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Abstract

Hintergrund: In der personalisierten Medizin verfolgt man den Ansatz, dass nicht jede
Behandlung für alle Patienten gleich wirkt. Eine statistische Methode zur individuellen Be-
handlungswahl, stellt die Entwicklung von prädiktiven Biomarkern dar.

Methoden: In dieser Arbeit wird eine Methode von Matsui et al. (2012) mit einem neuen
Ansatz zur Entwicklung von hochdimensionalen Biomarkern anhand von omics-Daten ver-
glichen. Der neue Ansatz stellt im Gegensatz zu der Methode von Matsui et al. (2012) eine
multiple Herangehensweise mittels Lasso-Schätzer dar. Dabei wird sowohl ein einschrittiges
als auch zweischrittige Verfahren betrachtet. Um den Treatmenteffekt zu testen werden Per-
mutationstests vorgestellt. Wobei die Verfahren unterschiedliche Hypothesen betrachten.

Ergebnisse: Eine Simulationsstudie zeigt, dass die Vorhersagegenauigkeit durch den mul-
tiplen Ansatz verbessert werden kann. Der neue Ansatz erkennt mehr der wahren Effekte
und lässt den fälschlicherweise geschätzten Effekten nicht so viel Einfluss zukommen wie die
Methode von Matsui et al. (2012). Dabei hängen die Ergebnisse aller Methoden stark von
den vorhandenen Effekten in den Daten ab.
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1 Einleitung

Die Medizin und ihre Behandlungsstrategien entwickeln sich stets weiter. In neuen For-
schungsbereichen rückt der Patient mit seinen individuellen Eigenschaften in den Mittel-
punkt. Hierbei spricht man von individualisierter bzw. personalisierter Medizin. Dieser Be-
handlungsansatz versucht zum einen genetische und klinische Eigenschaften von Patienten
zusammen zu betrachten und nutzt zum anderen das aktuelle Wissen über die biologischen
Vorgänge von Krankheiten, um darauf basierend eine patientenspezifische Behandlungsstra-
tegie zu entwickeln (Ma et al., 2015). Chen et al. (2015, S. 1121) beschreiben das Ziel der
personalisierten Medizin folgendermaßen: ”Precision medicine will provide clinicians with
new tools, knowledge and therapies to select which treatments will work best for which pa-
tients“.
Ein Hilfsmittel um entscheiden zu können, welche Behandlung für welchen Patienten am
besten geeignet ist, können sogenannte Biomarker sein. The National Institut of Health
definiert Biomarker (biological Marker) als ”A characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes, or phar-
macologic responses to a therapeutic intervention“ (Atkinson et al., 2001, S. 91). Dabei
handelt es sich oft um Produkte von Organismen wie Enzyme, Hormone oder Ionen, die in
Probenmaterial wie venösem Blut oder Urin festgestellt werden können (Bracht, 2009). In
der modernen Krebstherapie werden Biomarker bereits genutzt, doch auch bei anderen Er-
krankungen könnten sie wichtige Informationen für Diagnose, Prognose und Therapie liefern
(Bracht, 2009). Je nach Verwendung in der Medizin unterscheidet man dabei verschiedene
Arten. In dieser Arbeit besteht Interesse an sogenannten prognostischen und prädiktiven
Biomarkern.
Prognostische Biomarker erlauben Aussagen über die voraussichtlichen Heilungschancen
und/oder den Krankheitsverlauf ungeachtet jeglicher Behandlungen (Bracht, 2009; Chen
et al., 2015).
Und prädiktive Biomarker geben entweder Auskunft über die Wahrscheinlichkeit zukünftig
an einer Krankheit zu erkranken oder über das voraussichtliche Ansprechen auf eine be-
stimmte Behandlung (Bracht, 2009), wobei hier Letzteres von Interesse ist.
Bei der personalisierten Medizin können somit prädiktive Biomarker maßgebend für die
Entscheidung der Therapiewahl sein. Die Erforschung und Validierung neuer Biomarker ist
folglich für die Medizin von großer Bedeutung.
Dank der omics-Technologien stehen hierfür große Datenquellen zur Verfügung, die Informa-
tionen über Genexpressionen enthalten. Diese omics-Technologien stammen aus modernen
Fachbereichen der Biologie, ”[...] die sich mit der Analyse von Gesamtheiten ähnlicher Ein-
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zelelemente [...] in einer lebenden Zelle beschäftigen“ (Guthke, 2010). Beispielsweise wird bei
der Genomik ein sogenanntes Genom (= gesamte genetische Information eines Organismus)
betrachtet oder bei der Proteomik alle Proteine eines Proteoms (Guthke, 2010). Diese Tech-
nologien erzeugen Datensätze mit mehreren Tausend Variablen, weshalb man es in der Regel
mit hochdimensionalen Daten zu tun hat. Somit ermöglichen diese Daten auch die Entwick-
lung hochdimensionaler Biomarker im Gegensatz zu den bisher meist niedrigdimensionalen,
wenn nicht sogar univariaten Biomarkern.
Dazu bedarf es jedoch neuer statistischer Methoden, weshalb sich diese Arbeit mit dem
Schätzen und Testen individueller Behandlungseffekte bei hochdimensionalen Biomarkern
befasst.
In Kapitel 2 werden dazu zunächst derzeitige statistische Methoden aus dem Bereich der per-
sonalisierten Medizin kurz betrachtet und der Nutzen dieser Arbeit eingeordnet. Der erste
Teil von Kapitel 3 befasst sich anschließend mit dem Schätzen individueller Behandlungs-
effekte. Dabei wird zunächst ein Ansatz von Matsui et al. (2012) und danach ein neuer,
davon inspirierter, Ansatz vorgestellt. Der zweite Teil von Kapitel 3 setzt sich mit dem Tes-
ten dieser Behandlungseffekte auseinander. Nach der Beschreibung des Permutationstests
von Matsui et al. (2012), werden Möglichkeiten aus der Literatur aufgezeigt, wie man für
den neuen Ansatz eine etwas andere Nullhypothese ebenfalls mit Permutationstests testen
könnte. Kapitel 4 befasst sich mit einer Simulationsstudie zum Vergleich der unterschiedli-
chen Schätzmethoden. Kapitel 5 schließt dann die Arbeit mit einem Diskussionsteil ab.

2 Statistische Methoden der personalisierten Medizin

Wie in der Einleitung bereits beschrieben wurde, geht es bei der personalisierten Medizin
darum, für jeden Patienten die beste Therapie zu finden. Dazu gibt es verschiedene statisti-
sche Ansätze, die helfen sollen für jeden Patienten die richtige Behandlungswahl zu treffen.
Um den neuen Ansatz aus dieser Arbeit besser einordnen zu können, wird in diesem Kapitel
ein kurzer Überblick über bisherige statistische Methoden im Bereich der personalisierten
Medizin gegeben. Grundlage für diesen Überblick bieten vor allem zwei Reviews von Chen
et al. (2015) und Ma et al. (2015).
Chen et al. (2015) geben in ihrer Arbeit einen statistischen Überblick bezüglich der Entwick-
lung von prädiktiven Biomarkern indem sie unterschiedliche Methoden vorstellen.
Bisher wurde meist angenommen, dass ein Medikament entweder für alle Patienten wirkt
oder für keinen. Mit dem heutigen Wissen aus der molekularen Biologie zieht man nun auch
in Betracht, dass lediglich eine Subgruppe der Patienten von einem Medikament profitie-
ren könnte. Deshalb werden prädiktive Biomarker entwickelt, um bei der Behandlungswahl
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Patienten zu identifizieren, die auf eine bestimmte Therapie ansprechen. In diesem Kontext
werden mehrdimensionale Biomarker betrachtet.
Chen et al. (2015) gehen von einem klinischen Experiment mit einer Treatment- und einer
Kontrollgruppe aus. Hierbei liegen für jeden Patienten omics-Daten vor, die vor der Be-
handlung gemessen wurden. Es wird nun angenommen, dass das Medikament nicht für alle
Patienten gleich wirkt, sondern sich die Stichprobe in zwei Untergruppen unterteilen lässt.
Es existiert folglich eine Gruppe von Patienten, die auf die Therapie ansprechen (g+) und
eine Gruppe von Patienten, die nicht auf die Therapie ansprechen (g−). Um feststellen zu
können, welcher Patient in welche Gruppe gehört, werden prädiktive Biomarker entwickelt.
Nach Chen et al. (2015) setzt sich die Entwicklung von prädiktiven Biomarkern aus drei
Schritten zusammen. Dabei gehen sie in jedem Schritt auf unterschiedliche Ansätze der kon-
kreten Umsetzung ein.

1. Im ersten Schritt der Biomarker Identifikation geht es darum genetische Variablen zu
erkennen, die sich zur Bildung eines mehrdimensionalen prädiktiven Biomarkers eig-
nen könnten. Unabhängig davon, ob es sich bei der Zielvariable um eine binäre, stetige
oder eine Überlebenszeit handelt, wird davon ausgegangen, dass innerhalb der Treat-
mentgruppe g+ Patienten einen besseren Erwartungswert der Zielvariable haben als g−

Patienten. Denn g+ Patienten profitieren von der Behandlung und somit verbessert sich
ihr Gesundheitszustand durch die Behandlung. Das heißt sie leben beispielsweise länger
oder ihr Tumor schrumpft. Bei g− Patienten dagegen kann mit Hilfe der Therapie kei-
ne Verbesserung erzielt werden. Daher wird auch angenommen, dass g+ Patienten in
der Treatmentgruppe einen besseren Erwartungswert der Zielvariable haben als g+

Patienten aus der Kontrollgruppe. Prädiktive Biomarker sollen nun unterschiedliche
Behandlungseffekte bei den Patienten vorhersagen. Das heißt g+ Patienten, die auf die
Therapie ansprechen, unterscheiden sich in ihrem Messwert bezüglich des prädiktiven
Biomarkers hinsichtlich der g− Patienten, die nicht auf die Therapie ansprechen. Um
feststellen zu können, welche genetischen Variablen sich als prädiktiver Biomarker eig-
nen, wird für jede Genexpression ein eigenes generalisiertes lineares Modell geschätzt.
Eine Möglichkeit ist es lediglich die Messwerte der Treatmentgruppe zu betrachten
und jeweils zu überprüfen, ob der Haupteffekt der Genexpression einen signifikanten
Einfluss auf die Zielvariable hat (Chen et al., 2015). Denn unter allen behandelten
Patienten, ist bei denjenigen ein besserer Response zu beobachten, die auf die Behand-
lung ansprechen, da diese zur g+ Gruppe gehören. Um diese schließlich zu identifizieren
eignen sich die genetischen Variablen, die einen Einfluss auf die Zielvariable haben. Die
Menge der genetischen Variablen mit einem signifikanten β-Koeffizienten bildet dann
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die Menge U der potentiellen prädiktiven Biomarker.
Da klinische Studien häufig eine Treatment- und eine Kontrollgruppe besitzen, wird
auch oft ein generalisiertes lineares Modell mit allen Beobachtungen geschätzt, das
dann den Haupteffekt des Treatments und der genetischen Variable, sowie die Inter-
aktion der beiden enthält (Chen et al., 2015). Ob eine Genexpression als prädiktiver
Biomarker in Frage kommt, ist folglich nicht mehr vom Haupteffekt der Genexpressi-
on, sondern vom Interaktionseffekt zwischen Genexpression und Treatment abhängig.
Dieses Vorgehen ist deutlich intuitiver, da es das Zusammenwirken von Treatment und
genetischer Variable direkt in Form der Interaktion schätzt.
Freidlin und Simon (2005) schlagen dagegen vor, ein Modell zu fitten, das zwar die
Interaktion enthält aber nicht den Haupteffekt der genetischen Variable. Um zu ent-
scheiden welches Modell den Vorzug erhält, bedarf es laut Chen et al. (2015) noch
weiterer Studien.

2. Im zweiten Schritt geht es darum die Patienten in die g+ und g− Gruppe einzuteilen,
um eine Behandlungswahl treffen zu können. Da die wahren Label, g+ und g−, nicht
bekannt sind, stellt eine klassische Subgroup Selection eine Herausforderung dar (Chen
et al., 2015).
Handelt es sich bei der Zielvariable um eine binäre Variable, werden oft die Aus-
prägungen der Zielvariable als Label genutzt. Das heißt man geht davon aus, dass
zum Beispiel bei Eintreten einer Schrumpfung des Tumors, der Patient als g+ Patient
betrachtet werden kann. In diesem Fall werden die üblichen Methoden, wie logistische
Regression, Klassifikationsbäume oder Random Forests für die Vorhersage der Klas-
senzughörigkeit genutzt. Dabei ist allerdings zu beachten, dass es sich hierbei nicht
um wahre Labels handelt. Denn die beobachtete Outcomevariable stellt vielmehr eine
binäre Zufallsvariable dar, mit den Erwartungswerten der Gruppen als Wahrschein-
lichkeiten für g+ bzw. g−. Es könnte sich beispielsweise der Tumor aus einem anderen
Grund verkleinert haben und nicht wegen der Behandlung, das heißt der Patient würde
fälschlicherweise mit g+ gelabelt werden. Somit können auch falsch gelabelte Beobach-
tungen vorliegen, die die Subgroup Selection behindern (Chen et al., 2015).
Handelt es sich jedoch um eine stetige Outcomevariable oder um eine Überlebenszeit,
müssen andere Methoden herangezogen werden. Dazu stellen Chen et al. (2015) ver-
schiedene Methoden vor.
Ein möglicher Ansatz ist es zunächst einen prädiktiven Score anhand der Menge U
des ersten Schrittes, die alle Variablen mit einem signifikanten β-Koeffizienten enthält,
zu bilden (Chen et al., 2015). Dieser prädiktive Score stellt folglich einen mehrdimen-
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sionalen Biomarker basierend auf mehreren prädiktiven Genexpressionen dar. Ist U
nicht zu groß, wird ein multiples Regressionsmodell mit allen Genexpressionen aus U
gefittet. Sind es zu viele genetische Variablen in U , sollte eine dimensionsreduzierende
Methode, wie eine Hauptkomponentenanalyse, vorgeschaltet werden. Die gewichtete
Summe der Ausprägungen der Genexpressionen und der zugehörigen β-Koeffizienten
aus der multiplen Regression, bildet dann den prädiktiven Score für jeden Patienten.
Eine Alternative stellt die Methode von Matsui et al. (2012) dar, die zur Score-Bildung
mehrere einfache anstatt ein multiples Regressionsmodell benutzt. Dieser Ansatz wird
in Kapitel 3.2.1 noch genauer vorgestellt.
Anschließend muss zur Gruppeneinteilung der stetige Score dichotomisiert werden, in-
dem ein Cutoff-Point gesucht wird, der die Patienten in zwei Gruppen teilt (Chen
et al., 2015). Dieser Cutoff-Point kann anhand von Percentilen des prädiktiven Scores
oder durch vorher festgelegte Grenzwerte der Zielvariable definiert werden. Jiang et al.
(2007) schlagen eine Methode für quantitative Biomarker vor, die einen Schwellen-
wert für die g+ Gruppe entwickelt und validiert. Dabei entwickelt diese Methode nicht
nur einen Cutoff-Point durch Maximieren der Log-Likelihood Teststatistik über alle
möglichen Cutoff-Points, sondern testet gleichzeitig auch, ob es einen overall Treat-
menteffekt für die gesamte Population gibt.
Andere Ansätze nutzen laut Chen et al. (2015) Klassifikations- und Regressionsbäume
um die Patienten in homogene Gruppen bezüglich des Nutzens der Behandlung zu
splitten. Jedoch werden hier in der Regel mehr als zwei Gruppen gebildet.
Und schließlich stellt die ASD Methode (adaptive signature design) bzw. die CVASD
Methode (cross-validated adaptive signature design) noch eine weitere Alternative dar
(Freidlin and Simon, 2005; Freidlin et al., 2010). Diese Methode basiert auf binären
Zielvariablen, kann aber laut Freidlin et al. (2010) für Überlebenszeiten verallgemei-
nert werden (wie es im Prinzip die Methode von Matsui et al. (2012) macht). Hier
werden die Patienten mit Hilfe von Odds Ratios den Gruppen zugeteilt. Dazu wird
für jede genetische Variable aus U anhand der Regression ein Odds Ratio geschätzt.
Jeder Patient von dem eine vorher definierte Mindestanzahl an genetischen Variablen
ein Odds Ratio größer einem bestimmten Grenzwert hat, wird dann der Biomarker-
positiven Gruppe zugeordnet. Der Unterschied zwischen der ASD Methode und der
CVASD Methode liegt in der Einteilung in Trainings- und Testdaten. Bei der ASD
Methode wird nur eine einmalige Unterteilung vorgenommen und bei der CVASD wird
eine Kreuzvalidierung vorgenommen. Auf den Nutzen solcher Unterteilungen wird im
3. Schritt näher eingegangen.
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3. Im dritten Schritt geht es darum den klinischen Nutzen des prädiktiven Biomarkers zu
bewerten. Chen et al. (2015) schildern hierbei zwei Teile.
Der erste Teil besteht darin die Vorhersagekraft des Klassifikators zu bestimmen. Chen
et al. (2015) nennen hier unter anderem zwei gängige Vorgehensweisen für binäre Out-
comevariablen und Survivaldaten. Bei binären Zielvariablen wird die Güte der Vor-
hersage meist über Anteile an richtig zugeordneten Beobachtungen definiert. In der
Medizin werden hier in der Regel die Sensitivität und die Spezifität betrachtet, die in
Kapitel 3.2.3 noch genauer definiert werden. Bei Überlebenszeiten wird betrachtet wie
gut der prädiktive Score die Untergruppen trennt. Dies geschieht mit dem Logrank-
Test, welcher überprüft, ob die Überlebenskurven der beiden Gruppen sich signifikant
voneinander unterscheiden. Neben diesen zwei gängigen Methoden finden sich in der
Literatur noch einige weitere Möglichkeiten, auf die hier nicht eingegangen wird. Un-
abhängig des Skalenniveaus der Zielvariable wird die Beurteilung der Vorhersage des
prädiktiven Biomarkers meist mit Hilfe von Trainings- und Testdaten vorgenommen
(Chen et al., 2015). Die Entwicklung des prädiktiven Biomarkers wird anhand der
Trainingsdaten durchgeführt und danach wird dieser auf die Testdaten angewendet,
um dessen Performance zu beurteilen. Bei der sogenannten Kreuzvalidierung, die bei
der CVASD Methode bereits erwähnt wurde, werden die Daten mehrmals in Trainings-
und Testdaten unterteilt. Wie zuvor beschrieben wurde, ist es eine methodische Her-
ausforderung die Patienten den zwei Gruppen zuzuordnen. Genauso schwierig stellt
sich die Evaluierung des Klassifikators aufgrund der fehlenden Labels dar. Weshalb
Chen et al. (2015) diesen Teil der Entwicklung von prädiktiven Biomarkern als beson-
ders schwierig bezeichnen.
Der zweite Teil der Beurteilung des klinischen Nutzens besteht darin den geschätzten
Treatmenteffekt zu testen. Dabei interessiert man sich oft sowohl für einen Effekt in
der gesamten Population als auch für Effekte in der Untergruppe g+. Dazu dienen die
folgenden Hypothesen (der Subgroup Analyse) (Chen et al., 2015):

