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Abstract

Zielsetzung dieser Arbeit ist die Schitzung der Wahlerwanderung zwischen der Bun-
destagswahl im Jahr 2013 und der Oberbtirgermeisterwahl im Jahr 2015 in Mannheim
anhand von Aggregat- und Individualdaten. Hierfir wurden die amtlichen Ergebnisse
in Form von Aggregatdaten und eine Nachwahlbefragung in Form der Individualdaten
zur Verfligung gestellt. Es kommen zwei Modelle zur Anwendung, das Multinomial-
Dirichlet-Modell von Rosen et al. (2001) und das Multinomial-Log-Normal-Modell von
Greiner und Quinn (2009, 2010). Beide hierarchischen Modelle basieren auf der Bay-
esianischen Inferenz. Die Analyse erfolgt zum einen anhand der Aggregatdaten durch
die 6kologischen Versionen der Modelle und zum anderen anhand der Kombination
von Individual- und Aggregatdaten durch die hybriden Versionen der Modelle. Das
Multinomial-Dirichlet-Modell wurde von Schlesinger (2013) zum Hybridmodell erganzt.
In seiner Version ermoglicht er Vorwissen in das Modell zu integrieren. Alle Berech-
nungen und Grafiken in der Arbeit werden mit der Statistiksoftware R (R Core Team,
2015) erzeugt. Konkret dienen zwei Pakete fir die Analyse. Das Erste, eiwild Paket,
wurde von Schlesinger (2014) in R implementiert und das Zweite, RxCEcolInf Paket,
wurde von Greiner et al. (2013) entwickelt. Die Giite der Schétzung lasst sich nicht
iiberpriifen, da der wahre Zustand der Wahlerwanderung zwischen zwei betrachteten
Wahlen nicht bekannt ist. Infolgedessen werden die Modelle durch Konvergenzdiagnose
und Vergleich der erzeugten Ketten bewertet. Anhand der betrachteten Daten wird die
Konvergenz beim Multinomial-Log-Normal-Modell nicht erkannt. Das Multinomial-
Dirichlet-Modell ist fiir die praktische Umsetzung besser geeignet und hat in allen
Versionen des Modells die praziseren und zuverlassigeren Ergebnisse im Vergleich zum
Multinomial-Log-Normal-Modell erzeugt. Die Individualdaten tragen in dieser Arbeit
zur Stabilitdt der Ketten bei beiden Modellen bei. Einen Zuschuss leistet hierbei auch
das integrierbare Vorwissen beim Multinomial-Dirichlet-Modell. Letztendlich werden
die Ergebnisse anhand des Multinomial-Dirichlet-Hybridmodells mit dem Hyperpriori-
Parameter Gamma(A; = 30, Ay = 1) fiir die Zellen der Loyalen ermittelt und interpre-
tiert. Es zeigt sich eine sehr starke Wanderung der Wéhler aller Parteien zur Kategorie
Nichtwdhler. Die Ausnahme sind die Wéhler der Grinen und der FDP. Daraus lésst
sich schlieffen, dass die Bedeutung der Nichtwdhler bei der Wahlerwanderungsanalyse

weder von den Politikern noch von den Statistikern ignoriert werden darf.
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1 Einleitung

1.1 Motivation

Einige Wéhler bleiben ihrer Partei nach einer Legislaturperiode nicht loyal. Das Interes-
se der Politiker, Soziologen, Politologen und der Offentlichkeit an der Neuorientierung
und der Wegrichtung bei der Stimmenvergabe ist sehr grof. Bleibt ein Wéhler, der
beispielsweise die Partei P bei der Bundestagswahl 2009 gewéhlt hat, treu oder wahlt
er eine andere Partei? Zu welcher Partei wandert seine Stimme und wie hoch sind die
Wahrscheinlichkeiten, dass der Wéhler zu anderen Parteien wechselt? In der Statistik
haben die Wissenschaftler unterschiedliche Methoden entwickelt, um solche Fragestel-
lungen beantworten zu konnen.

Eine Methode stellt die Analyse der Individualdaten dar, die mithilfe einer
Nachwahlbefragung (Eng. Exit-Poll) erhoben werden kénnen. Die Biirgerinnen und
Birger werden nach der Wahl am Ausgang der Wahllokale gebeten, sich zu auflern,
wie sie gewahlt haben (Payne et al., 1986; Greiner und Quinn, 2012). Um die
Wiéhlerwanderung zu schétzen, konnen die Wéhler auch iiber ihre letzte Wahl be-
fragt werden. Die Schatzung durch diese Methode ist aus mehreren Grinden anféllig
fiir Verzerrungen. Zum einen weigern sich viele Wéhler an der Befragung teilzuneh-
men (Greiner und Quinn, 2012; Payne et al., 1986). Dies ist problematisch, da sich die
Wiéhler, die ihre Teilnahme an der Studie verweigern, in ihrem Wahlverhalten in der
Regel von den Wahlern unterscheiden, die teilgenommen haben. Zum zweiten konnen
sich einige der Befragten an die Vergabe ihrer Wahlstimme bei der letzten Wahl nicht
mehr erinnern, wodurch fehlende oder falsche Angaben auftreten kénnen. Himmelwelt
et al. (1978) untersuchen das Problem und ermitteln, dass die falschen Angaben mit
dem Zeitabstand zunehmen. Die Wéhler der grolen Parteien und die Wahler, die loyal
geblieben sind, konnten sich dabei besser an ihre letzte Wahl erinnern. Obwohl ihre
Studie das nicht bestétigt, berichten Himmelwelt et al. (1978), dass geméafl anderen
Autoren die Angabe einer gesellschaftlich akzeptierten Antwort eine weitere Quelle fiir

