik, so kann die Verteilung unter
Hy durch die Permutationsverteilung, die mit Hilfe der T(]ﬁffl)) gebildet wird, dargestellt
werden. 7'(D) kann schlieflich als Zufallsstichprobe dieser Permutationsverteilung betrach-
tet werden (Wang et al., 2015)).

Die Teststatistik von Wang et al. (2015) wird dann anhand der folgenden fiinf Schritte
geschatzt:

1. Schétze fir jede Behandlung z ein Modell wie in , welches gegebenfalls eine Varia-

blenselektion enthalten kann.

(z

dell aus Schritt 1. Dann berechne den Vorhersagefehler iiber alle Modelle Erry =
% Ezzzl S (yi — ZQEZ))Q-

2. Berechne fiir jede Beobachtung ¢ einen Vorhersagewert ¢ ) basierend auf dem Mo-
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3. Schitze nun ein gemeinsames Modell fiir alle Behandlungen wie in Modell (15). Gege-

benenfalls kann hier wieder eine Variablenselektion integriert werden.

4. Berechne nun wieder fiir jede Beobachtung einen Vorhersagewert g; mit dem Modell

aus Schritt 3 und berechne anschlieBend den Vorhersagefehler des Modells Erry =

1 n

L3 (v — 0)%

5. Bilde die Teststatistik A = Erry— Erry und gib den p-Wert iiber alle m Permutationen
an. Der von \Wang et al. (2015)vorgeschlagene p-Wert sieht dabei folgendermaflen aus:

1+ Zzll ](|Ai‘ > |Aob8|)
14+m

Y

wobei [ eine Indikatorfunktion darstellt und A, die Teststatistik des urspriinglich

beobachteten Datensatzes ist.

Der p-Wert wird folglich grofl, wenn viele Teststatistiken nach Permutation betragsmafig
grofler gleich der Teststatistik des urspriinglich beobachteten Datensatzes sind. Ein grofler
p-Wert spricht somit fiir die Nullhypothese und dafiir, dass es keine Interaktionen gibt. Um-
gekehrt wird die Nullhypothese abgelehnt, wenn es nur wenige Teststatistiken nach Permuta-
tion gibt, die grofler gleich der Teststatistik des urspriinglich beobachteten Datensatzes sind,
weil sich dann ein kleiner p-Wert ergibt. Denn |A;| > |A,s| bedeutet, dass die Zerstorung
der Interaktionsstruktur nichts am Ergebnis der Vorhersagefehler gedndert hat. Die Vorher-
sagefehler 1 und 2 unterscheiden sich im gleichen Mafle wie beim urspriinglich beobachteten

Datensatz. Es scheint somit keine Interaktionseffekte zu geben.

Diese Methode erscheint fiir die Testidee des neuen Ansatzes geeigneter zu sein, da hier
dieselbe Nullhypothese getestet wird. Ein weiterer Vorteil beziiglich der Hochdimesiona-
litat der omics-Daten liefert die Mdoglichkeit eine Variablenselektion in die Testmethode zu
integrieren. Jedoch ist die Tatsache, dass in den Schritten 2 und 4 der Trainingsfehler be-
trachtet wird nicht optimal, da auf denselben Daten das Priadiktionsmodell gefittet und
angewendet wird. Das kann zu Over-Fitting fithren, vor allem bei hochdimensionalen Da-
ten, weshalb dieses Vorgehen (fiir die Ziele dieser Arbeit) nicht empfehlenswert ist. Jedoch
wére es lUberlegenswert die Methode in Kombination mit Kreuzvalidierung durchzufiihren.
Demzufolge wiirden in den Schritten 1 und 3 die Modelle jeweils anhand der Trainingsdaten
geschitzt werden und danach in den Schritten 2 und 4 auf die zugehorigen Testdaten ange-
wendet werden. Nachdem man dies fir alle K Testdatensidtze wiederholt hat, konnte man

anschliefend den mittleren Vorhersagefehler tiber alle Testdatensétze angeben. Abschlieend
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konnte der von Wang et al.| (2015)) vorgeschlagene p-Wert berechnet werden.

AuBlerdem ist die Testmethode von Wang et al,| (2015) fiir stetige Zielvariablen konzipiert.
Andert man jedoch die Definition des Vorhersagefehlers, kann diese Methode auch fiir binére
Outcomevariablen angewendet werden. Da bei einer binédren Zielvariable die quadrierte Diffe-
renz von Vorhersage und beobachtetem Wert ein ungeeignetes Maf ist, sollte man stattdessen

diesen Vorhersagefehler
1 & .
Err=—3 1y # 9)
i=1

mit der Indikatorfunktion I betrachten. Fiir ¢; gilt dabei

1, m >c
Yi =
0, sonst.

Wobei ¢ ein vorher zu definierender Schwellenwert ist, der festlegt ab welcher Wahrschein-
lichkeit 7; die Vorhersage ¢; auf 1 gesetzt wird. Folglich zéhlt die Indikatorfunktion wie oft
Vorhersage und Beobachtung nicht tibereinstimmen. Dividiert man diese absolute Héaufigkeit
durch die Anzahl der insgesamt betrachteten Beobachtungen erhélt man den Anteil falscher
Vorhersagen. Dieser kann dann als Vorhersagefehler fiir die binédre Outcomevariable verwen-
det werden.

Eine angepasste Form der Methode von [Wang et al.| (2015) konnte folglich eine geeignete
Testmethode fiir die Idee des neuen Ansatzes liefern. Die genaue Ausarbeitung und Simu-
lation dieser Testmethode konnte jedoch im Rahmen dieser Arbeit nicht mehr durchgefiihrt

werden.

4 Simulation

In diesem Kapitel wird eine Simulationsstudie durchgefiihrt, um die zuvor beschriebenen
Schéitzmethoden zu vergleichen. Hierzu wird betrachtet, ob die Verfahren die generierten
Effekte zum einen erkennen und zum anderen richtig schitzen und schliellich eine gute
Vorhersage liefern. Im ersten Teil dieses Kapitels wird der Aufbau der Simulationsstudie

beschrieben und darauf folgend die Ergebnisse dargestellt.