• H00: es gibt allgemein keinen Treatmenteffekt in der gesamten Population.

• H01: es gibt keinen Treatmenteffekt in der g+ Gruppe.

• H02: es gibt keinen Treatmenteffekt in der g− Gruppe .

Dazu wird entweder die gesamte Stichprobe betrachtet oder nur einzelne Untergruppen.
Das hängt davon ab, welche Hypothese getestet werden soll. Je nachdem welche Ergeb-
nisse die Tests liefern, können unterschiedliche Rückschlüsse gezogen werden. Erhält
man beispielsweise für H01 ein signifikantes Ergebnis, aber für H00 keines, spricht das
dafür, dass es nur in der g+ Gruppe einen Treatmenteffekt gibt (Chen et al., 2015).
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Es gibt allerdings noch andere Möglichkeiten den Treatmenteffekt zu testen, die hier
nicht betrachtet wurden. In Kapitel 3.3 werden beispielsweise Permutationstests vor-
gestellt um die Interaktionen zwischen den genetischen Variablen und dem Treatment
auf Signifikanz zu testen.

Während dem eben beschriebenen Prozess der Entwicklung von prädiktiven Biomarkern
kann es an zwei Stellen zu multiplen Testproblemen kommen (Chen et al., 2015).
Zum einen im ersten Schritt bei der Identifikation von potentiellen Biomarkern. Denn hier
wird für jede genetische Variable ein einzelnes Regressionsmodell geschätzt und anschließend
der interessierende β-Koeffizient auf Signifikanz getestet. Chen et al. (2015) schlagen an die-
ser Stelle die Adjustierung der FDR (false discovery rate) vor, anstatt den globalen Fehler 1.
Art zu adjustieren. Die FDR ist definiert als der Erwartungswert des Anteils der falsch po-
sitiven Testergebnisse an allen positiven Testergebnissen (Benjamini and Hochberg, 1995).
Der Ansatz der FDR lässt vergleichsweise mehr signifikante Ergebnisse zu, was bei einer
großen Menge von Variablen wie bei omics-Daten vorteilhaft ist (Chen et al., 2015). Dafür
muss jedoch ein kleiner Anteil an falsch positiven Ergebnissen in Kauf genommen werden.
Dies sollte bei der Entwicklung von prädiktiven Biomarkern allerdings verkraftbar sein, da
hier laut Chen et al. (2015) das Weglassen von wichtigen Variablen einen größeren Einfluss
auf die Performance des Klassifikators hat, als das Hinzunehmen von unwichtigen Variablen.
Zum anderen taucht das multiple Testproblem im dritten Schritt beim Testen des Treat-
menteffekts auf, da hier mehrere Hypothesen getestet werden. Zwei mögliche Lösungsansätze
stellen die Adjustierung der p-Werte zum Beispiel anhand der Bonferroni-Adjustierung oder
das Testen der Hypothesen in fester Reihenfolge (fixed sequence testing) dar (Chen et al.,
2015). Freidlin and Simon (2005) schlagen eine weitere Alternative vor, um den globalen
α-Fehler des Designs kontrollieren zu können. Dieser setzt sich hierbei aus zwei Teilen zu-
sammen α = α1 +α2. Der Signifikanztest bezüglich des globalen Treatmenteffekts wird dabei
zum Signifikanzniveau α1 zu Beginn der Analyse mit allen Patienten durchgeführt. Und der
Signifikanztest innerhalb der Patienten, die der g+-Gruppe zugeteilt wurden, wird zum Ni-
veau α2 durchgeführt. Freidlin and Simon (2005) wählen beispielsweise α = 0.05 und nehmen
mit α1 = 0.04 und α2 = 0.01 eine 80%/20% Aufteilung vor.

Ma et al. (2015) stellen in ihrem Paper sogenannte Behandlungsregeln, auch ITR (indivi-
dualized treatment rules) bezeichnet, vor. Hier ist es auch das Ziel anhand der Eigenschaften
des Patienten zu entscheiden, welche Therapie die bessere für ihn ist. Jedoch ist die Heran-
gehensweise etwas anders. Die Idee der ITR ist es die Behandlungsergebnisse von zwei zur
Auswahl stehenden Therapien zu vergleichen. Dazu wird die Differenz der Erwartungswerte
der Zielvariable gegeben die Therapieform und weiterer Kovariablen betrachtet. Diese Ko-
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variablen können verschiedene Eigenschaften des Patienten sein, wie Alter, Geschlecht oder
auch genetische Variablen. Kovariablen mit einem Einfluss auf die Zielvariable werden hier
als Biomarker bezeichnet. Wobei der Einfluss der Variablen bei diesem Ansatz in einem ge-
meinsamen Modell gefittet wird und nicht anhand lauter einzelner Regressionen. Je nachdem
ob es sich dabei um einen Haupt- oder Interakionseffekt handelt, werden sie als prognostisch
oder prädiktiv angesehen. Dabei wird in diesem Fall kein stetiger Score aus diesen gebildet,
sondern der Erwartungswert anhand eines Modells, das diese Variablen enthält geschätzt.
Ma et al. (2015) weisen darauf hin, dass die Modellwahl an das Skalenniveau der Zielvaria-
ble und die Dimensionalität der Daten angepasst werden muss. Bei einem binären Outcome
wird beispielsweise häufig die logistische Regression verwendet und bei Survivaldaten das
Cox-Modell oder das AFT Modell (accelerated failure time), das auf die proportional hazard
Annahme verzichtet. Liegen hochdimensionale Daten vor wird meist auf Variablenselekti-
on durch beispielsweise Lasso zurückgegriffen. Außerdem weisen Ma et al. (2015) noch auf
fortgeschrittene Methoden hin, die zum einen eine robustere Inferenz bei Misspezifikation
erzielen und zum anderen auf Techniken aus dem Bereich Machine Learning zurückgreifen.
Dabei werden auch hier die Daten in Trainings- und Testdaten aufgeteilt, um die Koef-
fizienten der Kovariablen auf Basis der Trainingsdaten zu schätzen und dann anhand der
geschätzten Koeffizienten die ITR auf die Testdaten anzuwenden und zu evaluieren.
Oftmals reicht es jedoch nicht, wenn die neue Therapie nur für einen Unterschied zwischen
den Behandlungsergebnissen sorgt. Also wenn beispielsweise durch die neue Therapie die
Überlebenszeit verlängert wird oder der Tumor geschrumpft wird. Sondern es wird ein Mi-
nimum an Verbesserung verlangt, um die Aussage treffen zu können, dass die neue Therapie
für den Patienten besser ist als die herkömmliche. Das heißt der Unterschied der Erwartungs-
werte soll nicht nur ungleich Null sein, sondern einen vorher festgelegten Wert überschreiten,
damit die Verbesserung als klinisch relevant angesehen wird.

Wie dieser kurze Methodenüberblick gezeigt hat, ist es eine komplexe Aufgabe für die Sta-
tistik, der personalisierten Medizin hilfreiche und valide Hilfsmittel an die Hand zu geben.
Weshalb in diesem Bereich noch viel geforscht wird. Gerade die Entwicklung von mehrdi-
mensionalen Biomarkern scheint ein vielversprechendes Forschungsfeld zu sein. Genau aus
diesem Grund wird in dieser Arbeit zunächst eine interessante Methode dazu von Matsui
et al. (2012) und anschließend ein neuer Ansatz vorgestellt. Dieser basiert auf der Idee von
Matsui et al. (2012) und versucht diese durch eine abgeänderte Herangehensweise zu optimie-
ren. Dazu werden ähnlich wie bei Chen et al. (2015) beschrieben, erst die hochdimensionalen
Biomarker geschätzt, dann eine Vorhersage anhand dieser Biomarker gemacht und dessen
Resultat evaluiert. Schließlich soll der Treatmenteffekt noch getestet werden.
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3 Theorie

3.1 Notation

Bevor die im Folgenden betrachteten Theorien vorgestellt werden, wird zunächst die in dieser
Arbeit geltende Notation eingeführt. Hierbei werden Vektoren mit fett gedruckten Kleinbuch-
staben und Matrizen mit fett gedruckten Großbuchstaben dargestellt.

Es liegen Daten von insgesamt n Patienten vor mit dem Index i = 1, .., n. Die Zielvariable
Y sei binär mit den unabhängigen Ausprägungen y = (y1, ..., yn)T ∈ {0, 1}. Es werden zwei
Behandlungen betrachtet, eine neue Behandlung (Treatment) und eine herkömmliche oder
eine Behandlung mit Placebo (Kontrolle). Die zugehörige Treatmentvariable T sei

Ti =

1, Treatment

0, Kontrolle

mit den Ausprägungen t = (t1, ..., tn)T . Die Kovariablenmatrix X(n×p) enthält die Werte der
p omics-Variablen für alle n Patienten. Wobei p > n gilt, dies bedeutet es liegen mehr Ko-
variablen (Genexpressionen) als Beobachtungen (Patienten) vor. In diesem Fall spricht man
auch von hochdimensionalen Daten. Der Vektor xj = (x1j, .., xnj)T mit j = 1, ..., p enthält
dabei die stetigen Ausprägungen der j-ten genetischen Variable Xj für alle n Beobachtungen.
Wie in Kapitel 2 angesprochen, sollten die Daten idealerweise in Trainings- und Testdaten
unterteilt werden. Dies bringt den Vorteil, dass kein Modell geschätzt wird, das sich zu sehr
an die beobachteten Daten anpasst. Denn um unverzerrte Schätzungen zu erhalten sollte
die Stichprobe, die zur Modellbildung verwendet wird, unabhängig der Stichprobe, die zur
Beurteilung der Performance verwendet wird, sein (Baek et al., 2009). Das heißt man könnte
den Datensatz in zwei Teile unterteilen und dann einen zur Schätzung und den anderen
zur Validierung nutzen, wie es beispielsweise bei der ASD Methode gemacht wird (Freidlin
and Simon, 2005). Da es sich jedoch bei dem hier verwendeten Datentyp der omics-Daten
um hochdimensionale Daten handelt, bedarf es für die Entwicklung der Biomarker einer
möglichst großen Stichprobe (Freidlin et al., 2010). Daher bietet es sich an, statt den Daten-
satz nur einmal in Trainings- und Testdaten aufzuteilen, dies mehrmals zu machen, was der
Kreuzvalidierung entspricht. Dadurch kann gewissermaßen die komplette Stichprobe für die
Schätzung und für die Validierung genutzt werden (Freidlin et al., 2010).
Die Methode von Matsui et al. (2012) sowie der neue Ansatz nutzen daher die Kreuzvalidie-
rung. Die Vorgehensweise der Kreuzvalidierung und die zugehörige Notation werden daher
ebenfalls kurz beschrieben. Bei einer K-fachen Kreuzvalidierung wird folgendermaßen vor-
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gegangen (Baek et al., 2009):

1. Splitte den Datensatz zufällig in K (etwa gleichgroße) Teile.

2. Nutze K − 1 Teildatensätze (Trainingsdaten) zur Schätzung der Biomarker.

3. Berechne die Biomarker mittels dieser Schätzung für den übrigen Teildatensatz (Test-
daten).

4. Wiederhole 2. und 3. für alle k = 1, ..., K Teildatensätze.

3.2 Schätzen

In diesem Abschnitt wird zunächst beschrieben wie die prädiktiven und prognostischen Bio-
marker gebildet werden. Da sich die Biomarker im Folgenden aus mehreren genetischen
Variablen zusammensetzen, werden sie auch häufig als Scores bezeichnet.
Dazu wird erst der Vorschlag von Matsui et al. (2012) gezeigt und dann der daraus resultie-
rende neue Ansatz.