Fehler darstellen kann. Dies umfasst beispielsweise die Unterschatzung der Nichtwéhler



oder die Uberschitzung der Partei, die gewonnen hat. Payne et al. (1986) geben an,
dass die Briefwédhler bei einer Umfrage im Vorfeld der Wahlen nicht betrachtet wer-
den koénnen. Dartiber hinaus ist die Durchfiihrung einer Nachwahlbefragung am Aus-
gang der Wahllokale kosten- und arbeitsaufwéndig (Greiner und Quinn, 2012). Aus
erwahnten Griinden sind Individualdaten oft unzuverlassig oder nicht verfiighar.

Andererseits stehen die offiziellen amtlichen Wahlergebnisse kostenlos jedem zur
Verfiigung. Diese Daten sind vollstdndig, jedoch nach den Wahlgebiet oder Wahlbe-
zirk gruppiert, sprich aggregiert (Ambihl, 2003, S. 8). Die ,Beziehungen zwischen
Variablen auf der Aggregatebene konnen, miissen aber nicht dhnliche Beziehungen
auf der Individualebene widerspiegeln“ (Gschwend, 2006, S. 227). Deswegen besteht
bei der Schlussfolgerung von Aggregatdaten auf das individuelle Verhalten die Ge-
fahr, den sogenannten ékologischen ' Fehlschluss (Pappi, 1977 in: Gschwend, 2006) zu
treffen. Zum Beispiel stellt man sich vor, dass in einem Stadtbezirk eine positive Kor-
relation zwischen den Asylbewerbern und den Anstieg der Angriffe mit gefahrlichen
Korperverletzungen beobachtet wurde. Daraus konnte man schliefen, dass die Asylbe-
werber fiir solche Angriffe verantwortlich sind. Hypothetisch wére es jedoch moglich,
dass Asylbewerber in diesen Stadtbezirken 6fter von Rechtsextremen angegriffen wur-
den. Vor dem 6kologischen Korrelationsproblem warnte Robinson schon im Jahr 1950.
Von diesem Zeitpunkt an sind viele Methodiker auf der Suche nach einem fehlerfreien
Verfahren der 6kologischen Inferenz. Um die Vorteile der Aggregat- und Individualda-
ten ausnutzen zu konnen, wurden letztendlich die neuen Hybridmodelle entwickelt, die
zur Bestimmung der Wéhlerwanderung die beiden Datenquellen kombinieren.

Fiir die Analyse in dieser Arbeit werden zwei hierarchische Modelle, die auf Bay-
esianischer Inferenz basieren, in ihrer ckologischen und hybriden Version mithilfe der
Statistiksoftware R (R Core Team, 2015) angewendet. Das 6kologische Multinomial-
Dirichlet-Modell von Rosen et al. (2001) wurde von Schlesinger (2013) zum Hybridmo-
dell erganzt. Die beiden Versionen werden hier in seinem Paket eiwild (Schlesinger,
2014) berechnet. Das 6kologische und hybride Multinomial-Log-Normal-Modell von
Greiner und Quinn (2009, 2010) wurde von Autoren im RxCEcolInf Paket (Greiner et

al., 2013) implementiert.

1 Als 6kologisch werden die Daten bezeichnet, wenn die Sub-Gruppen von Individuen beziiglich der
geographischen bzw. 6kologischen Einheiten oder Regionen (Stadtbezirk, Stadt, Land, usw.) aufgebaut
werden (Robinson, 1950; Cho und Manski, 2009).



1.2 Struktur der Arbeit

Da die Schatzungen der betrachteten hierarchischen Modelle auf Markov-Chain-Monte-
Carlo-Verfahren basieren, wird im Abschnitt 2.1 des Kapitels 2 die Basis der Baye-
sianischen Inferenz und die Funktionsweise der Markov-Chain-Monte-Carlo-Verfahren
vorgestellt. Im Abschnitt 2.2 werden ferner die moglichen Vorgehensweisen bei der
Konvergenzdiagnose der Markov-Ketten erlautert. Dazu werden die Begriffe Burn-In,
Thinning und Sample erklart, welche fiir die Interpretation der Konvergenz und der
Ergebnisse von Relevanz sind.