4.1 Aufbau der Simulation

Da bei der Simulation die Trainings- und Testdaten so generiert werden, dass beide aus
derselben Verteilung stammen, kann auf Kreuzvalidierung verzichtet werden. Bei den Simu-

lationen werden folgende fixe Parameter gewéhlt:
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e Es wird ein Testdatensatz mit nye; = 10000 Beobachtungen generiert.

e Dazu werden 100 Trainingsdatensatze mit je nryqining = 200 Beobachtungen generiert.
Anhand des Testdatensatzes konnen dann die Schatzungen, basierend auf den 100 Trai-
ningsdatenséitzen, evaluiert werden. Dazu kann hier das normale AUC herangezogen

werden anstelle des cvAUC.

e Die omics-Daten werden durch standard normalverteilte Variablen X;, j =1, ..., p mit
p = 1000, dargestellt. Es gilt somit X; ~ N(0,1) Vj

e Die bindre Variable T zeigt an, ob die Beobachtung in die Treatment- oder in die

Kontrollgruppe gehort. Dabei gilt wie bei einer randomisierten Studie = = 0.5.

e Die binare Zielvariable ¥ nimmt den Wert 1 an, wenn ein positives Ereignis wie bei-

spielsweise Genesung oder Schrumpfung eines Tumors eintritt.

Die Abhéngigkeit der Zielvariable von den Kovariablen wird dabei per backward Simulation
hergestellt. Das heifit es wird vorgegeben welchen Einfluss die Kovariablen haben sollen und
dann geméf dieser Zusammenhangsstrukturen die Auspragungen der Zielvariable gebildet.
Die unabhéngige Generierung der Kovariablen stellt dabei eine eher unrealistische Situation
dar. Jedoch sind die wahren Strukturen von omics-Daten sehr komplex, sodass eine realisti-
sche Darstellung im Rahmen dieser Arbeit nicht méglich war.

AuBerdem werden folgende Annahmen getroffen. Fiir den Grofiteil der Haupt- und Interak-
tionseffekte der Kovariablen wird angenommen, dass sie keinen Einfluss haben. Das heifit,
der zugehorige [-Koeffizient ist Null. Einflussreiche Genexpressionen sollen dabei einen ne-
gativen Haupteffekt und/oder einen positiven Interaktionseffekt haben. Der Haupteffekt des
Treatments soll ebenfalls positiv sein.

Des weiteren gibt es folgende variable Parameter, die zur Gestaltung unterschiedlicher Da-

tensituationen gewéhlt werden koénnen:

e die Stirke des Haupteffekts des Treatments, sowie der Haupt- und Interaktionseffekte

der einflussreichen genetischen Variablen
e die Anzahl der einflussreichen Haupt- und Interaktionseffekte

e die Aufteilung der einflussreichen Interaktionseffekte in Interaktionseffekte mit oder

ohne zugehorigem Haupteffekt

Tabelle [2] zeigt je Setting die gewéhlten Parameter. Da bei der logistischen Regression tib-
licherweise exp(f) interpretiert wird, wird hier auch bei der Stérke der Effekte exp(3) an-
gegeben. exp(f) entspricht dabei dem Chancenverhéltnis, auch Odds Ratio genannt. Wird
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beispielsweise x;; um eine Einheit erhoht, gilt fiir das Chancenverhéltnis:

Ply; =1|xs +1,...)/P(y; = 0|zy + 1, ...)

= exp(P1),

wobei 31 der zugehorige Haupteffekt ist (Fahrmeir et all [2009). Ist exp(f81) > 1, bedeutet
das, dass sich die Chance auf y; = 1 fiir 2;; + 1 im Vergleich zu x;; um den Faktor exp(5;)
erhoht (bei Konstanhaltung aller anderen Kovariablen). Analog reduziert sich die Chance
auf y; = 1 fir 2;; + 1 im Vergleich zu z;; um den Faktor exp(f;), wenn exp(f;) < 1 gilt.
exp(f1) = 1 bedeutet, dass die Variable X; keinen Einfluss hat, was gleichbedeutend mit
£p =0 ist.

Da nur eine begrenzte Anzahl an Settings simuliert werden kann, wird versucht mit den 12
gewdhlten Settings moglichst viele denkbare Varianten abzudecken. So gibt es einige Settings
mit wenigen, aber dafiir starken Haupteffekten und einige mit vielen schwachen oder mitt-
leren Haupteffekten. Diese werden mit unterschiedlich starken Treatment- und Interaktions-
effekten kombiniert. Bei den Interaktionseffekten wird auch variiert wie viele Interaktionen
mit einflussreichen Haupteffekten zusammenhidngen und wie viele unabhéngig davon auf-
treten. Auflerdem wird betrachtet wie die Methoden darauf reagieren, wenn entweder keine
Haupt- oder Interaktionseffekte der Kovariablen vorhanden sind oder kein Haupteftekt des

Treatments existiert.

Im Anhang befinden sich die Abbildungen [13] und [14] die die Verteilungen der Treatment-
und der Zielvariable der Trainingsdatensétze zeigen. Entsprechend der Randomisierung liegt
der Anteil an Behandlungen bei etwa 50%. Bei der Zielvariable ist der Anteil an Events etwas

grofler, die Daten sind aber nicht zu unbalanciert fiir brauchbare Analysen.

4.2 Gitemafle fiir die Verfahren

Bei der Auswertung der Simulationsergebnisse werden zwei Kriterien betrachtet. Zum einen
geht es darum wie gut die Vorhersage auf Basis der unterschiedlichen Methoden je Setting
gelingt. Dazu wird das AUC, wie es bereits im Theorieteil beschrieben wurde, betrachtet.

Zum anderen soll beurteilt werden, wie gut die Methoden die wahre Zusammenhangsstruk-
tur erfassen. Hierbei werden die geschétzten [-Koeffizienten mit den [-Koeffizienten, die
der Simulation zu Grunde liegen also den ,wahren“ [-Koeffizienten, verglichen. Dieser Ver-
gleich erfolgt zuerst quantitativ und schlieSlich auch qualitativ. Mit quantitativ ist hier
gemeint, dass zundchst gezihlt wird, wie viele der wahren Effekte erkannt und wie viele

falschlicherweise als solche ausgewiesen werden. Tabelle |3 verdeutlicht diese Herangehens-
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Tabelle 2: Ubersicht der Simulationssettings

Setting | Anzahl 8 | Stirke exp(B!) | Stirke exp(8r) | Anzahl 8! | Stirke exp(8!)