3.2.1 Methode von Matsui

Ziel der Studie von Matsui et al. (2012) ist es die Empfänglichkeit von Patienten für Krebs-
behandlungen vorhersagen zu können, um für jeden Patienten die geeignete Behandlung zu
finden. Dazu sollen genetische Scores oder auch (hochdimensionale) Biomarker entwickelt
und validiert werden. Dabei werden zum einen die allgemeinen Risiken, repräsentiert durch
einen prognostischen Score, und zum anderen die unterschiedlichen Empfänglichkeiten für
die Behandlung, repräsentiert durch den prädiktiven Score, betrachtet.
In einer randomisierten Studie soll nun die Treatmentgruppe (T), die die Behandlung er-
halten hat, mit der Kontrollgruppe (K), die ein Placebo erhalten hat, verglichen werden.
Insgesamt werden p pretreatment (= vor der Behandlung gemessen) Genexpressionen, eine
Treatmentvariable und ein binärer Outcome von n Patienten betrachtet. Wobei mit p > n

hochdimensionale Daten vorliegen. Ursprünglich haben Matsui et al. (2012) als Outcome
Überlebenszeiten betrachtet. Um jedoch die Simulation in Kapitel 4 zu erleichtern wird hier
nur eine binäre Responsevariable (Event eingetreten oder nicht eingetreten) angenommen.
Das heißt die Methode von Matsui et al. (2012) wurde so angepasst, dass sie für binäre Zielva-
riablen anwendbar ist. Dabei wurde vor allem das Cox-Modell für Überlebensdaueranalysen
durch eine logistische Regression für die Analyse von binären Outcomes ersetzt.
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Logistische Regression
Wenn die Zielvariable nicht stetig sondern binär ist, verwendet man anstelle der normalen
linearen Regression eine binäre Regression. Fahrmeir et al. (2009) leiten diese folgendermaßen
her. Da es sich bei dem Erwartungswert einer binären Variable um eine Wahrscheinlichkeit
handelt, möchte man bei binären Regressionsanalysen den Effekt der Kovariablen auf die
(bedingte) Wahrscheinlichkeit

πi = P (yi = 1|xi1, ..., xip) = E(yi|xi1, ..., xip)

für yi = 1 gegeben die Kovariablen modellieren. Eine lineares Modell

πi = β0 + β1xi1 + ...+ βpxip = ηi

bringt unter anderem den Nachteil mit sich, dass der Wertebereich nicht wie bei Wahr-
scheinlichkeiten zwischen 0 und 1 liegt. Wobei ηi den linearen Prädiktor bezeichnet. Daher
wird bei binären Regressionsmodellen die Beziehung zwischen der Wahrscheinlichkeit πi und
dem linearen Prädiktor ηi üblicherweise mit Hilfe einer Verteilungsfunktion h dargestellt.
Hierdurch gelten für den transformierten linearen Prädiktor dieselben Eigenschaften wie für
Verteilungsfunktionen. Dies garantiert, dass der Wertebereich [0, 1] eingehalten wird.
Wählt man für h die logistische Verteilungsfunktion, erhält man

πi = h(ηi) = exp(ηi)
1 + exp(ηi)

= exp(β0 + β1xi1 + ...+ βpxip)
1 + exp(β0 + β1xi1 + ...+ βpxip)

(1)

das sogenannte logistische Regressionsmodell. Zur besseren Interpretation formt man dieses
meist um und erhält die logarithmierte Chance

log
(

πi
1− πi

)
= log

(
P (yi = 1)

1− P (yi = 1)

)
= β0 + β1xi1 + ...+ βpxip

bzw. die Chance

P (yi = 1)
1− P (yi = 1) = exp(β0)exp(β1xi1) · ... · exp(βpxip).

Die Chance setzt folglich die Wahrscheinlichkeit für yi = 1 und für yi = 0 ins Verhältnis.
Dabei hat exp(βj) einen multiplikativen Einfluss. Erhöht sich beispielsweise xij um eine Ein-
heit, so verändert sich die Chance multiplikativ um den Faktor exp(βj) (bei Konstanthaltung
aller anderen Kovariablen).
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Score-Bildung
Für die Bildung des prädiktiven Scores schlagen Matsui et al. (2012) folgendes vor:

1. Schätze für jede Genexpression Xj, j = 1, ..., p, ein eigenes Modell, hier eine logistische
Regression wie in Gleichung (1),

π
(j)
i = exp(η(j)

i )
1 + exp(η(j)

i )
= exp(β(j)

0 + β
(j)
T ti + β

(j)
1 xij + β

(j)
2 tixij)

1 + exp(β(j)
0 + β

(j)
T ti + β

(j)
1 xij + β

(j)
2 tixij)

, (2)

wobei π(j)
i die Wahrscheinlichkeit P (y(j)

i = 1|Xj = xij, T = ti) darstellt. Also die
Wahrscheinlichkeit, dass die Outcomevariable Y den Wert 1 annimmt gegeben die
Genexpression und das Treatment. Außerdem bezeichnet η(j)

i den linearen Prädiktor
im j-ten Modellmit β(j)

0 dem Intercept, β(j)
T dem Haupteffekt des Treatments, β(j)

1 dem
Haupteffekt der betrachteten Genexpression und β

(j)
2 dem Interaktionseffekt zwischen

Treatment und Genexpression. Das j in der Formel 2 ist erforderlich aus dem Grund,
da für jede Genexpression (Kovariable) ein separates Modell gefittet wird.

2. Teste mit Hilfe des Wald-Tests für jedes Modell die Hypothese H0: β(j)
2 = 0 gegen

H1: β(j)
2 6= 0 mit α = 0.001 (Matsui et al., 2012). Das heißt teste auf Signifikanz der

Interaktion zum Niveau 0.001.
Dieser Test basiert auf der Wald-Statistik v(j). Diese wird berechnet indem man den
Schätzer quadriert und durch seine Varianz teilt. Asymptotisch ist die Wald-Statistik
unter der Nullhypothese χ2-verteilt (Fahrmeir et al., 2009)

v(j) = (β̂(j)
2 )2

V ar(β̂(j)
2 )

a∼ χ2
1.

Matsui et al. (2012) nutzen in ihrem Paper eine standardnormalverteilte Teststatis-
tik als Gewicht. Lässt man den Schätzer unquadriert und teilt an Stelle der Varianz
des Schätzers durch seine Standardabweichung erhält man die standardisierte Wald-
Statistik z(j):

z(j) = β̂
(j)
2√

V ar(β̂(j)
2 )

a∼ N(0, 1).

Alle Genexpressionen Xj mit signifikantem Interaktionseffekt bilden die Menge

Ω1 = {j | p-Wert von β
(j)
2 ≤ α ∀j}.

3. Bilde den prädiktiven Score UM
i nach Matsui et al. (2012) für Patient i als gewichtete

Summe der Ausprägungen der Genexpressionen aus der Menge Ω1 mit der zugehörigen
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standardisierten Wald-Statistik z des Interaktionseffekts:

UM
i =

∑
g∈Ω1

zgxig.

4. Bilde den prognostischen Score WM
i nach Matsui et al. (2012) für jeden Patienten i.

Dabei ist das Vorgehen analog zu den ersten drei Schritten, jedoch ohne Betrachtung
des Treatments (Matsui et al., 2012). Das heißt es werden ebenfalls logistische Einfach-
regressionen gefittet, die jedoch lediglich den Haupteffekt der jeweiligen Genexpression
Xj schätzen:

π
(j)
i = exp(η(j)

i )
1 + exp(η(j)

i )
= exp(β(j)

0 + β
(j)
1 xij)

1 + exp(β(j)
0 + β

(j)
1 xij)

.

Anschließend wird hier β(j)
1 , der Haupteffekt der Genexpression, mit Hilfe des Wald-

Tests auf Signifikanz getestet. Anhand der standardisierten Wald-Statistik,

s(j) = β̂
(j)
1√

V ar(β̂(j)
1 )

a∼ N(0, 1)

hier zur besseren Unterscheidung mit s(j) bezeichnet, wird folglich die Nullhypothese
H0: β(j)

1 = 0 auch mit α = 0.001 getestet.

Ω2 = {j | p-Wert von β
(j)
1 ≤ α ∀j}

bildet hierbei die Menge der signifikanten Genexpressionen. Schließlich wird der pro-
gnostische Score für Patient i in Form einer gewichteten Summe der Genexpressionen
aus Ω2 und ihren zugehörigen standardisierten Wald-Statistiken s des Haupteffekts
gebildet:

WM
i =

∑
g∈Ω2

sgxi,g.

Nachdem die beschriebenen Schritte für alle k Teildatensätze der Kreuzvalidierung durch-
geführt wurden, hat nun jeder Patient i einen prädiktiven und einen prognostischen Score,
die für weitere Analysen verwendet werden können.

3.2.2 Neuer Ansatz

Matsui et al. (2012) betrachten alle Genexpressionen einzeln, indem sie für jede Genexpressi-
on eine eigene Einfachregression schätzen, die den Einfluss lediglich dieser Genexpression auf
die Responsevariable ohne Hinzunahme weiterer Kovariablen schätzen soll. Dabei entsteht
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allerdings das Problem des multiplen Testens, wie es auch schon in Kapitel 2 kurz erläutert
wurde. Matsui et al. (2012) scheinen dieses durch ein allgemein klein gewähltes Signifik-
anzniveau α = 0.001 abschwächen zu wollen, anstatt eine explizite Korrektur der p-Werte
vorzunehmen. Ma et al. (2015) kritisierten ebenfalls die bisher oftmals univariaten Heran-
gehensweisen, da dadurch gemeinsame Effekte von potentiellen multiplen Biomarkern un-
berücksichtigt bleiben. Der neue Ansatz stellt daher eine multiple Alternative zur Schätzung
der Biomarker dar.

Lasso-Regression
Wie zuvor angesprochen, handelt es sich bei omics-Daten um Datensätze mit mehreren
Tausend Variablen. Bei dieser hohen Anzahl an Kovariablen liefern herkömmliche Parame-
terschätzungen in einem multiplen Regressionsmodell keine zufriedenstellenden Ergebnisse
bezüglich Vorhersagegenauigkeit und Interpretierbarkeit (Tibshirani, 1996). Übersteigt sogar
die Anzahl der Kovariablen die der Beobachtungen ist ein lineares Modell gar nicht mehr
schätzbar. Deshalb wird hier die sogenannte Lasso-Regression (least absolute shrinkage and
selection operator) von Tibshirani (1996) angewendet. Diese Methode schrumpft die Koeffi-
zienten und setzt dabei einige auf Null. Dadurch wird die Interpretation vereinfacht, da die
wichtigsten Effekte, ähnlich wie bei der Subset Selection, selektiert und nicht mehr durch
viele kleine Effekte verschleiert werden. Vergleichbar mit der Ridge Regression sorgt das
Schrumpfen der Koeffizienten für eine stabilere Schätzung, was die Vorhersagegenauigkeit
verbessert. Damit vereint Lasso die Vorteile der Subset Selection und der Ridge Regression.
Die Outcomevariable sei hier zunächst Y ∈ R. Ansonsten werden weiterhin p Kovariablen
und n Beobachtungen betrachtet. Die übliche Annahme von entweder unabhängigen Beob-
achtungen oder bedingt unabhängigen yi’s gegeben den xij’s mit i = 1, ..., n und j = 1, ..., p
sei ebenfalls getroffen. Zusätzlich wird hier angenommen, dass alle Kovariablen standardi-
siert sind, so dass 1

n

∑n
i=1 xij = 0 und 1

n

∑n
i=1 x

2
ij = 1 gilt. Bei der Lasso-Regression , wie

bei der normalen Regression (OLS), die Residuenquadratsumme ∑n
i=1(yi−β0−

∑p
j=1 βjxij)2

minimiert (Fahrmeir et al., 2009), jedoch unter einer Nebenbedingung. Die Definition von
Lasso sieht dann folgendermaßen aus (Tibshirani, 1996; Hastie et al., 2009):

(β̂0, β̂)Lasso = argmin
β0,β∈Rp+1

 n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)2


unter der Nebenbedingung

p∑
j=1
|βj| ≤ t,

(3)

wobei t ein nichtnegativer Skalar ist. Die Nebenbedingung von Lasso sorgt folglich dafür, dass
die Summe der Beträge der β-Koeffizienten einen bestimmten Wert t nicht überschreitet.
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Dadurch müssen einige β-Koeffizienten entweder geschrumpft oder sogar auf Null gesetzt
werden, was eine Reduzierung auf die relevanten Effekte bewirkt. Die vorherige Standardi-
sierung der Kovariablen garantiert dabei, dass alle β-Koeffizienten gleichermaßen durch die
Nebenbedingung bestraft werden.

Der Lasso-Schätzer (3) lässt sich mit Hilfe der Lagrange-Methode auch in penalisierter Form
mit dem Penalisierungsparameter λ darstellen (Hastie et al., 2009):

(β̂0, β̂)Lasso = argmin
β0,β∈Rp+1

1
2

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)2 + λ
p∑
j=1
|βj|

 ,
mit λ ≥ 0. Umso größer man λ (bzw. umso kleiner man t) wählt, desto stärker ist die
Bestrafung oder Schrumpfung. Zur optimalen Wahl von λ wird oft auf ein Kreuzvalidie-
rungsverfahren zurückgegriffen (Hastie and Qian, 2014).

Im Falle einer binären Outcomevariable Y = {0, 1} wird, wie bereits erwähnt, häufig die
logistische Regression verwendet. Der Lasso-Schätzer maximiert dann die Log-Likelihood
anstatt die Residuenquadratsumme zu minimieren. Wie bereits definiert, ist π = P (Y =
1|X = x) = exp(β0+

∑p

j=1 βjxj)
1+exp(β0+

∑p

j=1 βjxj) und analog 1 − π = P (Y = 0|X = x) = 1
1+exp(β0+

∑p

j=1 βjxj) .
Die Dichte von einer Realisation yi der Zufallsvariable Y sieht dann folgendermaßen aus
(Fahrmeir et al., 2007):

f(yi|π) = P (Y = yi|π) = πyi(1− π)1−yi .

Die Likelihoodfunktion ist dann die Dichte unabhängiger und identischer Wiederholungen
(Fahrmeir et al., 2007):

L(π) = f(y1, ..., yn|π) = f(y1|π) · ... · f(yn|π) =
n∏
i=1

πyi(1− π)1−yi .

Logarithmiert man diese Likelihoodfunktion und setzt exp(β0+
∑p

j=1 βjxj)
1+exp(β0+

∑p

j=1 βjxj) ein, erhält man
folgende Log-Likelihood:

l(π) = log(L(π)) =
n∑
i=1

yi · log(π) + (1− yi) · log(1− π)

=
n∑
i=1

yi · (β0 +
p∑
j=1

xijβj)− log(1 + exp(β0 +
p∑
j=1

xijβj)).
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Schließlich ergibt sich mit dieser Log-Likelihood die folgende penalisierte Form des Lasso-
Schätzers für logistische Regressionen (Hastie et al., 2009):

(β̂0, β̂)Lasso = argmax
β0,β∈Rp+1

 n∑
i=1

[
yi · (β0 +

p∑
j=1

βjxij)− log(1 + exp(β0 +
p∑
j=1

βjxij))
]
− λ

p∑
j=1
|βj|

 .
(4)

Es ist noch anzumerken, dass es sich bei dem Lasso-Schätzer um keine geschlossene Form
handelt (und durch die L1 Penalisierung die Lösung nicht linear in yi ist)(Hastie et al., 2009).
Um die quadratische Gleichung zu lösen gibt es verschiedene Algorithmen. Das Paket glmnet
nutzt beispielsweise einen Algorithmus mit CCD (cyclical coordinate descent) (Hastie and
Qian, 2014).