Eine theoretische Einfiihrung und die Darstellung der Grundprinzipien der
6kologischen Inferenz erfolgen im Kapitel 3. Im Abschnitt 3.1 werden zuerst die grund-
legenden Modelle der 6kologischen Inferenz aufgezeigt. Nach einer kurzen Beschrei-
bung deren Vormodelle erfolgt im Abschnitt 3.2 die Darstellung der interessierenden
okologischen, hierarchischen Modelle, des Multinomial-Dirichlet-Modells von Rosen et
al. (2001) und des Multinomial-Log-Normal-Modells von Greiner und Quinn (2009,
2010). SchlieBlich befasst sich der Abschnitt 3.3 mit deren Erweiterung auf die Hybrid-
modelle, welche durch die Individualdaten erganzt werden.

Im Abschnitt 4.1 des Kapitels 4 wird die Datengrundlage vorgestellt und beschrie-
ben. Der Unterabschnitt 4.1.1 erlautert den Inhalt und Ursprung der Aggregatdaten,
die amtlichen Ergebnisse der Bundestagswahl (2013) und der Oberbiirgermeisterwahl
(2015). Folglich beschreibt der Unterabschnitt 4.1.2 die Ergebnisse und die Problema-
tik der Individualdaten, die durch eine Nachwahlbefragung in Mannheim (Juni, 2015)
erhoben worden sind. Im Abschnitt 4.2 wird die theoretische Begriindung und die Be-
schreibung der Datenaufbereitung dargelegt.

Im Kapitel 5 werden die wichtigen Funktionen der verwendeten Pakete beschrieben.
Unterdessen wird im Unterabschnitt 5.1.4 erldutert, wie beim Multinomial-Dirichlet-
Modell die Hyperpriori-Parameter die Priori-Verteilung beeinflussen und wie das Vor-
wissen (Schlesinger, 2013), falls vorhanden, fiir die Verbesserung der Schatzung ver-
wendet werden kann.

Im Kapitel 6 erfolgt die Konvergenzdiagnose der erzeugten Ketten und Vergleich
der Ketten und Modelle fiir das Multinomial-Dirichlet-Modell im Abschnitt 6.1 und
fiir das Multinomial-Log-Normal-Modell im Abschnitt 6.2. Letztendlich werden im
Abschnitt 6.3 die Ergebnisse des gewahlten Multinomial-Dirichlet-Hybridmodells mit

Hyperpriori-Parameter Gamma(A; = 30, Ay = 1) dargestellt und beschrieben.
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2 Einfiihrung in die Bayes-Inferenz

und MCMC Verfahren

2.1 Bayes-Inferenz

Der grundlegende Unterschied zwischen Bayesianischer und frequentistischer Inferenz
stammt aus der unterschiedlichen Betrachtung des unbekannten Parameters 6. In der
Bayesianischen Inferenz wird 6 als zuféllige Variable betrachtet, hingegen ist € in der
frequentistischen Inferenz eine feste Grofie (Held und Bové, 2014, S. 167). Eine andere
bedeutende Eigenschaft besteht in der Quantifizierung der Unsicherheit in der Inferenz
durch die Wahrscheinlichkeitsmodelle, wodurch die Anpassung komplexer Modelle mit
vielen Parametern moglich ist (Gelman et al., 2014, S. 3 f.). Die Information iiber den
unbekannten Parameter 6 ldsst sich a priori und a posteriori als Dichte einer Wahr-
scheinlichkeitsverteilung darstellen. Vor der Beobachtung der Daten wird eine Priori-
Verteilung p(#) definiert, wahrend die Posteriori-Verteilung f(f|x) das vollstandige
Wissen iiber den unbekannten Parameter enthéalt, welches durch die Datenbeobach-
tung verfiigbar wird (Held und Bové, 2014, S. 167).

Die Berechnung der Posteriori-Verteilungsfunktion beruht auf dem Theorem von
Thomas Bayes. Gegeben seien Ereignisse A und B, wobei P(B) > 0. Die Wahrschein-
lichkeit, dass ein Ereignis A eintritt, wenn wir wissen, dass Ereignis B bereits eingetre-

ten ist, ist nach dem Bayes Theorem

P(B|A)P(A)

P(A|B) = 2.1
Damit lasst sich die Posteriori-Verteilung als
f(x|0)p(O
fO)z) = M (2.2)

()

bestimmen, wobei die sogenannte marginale Likelihood f(x) fiir stetige 6 gleich
[ f(x]|0)p(8)dl ist. Die Funktion f(z|f) stellt die Likelihood L(f) dar. Hierbei ist die

marginale Likelihood f(z) unabhingig von 6, respektive eine Konstante, und kann



demzufolge weggelassen werden. Die Posteriori-Verteilung reduziert sich dadurch letzt-

endlich auf
f(Olz) oc f(x|0)p(). (2.3)