0 3 O U= W N

Ne}

10
11
12

wenige (5)
wenige (5)
wenige (5)
wenige (5)
keine
viele (100)
viele (100)
viele (100)
viele (100)
viele (100)
viele (100)
viele (100)

stark (0.2)
stark

schwach (0.71)
schwach (0.71)
schwach (0.71)
schwach (0.71)
mittel (0.5)
mittel (0.5)
mittel (0.5)

mittel (2)
mittel (2)
mittel (2)
mittel (2)
mittel
stark (5)
stark (5)
keiner
keiner
mittel (2)
mittel (2)
mittel (2)

wenige (4/1) 5)

wenige (1/4) stark (5)

viele (5/95) | schwach (1.4)
keine -

stark (

wenige (0/5) stark (5)
viele (80/20) mittel (2)
viele (20/80) mittel (2)
viele (80/20) mittel (2)
wenige (4/1) stark (5)
viele (80/20) | schwach (1.4)
viele (20/80) | schwach (1.4)

keine -

BH stellt die Haupteffekte ungleich Null dar und 5! stellt analog die Interaktionseffekte
ungleich Null dar, mit s = 1, ..., S. Wobei hier S € {0,5,100}. Bei der Anzahl der 3!
gibt die erste Zahl an wie viele Interaktionen von genetischen Variablen kommen, die
auch einen von Null verschiedenen Haupteffekt haben und die zweite Zahl zeigt an wie
viele genetische Variablen ohne Haupteffekt einen Interaktionseffekt haben.

weise noch einmal. Ist beispielsweise das wahre (3 der genetischen Variable X; ungleich Null

und das geschatzte Bl ist dagegen gleich Null, so ist das ein falsch negatives Ergebnis. Denn

die Variable hétte in Wahrheit einen Einfluss gehabt, dieser wurde aber nicht erkannt. Beim

Tabelle 3: Betrachtung der richtig erkannten Effekte und der falschlicherweise
geschitzten Effekte.

wahres =0 wahres § # 0
3 =0 | richtig negativ (TN) falsch negativ (FN) Anzahl Kovariablen
ohne geschatzten Effekt
3+ 0 | falsch positiv (FP) richtig positiv (TP) Anzahl geschétzter
Effekte
Anzahl Kovariablen Anzahl wahrer Effekte Gesamtanzahl
ohne Effekt Kovariablen

qualitativen Vergleich geht es dagegen darum zu betrachten, ob die richtig erkannten Effekte

auch in ihrer Effektstirke mit den wahren Effekten iibereinstimmen und wie grof3 falsche

Effekte geschétzt wurden. Dazu werden wieder die Odds Ratios, also exp(f3), betrachtet.
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4.3 Ergebnisse der Simulation

Bei den folgenden Grafiken sei darauf hingewiesen, dass auf die Skalierung der y-Achsen zu
achten ist, da diese nicht immer gleich ist. Sowohl zwischen verschiedenen Abbildungen als

auch zwischen einzelnen Plots auf einer Abbildung kénnen Unterschiede vorliegen.

Vorhersagegenauigkeit

Um die Vorhersagegenauigkeiten der unterschiedlichen Schétzmethoden zu bewerten, wird
das AUC herangezogen. Abbildung [2] zeigt fiir jedes Setting je Methode einen Boxplot. Ein
Boxplot beinhaltet somit alle AUC-Werte der 100 Trainingsdatensétze. Die Grafik gibt folg-
lich einen Uberblick in welchem Bereich sich die AUCs befinden und wie grof die Streuung
ist. Je breiter die Box ist, desto grofer ist die Streuung und desto instabiler ist die jeweilige
Methode einzuschatzen. Die schwarz gestrichelte Linie in Abbildung 2| und [3]ist bei 0.5 ein-
gezeichnet, um schneller erfassen zu konnen wann es sich um eine unbrauchbare Vorhersage
handelt.

In Abbildung [2|ist deutlich zu erkennen, dass die Vorhersagegenauigkeiten bei Settings mit
wenigen starken Haupteffekten (1-4) im allgemeinen besser sind als bei Settings mit vielen
schwachen (6-9) oder mittleren Haupteffekten (10-12). Dabei sind die Ergebnisse bei vielen
schwachen Haupteffekten tendenziell besser als bei vielen mittleren. Die hochsten AUC-Werte
werden in Setting 4 erzielt. Dieses Setting beinhaltet keine Interaktionseffekte und wenige
starke Haupteffekte. Bei dem anderen Setting ohne Interaktionseffekte (Setting 12), das vie-
le schwache Haupteffekte hat, ergeben sich jedoch deutlich niedrigere AUC-Werte. Existiert
kein Haupteffekt des Treatments fallen die AUCs deutlich ab. Es ist allerdings zu beachten,
dass es sich hier in beiden Féllen um Settings mit vielen schwachen Haupteffekten der Kova-
riablen handelt, die allgemein schlechter abgeschnitten haben. Wenn es keine Haupteffekte
der genetischen Variablen gibt, sorgt dies ebenfalls fiir eine Verschlechterung der Vorher-
sagegenauigkeiten. Dabei schneiden die erste Version der zweischrittigen Verfahren und die
Methode von Matsui et al.| (2012) schlechter ab als die anderen beiden Methoden. Bei der
ersten zweischrittigen Variante diirfte das daran liegen, dass dieses Verfahren per Konstruk-
tion im zweiten Schritt keine Interaktionen mehr schétzen kann, wenn es keine Haupteffekte
gibt und dadurch nicht alle Informationen der Daten nutzen kann. Die Konstruktion dieses
Ansatzes sorgt ebenfalls dafiir, dass die AUCs sinken, wenn es tiberwiegend Interaktionen
gibt, die ohne einen zugehorigen Haupteffekt der genetischen Variable auftreten.