Idee des neuen Ansatzes
Bevor der neue Ansatz formal definiert wird, soll zunächst die Idee kurz beschrieben werden.
Statt vieler Einfachregressionen wie bei Matsui et al. (2012), soll hier eine Lasso-Regression
geschätzt werden und dann auf Basis dieser Variablenselektion die Scores gebildet werden.
Das heißt alle Genexpressionen kommen als Kovariablen mit ins Modell, was den Vorteil
hat, dass auch die Zusammenhangsstruktur der Kovariablen berücksichtigt werden kann.
Ein weiterer Vorteil ist, dass hier kein multiples Testproblem mehr entsteht, da die Varia-
blenselektion nicht mehr unter Anwendung von statistischen Signifikanztests geschieht. Alle
Genexpressionen mit einem Haupteffekt ungleich 0 werden Teil des prognostischen Scores.
Dieser stellt eine gewichtete Summe der Ausprägungen dieser Genexpressionen mit ihren
zugehörigen β-Werten dar. Analog setzt sich der prädiktive Score aus der Summe der Aus-
prägungen der Genexpressionen mit ihren zugehörigen Interaktionseffekten zusammen. Die
β-Koeffizienten können hier als Gewichte verwendet werden, da die Lasso-Regression auf
standardisierten Werten basiert und somit auch die daraus resultierenden Koeffizienten stan-
dardisiert sind. Das heißt die Größe der Koeffizienten hängt nicht von der Skala, auf der die
beobachteten Werte gemessen wurden, ab. Diese Standardisierung erfolgt bei der Anwen-
dung mit dem R-Paket glmnet intern (Hastie and Qian, 2014). Das heißt die Werte werden
zur Schätzung standardisiert und anschließend wieder zurück transformiert. Die resultieren-
den Koeffizienten sind somit ebenfalls standardisiert, werden aber anschließend auch auf die
ursprüngliche Skala zurück transformiert, so dass sie als Gewicht für die ursprünglichen Wer-
te geeignet sind.
Die erste intuitive Variante dieses Ansatzes erfolgt einschrittig. Einschrittig bedeutet dabei,
dass gleich im ersten Schritt sowohl alle Haupteffekte der Genexpressionen als auch ihre
Interaktionen mit dem Treatment mit in die Lasso-Regression aufgenommen werden. Die-
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se Vorgehensweise bringt den Nachteil mit sich, dass durch das einschrittige Vorgehen die
Möglichkeit besteht, dass die Interaktionen zu viel Bedeutung in der Schätzung bekommen.
Daher werden zusätzlich zweischrittige Ansätze vorgeschlagen.
Zweischrittig bedeutet dabei, dass Haupteffekte und Interaktionen in zwei aufeinander fol-
genden Schritten betrachtet werden. Im ersten Schritt wird eine Lasso-Regression geschätzt,
die nur die Haupteffekte der Genexpressionen enthält. Damit soll sichergestellt werden, dass
zunächst möglichst viel Streuung anhand der Haupteffekte erklärt wird und erst im zwei-
ten Schritt die Reststreuung mit Hilfe der Interaktionseffekte erklärt wird. Dadurch wird
verhindert, dass den Interaktionen zu viel Bedeutung zukommt. Damit die Interaktionen
nur die Reststreuung erklären, wird der lineare Prädiktor des Haupteffektmodells des ersten
Schrittes als Offset für das Interaktionsmodell des zweiten Schrittes verwendet. Im zweiten
Schritt stellt sich dabei die Frage welche Interaktionen ins Modell aufgenommen werden
sollen. Häufig wird die Meinung vertreten, dass nur Interaktionsterme ins Regressionsmo-
dell aufgenommen werden sollen, wenn auch die zugehörigen Haupteffekte im Modell sind.
Das bedeutet in diesem Fall, dass lediglich Interaktionsterme von Genexpressionen mit ei-
nem β-Koeffizienten ungleich 0 aus dem ersten Schritt mit in das Modell aus dem zweiten
Schritt aufgenommen werden dürfen. Nachteil dieses Vorgehens ist es, dass durchaus nicht
alle Genexpressionen, die einen Interaktionseffekt mit dem Treatment haben, auch einen
Haupteffekt auf die Zielvariable haben müssen. Inhaltlich bedeutet das, dass nicht nur gene-
tische Variablen, die für den prognostischen Score von Bedeutung sind für den prädiktiven
Score relevant sein können. Bei diesem Ansatz könnte somit die Gefahr bestehen, dass wichti-
ge Genexpressionen für den prädiktiven Score verloren gehen. Weshalb eine weitere Variante
des zweischrittigen Ansatzes betrachtet wird. Diese lässt im zweiten Schritt alle Interakti-
onsterme zu. Dadurch erscheint diese Variante inhaltlich gesehen sinnvoller.
Welches Verfahren zu bevorzugen ist und in welchen Situationen wird schließlich mit Hilfe
der Simulationsstudie in Kapitel 4 untersucht.

Genaues Vorgehen
Wie oben bereits beschrieben wurde, werden die Kovariablen vor der Schätzung der Lasso-
Regression standardisiert. Da es sich bei der Treatmentvariable um eine binäre Variable
handelt, kann diese nicht sinnvoll standardisiert werden. Deshalb wurde hier der Haupteffekt
des Treatments vorab anhand einer normalen logistischen Regression ohne Penalisierung wie
in Gleichung (2) geschätzt

log
(

πi
1− πi

)
= β0 + βT ti = ηti (5)
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und der daraus resultierende lineare Prädiktor ηti für die darauf folgenden Lasso-Regressionen
als Offset verwendet. Inhaltlich lässt sich dieses Vorgehen folgendermaßen interpretieren. Es
wird erst betrachtet welchen Anteil der Streuung das Treatment ungeachtet anderer Einfluss-
faktoren erklären kann und dann wird versucht die Reststreuung anhand der genetischen
Variablen zu erklären. In den folgenden Modellen findet sich daher kein Parameter für das
Treatment, da dessen Haupteffekt bereits im Offset enthalten ist.

Das einschrittige Verfahren
Wie bereits beschrieben, werden beim einschrittigen Verfahren alle Haupt- und Interak-
tionseffekte auf einmal ins Modell aufgenommen. Damit ergibt sich nach Formel (4) der
Lasso-Schätzer

(β̂0, β̂)Lasso = argmax
β0,β∈R2p+1

 n∑
i=1

[
yi · (β0 +

p∑
j=1

βHj xij +
p∑
j=1

βIj (tixij) + ηti)

− log(1 + exp(β0 +
p∑
j=1

βHj xij +
p∑
j=1

βIj (tixij) + ηti))
]

− λ
p∑
j=1

(|βHj |+ |βIj |)
,

(6)

mit βH = (βH1 , ..., βHp )T dem Parametervektor der Haupteffekte und βI = (βI1 , ..., βIp)T dem
Parametervektor der Interaktionseffekte.

Die zweischrittigen Verfahren
Hier wird zuerst das Haupteffektmodell

(β̂0, β̂)Lasso = argmax
β0,β∈Rp+1

 n∑
i=1

[
yi · (β0 +

p∑
j=1

βHj xij + ηti)

− log(1 + exp(β0 +
p∑
j=1

βHj xij + ηti))
]

− λ
p∑
j=1
|βHj |

,
(7)

mit dem Offset ηt aus Gleichung (5) geschätzt. Im zweiten Schritt wird anschließend das
Interaktionsmodell mit dem resultierenden linearen Prädiktor ηhi = β0 + ∑p

j=1(βHj xij) + ηti

aus dem Haupteffektmodell als Offset gefittet.
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Version I
Sei S = {j|βHj 6= 0 ∀j} die Menge der Kovariablen mit einem β-Koeffizienten ungleich
Null. Dann sieht bei der ersten zweischrittigen Version das Interaktionsmodell des zweiten
Schrittes folgendermaßen aus

(β̂0, β̂)Lasso = argmax
β0,β∈Rp+1

 n∑
i=1

[
yi · (β0 +

∑
s∈S

βIs (tixis) + ηhi )

− log(1 + exp(β0 +
∑
s∈S

βIs (tixis) + ηhi ))
]

− λ
∑
s∈S
|βIs |

,
(8)

dabei gilt βIj = 0 für j /∈ S. Dieses lässt also nur Interaktionseffekte von Genexpressionen
mit einem Haupteffekt ungleich Null zu.

Version II
Die andere zweischrittige Version lässt im zweiten Schritt alle Interaktionen zu. Somit ergibt
sich dieses Interaktionsmodell:

(β̂0, β̂)Lasso = argmax
β0,β∈Rp+1

 n∑
i=1

[
yi · (β0 +

p∑
j=1

βIj (tixij) + ηhi )

− log(1 + exp(β0 +
p∑
j=1

βIj (tixij) + ηhi ))
]

− λ
p∑
j=1
|βIj |

.
(9)

Score-Bildung
Wie bei der Idee des neuen Ansatzes bereits beschrieben, bilden die Scores die gewichteten
Summen der Ausprägungen der Genexpressionen mit den zugehörigen Haupt- bzw. Interak-
tionseffekten.
Der prädiktive Score für Person i berechnet sich somit nach dem neuen Ansatz folgender-
maßen und wird mit U∗i bezeichnet:

U∗i =
p∑
j=1

β̂Hj xij.
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Der prognostische Score für Person i berechnet sich analog:

W ∗
i =

p∑
j=1

β̂Ij xij.

Wobei je nach Schätzung der Lasso-Regressionen einige β-Koeffizienten gleich Null sind und
somit die zugehörigen Genexpressionen nicht in die gewichtete Summe eingehen.

3.2.3 Prädiktionsmodell

In diesem Abschnitt werden zwei Prädiktionsmodelle vorgestellt, die im Simulationsteil ge-
nutzt werden um die Ergebnisse der unterschiedlichen Methoden zur Score-Bildung zu ver-
gleichen.
Ähnlich wie bei Chen et al. (2015) beschrieben sollen anhand der in Kapitel 3.2 geschätzten
Scores die Ausprägungen der Zielvariable vorhergesagt werden. Die bereits beobachteten
Werte dieser Outcomevariable dienen dann als Label, um überprüfen zu können wie gut die
Vorhersage ist.

Methode von Matsui
Bei dem Ansatz von Matsui et al. (2012) werden dazu, wie bei der Score-Bildung, die aus der
Kreuzvalidierung gebildeten Trainings- und Testdaten genutzt. Anhand der Trainingsdaten
wird ein Prädiktionsmodell geschätzt und anschließend die Prädiktionsgenauigkeit des Mo-
dells auf den Testdaten evaluiert.
Das Prädiktionsmodell ist somit wieder ein logistisches Regressionsmodell und sieht folgen-
dermaßen aus:

πi = P (yi = 1|T = ti,W
M = wMi , U

M = uMi ) = exp(β̂0 + β̂T ti + β̂1w
M
i + β̂2u

M
i + β̂3tiu

M
i )

1 + exp(β̂0 + β̂T ti + β̂1wMi + β̂2uMi + β̂3tiuMi )
,

(10)
wobei πi die Wahrscheinlichkeit darstellt, dass yi den Wert 1 annimmt, gegeben die Werte
der Kovariablen T,WM und UM . Die geschätzten Koeffizienten β̂0 für den Intercept, β̂T für
den Haupteffekt des Treatments, β̂1 für den Haupteffekt des prognostischen Scores, β̂2 für
den Haupteffekt des prädiktiven Scores und β̂3 für den Interaktionseffekt zwischen Treatment
und prädiktivem Scores stammen dabei aus einer Schätzung auf den Trainingsdaten.
Man könnte sich an dieser Stelle auch überlegen das Prädiktionsmodell ohne den Haupteffekt
des prädiktiven Scores zu schätzen, da es bei diesem eigentlich nur um die Interaktion geht.
Abbildung 12 im Anhang vergleicht die beiden Optionen und zeigt, dass kaum Unterschiede
bestehen.
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Neuer Ansatz
Da der neue Ansatz zur Score-Bildung bereits die aus den Trainingsdaten geschätzten β-
Koeffizienten als Gewichte nutzt, muss hier das Prädiktionsmodell nicht mehr explizit ge-
schätzt werden. Die Vorhersage kann dann folgendermaßen für jede Beobachtung aus dem
Testdatensatz berechnet werden:

P (yi = 1|xi, ti) =
exp(ηti + β̂H1 xi1 + ...+ β̂Hp xip + β̂I1xi1 + ...+ β̂Ipxip)

1 + exp(ηti + β̂H1 xi1 + ...+ β̂Hp xip + β̂I1xi1 + ...+ β̂Ipxip)
,

wobei man die geschätzten Koeffizienten β̂
H = (β̂H1 , ..., β̂Hp )T und β̂

I = (β̂I1 , ..., β̂Ip)T aus der
Lasso-Regression des einschrittigen Verfahrens (6) bzw. der zweischrittigen Verfahren ((7),
(8), (9)) erhält. Die Schätzung des Intercepts und des Haupteffekts des Treatments stecken
in dem linearen Prädiktor ηt, der aus dem vorab gefitteten logistischen Regressionsmodell
(5) resultiert.

Eine Möglichkeit die Performance des Prädiktionsmodells darzustellen ist die Konfusions-
matrix, wie sie in Tabelle 1 zu sehen ist (Pepe, 2003; Swets, 1988).

Tabelle 1: Konfusionsmatrix

Label 0 Label 1
Vorhersage 0 richtig negativ (TN) falsch negativ (FN) TN + FN
Vorhersage 1 falsch positiv (FP) richtig positiv (TP) FP + TP

TN + FP FN + TP n

Diese zeigt die richtigen (TP und TN) und die falschen (FP und FN) Vorhersagen. Wurde
beispielsweise bei Patient i Genesung beobachtet, es gilt also yi = 1 und somit hat Patient
i das Label 1, und die Vorhersage besagt 0 also keine Genesung, so handelt es sich um eine
falsche Vorhersage in Form eines falsch negativen Ergebnisses. Betrachtet man den Anteil
falscher Prädiktionen (FP+FN

N
), so erhält man den Missklassifikationsfehler.

Aus dem oben definierten Prädiktionsmodell erhält man jedoch zunächst nur Wahrschein-
lichkeiten dafür, dass die Zielvariable Y den Wert 1 annimmt und noch keine Entscheidung
über die Ausprägung 1 oder 0. Dazu muss vorher noch ein sogenannter Schwellenwert festge-
legt werden, der angibt ab welcher Wahrscheinlichkeit die Ausprägung der Zielvariable auf 1
gesetzt wird (Pepe, 2003). In der Praxis wird dieser Schwellenwert häufig intuitiv bei 0.5 oder
nahe 0.5 gewählt. Je nach gewähltem Schwellenwert können sehr unterschiedliche Ergebnis-
se herauskommen und sich folgendermaßen auch unterschiedliche Missklassifikationsfehler
ergeben. Eine Möglichkeit der grafischen Darstellung der Vorhersagekraft für verschiede-
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ne Schwellenwerte, stellt die sogenannte ROC (receiver operating characteristic) dar (Pepe,
2003; Swets, 1988). Die ROC Kurve bildet dabei den Anteil der richtig Positiven gegenüber
dem Anteil der falsch Positiven ab.
Zwei Begriffe, die man in der Medizin häufig in diesem Zusammenhang hört und in Kapitel
2 genannt wurden, sind die Sensitivität und die Spezifität (Pepe, 2003).

Sensitivität ist die bedingte Wahrscheinlichkeit, dass 1 vorhergesagt wird, gegeben das
wahre Label ist 1 =̂ P (V orhersage = 1|Label = 1). Als Schätzer dient der Anteil richtig
Positiver (TPF): TPF = TP

TP+FN .

Spezifität ist die bedingte Wahrscheinlichkeit, dass 0 vorhergesagt wird, gegeben das wahre
Label ist 0 =̂ P (V orhersage = 0|Label = 0). Als Schätzer dient der Anteil richtig Negativer
(TNF): TNF = TN

TN+FP .