(Held und Bové, 2014, S. 170; Gelman et al., 2014, S. 7)

Als geeigneter Punktschétzer kann der Posteriori-Mittelwert
E(6|z) = /9f(9|a:)d9, (2.4)

sowie der Posteriori-Median und der Posteriori-Mode berechnet werden. Zur Berech-
nung des Erwartungswertes und anderer Kennzahlen einer Posteriori-Verteilung ist die
Integration einer Funktion erforderlich, die in einigen Féllen analytisch nicht 16sbar ist.
In solchen Fallen kénnen verschiedene numerische Verfahren zur Berechnung dienen.
Falls die Dimension des unbekannten Parametervektors niedrig ist, bietet Monte-Carlo-
Integration eine Alternative. Ansonsten konnen Markov-Chain-Monte-Carlo-Verfahren

angewendet werden. (Held und Bové, 2014, S. 171, 247 f., 258)

2.1.1 Monte-Carlo-Integration

Unter der Annahme, dass es moglich wére, die unabhéngigen Zufallszahlen
oW ..., 0M) aus der Posteriori-Verteilung f(f|z) zu ziehen, ldsst sich der Posteriori-

Erwartungswert aus der Gleichung 2.4 folgendermafien approximieren:
E)z) = Z om (2.5)

Dank des Gesetzes der grofien Zahlen konvergiert die Schéitzung zum wahren Wert
fir M — oo. Mit anderen Worten, fiir sehr viele Ziehungen sollte der approximierte

Erwartungswert konsistent sein. (Held und Bové, 2014, S. 258)

2.1.2 Markov-Chain-Monte-Carlo- (MCMC-) Verfahren

Wenn es hingegen nicht méglich ist, die unabhéngigen Zufallszahlen 6, ... M) aus
der Posteriori-Verteilung f(6|x) zu ziehen, kann die Simulation der Markov-Kette zur
Anwendung kommen. Eine Reihe von Zufallsvariablen 6. .. 8™ . heifit Markov-
Kette, wenn fiir jedes m die bedingte Verteilung f(6(™[0M ... #0"=1) nur vom vor-
herigen Wert #("~1) abhingt. Bei der Simulation wird §* aus einer Vorschlagsdichte

f*(0]0"=V) gezogen, mit einer Wahrscheinlichkeit o akzeptiert und als neuer Zustand



6™ eingesetzt. Bei einer Ablehnung von §* wird der vorherige Zustand der Kette §(1

erneut verwendet, sprich ™ = §(m=1)_ Das Ziel ist, durch Iterationen eine stationire
Posteriori-Verteilung zu erreichen. Das heifit, eine Markov-Kette zu erzeugen, die gegen
die Posteriori-Verteilung f(6|z) konvergiert. Dann kann der Posteriori-Erwartungswert
mithilfe der gezogenen Werte 8™ wie in der Gleichung 2.5, bestimmt werden. (Gelman
et al., 2014, S. 275; Held und Bové, 2014, S. 269 f.)

Beim Metropolis-Hastings-Algorithmus lasst sich die Akzeptanzwahrscheinlichkeit
durch

(2.6)

— {1’ G Gl }

F(6m=D|z) X F*(6+]60m-D)
[ |1 |

Posteriori-Ratio ~ Vorschlags-Ratio

bestimmen. Metropolis-Algorithmus und Gibbs-Sampler gelten als die Sonderfille
der Metropolis-Hastings-Methode. Beim Metropolis-Algorithmus ist f*(#~|0*) =
f*(0+10™=1). Das heift, die Vorschlags-Ratio besitzt den Wert eins und dementspre-
chend reduziert sich die Akzeptanzwahrscheinlichkeit auf
o f(0"|z)
o = mln{ 1, W . (27)
L |

Posteriori-Ratio

Bei dem Gibbs-Sampler ist die Vorschlagsdichte gleich der Posteriori-Dichte, respektive
f(0*|z) = f(0™V|z), und demzufolge gilt a = 1. Dies ist der Fall, wenn Ziehungen
aus vollstandig bedingten Dichten f(6;|z,6_;) moglich sind, da f(6;|x,0_;) < f(0|z)
gilt. Eine vollstdandig bedingte Dichte entspricht der Dichte eines Subvektors §; bedingt
auf alle anderen Subvektoren von 60, aufler 6;. Bei den komplexen Modellen kann es vor-
kommen, dass einige vollstandig bedingte Dichten bekannten Verteilungen zugeordnet
werden konnen und die anderen nicht. In dem Fall ist es moglich, den Metropolis-
Algorithmus und den Gibbs-Sampler zu kombinieren, was oftmals Metropolis-within-
Gibbs-Sampler genannt wird. (Gelman et al., 2014, S. 276 ff.; Held und Bové, 2014, S.
270)