Insgesamt betrachtet schneiden die AUC-Werte des einschrittigen Verfahrens und der zwei-

ten Version der zweischrittigen Verfahren am besten ab.
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AUCs der Verfahren
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Abbildung 2: Fiir jedes Setting wird je Methode ein Boxplot mit den AUCs der 100
Trainingsdatensatze abgebildet. Die schwarz gestrichelte Linie bei 0.5. zeigt
unbrauchbare Vorhersagen an.
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Diese Tendenz bestéitigt sich, wenn man alle Settings zusammen betrachtet. So ist in Ab-
bildung [3| zu sehen, dass die Mediane der AUC-Werte des einschrittigen Verfahrens (2.4 =
0.64) und der zweiten Version der zweischrittigen Ansétze (2.4 = 0.64) etwas grofier ausfal-
len, als bei der ersten Version der zweischrittigen Ansétze (.4 = 0.62) und der Methode von
Matsui et al. (2012) (2meq = 0.61). Bei der Interpretation der AUC-Werte ist zu beachten,

dass unter den 12 Settings mehr Settings mit vielen schwachen oder mittleren Haupteffekten

vorliegen, die die Mediane der AUC-Werte nach unten ziehen. Deshalb sind die Boxen auch
nicht ganz symmetrisch, sondern zeigen eine leicht linkssteile Verteilung an. An der Breite
der Boxen kann jedoch erkannt werden, dass die Ergebnisse aller Methoden stark von der
vorliegenden Datensituation abhéngen. Da diese in der Praxis in der Regel unbekannt ist,

muss bei allen Methoden auch mit schlechteren Vorhersagegenauigkeiten gerechnet werden.

AUCs der Verfahren

i 2 3 4
Methode

Abbildung 3: Fiir jede Methode wird ein Boxplot mit den AUCs tiber alle 12 Settings
hinweg abgebildet. Die schwarz gestrichelte Linie bei 0.5. zeigt unbrauch-
bare Vorhersagen an.

Anzahl erkannter Effekte

Nun soll betrachtet werden, ob auch die richtigen Effekte erkannt werden und wie viele
zusitzliche Effekte die Methoden félschlicherweise schétzen. Dazu werden die richtig und
falsch positiven Haupt- bzw. Interaktionseffekte der Kovariablen betrachtet.

Abbildung [4] und [f] zeigen die Anzahlen richtig und falsch positiver Haupteffekte der 100
Trainingsdatensétze je Setting und Methode mittels Boxplots. Dabei ergeben sich bei den
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zweischrittigen Verfahren identische Ergebnisse bei den Haupteffekten, da sie auf demselben

Haupteffektmodell basieren. Bei den richtig positiven Haupteffekten zeigt die rote Linie an

wie viele wahre Haupteffekte in dem jeweiligen Setting generiert wurden.

Setting 1

Richtig positive Haupteffekte der Verfahren
je Setting

Setting 2 Setting 3 Setting 4

5 5 5.0
-_._. 47 T T T
4- 4.5-
l 37 l . .
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Abbildung 4: Fiir jedes Setting und jede Methode wird ein Boxplot mit den Anzahlen
der richtig positiven Haupteffekte abgebildet. Die rote Linie zeigt die An-
zahl wahrer Haupteffekte in dem jeweiligen Setting an.

Abbildung [4] zeigt, dass die Methode von Matsui et al| (2012) im Allgemeinen weniger wahre

Haupteffekte erkennt als die drei Varianten des neuen Ansatzes. Die drei Versionen des neuen

Ansatzes erkennen in den Settings mit wenigen starken Haupteffekten (1-4), alle oder beina-
he alle Effekte. Gibt es viele Haupteffekte, bleiben bei allen Methoden die meisten wahren
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Effekte unerkannt. Der Median der erkannten Effekte liegt hier durchgehend im einstelligen
Bereich, obwohl es insgesamt 100 wahre Effekte gegeben hétte. Dabei ist zu beobachten, dass
etwas mehr Effekte erkannt werden bei den Settings mit mittleren Haupteffekten (10-12), als
bei den Settings mit schwachen Haupteffekten (6-9). Jedoch wird im besten Fall in diesen
Settings ein Viertel der wahren Haupteffekte erkannt. In Setting 5 gibt es keine Haupteffekte,
weshalb auch keine richtig positiven Haupteffekte existieren.

In Abbildung[5| wird ersichtlich, dass die Methode vonMatsui et al. (2012)) kaum falsch Posi-

Falsch positive Haupteffekte der Verfahren
je Setting

Setting 1 Setting 2 Setting 3 Setting 4
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il il . ®
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Abbildung 5: Fiir jedes Setting und jede Methode wird ein Boxplot mit den Anzahlen
der falsch positiven Haupteffekte abgebildet.

tive erzeugt, ganz im Gegensatz zum neuen Ansatz, der in allen drei Varianten, einige Effekte

schatzt, die nicht generiert wurden. Hierbei fallt auf, dass die Anzahl der falsch positiven
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Haupteffekte mit der Effektstérke tendenziell ansteigt. Vergleicht man den einschrittigen
Ansatz mit dem zweischrittigen, erkennt man, dass die zweischrittigen Verfahren in allen
Settings (aufler Setting 5 ohne Haupteffekte) mehr falsch positive Haupteffekte aufweisen
als die einschrittige Variante. Beim neuen Ansatz befinden sich die Mediane der richtig und
falsch Positiven bei Settings mit vielen Haupteffekten in einem &hnlichen Bereich. Allerdings
ist die Verteilung der falsch Positiven deutlich links steil, das heifit es gibt viele kleine An-
zahlen und wenige sehr grofle Anzahlen. Bei den Settings mit wenigen wahren Haupteffekten

iibersteigt die Anzahl der falsch positiven die der wahren Effekte deutlich.

Abbildung [6] und [7] zeigen richtig und falsch positive Interaktionseffekte. Die rote Linie bei
den richtig Positiven zeigt hierbei wieder die Anzahl der wahren Interaktionseffekte an. Bei
Setting 4 und 12 existieren wiederum keine richtig Positiven, da in diesen Féllen keine wah-
ren Interaktionseffekte generiert wurden.