Die ROC Kurve bildet hierbei die Sensitivität auf der y-Achse und (1 - Spezifität) auf
der x-Achse für alle möglichen Schwellenwerte (vom kleinsten bis zum größten) ab. (1 -
Spezifität) ist dann 1− TNF = FP

TN+FP = FPF , also der Anteil der falsch Positiven (FPF).
Bei einem guten Vorhersagemodell verläuft die ROC Kurve in einem großen Bogen über
der Winkelhalbierenden. Ein schlechtes Vorhersagemodell hat eine ROC Kurve eng an der
Winkelhalbierenden liegend. Abbildung 1 verdeutlicht dies anhand zwei fiktiver Beispiele.
Zum Vergleich von ROC Kurven wie in Abbildung 1 wird auch häufig die Fläche unter den

Kurven herangezogen. Das sogenannte AUC (Area under the curve) fasst somit die ROC
Kurve in einem Wert zusammen indem es die Fläche unter ihr angibt(Pepe, 2003). Damit
stellt das AUC ein Maß, das ebenfalls zum Vergleich von verschiedenen Prädiktionsmodellen
herangezogen werden kann, aber unabhängig der Wahl des Schwellenwertes ist, dar.
L1 bezeichne die Menge der Beobachtungen mit Label 1, also yj = 1 und L0 die Menge
der Beobachtungen mit Label 0, also yi = 0. Angenommen man zieht aus jeder Gruppe
zufällig eine Beobachtung, dann gibt das AUC die Wahrscheinlichkeit an, dass πj von der
Beobachtung aus L1 größer ist als πi der Beobachtung aus L0 (LeDell et al., 2015). Somit
lässt sich das AUC folgendermaßen empirisch berechnen(LeDell et al., 2015):

ÂUC = 1
n0n1

n0∑
i=1

n1∑
j=1

I(π̂j > π̂i),

mit n0 der Anzahl der Elemente aus L0 und n1 der Anzahl der Elemente aus L1 und I der
Indikatorfunktion, die zählt wie oft π̂j > π̂i gilt. Das AUC nimmt im allgemeinen Werte
zwischen 0.5 (unbrauchbares Vorhersagemodell) und 1.0 (perfektes Vorhersagemodell) an.
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Abbildung 1: Die blaue ROC Kurve (gestrichelte Linie) stellt eine bessere Vorhersage als
die rote Kurve (durchgezogene Linie) dar, da sie die rote Kurve dominiert.
Das heißt die blaue Kurve ist immer über der roten Kurve. (Quelle: eigene
Berechnungen)

Da die Analyse jedoch auf Kreuzvalidierung basiert, soll hier nicht das AUC über alle Be-
obachtungen berechnet werden, sondern das cvAUC (cross validated AUC). Das heißt ein
AUC, das die K-fache Aufteilung in Trainings- und Testdaten berücksichtigt. Bezeichne
dazu B1

n, ..., B
K
n wie bei LeDell et al. (2015) die K Unterteilungen in Trainings- und Test-

daten, wobei Bk
n ∈ {0, 1}n. Die Beobachtungen der k-ten Testdaten sind dann gekennzeich-

net durch {i : Bk
n(i) = 1} und die Beobachtungen der zugehörigen Trainingsdaten durch

{i : Bk
n(i) = 0}. nk0 = ∑n

i=1 I(yi = 0)I(Bk
n(i) = 1) bezeichnet dann die Anzahl Beobach-

tungen aus dem k-ten Testdatensatz mit yi = 0 und nk1 = ∑n
i=1 I(yi = 1)I(Bk

n(i) = 1) die
Anzahl Beobachtungen aus dem k-ten Testdatensatz mit yi = 1.
Für einen einzelnen Testdatensatz {i : Bk

n(i) = 1} der Kreuzvalidierung sieht das AUC nach
LeDell et al. (2015), folgendermaßen aus:

ÂUCk = 1
nk0n

k
1

nk
0∑

i=1

nk
1∑

j=1
I(π̂j > π̂i).

Das cvAUC über alle Testdaten der K-fachen Kreuzvalidierung ist dann als Mittelwert aller
AUCs der einzelnen K Testdaten definiert (LeDell et al., 2015):

̂cvAUC = 1
K

K∑
k=1

ÂUCk = 1
K

K∑
k=1

1
nk0n

k
1

nk
0∑

i=1

nk
1∑

j=1
I(π̂j > π̂i). (11)
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3.3 Testen

Gemäß Chen et al. (2015) gehört es zur Entwicklung von prädiktiven Biomarkern dazu, dass
man den Treatmenteffekt nicht nur schätzt sondern auch testet. Dabei können verschiedene
Hypothesen interessant sein. Dieses Kapitel beschreibt dazu erst den Permutationstest von
Matsui et al. (2012) und anschließend welchen Test der neue Ansatz anstreben würde. Dabei
werden zwei Permutationstest vorgestellt, die für die Umsetzung des Tests von Nutzen sein
könnten.

3.3.1 Methode von Matsui

Matsui et al. (2012) testen in ihrem Paper die Nullhypothese,

HM
0 : es gibt für die gesamte Population keinen Treatmenteffekt =̂ HM

0 : βT = β3 = 0.

Dazu stellen sie den Treatmenteffekt durch eine Funktion Ψ(uM) vom prädiktiven Score UM

dar. Da es sich in diesem Unterkapitel bei allen Scores um die Scores nach Matsui et al.
(2012) handelt, wird zur besseren Lesbarkeit im Folgenden auf den Index M verzichtet. Die
an das binäre Setting angepasste Funktion für einen Patienten i sieht dabei folgendermaßen
aus:

Ψ(ui) = log

(
P (yi = 1|ti = 1)

1− P (yi = 1|ti = 1)

)
− log

(
P (yi = 1|ti = 0)

1− P (yi = 1|ti = 0)

)
= (β0 + βT · 1 + β1wi + β2ui + β3ui · 1)− (β0 + βt · 0 + β1wi + β2ui + β3ui · 0)

= βt + β3ui.

Ψ(ui) steht für die Differenz der logarithmierten Chancen. Eine Chance, auch odds genannt,
stellt dabei die Wahrscheinlichkeit für yi = 1 ins Verhältnis zur Wahrscheinlichkeit für yi = 0
(Fahrmeir et al., 2009). Eine Chance größer 1 bzw. eine logarithmierte Chance größer 0 be-
deutet, dass bei gegebenen Kovariablenwerten die Wahrscheinlichkeit für yi = 1 größer ist als
für yi = 0. Steht beispielsweise yi = 1 für Genesung, so würde Ψ(ui) > 0 bedeuten, dass mit
Treatment die logarithmierte Chance auf Genesung größer ist als ohne. Es gibt folglich einen
Behandlungseffekt oder -nutzen für Patient i mit dem prädiktiven Score ui. Die Schätzungen
der β-Koeffizienten erhält man dabei aus dem vorher beschriebenen Prädiktionsmodell (10).
Um die Nullhypothese 2-seitig zu testen, schlagen Matsui et al. (2012) einen Permutationstest
mit der Teststatistik

T =
∫
|Ψ̂(u)| du
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vor. Die Schätzung von T unter H0 wird dabei durch Permutation des Treatments erzielt.
Das heißt die Einträge der Spalte mit den Treatmentwerten werden zufällig umsortiert.
Dann werden wie zuvor die Scores für jeden Patienten und die zugehörigen β-Koeffizienten
geschätzt und anschließend die Ψ̂(ui) berechnet. Dieses Vorgehen wird mehrmals wiederholt
und schließlich kann ein p-Wert über die Anzahl der Permutationen mit T ≥ Tobs gebildet
werden. Wobei Tobs für die Teststatistik der ursprünglich beobachteten Daten steht. Tritt
T ≥ Tobs zu häufig auf weist dies auf keinen Treatmenteffekt hin.

3.3.2 Idee des neuen Ansatzes

Liegt das Interesse nicht am globalen Treatmenteffekt wie in HM
0 , sondern ausschließlich

am Interaktionseffekt zwischen dem Treatment und den genetischen Variablen, sieht die
interessierende Nullhypothese folgendermaßen aus:

H∗0 : es gibt keine Interaktionen =̂ H∗0 : β3 = 0, für alle genetischen Variablen.

Um wirklich nur den Interaktionseffekt ohne den Haupteffekt auf Signifikanz zu testen, kann
der eben beschriebene Permutationstest nicht ohne weiteres verwendet werden. Denn ein
einfaches Permutieren des Treatments zerstört nicht nur die Struktur der Interaktionen, son-
dern gleichzeitig auch die Struktur des Haupteffekts des Treatments. Daher werden andere
Methoden des Permutationstests benötigt, um vergleichbar wie bei Matsui et al. (2012) die
neue Nullhypothese testen zu können.
Dazu werden im Folgenden zwei Permutationstests für Interaktionen vorgestellt, die für die
neue Nullhypothese adäquater erscheinen.

Permutationstest von Werft et al.
Werft et al. (2012) schlagen einen PRR Test (permutation of regerssor residuals) zur Iden-
tifikation von prädiktiven Biomarkern vor. Dabei verfolgen sie einen genweisen Ansatz. Das
heißt sie betrachten für jede genetische Variable ein einzelnes generalisiertes lineares Modell
und testen auch für jede genetische Variable einzeln die Nullhypothese

HWerft
0 : es gibt keine Interaktion =̂ HWerft

0 : β(j)
2 = 0, j = 1, ..., p,

wobei der Interaktionseffekt β(j)
2 für die j-te Genexpression aus dem folgenden Modell stammt,

E(Y ) = f−1[β(j)
0 + β

(j)
T T + β

(j)
1 Xj + β

(j)
2 TXj +

q∑
s=1

β
(j)
s+2Os],
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das hier in ganz allgemeiner Form dargestellt wird, so dass je nach Daten die passende
Linkfunktion f einfügt werden kann. Zusätzlich zu den genetischen Variablen Xj, j = 1, ..., p,
und der Treatmentvariable T , werden hier noch mögliche weitere Kovariablen Os, s = 1, ..., q,
wie klinische Eigenschaften der Patienten beobachtet.
Da dieser Ansatz jede genetische Variable einzeln betrachtet, tritt hier erneut das multiple
Testproblem auf. Werft et al. (2012) greifen dabei ebenfalls auf die Adjustierung der FDR,
die in Kapitel 2 kurz beschrieben wurde, zurück.
Die Idee des Tests ist es die interessierende, zu testende Größe durch die Residuen aus einem
Modell von allen anderen Variablen auf diese interessierende Größe zu ersetzen. Das bedeutet
es wird erst ein Modell

E(XjT ) = γ
(j)
0 + γ

(j)
T T + γ

(j)
1 Xj +

q∑
s=1

γ
(j)
s+1Os

mit dem (stetigen) Interaktionsterm der genetischen Variable und der Treatmentvariable
als abhängige Variable gefittet. Die Koeffizienten dieses Modells sind dabei zur besseren
Unterscheidung mit γ’s dargestellt. Die daraus resultierenden Residuen

r = XjT − (γ̂(j)
0 + γ̂

(j)
T T + γ̂

(j)
1 Xj +

q∑
s=1

γ̂
(j)
s+1Os)

sind gemäß ihrer Definition unkorreliert mit den Kovariablen, aber korreliert mit der abhäng-
igen Variable, in diesem Fall also dem Interaktionsterm. Da das Maximum der Likelihood-
funktion das gleiche ist, egal ob man für das generalisierte lineare Modell die Residuen r

als erklärende Variable einsetzt oder die eigentlich beobachtete Kovariable, in diesem Fall
den Interaktionsterm, hat das zur Folge, dass auch der Likelihood-Ratio-Test (LR Test) auf
das selbe Ergebnis kommt, wenn man statt dem eigentlichen Interaktionsterm die Residuen
verwendet (Werft et al., 2012).
Werft et al. (2012) berechnen also zunächst den p-Wert p̃ für die ursprünglichen Daten
anhand des LR Tests

LR(Xj) = −2log(L(β0(j)
2 )

L(β̂(j)
2 )

). (12)

Wobei β0(j)
2 den Interaktionsterm unter der Nullhypothese (also in diesem Fall gleich Null)

bezeichnet und β̂(j)
2 den geschätzten Interaktionseffekt des Modells mit den Residuen anstelle

des Interaktionsterms.
Anschließend werden die Residuen immer wieder randomisiert r∗b , b = 1, ..., B und die p-
Werte p∗b mittels dem LR Test berechnet.
Schließlich ist der p-Wert pj für die j-te genetische Variable des PRR Tests nach Werft et al.
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(2012) folgendermaßen definiert:

pj = I(p∗b ≤ p̃)
B

.

Dabei zählt die Indikatorfunktion I wie viele p-Werte nach Randomisierung der Residu-
en kleiner gleich dem p-Wert der beobachteten Daten sind. Je seltener dies auftritt, des-
to wahrscheinlicher ist es, dass es sich bei dem beobachteten Interaktionseffekt um einen
tatsächlich signifikanten Effekt handelt. Denn werden nach der Zerstörung der Interaktions-
struktur überwiegend größere p-Werte beobachtet, spricht das dafür, dass der kleine p-Wert
der ursprünglich beobachteten Daten nicht zufällig beobachtet wurde.

Aufgrund der univariaten Herangehensweise ist diese Methode jedoch nicht optimal für die
Testidee des neuen Ansatzes, der versucht aus der univariaten Methode von Matsui et al.
(2012) einen multiplen Ansatz zu machen. Vielleicht wäre es aber eine Möglichkeit, um mit
der Methode von Matsui et al. (2012) die Nullhypothese H∗0 zu testen, was auch interessant
sein könnte.

Permutationstest von Wang et al.
Wang et al. (2015) schlagen einen Permutationstest vor, der die Nullhypothese testen soll,
welche besagt, dass es keine Interaktionen gibt. Das heißt hier wird nicht für jede Kovariable
ein eigener Test durchgeführt, sondern für alle gleichzeitig. Dadurch werden im Vergleich zur
vorher betrachteten Methode von Werft et al. (2012) alle verfügbaren Informationen genutzt
und die Wahrscheinlichkeit auf ein falsch positives Ergebnis durch die vielen Kovariablen
nicht erhöht (Wang et al., 2015).
Der Test ist für randomisierte Studien mit Z (≥ 2) verschiedenen Behandlungen anwendbar.
Von den insgesamt n beobachteten Patienten haben jeweils nz, z = 1, .., Z, die Behandlung
z erhalten. Dabei handelt es sich bei den Beobachtungen um unabhängige und identisch ver-
teilte Zufallsvariablen des Zufallsvektors (Y, T,X1, ..., Xp). Die hier betrachtete Zielvariable
Y ist stetig und die Treatmentvariable T ist dummykodiert mit der Referenzkategorie Z. Da-
bei hat die Matrix T mit der dummykodierten Treatmentvariable die Dimension (Z−1)×n
und die Kovariablenmatrix X hat die Dimension p× n. Wang et al. (2015) stellen folgendes
lineares Modell auf:

y = αTT + βTX + γTT⊗X + ε0, ε0 ⊥ (TT ,XT ), (13)

mit den Parametervektoren α für die Behandlungseffekte, β für die Haupteffekte der Kovaria-
blen und γ für die Interaktionseffekte zwischen Behandlung und Kovariable. ε0 ⊥ (TT ,XT )
bedeutet, dass der zufällige Fehlerterm unabhängig vom Treatment und den Kovariablen ist.
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Mit ⊗ wird das Kronecker Produkt dargestellt. Dieses Modell stellt eine verallgemeinerte
Form des bisher betrachteten Modells beim Schätzen der Biomarker dar, da es mehr als
zwei Behandlungsformen zulässt und kann somit für mehrere Biomarker verwendet werden.
Die interessierende Nullhypothese von Wang et al. (2015) lässt sich dann folgendermaßen
darstellen:

HWang
0 : es gibt keine Interaktionen =̂ HWang

0 : γ = 0(Z−1)p×1.