2.1.3 Priori-Verteilung

Ein essenzieller Schritt der Bayesianischen Inferenz ist die Bestimmung der Priori-

Verteilung p(6). Das Vorwissen iiber den Parameter 6 ist dabei selten ausreichend um



eine Verteilung zu definieren, die den unbekannten Parameter prézise beschreibt. Die
mangelhaften Informationen miissen deswegen oftmals mit subjektiven Auswertungen
erginzt werden. Diese Unsicherheit motiviert die Kritiker des Bayesianischen Ansat-
zes, denn schliellich beeinflusst die Wahl der Priori-Verteilung die Posteriori-Inferenz.
(Robert, 2007, S. 105 f.)

Wenn das Priori-Wissen iiber 6 unzulanglich wird, lasst sich dennoch der Einfluss
von der Priori-Verteilung auf die Posteriori-Inferenz durch verschiedenen Methoden
kontrollieren oder unterdriicken (mehr zum Thema in Held und Bové, 2014, S. 179-191).
Die Methode, die hier von Relevanz ist, entspricht der Wahl einer nichtinformativen
Priori-Verteilung (Held und Bové, 2014, S. 183). Im Unterabschnitt 5.1.4 (Seite 50)
und 5.2.4 (Seite 56) des Kapitels 5 wird im Kontext der betrachteten 6kologischen
und hybriden Modelle die nichtinformative Priori-Verteilung sowie das Einsetzen des
Vorwissens in die Analyse durch die informative Priori-Verteilung weiter diskutiert.

Die hierarchischen Modelle nutzen das Prinzip der Bayesianischen Inferenz und
setzen eine zusétzliche Priori-, die sogenannte Hyperpriori- Verteilung ein, um den un-
bekannten Parameter 6 genauer zu bestimmen. Dabei sind mehrere bedingte Niveaus
der Verteilung moglich, indem das jeweilige Niveau die unzureichenden Informationen
des vorherigen Niveaus ergéinzt. Der Vorteil dieses Ansatzes ist die Verbesserung der
Robustheit der erzeugten Schétzer. Allerdings kann die Interpretation der Parameter
und deren Beziehungen iiber mehrere Niveaus abstrakt und schwierig nachvollziehbar
werden. Die Komplexitéit iibertragt sich ferner auf die Berechnung der Schétzer, die
lediglich mithilfe von numerischen Verfahren umsetzbar ist. (Robert, 2007, S. 113, 458,
468)

2.2 Konvergenzdiagnose

Bei MCMC Verfahren ist in erster Linie wichtig, genug Iterationen durchzufiihren,
um die Konvergenz, das heifit eine stationdre Posteriori-Verteilung, zu erreichen. Die
Theorie liefert jedoch kein Antwort auf die Frage, wie viele Iterationen notwendig
sind. Stattdessen beschreiben einige Autoren, wie man die Konvergenz erkennen und
tiberpriifen kann und welche Probleme dabei zu beachten und zu beheben sind (mehr
zum Thema in: Cowles und Carlin, 1996; Gelman und Shirley, 2011; Gelman et al.,
2014, S. 281-286; Geyer, 2011, S. 17-21). Generell sind zwei gegenldufige Richtungen

zu erkennen. Zum einen, ob die Konvergenz auf der Basis einer langeren Kette (Geyer,

7



2011) oder zum anderen, anhand mehrerer kleinerer Ketten (Gelman et al., 2014; Gel-
man und Shirley, 2011) festgelegt sein soll. Geméfl Cowles und Carlin (1996, S. 903)
steckt die Losung in einem Kompromiss zwischen den beiden Ansétzen.

Unabhéangig davon, welches Diagnoseverfahren verwendet wird, ist Vorsicht bei den
Schlussfolgerungen geboten, denn ,,Diagnostics can only reliably be used to determine a
lack of convergence and not detect convergence per se.“, wie Brooks et al. (2003, in: Gel-
man und Shirley, 2011, S. 165) betonen. Da sich die Meinungen und die Vorgehenswei-
sen unterscheiden, kénnen Entscheidungen teilweise von der subjektiven Auswertung
der Wissenschaftler, von der Praferenz zu einigen Verfahren und Autoren oder sogar
von den technischen Eigenschaften der verfiigharen Computerausstattung abhéngen.
Im weiteren Verlauf werden drei relevante Begriffe, Burn-In, Thinning und Sample

erklart.