In Abbildung [6] ist zu erkennen, dass die Methoden die wahren Interaktionseffekte nicht so
gut erfassen wie die wahren Haupteffekte. Auch hier werden im allgemeinen wenige starke
Interaktionseffekte (3, 10, 11) besser erkannt als viele schwache (1, 2, 5, 9) oder mittlere (6, 7,
8). Die erste Variante der zweischrittigen Verfahren hat dabei die wenigsten richtig positiven
Interaktionseffekte. AuBerdem bringt diese Methode auffallend viele falsch Positive hervor,
wie Abbildung [7] zeigt. Insgesamt tibersteigt oft, bei allen Versionen des neuen Ansatzes, die
Anzahl der falsch positiven Interaktionseffekte die der richtig positiven deutlich. Das heifit
beim neuen Ansatz handelt es sich bei der Mehrheit der geschiatzten Interaktionseffekte oft-
mals um falsch Positive. Die zweite Version der zweischrittigen Verfahren hat bei Setting 5,
das keine Haupteffekte hat, besonders viele falsch positive Interaktionen. Ansonsten schnei-
det dieses Verfahren tendenziell besser ab als das einschrittige Verfahren. Die Methode von

Matsui et al. (2012) hat erneut die wenigsten falsch Positiven.
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Richtig positive Interaktionseffekte der Verfahren
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Abbildung 6: Fiir jedes Setting und jede Methode wird ein Boxplot mit den Anzahlen
der richtig positiven Interaktionseffekte abgebildet. Die rote Linie zeigt die
Anzahl wahrer Interaktionseffekte in dem jeweiligen Setting an.
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Falsch positive Interaktionseffekte der Verfahren
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Abbildung 7: Fiir jedes Setting und jede Methode wird ein Boxplot mit den Anzahlen
der falsch positiven Interaktionseffekte abgebildet.
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Geschitzte Effektstéirken

Da nicht nur entscheidend ist wie viele der wahren Effekte erkannt und wie viele Effekte
fialschlicherweise als solche deklariert werden, sondern auch wie grof3 diese Effekte geschétzt
werden, folgt abschlieBend eine Betrachtung der Odds Ratios, also exp(f), der richtig und
falsch Positiven. Die schwarz gestrichelte Linie bei der eins ist dabei zur besseren Orientie-
rung eingezeichnet, da so schneller erfasst werden kann in welche Richtung die Odds Ratios
gehen, also ob die Chance sich erhoht oder verringert. Bei den richtig erkannten Effekten
zeigt die rote Linie exp(f) der wahren Effekte.

Als erstes werden die Odds Ratios der Haupteffekte betrachtet. Abbildung [8] zeigt die Odds
Ratios der richtig erkannten Haupteffekte. Dabei ist zu beachten, dass es keine Boxplots fiir
Setting 5 gibt, weil es bei diesem Setting keine wahren Haupteffekte gibt und somit kei-
ne richtig Positiven existieren. Es ist zu erkennen, dass die Richtung der Haupteffekte in
der Regel durch alle Methoden richtig geschétzt wird. Da bis auf wenige Ausnahmen keine
Odds Ratios grofler als eins zu beobachten sind. Alle drei Versionen des neuen Ansatzes
unterschatzen exp(5) und weisen allgemein sehr dhnliche Ergebnisse auf. Die Methode von
Matsui et al.| (2012) ist bei den Settings mit wenigen starken Haupteffekten (1-4) oder vielen
mittleren (10-12) am néchsten an den wahren Odds Ratios dran. Bei den Settings mit vielen
schwachen Haupteffekten (6-9) tiberschétzt die Methode von Matsui et al.| (2012) jedoch die
Odds Ratios etwas. Auflerdem féllt auf, dass die Schéitzungen bei den Settings mit wenigen
starken Haupteffekten (1-4) mehr Varianz aufweisen, was an den breiteren Boxen zu erken-

nen ist.

Abbildung @] zeigt ergdnzend dazu wie grof3 exp(3) fir die falsch positiven Haupteffekte aus-
fallen. Die schwarz gestrichelte Linie bei der eins zeigt dabei wo die geschatzten Odds Ratios
idealerweise liegen sollten. Denn ist das Chancenverhéltnis nahe eins hat die zugehérige Ko-
variable kaum Einfluss. Hier ist zu erkennen, dass alle Versionen des neuen Ansatzes die
Odds Ratios der falsch Positiven in der Regel nahe eins schiatzen. Es sind jedoch auch einige
Ausreifiler nach oben und unten zu beobachten. Die Methode von Matsui et al.| (2012) liegt
dagegen mit seinen geschatzten Odds Ratios fiir die falsch Positiven deutlich weiter von der
eins entfernt. Dabei sind sehr breite Boxen zu beobachten, was fiir eine instabile Schatzung
spricht. Dieses Resultat ergibt sich moglicherweise durch die univariate Herangehensweise
von Matsui et al| (2012), die die Effekte der genetischen Variablen zu isoliert voneinander
betrachtet.
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Odds Ratios der richtig positiven Haupteffekte der Verfahren
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Abbildung 8: Fir jedes Setting und jede Methode wird ein Boxplot mit den Odds Ra-
tios der richtig erkannten Haupteffekte abgebildet. Die rote Linie zeigt
die Odds Ratio der wahren Haupteffekte in dem jeweiligen Setting an.
Die schwarz gestrichelte Linie bei 1.0 hilft die Richtung der Odds Ratios
schneller zu erfassen.
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Odds Ratios der falsch positiven Haupteffekte der Verfahren
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Abbildung 9: Fiir jedes Setting und jede Methode wird ein Boxplot mit den Odds Ratios
der falsch positiven Haupteffekte abgebildet. Die schwarz gestrichelte Linie
bei 1.0 zeigt an wo die Odds Ratios der falsch Positiven idealerweise liegen.
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Fir die Interaktionseffekte zeigt sich ein d&hnliches Bild. Dabei fehlen hier Setting 4 und 12,
weil diese keine wahren Interaktionseffekte haben und somit keine richtig Positiven existie-
ren. Fir die erste Version der zweischrittigen Verfahren sind bei Setting 1, 2 und 9 keine
Boxen abgebildet, da diese Methode in diesen Fallen keine richtig positiven Interaktionsef-
fekte hat. Wie Abbildung (10| erkennen lasst, liegen die Odds Ratios der Methode von [Matsui
et al.[(2012) immer groBer eins, die geschatzten Effekte gehen somit in die richtige Richtung.
Allerdings tiberschétzt diese die Odds Ratios teilweise, vor allem bei Settings mit vielen
schwachen oder mittleren Interaktionseffekten (Setting 3, 6, 7, 8, 10, 11). Der neue Ansatz
unterschitzt die Odds Ratios durchweg und kommt dabei teilweise auch unter eins. Das
heifit hier zeigen geschatzte Effekte auch in die falsche Richtung. Besonders negativ fallt
dabei die erste Version der zweischrittigen Verfahren auf, die vor allem bei Setting 11 mit
der Schétzung der Interaktionseffekte tiberwiegend falsch liegt.