Wang et al. (2015) betrachten zunächst für jede Behandlung z ein einzelnes lineares Modell

y = β(z)T X + εz, εz ⊥ X, (14)

wobei die oben definierte Nullhypothese sich dann äquivalent darstellen lässt durch:

HWang
0 : β(1) = ... = β(Z).

Das bedeutet, wenn die Haupteffekte der Kovariablen in den Modellen getrennt nach den
Behandlungen gleich sind, gibt es keine Interaktionseffekte. Denn in diesem Fall scheint der
Effekt der Kovariablen über alle Behandlungsformen gleich zu sein. Dies verdeutlichen Wang
et al. (2015) nochmal durch folgende Umformung:

β(z) = β + γ(z), für z = 1, ..., Z − 1

β(Z) = β.

Wobei γ(z) ein Vektor der Interaktionseffekte der Behandlung z mit den p Kovariablen ist.
Für die Referenzgruppe Z wird dabei kein Interaktionseffekt geschätzt.
Wäre die Anzahl der Kovariablen im Verhältnis zu den Beobachtungen klein (n > p), dann
wäre es eine Option das lineare Modell (13) und das Modell

y = αTT + βTX + ε0 (15)

unter der Nullhypothese, also ohne Ineraktionen, zu schätzen und anschließend einen Likeli-
hood-Ratio-Test vergleichbar wie in (12) durchzuführen. Ist jedoch die Anzahl der Kovaria-
blen groß im Verhältnis zu den Beobachtungen, sodass in den Modellen (13) und (15) mehr
Parameter geschätzt werden müssen wie es Beobachtungen gibt oder es gilt ohnehin n < p,
dann sind die Modelle (13) und (15) nicht schätzbar und somit ist der Likelihood-Ratio-Test
nicht mehr anwendbar (Wang et al., 2015). Daher schlagen Wang et al. (2015) einen Permu-
tationstest vor, bei dem es auch möglich ist eine Variablenselektion vorzunehmen.
Dabei wird die Permutation folgendermaßen durchgeführt (Wang et al., 2015). Das Modell
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(15) unter der Nullhypothese kann derart umgeformt werden

y = αTT + ε, (16)

wobei hier ε = βTX+ε0 gilt, da sich die Reststreuung durch das Weglassen der Haupteffekte
der Kovariablen um die erklärte Streuung dieser Effekte erhöht. Betrachtet man dazu die
übliche Definition des Fehlerterms ergibt sich ε = y−αTT = βTX + ε0 ⊥ T|X. Das heißt,
der Fehlerterm aus (16) ist unabhängig vom Treatment gegeben die Kovariablen. Da es sich
um eine randomisierte Studie handelt, sind T und X ebenfalls unabhängig voneinander. Es
gilt somit T ⊥ X. Kombiniert man diese Unabhängigkeitsannahmen, erhält man, dass das
Treatment sowohl vom Fehlerterm, als auch von den Kovariablen unabhängig ist. Damit
ergibt sich, wenn man ε = y−αTT einsetzt,

T ⊥ (y−αTT,X). (17)

Im ersten Schritt ersetzen Wang et al. (2015) in der ursprünglichen Datenmatrix D =
(Y,T,X) die Werte der Zielvariable durch die Residuen aus Modell (16). Dadurch erhalten
sie die transformierte Datenmatrix D̃ = (y − αTT,T,X). Aufgrund der Unabhängigkeiten
aus (17) kann nun die Spalte mit dem Treatment permutiert werden, während die ande-
ren Spalten mit den Residuen und den Kovariablen gleich bleiben, was die Datenmatrix
D̃` = (y − αTT,T`,X) ergibt. Die beiden Datensätze D̃ und D̃` werden als gleich wahr-
scheinlich angesehen (Wang et al., 2015). Im letzten Schritt werden dann die randomisierten
Residuen wieder zurücktransformiert in die beobachteten y-Werte und man erhält den Daten-
satz D̃`

(−1) = (Y,T`,X). Wobei dieser wieder gleich wahrscheinlich ist, wie der ursprünglich
beobachtete Datensatz D. Sei T eine beliebige Teststatistik, so kann die Verteilung unter
H0 durch die Permutationsverteilung, die mit Hilfe der T (D̃`

(−1)) gebildet wird, dargestellt
werden. T (D) kann schließlich als Zufallsstichprobe dieser Permutationsverteilung betrach-
tet werden (Wang et al., 2015).

Die Teststatistik von Wang et al. (2015) wird dann anhand der folgenden fünf Schritte
geschätzt:

1. Schätze für jede Behandlung z ein Modell wie in (14), welches gegebenfalls eine Varia-
blenselektion enthalten kann.

2. Berechne für jede Beobachtung i einen Vorhersagewert ŷ(z)
i basierend auf dem Mo-

dell aus Schritt 1. Dann berechne den Vorhersagefehler über alle Modelle Err1 =
1
n

∑Z
z=1

∑n
i=1(yi − ŷ(z)

i )2.
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3. Schätze nun ein gemeinsames Modell für alle Behandlungen wie in Modell (15). Gege-
benenfalls kann hier wieder eine Variablenselektion integriert werden.

4. Berechne nun wieder für jede Beobachtung einen Vorhersagewert ŷi mit dem Modell
aus Schritt 3 und berechne anschließend den Vorhersagefehler des Modells Err2 =
1
n

∑n
i=1(yi − ŷi)2.

5. Bilde die Teststatistik ∆ = Err1−Err2 und gib den p-Wert über alle m Permutationen
an. Der von Wang et al. (2015)vorgeschlagene p-Wert sieht dabei folgendermaßen aus:

1 +∑m
i=1 I(|∆i| ≥ |∆obs|)

1 +m
,

wobei I eine Indikatorfunktion darstellt und ∆obs die Teststatistik des ursprünglich
beobachteten Datensatzes ist.

Der p-Wert wird folglich groß, wenn viele Teststatistiken nach Permutation betragsmäßig
größer gleich der Teststatistik des ursprünglich beobachteten Datensatzes sind. Ein großer
p-Wert spricht somit für die Nullhypothese und dafür, dass es keine Interaktionen gibt. Um-
gekehrt wird die Nullhypothese abgelehnt, wenn es nur wenige Teststatistiken nach Permuta-
tion gibt, die größer gleich der Teststatistik des ursprünglich beobachteten Datensatzes sind,
weil sich dann ein kleiner p-Wert ergibt. Denn |∆i| ≥ |∆obs| bedeutet, dass die Zerstörung
der Interaktionsstruktur nichts am Ergebnis der Vorhersagefehler geändert hat. Die Vorher-
sagefehler 1 und 2 unterscheiden sich im gleichen Maße wie beim ursprünglich beobachteten
Datensatz. Es scheint somit keine Interaktionseffekte zu geben.

Diese Methode erscheint für die Testidee des neuen Ansatzes geeigneter zu sein, da hier
dieselbe Nullhypothese getestet wird. Ein weiterer Vorteil bezüglich der Hochdimesiona-
lität der omics-Daten liefert die Möglichkeit eine Variablenselektion in die Testmethode zu
integrieren. Jedoch ist die Tatsache, dass in den Schritten 2 und 4 der Trainingsfehler be-
trachtet wird nicht optimal, da auf denselben Daten das Prädiktionsmodell gefittet und
angewendet wird. Das kann zu Over-Fitting führen, vor allem bei hochdimensionalen Da-
ten, weshalb dieses Vorgehen (für die Ziele dieser Arbeit) nicht empfehlenswert ist. Jedoch
wäre es überlegenswert die Methode in Kombination mit Kreuzvalidierung durchzuführen.
Demzufolge würden in den Schritten 1 und 3 die Modelle jeweils anhand der Trainingsdaten
geschätzt werden und danach in den Schritten 2 und 4 auf die zugehörigen Testdaten ange-
wendet werden. Nachdem man dies für alle K Testdatensätze wiederholt hat, könnte man
anschließend den mittleren Vorhersagefehler über alle Testdatensätze angeben. Abschließend
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könnte der von Wang et al. (2015) vorgeschlagene p-Wert berechnet werden.
Außerdem ist die Testmethode von Wang et al. (2015) für stetige Zielvariablen konzipiert.
Ändert man jedoch die Definition des Vorhersagefehlers, kann diese Methode auch für binäre
Outcomevariablen angewendet werden. Da bei einer binären Zielvariable die quadrierte Diffe-
renz von Vorhersage und beobachtetem Wert ein ungeeignetes Maß ist, sollte man stattdessen
diesen Vorhersagefehler

Err = 1
n

n∑
i=1

I(yi 6= ŷi)

mit der Indikatorfunktion I betrachten. Für ŷi gilt dabei

ŷi =

1, πi ≥ c

0, sonst.

Wobei c ein vorher zu definierender Schwellenwert ist, der festlegt ab welcher Wahrschein-
lichkeit πi die Vorhersage ŷi auf 1 gesetzt wird. Folglich zählt die Indikatorfunktion wie oft
Vorhersage und Beobachtung nicht übereinstimmen. Dividiert man diese absolute Häufigkeit
durch die Anzahl der insgesamt betrachteten Beobachtungen erhält man den Anteil falscher
Vorhersagen. Dieser kann dann als Vorhersagefehler für die binäre Outcomevariable verwen-
det werden.
Eine angepasste Form der Methode von Wang et al. (2015) könnte folglich eine geeignete
Testmethode für die Idee des neuen Ansatzes liefern. Die genaue Ausarbeitung und Simu-
lation dieser Testmethode konnte jedoch im Rahmen dieser Arbeit nicht mehr durchgeführt
werden.

4 Simulation

In diesem Kapitel wird eine Simulationsstudie durchgeführt, um die zuvor beschriebenen
Schätzmethoden zu vergleichen. Hierzu wird betrachtet, ob die Verfahren die generierten
Effekte zum einen erkennen und zum anderen richtig schätzen und schließlich eine gute
Vorhersage liefern. Im ersten Teil dieses Kapitels wird der Aufbau der Simulationsstudie
beschrieben und darauf folgend die Ergebnisse dargestellt.

4.1 Aufbau der Simulation

Da bei der Simulation die Trainings- und Testdaten so generiert werden, dass beide aus
derselben Verteilung stammen, kann auf Kreuzvalidierung verzichtet werden. Bei den Simu-
lationen werden folgende fixe Parameter gewählt:
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• Es wird ein Testdatensatz mit nTest = 10000 Beobachtungen generiert.

• Dazu werden 100 Trainingsdatensätze mit je nTraining = 200 Beobachtungen generiert.
Anhand des Testdatensatzes können dann die Schätzungen, basierend auf den 100 Trai-
ningsdatensätzen, evaluiert werden. Dazu kann hier das normale AUC herangezogen
werden anstelle des cvAUC.

• Die omics-Daten werden durch standard normalverteilte Variablen Xj, j = 1, ..., p mit
p = 1000, dargestellt. Es gilt somit Xj ∼ N(0, 1) ∀j

• Die binäre Variable T zeigt an, ob die Beobachtung in die Treatment- oder in die
Kontrollgruppe gehört. Dabei gilt wie bei einer randomisierten Studie π = 0.5.

• Die binäre Zielvariable Y nimmt den Wert 1 an, wenn ein positives Ereignis wie bei-
spielsweise Genesung oder Schrumpfung eines Tumors eintritt.

Die Abhängigkeit der Zielvariable von den Kovariablen wird dabei per backward Simulation
hergestellt. Das heißt es wird vorgegeben welchen Einfluss die Kovariablen haben sollen und
dann gemäß dieser Zusammenhangsstrukturen die Ausprägungen der Zielvariable gebildet.
Die unabhängige Generierung der Kovariablen stellt dabei eine eher unrealistische Situation
dar. Jedoch sind die wahren Strukturen von omics-Daten sehr komplex, sodass eine realisti-
sche Darstellung im Rahmen dieser Arbeit nicht möglich war.
Außerdem werden folgende Annahmen getroffen. Für den Großteil der Haupt- und Interak-
tionseffekte der Kovariablen wird angenommen, dass sie keinen Einfluss haben. Das heißt,
der zugehörige β-Koeffizient ist Null. Einflussreiche Genexpressionen sollen dabei einen ne-
gativen Haupteffekt und/oder einen positiven Interaktionseffekt haben. Der Haupteffekt des
Treatments soll ebenfalls positiv sein.
Des weiteren gibt es folgende variable Parameter, die zur Gestaltung unterschiedlicher Da-
tensituationen gewählt werden können:

• die Stärke des Haupteffekts des Treatments, sowie der Haupt- und Interaktionseffekte
der einflussreichen genetischen Variablen

• die Anzahl der einflussreichen Haupt- und Interaktionseffekte

• die Aufteilung der einflussreichen Interaktionseffekte in Interaktionseffekte mit oder
ohne zugehörigem Haupteffekt

Tabelle 2 zeigt je Setting die gewählten Parameter. Da bei der logistischen Regression üb-
licherweise exp(β) interpretiert wird, wird hier auch bei der Stärke der Effekte exp(β) an-
gegeben. exp(β) entspricht dabei dem Chancenverhältnis, auch Odds Ratio genannt. Wird
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beispielsweise xi1 um eine Einheit erhöht, gilt für das Chancenverhältnis:

P (yi = 1|xi1, ...)/P (yi = 0|xi1, ...)
P (yi = 1|xi1 + 1, ...)/P (yi = 0|xi1 + 1, ...) = exp(β1),

wobei β1 der zugehörige Haupteffekt ist (Fahrmeir et al., 2009). Ist exp(β1) > 1, bedeutet
das, dass sich die Chance auf yi = 1 für xi1 + 1 im Vergleich zu xi1 um den Faktor exp(β1)
erhöht (bei Konstanhaltung aller anderen Kovariablen). Analog reduziert sich die Chance
auf yi = 1 für xi1 + 1 im Vergleich zu xi1 um den Faktor exp(β1), wenn exp(β1) < 1 gilt.
exp(β1) = 1 bedeutet, dass die Variable X1 keinen Einfluss hat, was gleichbedeutend mit
β1 = 0 ist.
Da nur eine begrenzte Anzahl an Settings simuliert werden kann, wird versucht mit den 12
gewählten Settings möglichst viele denkbare Varianten abzudecken. So gibt es einige Settings
mit wenigen, aber dafür starken Haupteffekten und einige mit vielen schwachen oder mitt-
leren Haupteffekten. Diese werden mit unterschiedlich starken Treatment- und Interaktions-
effekten kombiniert. Bei den Interaktionseffekten wird auch variiert wie viele Interaktionen
mit einflussreichen Haupteffekten zusammenhängen und wie viele unabhängig davon auf-
treten. Außerdem wird betrachtet wie die Methoden darauf reagieren, wenn entweder keine
Haupt- oder Interaktionseffekte der Kovariablen vorhanden sind oder kein Haupteffekt des
Treatments existiert.

Im Anhang befinden sich die Abbildungen 13 und 14, die die Verteilungen der Treatment-
und der Zielvariable der Trainingsdatensätze zeigen. Entsprechend der Randomisierung liegt
der Anteil an Behandlungen bei etwa 50%. Bei der Zielvariable ist der Anteil an Events etwas
größer, die Daten sind aber nicht zu unbalanciert für brauchbare Analysen.