2.2.1 Burn-In

Gelman et al. (2014, S. 282) warnen, dass die Startwerte die gewiinschte Verteilung der
simulierten Werte beeinflussen, weshalb die Iterationen am Anfang der Kette ignoriert
werden sollten. Sie empfehlen, mit einer kleinen Anzahl von Iterationen anzufangen, die
erste Halfte der Kette zu verwerfen und das Vorgehen so lang zu wiederholen, bis die
Konvergenz erreicht wird. Alternativ konnen die vorherigen Iterationen an der Stelle
abgeschnitten werden, wo die stationdre Verteilung beginnt (Gelman et al., 2014, S.
282; Held und Bové, 2014, S. 272). Mit einem Trace Plot lassen sich die gezogenen
Simulationen gegen die Iterationen grafisch darstellen und damit kann untersucht wer-
den, ob die Konvergenz nach der Burn-In-Phase visuell erreicht wird (Held und Bové,
2014, S. 272).

Geyer (2011, S. 20 f.) steht dem Burn-In Konzept kritisch gegentiber. Obwohl er
es als ungefahrlich bezeichnet, ist dies seiner Meinung nach eine unnétige Methode zur
Bestimmung eines guten Startwertes. Als Alternative schligt er vor, die néchste Kette
an dem Punkt anzufangen, wo die letzte Kette beendet wurde oder wo der Modus der
stationaren Verteilung liegt. Der Autor argumentiert, dass die Verzerrung unwesentlich

bleibt, sofern die Kette lang genug ist.



2.2.2 Thinning

Unabhéngig davon, ob die Kette konvergiert oder nicht, sind die Ziehungen aus MCMC
Verfahren nicht unabhangig, wodurch die Genauigkeit und die Effizienz der Schatzer
reduziert werden (Gelman et al., 2014, S. 282; Link und Eaton, 2012, S. 112). Thin-
ning ist eine iibliche Methode, bei der jede k-te Ziehung berticksichtigt wird und der
Rest verworfen wird, um eine Verringerung der Autokorrelation zu erzielen (Link und
Eaton, 2012, S. 112). Thinning ist bei Modellen mit vielen Parametern ein praktisches
Verfahren, wenn die Speicherkapazitidt des Computers begrenzt ist. Deswegen schlagen
Gelman et al. (2014, S. 283) vor, k so zu wéhlen, dass letztendlich 1000 Iterationen
gespeichert werden.

Dennoch kritisieren Link und Eaton (2012, S. 114 f.) in ihrem Artikel ,On Thin-
ning of Chains in MCMC* die verbreitete Anwendung dieses Vorgehens. Sie argumen-
tieren, dass die Approximation der Schétzer anhand von ganzen Ketten im Vergleich
zu verdiinnten Ketten genauer wird. Denn durch das Verdiinnen gehen letztendlich
viele Daten verloren. Trotzdem treten sie dem Vorgehen nicht ausschliellich kritisch
gegeniiber und bestétigen, dass in einigen Féllen, wie zum Beispiel bei der oben ge-

nannten begrenzten Speicherkapazitat, das Thinning niitzlich sein kann.

2.2.3 Sample

Nach dem Verwerfen der ersten Iterationen und der Anwendung des Thinnings werden
die gespeicherten Werte als eine Stichprobe (Eng. Sample) betrachtet, die fiir die Be-
rechnung des Posteriori-Erwartungswertes mittels Gleichung 2.5 verwendet wird. Der
Stichprobenumfang ist somit geringer als die Anzahl der durchgefithrten Iterationen.
Hingegen wird der Stichprobenumfang gleich der Anzahl der Iterationen sein, falls die

Schatzer ohne Thinning und Burn-In approximiert werden.



3 Okologische Inferenz:
Grundlagen und Entwicklung einiger Modelle

Die erste bekannte Verwendung der 6kologischen Inferenz stammt aus dem Jahr
1919 von Wiliam Ogburn und Inez Goltra (Gow, 1985; Bulmer 1984; in: King, 1997, S.
3). Robinson (1950) kritisiert diese und andere Studien, die sich auf die 6kologischen
Korrelationen verlassen. Seine Warnung galt dem Unterschied zwischen der individu-
ellen Korrelation, deren Variablen deskriptive Eigenschaften von Individuen darstellen
und der dkologischen Korrelation, deren Variablen deskriptive Eigenschaften, wie Pro-
zente oder Mittelwerte, von Gruppen abbilden (Robinson, 1950, S. 351). Geméifl dem
Autor darf ein Wissenschaftler aus der 6kologischen Korrelation nicht auf die individu-
elle Korrelation schlieflen, denn ,,...there are a large number of individual correlations
which might correspond to any given ecological correlation® (Robinson, 1950, S. 354).