Abbildung [11] zeigt, dass auch bei den falsch positiven Interaktionseffekten die Verfahren
des neuen Ansatzes tiberwiegend Odds Ratios nahe eins schitzen. Allerdings streuen die
Schétzungen der ersten Variante der zweischrittigen Verfahren hier im Vergleich zu den an-
deren beiden Verfahren des neuen Ansatzes mehr und weichen teilweise etwas deutlicher von
der eins ab. Die Methode von |Matsui et al.| (2012) weist bei den falsch positiven Interakti-
onseffekten ebenfalls Odds Ratios auf, die deutlich von eins abweichen. Diese Abweichung ist
dabei tendenziell noch groBer als bei den falsch positiven Haupteffekten. Die Boxen dieser

Methode sind abermals vergleichsweise breit.
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Odds Ratios der richtig positiven Interaktionseffekte der Verfahren
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Abbildung 10: Fiir jedes Setting und jede Methode wird ein Boxplot mit den Odds Ra-
tios der richtig erkannten Interaktionseffekte abgebildet. Die rote Linie
zeigt die Odds Ratio der wahren Interaktionseffekte in dem jeweiligen
Setting an. Die schwarz gestrichelte Linie bei 1.0 hilft die Richtung der
Odds Ratios schneller zu erfassen.
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Odds Ratios der falsch positiven Interaktionseffekte der Verfahren
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Abbildung 11: Fiir jedes Setting und jede Methode wird ein Boxplot mit den Odds Rati-
os der falsch positiven Interaktionseffekte abgebildet. Die schwarz gestri-
chelte Linie bei 1.0 zeigt wo die Odds Ratios der falsch Positiven idealer-
weise liegen.
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Fazit der Ergebnisse

Keine der Methoden kann bei dieser Simulation iiber alle Settings hinweg voll iiberzeugen.
Denn gibt es beispielsweise viele mittlere Haupteffekte, liegen die AUC-Werte aller Methoden
zwischen 0.5 und 0.6, was keiner besonders guten Vorhersage entspricht. Bei diesen Settings
bleibt auch der Grofiteil der wahren Haupteffekte unerkannt. Es kénnen jedoch auch sehr
gute Vorhersagen (mit AUC-Werten zwischen 0.7 und 0.9) getroffen werden, wenn wenige
starke Haupteffekte vorhanden sind, die von den Methoden auch grofitenteils erfasst werden.
Der erste zweischrittige Ansatz macht bei dieser Simulation keinen empfehlenswerten Ein-
druck. Durch die Einschrankung im zweiten Schritt auf Interaktionen mit Haupteffekt wer-
den die Interaktionseffekte nicht zufriedenstellend geschétzt, da einige wahre Effekte nicht
erkannt werden. Zugleich werden einige Interaktionen félschlicherweise geschatzt. Auch die
Odds Ratios der Interaktionen konnen durch den ersten zweischrittigen Ansatz nicht akkurat
geschitzt werden.

Die Methode von Matsui et al.| (2012) bringt nicht so viele falsch Positive hervor, weder
Haupt- noch Interaktionseffekte. Jedoch schétzt sie die Einfliisse dieser falsch Positiven teil-
weise sehr grof}, was ebenfalls nicht optimal ist. Dies schlagt sich auch in den AUC-Werten
nieder, die im Vergleich zum neuen Ansatz niedriger ausfallen.

Alles in allem tiberzeugen das einschrittige Verfahren und die zweite Version der zweischrit-
tigen Ansitze am meisten. Diese weisen durchweg die hochsten AUCs auf und erkennen die
meisten der wahren Effekte. Wobei die AUC-Werte teilweise nur geringfiigig besser sind als
die der anderen beiden Methoden. Die Odds Ratios der richtig positiven Haupt- und Inter-
aktionseffekte werden zwar unterschatzt, jedoch ist die Richtung der Effekte immer richtig
erfasst. Andererseits ergeben sich bei diesen Methoden auch einige falsch positive Haupt-
und Interaktionseffekte. Allerdings liegen die geschétzten Odds Ratios hierfiir nahe eins, so
dass sie keinen zu groflen Einfluss haben. Die beiden Methoden unterscheiden sich hinsicht-
lich der Anzahlen der falsch positiven Haupt- bzw. Interaktionseffekte. Beim einschrittigen
Verfahren ergeben sich etwas mehr falsch positive Interaktionseffekte. Das kénnte daran
liegen, dass durch die gleichzeitige Schatzung der Haupt- und Interaktionseffekte den In-
teraktionen mehr Bedeutung zukommt. Dagegen sind bei der zweischrittigen Variante mehr
falsch positive Haupteffekte zu beobachten, die moglicherweise durch das vorab geschétzte

Haupteffektmodell zustande kommen.
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5 Diskussion

In dieser Arbeit wurden Methoden zur Schitzung von pradiktiven Biomarkern anhand von
omics-Daten vorgestellt. Diese sollen dabei helfen im Sinne der personalisierten Medizin
individuelle Behandlungseffekte zu erkennen, um fiir jeden Patienten die richtige Behand-
lungswahl zu treffen. Die Methode von Matsui et al.| (2012) geht hierbei univariat bei der
Entwicklung von hochdimensionalen Biomarkern vor. Im Gegensatz hierzu benutzt der neue
Ansatz den Lasso-Schétzer, um eine multiple Herangehensweise umzusetzen. Dabei wur-
den sowohl einschrittige, als auch zweischrittige Verfahren betrachtet. Die Simulationsstudie
zeigt, dass der neue Ansatz durchaus Vorteile gegentiber der Methode von [Matsui et al.
(2012) mit sich bringt und sich weitere Analysen und Verbesserungen dieses Ansatzes loh-
nen kénnten. Denn der neue Ansatz liefert insgesamt bessere Vorhersagegenauigkeiten als
die Methode von Matsui et al.| (2012) und erkennt mehr der wahren Effekte. Dabei scheinen
angesichts der Ergebnisse aus dieser Arbeit die einschrittige Variante und die zweite Versi-
on der zweischrittigen Verfahren vielversprechender als die erste Version der zweischrittigen
Verfahren zu sein. Bei Betrachtung der unterschiedlichen Settingergebnisse fallt auf, dass
die Ergebnisse aller Methoden stark davon abhidngen welche Effekte die vorliegenden Daten

aufweisen.