4.2 Gütemaße für die Verfahren

Bei der Auswertung der Simulationsergebnisse werden zwei Kriterien betrachtet. Zum einen
geht es darum wie gut die Vorhersage auf Basis der unterschiedlichen Methoden je Setting
gelingt. Dazu wird das AUC, wie es bereits im Theorieteil beschrieben wurde, betrachtet.
Zum anderen soll beurteilt werden, wie gut die Methoden die wahre Zusammenhangsstruk-
tur erfassen. Hierbei werden die geschätzten β-Koeffizienten mit den β-Koeffizienten, die
der Simulation zu Grunde liegen also den ”wahren“ β-Koeffizienten, verglichen. Dieser Ver-
gleich erfolgt zuerst quantitativ und schließlich auch qualitativ. Mit quantitativ ist hier
gemeint, dass zunächst gezählt wird, wie viele der wahren Effekte erkannt und wie viele
fälschlicherweise als solche ausgewiesen werden. Tabelle 3 verdeutlicht diese Herangehens-
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Tabelle 2: Übersicht der Simulationssettings

Setting Anzahl βHs Stärke exp(βHs ) Stärke exp(βT ) Anzahl βIs Stärke exp(βIs )
1 wenige (5) stark (0.2) mittel (2) wenige (4/1) stark (5)
2 wenige (5) stark (0.2) mittel (2) wenige (1/4) stark (5)
3 wenige (5) stark (0.2) mittel (2) viele (5/95) schwach (1.4)
4 wenige (5) stark (0.2) mittel (2) keine -
5 keine - mittel wenige (0/5) stark (5)
6 viele (100) schwach (0.71) stark (5) viele (80/20) mittel (2)
7 viele (100) schwach (0.71) stark (5) viele (20/80) mittel (2)
8 viele (100) schwach (0.71) keiner viele (80/20) mittel (2)
9 viele (100) schwach (0.71) keiner wenige (4/1) stark (5)

10 viele (100) mittel (0.5) mittel (2) viele (80/20) schwach (1.4)
11 viele (100) mittel (0.5) mittel (2) viele (20/80) schwach (1.4)
12 viele (100) mittel (0.5) mittel (2) keine -

βHs stellt die Haupteffekte ungleich Null dar und βIs stellt analog die Interaktionseffekte
ungleich Null dar, mit s = 1, ..., S. Wobei hier S ∈ {0, 5, 100}. Bei der Anzahl der βIs
gibt die erste Zahl an wie viele Interaktionen von genetischen Variablen kommen, die
auch einen von Null verschiedenen Haupteffekt haben und die zweite Zahl zeigt an wie
viele genetische Variablen ohne Haupteffekt einen Interaktionseffekt haben.

weise noch einmal. Ist beispielsweise das wahre β1 der genetischen Variable X1 ungleich Null
und das geschätzte β̂1 ist dagegen gleich Null, so ist das ein falsch negatives Ergebnis. Denn
die Variable hätte in Wahrheit einen Einfluss gehabt, dieser wurde aber nicht erkannt. Beim

Tabelle 3: Betrachtung der richtig erkannten Effekte und der fälschlicherweise
geschätzten Effekte.

wahres β = 0 wahres β 6= 0
β̂ = 0 richtig negativ (TN) falsch negativ (FN) Anzahl Kovariablen

ohne geschätzten Effekt
β̂ 6= 0 falsch positiv (FP) richtig positiv (TP) Anzahl geschätzter

Effekte
Anzahl Kovariablen
ohne Effekt

Anzahl wahrer Effekte Gesamtanzahl
Kovariablen

qualitativen Vergleich geht es dagegen darum zu betrachten, ob die richtig erkannten Effekte
auch in ihrer Effektstärke mit den wahren Effekten übereinstimmen und wie groß falsche
Effekte geschätzt wurden. Dazu werden wieder die Odds Ratios, also exp(β), betrachtet.
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4.3 Ergebnisse der Simulation

Bei den folgenden Grafiken sei darauf hingewiesen, dass auf die Skalierung der y-Achsen zu
achten ist, da diese nicht immer gleich ist. Sowohl zwischen verschiedenen Abbildungen als
auch zwischen einzelnen Plots auf einer Abbildung können Unterschiede vorliegen.

Vorhersagegenauigkeit
Um die Vorhersagegenauigkeiten der unterschiedlichen Schätzmethoden zu bewerten, wird
das AUC herangezogen. Abbildung 2 zeigt für jedes Setting je Methode einen Boxplot. Ein
Boxplot beinhaltet somit alle AUC-Werte der 100 Trainingsdatensätze. Die Grafik gibt folg-
lich einen Überblick in welchem Bereich sich die AUCs befinden und wie groß die Streuung
ist. Je breiter die Box ist, desto größer ist die Streuung und desto instabiler ist die jeweilige
Methode einzuschätzen. Die schwarz gestrichelte Linie in Abbildung 2 und 3 ist bei 0.5 ein-
gezeichnet, um schneller erfassen zu können wann es sich um eine unbrauchbare Vorhersage
handelt.
In Abbildung 2 ist deutlich zu erkennen, dass die Vorhersagegenauigkeiten bei Settings mit
wenigen starken Haupteffekten (1-4) im allgemeinen besser sind als bei Settings mit vielen
schwachen (6-9) oder mittleren Haupteffekten (10-12). Dabei sind die Ergebnisse bei vielen
schwachen Haupteffekten tendenziell besser als bei vielen mittleren. Die höchsten AUC-Werte
werden in Setting 4 erzielt. Dieses Setting beinhaltet keine Interaktionseffekte und wenige
starke Haupteffekte. Bei dem anderen Setting ohne Interaktionseffekte (Setting 12), das vie-
le schwache Haupteffekte hat, ergeben sich jedoch deutlich niedrigere AUC-Werte. Existiert
kein Haupteffekt des Treatments fallen die AUCs deutlich ab. Es ist allerdings zu beachten,
dass es sich hier in beiden Fällen um Settings mit vielen schwachen Haupteffekten der Kova-
riablen handelt, die allgemein schlechter abgeschnitten haben. Wenn es keine Haupteffekte
der genetischen Variablen gibt, sorgt dies ebenfalls für eine Verschlechterung der Vorher-
sagegenauigkeiten. Dabei schneiden die erste Version der zweischrittigen Verfahren und die
Methode von Matsui et al. (2012) schlechter ab als die anderen beiden Methoden. Bei der
ersten zweischrittigen Variante dürfte das daran liegen, dass dieses Verfahren per Konstruk-
tion im zweiten Schritt keine Interaktionen mehr schätzen kann, wenn es keine Haupteffekte
gibt und dadurch nicht alle Informationen der Daten nutzen kann. Die Konstruktion dieses
Ansatzes sorgt ebenfalls dafür, dass die AUCs sinken, wenn es überwiegend Interaktionen
gibt, die ohne einen zugehörigen Haupteffekt der genetischen Variable auftreten.
Insgesamt betrachtet schneiden die AUC-Werte des einschrittigen Verfahrens und der zwei-
ten Version der zweischrittigen Verfahren am besten ab.
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Abbildung 2: Für jedes Setting wird je Methode ein Boxplot mit den AUCs der 100
Trainingsdatensätze abgebildet. Die schwarz gestrichelte Linie bei 0.5. zeigt
unbrauchbare Vorhersagen an.
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Diese Tendenz bestätigt sich, wenn man alle Settings zusammen betrachtet. So ist in Ab-
bildung 3 zu sehen, dass die Mediane der AUC-Werte des einschrittigen Verfahrens (xmed =
0.64) und der zweiten Version der zweischrittigen Ansätze (xmed = 0.64) etwas größer ausfal-
len, als bei der ersten Version der zweischrittigen Ansätze (xmed = 0.62) und der Methode von
Matsui et al. (2012) (xmed = 0.61). Bei der Interpretation der AUC-Werte ist zu beachten,
dass unter den 12 Settings mehr Settings mit vielen schwachen oder mittleren Haupteffekten
vorliegen, die die Mediane der AUC-Werte nach unten ziehen. Deshalb sind die Boxen auch
nicht ganz symmetrisch, sondern zeigen eine leicht linkssteile Verteilung an. An der Breite
der Boxen kann jedoch erkannt werden, dass die Ergebnisse aller Methoden stark von der
vorliegenden Datensituation abhängen. Da diese in der Praxis in der Regel unbekannt ist,
muss bei allen Methoden auch mit schlechteren Vorhersagegenauigkeiten gerechnet werden.
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Methode
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2=zweischrittig V1
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AUCs der Verfahren

Abbildung 3: Für jede Methode wird ein Boxplot mit den AUCs über alle 12 Settings
hinweg abgebildet. Die schwarz gestrichelte Linie bei 0.5. zeigt unbrauch-
bare Vorhersagen an.

Anzahl erkannter Effekte
Nun soll betrachtet werden, ob auch die richtigen Effekte erkannt werden und wie viele
zusätzliche Effekte die Methoden fälschlicherweise schätzen. Dazu werden die richtig und
falsch positiven Haupt- bzw. Interaktionseffekte der Kovariablen betrachtet.
Abbildung 4 und 5 zeigen die Anzahlen richtig und falsch positiver Haupteffekte der 100
Trainingsdatensätze je Setting und Methode mittels Boxplots. Dabei ergeben sich bei den
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zweischrittigen Verfahren identische Ergebnisse bei den Haupteffekten, da sie auf demselben
Haupteffektmodell basieren. Bei den richtig positiven Haupteffekten zeigt die rote Linie an
wie viele wahre Haupteffekte in dem jeweiligen Setting generiert wurden.
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Abbildung 4: Für jedes Setting und jede Methode wird ein Boxplot mit den Anzahlen
der richtig positiven Haupteffekte abgebildet. Die rote Linie zeigt die An-
zahl wahrer Haupteffekte in dem jeweiligen Setting an.

Abbildung 4 zeigt, dass die Methode von Matsui et al. (2012) im Allgemeinen weniger wahre
Haupteffekte erkennt als die drei Varianten des neuen Ansatzes. Die drei Versionen des neuen
Ansatzes erkennen in den Settings mit wenigen starken Haupteffekten (1-4), alle oder beina-
he alle Effekte. Gibt es viele Haupteffekte, bleiben bei allen Methoden die meisten wahren
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Effekte unerkannt. Der Median der erkannten Effekte liegt hier durchgehend im einstelligen
Bereich, obwohl es insgesamt 100 wahre Effekte gegeben hätte. Dabei ist zu beobachten, dass
etwas mehr Effekte erkannt werden bei den Settings mit mittleren Haupteffekten (10-12), als
bei den Settings mit schwachen Haupteffekten (6-9). Jedoch wird im besten Fall in diesen
Settings ein Viertel der wahren Haupteffekte erkannt. In Setting 5 gibt es keine Haupteffekte,
weshalb auch keine richtig positiven Haupteffekte existieren.
In Abbildung 5 wird ersichtlich, dass die Methode von Matsui et al. (2012) kaum falsch Posi-
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Abbildung 5: Für jedes Setting und jede Methode wird ein Boxplot mit den Anzahlen
der falsch positiven Haupteffekte abgebildet.

tive erzeugt, ganz im Gegensatz zum neuen Ansatz, der in allen drei Varianten, einige Effekte
schätzt, die nicht generiert wurden. Hierbei fällt auf, dass die Anzahl der falsch positiven
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Haupteffekte mit der Effektstärke tendenziell ansteigt. Vergleicht man den einschrittigen
Ansatz mit dem zweischrittigen, erkennt man, dass die zweischrittigen Verfahren in allen
Settings (außer Setting 5 ohne Haupteffekte) mehr falsch positive Haupteffekte aufweisen
als die einschrittige Variante. Beim neuen Ansatz befinden sich die Mediane der richtig und
falsch Positiven bei Settings mit vielen Haupteffekten in einem ähnlichen Bereich. Allerdings
ist die Verteilung der falsch Positiven deutlich links steil, das heißt es gibt viele kleine An-
zahlen und wenige sehr große Anzahlen. Bei den Settings mit wenigen wahren Haupteffekten
übersteigt die Anzahl der falsch positiven die der wahren Effekte deutlich.

Abbildung 6 und 7 zeigen richtig und falsch positive Interaktionseffekte. Die rote Linie bei
den richtig Positiven zeigt hierbei wieder die Anzahl der wahren Interaktionseffekte an. Bei
Setting 4 und 12 existieren wiederum keine richtig Positiven, da in diesen Fällen keine wah-
ren Interaktionseffekte generiert wurden.
In Abbildung 6 ist zu erkennen, dass die Methoden die wahren Interaktionseffekte nicht so
gut erfassen wie die wahren Haupteffekte. Auch hier werden im allgemeinen wenige starke
Interaktionseffekte (3, 10, 11) besser erkannt als viele schwache (1, 2, 5, 9) oder mittlere (6, 7,
8). Die erste Variante der zweischrittigen Verfahren hat dabei die wenigsten richtig positiven
Interaktionseffekte. Außerdem bringt diese Methode auffallend viele falsch Positive hervor,
wie Abbildung 7 zeigt. Insgesamt übersteigt oft, bei allen Versionen des neuen Ansatzes, die
Anzahl der falsch positiven Interaktionseffekte die der richtig positiven deutlich. Das heißt
beim neuen Ansatz handelt es sich bei der Mehrheit der geschätzten Interaktionseffekte oft-
mals um falsch Positive. Die zweite Version der zweischrittigen Verfahren hat bei Setting 5,
das keine Haupteffekte hat, besonders viele falsch positive Interaktionen. Ansonsten schnei-
det dieses Verfahren tendenziell besser ab als das einschrittige Verfahren. Die Methode von
Matsui et al. (2012) hat erneut die wenigsten falsch Positiven.
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Abbildung 6: Für jedes Setting und jede Methode wird ein Boxplot mit den Anzahlen
der richtig positiven Interaktionseffekte abgebildet. Die rote Linie zeigt die
Anzahl wahrer Interaktionseffekte in dem jeweiligen Setting an.
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Abbildung 7: Für jedes Setting und jede Methode wird ein Boxplot mit den Anzahlen
der falsch positiven Interaktionseffekte abgebildet.
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Geschätzte Effektstärken
Da nicht nur entscheidend ist wie viele der wahren Effekte erkannt und wie viele Effekte
fälschlicherweise als solche deklariert werden, sondern auch wie groß diese Effekte geschätzt
werden, folgt abschließend eine Betrachtung der Odds Ratios, also exp(β), der richtig und
falsch Positiven. Die schwarz gestrichelte Linie bei der eins ist dabei zur besseren Orientie-
rung eingezeichnet, da so schneller erfasst werden kann in welche Richtung die Odds Ratios
gehen, also ob die Chance sich erhöht oder verringert. Bei den richtig erkannten Effekten
zeigt die rote Linie exp(β) der wahren Effekte.
Als erstes werden die Odds Ratios der Haupteffekte betrachtet. Abbildung 8 zeigt die Odds
Ratios der richtig erkannten Haupteffekte. Dabei ist zu beachten, dass es keine Boxplots für
Setting 5 gibt, weil es bei diesem Setting keine wahren Haupteffekte gibt und somit kei-
ne richtig Positiven existieren. Es ist zu erkennen, dass die Richtung der Haupteffekte in
der Regel durch alle Methoden richtig geschätzt wird. Da bis auf wenige Ausnahmen keine
Odds Ratios größer als eins zu beobachten sind. Alle drei Versionen des neuen Ansatzes
unterschätzen exp(β) und weisen allgemein sehr ähnliche Ergebnisse auf. Die Methode von
Matsui et al. (2012) ist bei den Settings mit wenigen starken Haupteffekten (1-4) oder vielen
mittleren (10-12) am nächsten an den wahren Odds Ratios dran. Bei den Settings mit vielen
schwachen Haupteffekten (6-9) überschätzt die Methode von Matsui et al. (2012) jedoch die
Odds Ratios etwas. Außerdem fällt auf, dass die Schätzungen bei den Settings mit wenigen
starken Haupteffekten (1-4) mehr Varianz aufweisen, was an den breiteren Boxen zu erken-
nen ist.