Wie konnen sich trotzdem Informationen iiber individuelles Verhalten aus Aggre-
gatdaten gewinnen lassen? Die Suche nach der Antwort resultiert in einer Menge statis-
tischer Verfahren, die unterschiedliche Wege zur interessierenden Schétzung anbieten.
In diesem Kapitel werden im Abschnitt 3.1 die grundlegenden Modelle, die Okologische
Regression von Goodman (1953) und die Methode der Rdnder von Duncan und Da-
vis (1953), beschrieben. Im Abschnitt 3.2 befindet sich eine Darstellung des EI Mo-
dells von King (1997), ein Basismodell fir die weitere Entwicklung der hierarchischen
Modelle. Danach werden die zwei interessierenden Modelle, das Multinomial-Dirichlet-
Modell von Rosen et al. (2001) und das Multinomial-Log-Normal-Modell von Greiner
und Quinn (2009), erlautert. Die Erweiterung der 6kologischen, hierarchischen Modelle
zu Hybridmodellen, die mit Hilfe der Individualdaten eine Verbesserung der Schatzung

erzielen konnen, wird anschliefend im Abschnitt 3.3 dargelegt.
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3.1 Grundlegende Modelle
3.1.1 Goodman: Okologische Regression

Die erste Antwort auf das 6kologische Korrelationsproblem von Robinson (1950) kam
im Jahr 1953 von Goodman. In seinem Artikel ,FEcological Regressions and Behavior
of Individuals® geht er davon aus, dass die Feststellung von Robinson im Allgemeinen
gilt, dennoch sollte ein Regressionsmodell moglich sein, wenn bestimmte Bedingungen
erfiillt sind (Goodman, 1953, S. 663). Im Nachfolgenden wird das Anwendungsbeispiel
von Goodman verindert und die Notation teilweise angepasst ibernommen.

Gegeben sei eine Population, die anhand von zwei Merkmalen in einer Vierfelder-
tafel dargestellt werden kann. Beispielsweise lassen sich anhand von Geschlecht und
Berufstdtigkeit vier Gruppen aus einer Population der Arbeitsfahigen erkennen, die
weiblichen Berufstatigen Gy g, die mannlichen Berufstatigen G, g, die weiblichen Ar-
beitslosen Gy 4 und die mannlichen Arbeitslosen G 4. In dem Fall definiert Goodman
(1953) einen unbekannten Parameter 3 als die durchschnittliche Wahrscheinlichkeit,
dass eine weibliche Person berufstétig ist, beziehungsweise einen unbekannten Parame-
ter (s als die durchschnittliche Wahrscheinlichkeit, dass eine weibliche Person arbeitslos
ist (siche Tabelle 3.1). Diese Parameter werden im Kontext der Wéhlerwanderung als

die Ubergangswahrscheinlichkeiten bezeichnet (Ambiihl, 2003, S. 9).

Gw  Gu
Gp b 1-p/H X
Ga Ba 1—p 1-X
Y 1-Y 1

Tabelle 3.1: Parameter des Okologischen Regressionsmodells von Goodman (1953, S.
663 f.) in 2 x 2 Tabellenform, angepasst an die Notation in dieser Arbeit. Hinweis:
Die zeilenweisen Randsummen der inneren Zellen besitzen nicht die Werte X und
1 — X, sondern eins.

Betrachten wir eine Stichprobe ¢, die gp; Individuen aus der Gruppe G und g4 ;
Individuen aus der Gruppe G4 enthélt, dann wére X; = gp,;/(9p,i + ga.i) der bekannte
Anteil der Individuen aus der Gruppe Gp in der Stichprobe i und der (bekannte)

erwartete Anteil der Individuen aus der Gruppe Gy ware gleich
(Goodman, 1953, S. 664). Nach einer Umformung der Gleichung
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E(Y;) = 51.Xs + f2(1 — X;)
= 1 Xi + B2 — B2 X;
= [ + (81— B2) X;

~ —

— b + 6,-X, (3.2)

mit Po=00 und 0, =0 —Po=p1—0y & pi1=00+0,

lassen sich geméfl dem Autor die unbekannten Parameter §; und S anhand mehrerer
Stichproben unverzerrt durch den kleinsten Quadrat Schéatzer von 6, und 6, bestimmen
(Goodman, 1953, S. 664).

Um das Identifikationsproblem bei dem Verfahren zu vermeiden und eine ein-
deutige Losung zu finden (Cho und Manski, 2009, S. 9), setzt Goodman (1953, S.
664) die Annahme fest, dass die unbekannten Parameter $; und [, bei allen Stich-
proben konstant sind. Im Fall der Wéahlerwanderungsanalyse bedeutet dies, dass die
Ubergangswahrscheinlichkeiten fiir alle Wahlgebiete oder Wahlbezirke identisch sein
sollen (Ambiihl, 2003, S. 10). Goodman (1953) warnt, dass anhand seiner Methode
Schatzwerte auBlerhalb des Intervalls [0, 1] moglich sind. In dem Fall fordert er, die
oben genannte Annahme zu tiberpriifen. Falls diese sich bestétigt, sollte nach seinem
Vorschlag beispielsweise die negative Ubergangswahrscheinlichkeit (5 als 0 betrachtet
werden. Davon ausgehend liefert die Losung der Gleichung E(Y;) = X,/ die neue
Schatzung fiir 8 (Goodman, 1953, S. 664).