Es gibt einige Aspekte, die bei der Einordnung der Ergebnisse der Schiatzmethoden dieser
Arbeit berticksichtigt werden sollten. Die Simulation bringt einige Einschrankungen mit sich.
Bei der Kovariablenstruktur wurden keine Abhéangigkeiten beriicksichtigt, wie sie in der Re-
gel in Genomikdaten vorhanden sind. Es wére somit durchaus interessant zu sehen welche
Ergebnisse die Methoden liefern, wenn man sie auf Daten anwendet, die eine komplexere
Datenstruktur aufweisen. Dazu bedarf es jedoch mehr Wissen iiber den Aufbau von omics-
Daten, um diese wirklich realistisch generieren zu kénnen. Die in dieser Arbeit beschriebenen
Ergebnisse geben folglich eher einen Hinweis darauf wie gut die Methoden funktionieren.
Es wére beispielsweise denkbar, dass der Unterschied zwischen dem neuen Ansatz und der
Methode von Matsui et al.| (2012)) deutlicher wird, wenn eine komplexere Datenstruktur vor-
liegt. Denn in diesem Fall wird die multiple Herangehensweise des neuen Ansatzes vermutlich
groflere Vorteile mit sich bringen. Auflerdem konnte nur eine begrenzte Anzahl an Settings
simuliert werden. Das heifit es gibt sicher noch viele weitere interessante Kombinationen von
Effekten.

Des weiteren wére es interessant die Methoden auf reale Daten aus der Praxis anzuwenden
und zu betrachten wie unterschiedlich die resultierenden Ergebnisse sind.

Die Methode von Matsui et al.| (2012) nimmt keine explizite Adjustierung fiir das multiple
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Testen vor, sondern verwendet einfach ein von vornherein sehr klein gewéhltes a-Niveau fiir
die einzelnen Signifikanztests der [-Koeffizienten. Hier konnte man auch tiberlegen anders
vorzugehen und beispielsweise die FDR zu kontrollieren. Wobei das Problem der Methode
weniger darin liegt, dass sie eine hohe Anzahl falsch Positiver liefert. Problematischer ist,
dass die Methode von Matsui et al.[(2012]) den Einfluss dieser falsch Positiven zu grof schitzt.
In dieser Arbeit wurde der Lasso-Schéitzer fiir den neuen Ansatz verwendet. Es wird jedoch
auch die Meinung vertreten, dass in Fallen mit p >> n oder mit vielen korrelierten Kovaria-
blen das sogenannte Elastic-Net eine bessere Alternative darstellt (Friedman et al., [2010)). Da
beides bei omics-Daten auftreten kann, konnte man den neuen Ansatz auch mit Elastic-Net
durchfiihren und die Ergebnisse vergleichen.

Laut Ma et al.| (2015) handelt es sich in der Onkologie, wo pradiktive Biomarker immer mehr
Anwendung finden, bei der Zielvariable meist um Uberlebenszeiten und nicht um binére
Groflen. Es wére vielleicht lohnenswert den neuen Ansatz auch fiir Survivaldaten umzuset-
zen, indem man anstelle der logistischen Regression das Cox-Modell oder das AFT-Modell
verwendet.

Auflerdem wurden in dieser Arbeit die Testmethoden nur theoretisch vorgestellt, aber nicht
praktisch umgesetzt. Eine praktische Umsetzung ware folglich auch noch ein interessanter

Punkt fiir weitere Analysen.
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A Anhang

Vergleich der zwei Pridiktionsmodelle fiir die Methode von Matsui

Beim Prédikitonsmodell fiir die Methode von Matsui et al.| (2012)) stellte sich die Frage, ob
der Haupteffekt des pradiktiven Scores mit aufgenommen werden soll oder nicht. Abbildung
zeigt dazu die AUC-Werte des Pradiktionsmodells mit Haupteffekt des pradiktiven Scores
im Vergleich zu den AUC-Werten des Praditktionsmodells ohne diesen Haupteffekt. Wie zu

erkennen ist, scheint es keinen Unterschied zu machen, welches Pradiktionsmodell man ver-

wendet. Das liegt vermutlich an der Konstruktion des pradiktiven Scores, der aus genetischen
Variablen gebildet wird, die hauptséichlich pradiktiven und kaum prognostischen Charakter

haben, weshalb der Haupteffekt des Scores nur sehr geringen Einfluss aufweisen diirfte.
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Abbildung 12: Diese Abbildung gilt dem Vergleich der beiden potentiellen
Pradiktionsmodelle fiir die Methode von Matsui. Dazu wird fiir jedes
Setting je Pradiktionsmodell ein Boxplot mit den AUCs der 100 Trai-
ningsdatensatze abgebildet. Die schwarz gestrichelte Linie bei 0.5. zeigt
unbrauchbare Vorhersagen an.
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Verteilungen der Treatmentvariable und der Zielvariable bei der Simulation

Abbildungen [13| und [14] zeigen den Anteil Behandlungen bzw. Events in den Trainingsda-
tensdtzen je Setting. Die roten Punkte bilden dabei den Anteil im zugehorigen Testdatensatz
ab. Gemafl 7 = 0.5 um randomisierte Daten zu simulieren, fallt etwa die Hélfte in die Be-
handlungsgruppe und die andere Hélfte in die Kontrollgruppe. Bei der Zielvariable liegen
etwas mehr Events wie nicht-Events vor. Die Daten sind jedoch nicht zu unbalanciert. Die
roten Punkte liegen immer in der Box, nahe des Medians, das heifft die Testdaten sind von

den Verteilungen her wie die Trainingsdatensétze und stellen keine Extreme dar.
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Abbildung 13: Je Setting wird mittels Boxplot der Anteil an Behandlungen in den Trai-
ningsdatensétze dargestellt. Die roten Punkte zeigen dazu die Anteile in
den jeweiligen Testdatensétzen.
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Zielvariable