Abbildung 9 zeigt ergänzend dazu wie groß exp(β) für die falsch positiven Haupteffekte aus-
fallen. Die schwarz gestrichelte Linie bei der eins zeigt dabei wo die geschätzten Odds Ratios
idealerweise liegen sollten. Denn ist das Chancenverhältnis nahe eins hat die zugehörige Ko-
variable kaum Einfluss. Hier ist zu erkennen, dass alle Versionen des neuen Ansatzes die
Odds Ratios der falsch Positiven in der Regel nahe eins schätzen. Es sind jedoch auch einige
Ausreißer nach oben und unten zu beobachten. Die Methode von Matsui et al. (2012) liegt
dagegen mit seinen geschätzten Odds Ratios für die falsch Positiven deutlich weiter von der
eins entfernt. Dabei sind sehr breite Boxen zu beobachten, was für eine instabile Schätzung
spricht. Dieses Resultat ergibt sich möglicherweise durch die univariate Herangehensweise
von Matsui et al. (2012), die die Effekte der genetischen Variablen zu isoliert voneinander
betrachtet.
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Abbildung 8: Für jedes Setting und jede Methode wird ein Boxplot mit den Odds Ra-
tios der richtig erkannten Haupteffekte abgebildet. Die rote Linie zeigt
die Odds Ratio der wahren Haupteffekte in dem jeweiligen Setting an.
Die schwarz gestrichelte Linie bei 1.0 hilft die Richtung der Odds Ratios
schneller zu erfassen.
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Abbildung 9: Für jedes Setting und jede Methode wird ein Boxplot mit den Odds Ratios
der falsch positiven Haupteffekte abgebildet. Die schwarz gestrichelte Linie
bei 1.0 zeigt an wo die Odds Ratios der falsch Positiven idealerweise liegen.
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Für die Interaktionseffekte zeigt sich ein ähnliches Bild. Dabei fehlen hier Setting 4 und 12,
weil diese keine wahren Interaktionseffekte haben und somit keine richtig Positiven existie-
ren. Für die erste Version der zweischrittigen Verfahren sind bei Setting 1, 2 und 9 keine
Boxen abgebildet, da diese Methode in diesen Fällen keine richtig positiven Interaktionsef-
fekte hat. Wie Abbildung 10 erkennen lässt, liegen die Odds Ratios der Methode von Matsui
et al. (2012) immer größer eins, die geschätzten Effekte gehen somit in die richtige Richtung.
Allerdings überschätzt diese die Odds Ratios teilweise, vor allem bei Settings mit vielen
schwachen oder mittleren Interaktionseffekten (Setting 3, 6, 7, 8, 10, 11). Der neue Ansatz
unterschätzt die Odds Ratios durchweg und kommt dabei teilweise auch unter eins. Das
heißt hier zeigen geschätzte Effekte auch in die falsche Richtung. Besonders negativ fällt
dabei die erste Version der zweischrittigen Verfahren auf, die vor allem bei Setting 11 mit
der Schätzung der Interaktionseffekte überwiegend falsch liegt.
Abbildung 11 zeigt, dass auch bei den falsch positiven Interaktionseffekten die Verfahren

des neuen Ansatzes überwiegend Odds Ratios nahe eins schätzen. Allerdings streuen die
Schätzungen der ersten Variante der zweischrittigen Verfahren hier im Vergleich zu den an-
deren beiden Verfahren des neuen Ansatzes mehr und weichen teilweise etwas deutlicher von
der eins ab. Die Methode von Matsui et al. (2012) weist bei den falsch positiven Interakti-
onseffekten ebenfalls Odds Ratios auf, die deutlich von eins abweichen. Diese Abweichung ist
dabei tendenziell noch größer als bei den falsch positiven Haupteffekten. Die Boxen dieser
Methode sind abermals vergleichsweise breit.
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Abbildung 10: Für jedes Setting und jede Methode wird ein Boxplot mit den Odds Ra-
tios der richtig erkannten Interaktionseffekte abgebildet. Die rote Linie
zeigt die Odds Ratio der wahren Interaktionseffekte in dem jeweiligen
Setting an. Die schwarz gestrichelte Linie bei 1.0 hilft die Richtung der
Odds Ratios schneller zu erfassen.
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Abbildung 11: Für jedes Setting und jede Methode wird ein Boxplot mit den Odds Rati-
os der falsch positiven Interaktionseffekte abgebildet. Die schwarz gestri-
chelte Linie bei 1.0 zeigt wo die Odds Ratios der falsch Positiven idealer-
weise liegen.
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Fazit der Ergebnisse
Keine der Methoden kann bei dieser Simulation über alle Settings hinweg voll überzeugen.
Denn gibt es beispielsweise viele mittlere Haupteffekte, liegen die AUC-Werte aller Methoden
zwischen 0.5 und 0.6, was keiner besonders guten Vorhersage entspricht. Bei diesen Settings
bleibt auch der Großteil der wahren Haupteffekte unerkannt. Es können jedoch auch sehr
gute Vorhersagen (mit AUC-Werten zwischen 0.7 und 0.9) getroffen werden, wenn wenige
starke Haupteffekte vorhanden sind, die von den Methoden auch größtenteils erfasst werden.
Der erste zweischrittige Ansatz macht bei dieser Simulation keinen empfehlenswerten Ein-
druck. Durch die Einschränkung im zweiten Schritt auf Interaktionen mit Haupteffekt wer-
den die Interaktionseffekte nicht zufriedenstellend geschätzt, da einige wahre Effekte nicht
erkannt werden. Zugleich werden einige Interaktionen fälschlicherweise geschätzt. Auch die
Odds Ratios der Interaktionen können durch den ersten zweischrittigen Ansatz nicht akkurat
geschätzt werden.
Die Methode von Matsui et al. (2012) bringt nicht so viele falsch Positive hervor, weder
Haupt- noch Interaktionseffekte. Jedoch schätzt sie die Einflüsse dieser falsch Positiven teil-
weise sehr groß, was ebenfalls nicht optimal ist. Dies schlägt sich auch in den AUC-Werten
nieder, die im Vergleich zum neuen Ansatz niedriger ausfallen.
Alles in allem überzeugen das einschrittige Verfahren und die zweite Version der zweischrit-
tigen Ansätze am meisten. Diese weisen durchweg die höchsten AUCs auf und erkennen die
meisten der wahren Effekte. Wobei die AUC-Werte teilweise nur geringfügig besser sind als
die der anderen beiden Methoden. Die Odds Ratios der richtig positiven Haupt- und Inter-
aktionseffekte werden zwar unterschätzt, jedoch ist die Richtung der Effekte immer richtig
erfasst. Andererseits ergeben sich bei diesen Methoden auch einige falsch positive Haupt-
und Interaktionseffekte. Allerdings liegen die geschätzten Odds Ratios hierfür nahe eins, so
dass sie keinen zu großen Einfluss haben. Die beiden Methoden unterscheiden sich hinsicht-
lich der Anzahlen der falsch positiven Haupt- bzw. Interaktionseffekte. Beim einschrittigen
Verfahren ergeben sich etwas mehr falsch positive Interaktionseffekte. Das könnte daran
liegen, dass durch die gleichzeitige Schätzung der Haupt- und Interaktionseffekte den In-
teraktionen mehr Bedeutung zukommt. Dagegen sind bei der zweischrittigen Variante mehr
falsch positive Haupteffekte zu beobachten, die möglicherweise durch das vorab geschätzte
Haupteffektmodell zustande kommen.
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5 Diskussion

In dieser Arbeit wurden Methoden zur Schätzung von prädiktiven Biomarkern anhand von
omics-Daten vorgestellt. Diese sollen dabei helfen im Sinne der personalisierten Medizin
individuelle Behandlungseffekte zu erkennen, um für jeden Patienten die richtige Behand-
lungswahl zu treffen. Die Methode von Matsui et al. (2012) geht hierbei univariat bei der
Entwicklung von hochdimensionalen Biomarkern vor. Im Gegensatz hierzu benutzt der neue
Ansatz den Lasso-Schätzer, um eine multiple Herangehensweise umzusetzen. Dabei wur-
den sowohl einschrittige, als auch zweischrittige Verfahren betrachtet. Die Simulationsstudie
zeigt, dass der neue Ansatz durchaus Vorteile gegenüber der Methode von Matsui et al.
(2012) mit sich bringt und sich weitere Analysen und Verbesserungen dieses Ansatzes loh-
nen könnten. Denn der neue Ansatz liefert insgesamt bessere Vorhersagegenauigkeiten als
die Methode von Matsui et al. (2012) und erkennt mehr der wahren Effekte. Dabei scheinen
angesichts der Ergebnisse aus dieser Arbeit die einschrittige Variante und die zweite Versi-
on der zweischrittigen Verfahren vielversprechender als die erste Version der zweischrittigen
Verfahren zu sein. Bei Betrachtung der unterschiedlichen Settingergebnisse fällt auf, dass
die Ergebnisse aller Methoden stark davon abhängen welche Effekte die vorliegenden Daten
aufweisen.

Es gibt einige Aspekte, die bei der Einordnung der Ergebnisse der Schätzmethoden dieser
Arbeit berücksichtigt werden sollten. Die Simulation bringt einige Einschränkungen mit sich.
Bei der Kovariablenstruktur wurden keine Abhängigkeiten berücksichtigt, wie sie in der Re-
gel in Genomikdaten vorhanden sind. Es wäre somit durchaus interessant zu sehen welche
Ergebnisse die Methoden liefern, wenn man sie auf Daten anwendet, die eine komplexere
Datenstruktur aufweisen. Dazu bedarf es jedoch mehr Wissen über den Aufbau von omics-
Daten, um diese wirklich realistisch generieren zu können. Die in dieser Arbeit beschriebenen
Ergebnisse geben folglich eher einen Hinweis darauf wie gut die Methoden funktionieren.
Es wäre beispielsweise denkbar, dass der Unterschied zwischen dem neuen Ansatz und der
Methode von Matsui et al. (2012) deutlicher wird, wenn eine komplexere Datenstruktur vor-
liegt. Denn in diesem Fall wird die multiple Herangehensweise des neuen Ansatzes vermutlich
größere Vorteile mit sich bringen. Außerdem konnte nur eine begrenzte Anzahl an Settings
simuliert werden. Das heißt es gibt sicher noch viele weitere interessante Kombinationen von
Effekten.
Des weiteren wäre es interessant die Methoden auf reale Daten aus der Praxis anzuwenden
und zu betrachten wie unterschiedlich die resultierenden Ergebnisse sind.
Die Methode von Matsui et al. (2012) nimmt keine explizite Adjustierung für das multiple
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Testen vor, sondern verwendet einfach ein von vornherein sehr klein gewähltes α-Niveau für
die einzelnen Signifikanztests der β-Koeffizienten. Hier könnte man auch überlegen anders
vorzugehen und beispielsweise die FDR zu kontrollieren. Wobei das Problem der Methode
weniger darin liegt, dass sie eine hohe Anzahl falsch Positiver liefert. Problematischer ist,
dass die Methode von Matsui et al. (2012) den Einfluss dieser falsch Positiven zu groß schätzt.
In dieser Arbeit wurde der Lasso-Schätzer für den neuen Ansatz verwendet. Es wird jedoch
auch die Meinung vertreten, dass in Fällen mit p >> n oder mit vielen korrelierten Kovaria-
blen das sogenannte Elastic-Net eine bessere Alternative darstellt (Friedman et al., 2010). Da
beides bei omics-Daten auftreten kann, könnte man den neuen Ansatz auch mit Elastic-Net
durchführen und die Ergebnisse vergleichen.
Laut Ma et al. (2015) handelt es sich in der Onkologie, wo prädiktive Biomarker immer mehr
Anwendung finden, bei der Zielvariable meist um Überlebenszeiten und nicht um binäre
Größen. Es wäre vielleicht lohnenswert den neuen Ansatz auch für Survivaldaten umzuset-
zen, indem man anstelle der logistischen Regression das Cox-Modell oder das AFT-Modell
verwendet.
Außerdem wurden in dieser Arbeit die Testmethoden nur theoretisch vorgestellt, aber nicht
praktisch umgesetzt. Eine praktische Umsetzung wäre folglich auch noch ein interessanter
Punkt für weitere Analysen.
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A Anhang

Vergleich der zwei Prädiktionsmodelle für die Methode von Matsui
Beim Prädikitonsmodell für die Methode von Matsui et al. (2012) stellte sich die Frage, ob
der Haupteffekt des prädiktiven Scores mit aufgenommen werden soll oder nicht. Abbildung
12 zeigt dazu die AUC-Werte des Prädiktionsmodells mit Haupteffekt des prädiktiven Scores
im Vergleich zu den AUC-Werten des Präditktionsmodells ohne diesen Haupteffekt. Wie zu
erkennen ist, scheint es keinen Unterschied zu machen, welches Prädiktionsmodell man ver-
wendet. Das liegt vermutlich an der Konstruktion des prädiktiven Scores, der aus genetischen
Variablen gebildet wird, die hauptsächlich prädiktiven und kaum prognostischen Charakter
haben, weshalb der Haupteffekt des Scores nur sehr geringen Einfluss aufweisen dürfte.
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AUCs der Prädiktionsmodelle für Matsui

Abbildung 12: Diese Abbildung gilt dem Vergleich der beiden potentiellen
Prädiktionsmodelle für die Methode von Matsui. Dazu wird für jedes
Setting je Prädiktionsmodell ein Boxplot mit den AUCs der 100 Trai-
ningsdatensätze abgebildet. Die schwarz gestrichelte Linie bei 0.5. zeigt
unbrauchbare Vorhersagen an.

52



Verteilungen der Treatmentvariable und der Zielvariable bei der Simulation
Abbildungen 13 und 14 zeigen den Anteil Behandlungen bzw. Events in den Trainingsda-
tensätzen je Setting. Die roten Punkte bilden dabei den Anteil im zugehörigen Testdatensatz
ab. Gemäß π = 0.5 um randomisierte Daten zu simulieren, fällt etwa die Hälfte in die Be-
handlungsgruppe und die andere Hälfte in die Kontrollgruppe. Bei der Zielvariable liegen
etwas mehr Events wie nicht-Events vor. Die Daten sind jedoch nicht zu unbalanciert. Die
roten Punkte liegen immer in der Box, nahe des Medians, das heißt die Testdaten sind von
den Verteilungen her wie die Trainingsdatensätze und stellen keine Extreme dar.
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Abbildung 14: Je Setting wird mittels Boxplot der Anteil an Events in den Trainings-
datensätze dargestellt. Die roten Punkte zeigen dazu die Anteile in den
jeweiligen Testdatensätzen.
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Elektronischer Anhang
Im elektronischen Anhang befinden sich neben dieser Arbeit als pdf-Datei noch folgende
weitere Dateien:

• Im Ordner Grafiken sind alle Grafiken aus dieser Arbeit als pdf-Dateien abgespeichert,
sowie die R-Files zur Erstellung der Grafiken.

• Der Ordner Funktionen enthält alle programmierten Funktionen zur Umsetzung der
Schätzmethoden und der Simulationen, sowie Funktionen zur Auswertung der Simula-
tionsergebnisse.

• Im Ordner Simulation befinden sich schließlich die rda-Dateien mit den abgespeicherten
Ergebnissen der Simulation und alle R-Files zur Durchführung der Simulationen.
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Eigenständigkeitserklärung:

Ich versichere, dass ich die vorgelegte Masterarbeit eigenständig und ohne fremde Hilfe ver-
fasst, keine anderen als die angegebenen Quellen verwendet und die den benutzten Quellen
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