1.00-

0.75-

P TP

Anteil Events
o
13
o

0.25-

0.00-
6 7
Setting

Abbildung 14: Je Setting wird mittels Boxplot der Anteil an Events in den Trainings-
datenséitze dargestellt. Die roten Punkte zeigen dazu die Anteile in den
jeweiligen Testdatensétzen.
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Elektronischer Anhang
Im elektronischen Anhang befinden sich neben dieser Arbeit als pdf-Datei noch folgende

weitere Dateien:

e Im Ordner Grafiken sind alle Grafiken aus dieser Arbeit als pdf-Dateien abgespeichert,

sowie die R-Files zur Erstellung der Grafiken.

e Der Ordner Funktionen enthélt alle programmierten Funktionen zur Umsetzung der
Schatzmethoden und der Simulationen, sowie Funktionen zur Auswertung der Simula-

tionsergebnisse.

e Im Ordner Simulation befinden sich schliefSlich die rda-Dateien mit den abgespeicherten

Ergebnissen der Simulation und alle R-Files zur Durchfithrung der Simulationen.

95



Literatur

A. J. Atkinson, W. A. Colburn, V. G. DeGruttola, D. L. DeMets, G. J. Downing, D. F.
Hoth, and et al. Biomarkers and surrogate endpoints: Preferres definitions and conceptual
framework. Clin. Pharmacol. Ther., 69(3):89-95, 2001.

S. Baek, C.-A. Tsai, and J. J. Chen. Development of biomarker classifiers from high-
dimensional data. Briefings in Bioinformatics, 10(5):537-546, 2009.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodo-
logical), 57(1):289-300, 1995.

K. Bracht. Biomarker: Indikatoren fiir diagnose und therapie. Pharmazeutische Zeitung
online, 12, 2009.

J. J. Chen, T.-P. Lu, Y.-C. Chen, and W.-J. Lin. Predictive biomarkers for treatment
selection: statistical considerations. Biomarkers in Medicine, 9(11):1121-1135, 2015.

L. Fahrmeir, R. Kinstler, I. Pigeot, and G. Tutz. Statistik: Der Weg zur Datenanalyse.
Berlin, Heidelberg: Springer-Verlag, 7 edition, 2007.

L. Fahrmeir, T. Kneib, and S. Lang. Regression: Modelle, Methoden und Anwendungen.
Berlin, Heidelberg: Springer-Verlag, 2 edition, 20009.

B. Freidlin and R. Simon. Adaptive signature design: an adaptive clinical trial design for
generating and prospectively testing a gene expression signature for sensitive patients.

Clinical Cancer Research, 11(21):7872-7878, 2005.

B. Freidlin, W. Jiang, and R. Simon. The cross-validated adaptive signature design. Clinical
Cancer Research, 16(2):691-698, 2010.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.

R. Guthke. Zur bedeutung der bioinformatik im kontext der -“omics,-technologien, 2010.
URL http://spectronet.de/story_docs/vortraege 2010/101108_technologietag
jett/101108_12_guthke hki.pdf.

T. Hastie and J. Qian. Glmnet vignette. Technical report, Stanford, 2014.

56


http://spectronet.de/story_docs/vortraege_2010/101108_technologietag_jett/101108_12_guthke_hki.pdf
http://spectronet.de/story_docs/vortraege_2010/101108_technologietag_jett/101108_12_guthke_hki.pdf

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining,

inference and prediction. Berlin: Springer Series in Statistics, 2 edition, 2009.

W. Jiang, B. Freidlin, and R. Simon. Biomarker-adaptive threshold design: a procedure
for evaluating treatment with possible biomarker-defined subset effect. Journal of the
National Cancer Institute, 99(13):1036-1043, 2007.

E. LeDell, M. Petersen, and M. van der Laan. Computationally efficient confidence intervals

for cross-validated area under the roc curve estimates. Electronic Journal of Statistics, 9
(1):1583-1607, 2015.

J. Ma, B. P. Hobbs, and F. C. Stingo. Statistical methods for establishing personalized
treatment rules in oncology. BioMed Research International, 2015:1-13, 2015.

S. Matsui, R. Simon, P. Qu, J. D. Shaughnessy Jr, B. Barlogie, and J. Crowly. Developing
and validating continuous genomic signatures in randomized clinical trials for predictive
medicine. Clinical Cancer Research, 18(21):6065-6073, 2012.

M. S. Pepe. The statistical evaluation of medical tests for classification and prediction. Oxford
University Press, USA, 2003.

J. A. Swets. Measuring the accuracy of diagnostic systems. Science, 240(4857):1285-1293,
1988.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Stati-

stical Society. Series B (Methodological), 58(1):267-288, 1996.

R. Wang, D. A. Schoenfeld, B. Hoeppner, and A. E. Evins. Detecting treatment-covariate
interactions using permutation methods. Statistics in Medicine, 34(12):2035-2047, 2015.

A. Werft, A. Benner, and A. Kopp-Schneider. On the identification of predictive biomar-
kers: Detecting treatment-by-gene interaction in high-dimensioanl data. Computational
Statistics and Data Analysis, 56(5):1275-1286, 2012.

57



Eigenstandigkeitserklarung:

Ich versichere, dass ich die vorgelegte Masterarbeit eigenstindig und ohne fremde Hilfe ver-
fasst, keine anderen als die angegebenen Quellen verwendet und die den benutzten Quellen
entnommenen Passagen als solche kenntlich gemacht habe. Diese Masterarbeit ist in dieser

oder einer dhnlichen Form in keinem anderen Kurs vorgelegt worden.

Miinchen, den

58



	Einleitung
	Statistische Methoden der personalisierten Medizin
	Theorie
	Notation
	Schätzen
	Methode von Matsui
	Neuer Ansatz
	Prädiktionsmodell

	Testen
	Methode von Matsui
	Idee des neuen Ansatzes


	Simulation
	Aufbau der Simulation
	Gütemaße für die Verfahren
	Ergebnisse der Simulation

	Diskussion
	Anhang