Obwohl die Durchfiihrung und Interpretation des Okologischen Regressionsmodells
relativ einfach ist, werden die Annahmen gleicher Ubergangswahrscheinlichkeiten in
der Realitéit selten erfiillt (Ambiihl, 2003, S. 31). Die Uberpriifung dieser Annahme
aus den Randsummen ist nach Ambiihl (2003) vor allem nicht méoglich, weswegen

Goodman keine verlassliche Methode dazu bietet.

3.1.2 Okologische Regression bei der Wihlerwanderungsanalyse

Am Beispiel einer R x C' Tabelle demonstrieren Klima et al. (2015, S. 3), wie sich
die Methode von Goodman fiir die Wahlerwanderungsanalyse erweitern lasst. In der
Tabelle 3.2 stellen die R Zeilen die Parteien aus der ersten Wahl und die C' Spal-

ten die Parteien aus der zweiten Wahl dar. Die Rander reprasentieren die relativen
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Héufigkeiten, das heifit die Ergebnisse der ersten und der zweiten Wahl, wéihrend die
3 Koeffizienten die Ubergangswahrscheinlichkeiten darstellen. Man kann beispielsweise
Byw.csu als die Wahrscheinlichkeit interpretieren, dass ein Wahler, der bei der ersten

Wahl nicht gewahlt hat, bei der zweiten Wahl seine Stimme der CSU gibt.

Partei CSU2 SPD2 Cen NW2

CSU;  PBesucsu  Besusep  --- Besunw  P(CSUy )

SPD;  PBsppcsu  Bspp,spp .- PBsep,nw  P(SPDy;)

NW, Bxweosu  Bawsep oo Baxwaw P(NWp,)
P(CSUy;) P(SPDsy) ... P(NW.,) 1

Tabelle 3.2: Wahldaten zwischen zwei Wahlen fiir den Wahlbezirk i: Relative
Haufigkeiten P und Ubergangswahrscheinlichkeiten  (Klima et al., 2015, Tabel-
le 1, Gleichung 2).

Um die 8 Koeflizienten zu schétzen, stellt man mittels einer Regression jede der C
Parteien aus der zweiten Wahl ins Verhaltnis zu allen Parteien aus der ersten Wahl.

Zum Beispiel stellen Klima et al. (2015, S. 4) die Gleichung
P(CSUs;) = Bcsu,csu - P(CSU1;) + Bspp,csu - P(SPDq ;)
+ ... + Byw,csu - P(NWy,). (3.3)

fir die CSU auf (siehe die farbig markierte Zellen der Tabelle 3.2).

3.1.3 Duncan und Davis: Methode der Riander

Im Jahr 1953 schlugen Duncan und Davis in ihrem Artikel | An alternative to Ecological
Correlation® ein anderes Verfahren zur Losung des Korrelationsproblems von Robinson
vor. Thre Idee besteht darin, die individuelle Korrelation tiber das kleinste Maximum
und iiber das grofite Minimum zu approximieren (Duncan und Davis, 1953, S. 666).

Fiir jede Stichprobe beziehungsweise fiir jeden Wahlkreis ¢ lasst sich die Gleichung
Y; = BiX: + B5(1 — X) (3.4)

(Gschwend, 2006, S. 228 f.) folgendermaflen umformulieren:

13



& BiXi=Y, - Bl - X)) e Bl-X) =Y, - BiX; (3.5)
: sz 1 _Xi : : i Y; Xi 4
< 51—2_ e B = 52—1_Xi_1_Xi/61- (3.6)

Die Ubergangswahrscheinlichkeiten i und f: liegen im Intervall [0,1], wobei 3! ma-
ximal wird, wenn 35 = 0 ist und minimal, wenn 3% = 1 ist (Gschwend, 2006, S. 230).

Dementsprechend kénnen die Grenzen von 3 und 3% aus den Gleichungen 3.6 durch

s | Y, - (1-X,) (Y ]

Bl € _ma,X (0, X,l> , Inin (AX,’L, 1)_ (37)
| Y — X; : Y; T

B; € _maX (O, 1_)(1> 5 min (1 — Xi, 1)_ (38)

fir jede Stichprobe i bestimmt werden (Ambiihl, 2003, S. 27; Cho und Manski, 2009, S.
7; Gschwend, 2006, S. 230). Weiterhin kann man die unteren und die oberen Grenzen fiir
die gesamte Population, 3V, 39, Y und 9 durch die gewichtete Summe der unteren

und der oberen Grenzen von (3] beziehungsweise von S folgendermafien berechnen:

_ 1 ; B 1 .
B = SNX, ;/33 X;N; gy = SN, Z;ﬂ? XiN; (3.9)
35 39 O,i ]

= ZN 1-X Zﬁ Py = ZN 1-x Zﬁ (1- X;)N; (3.10)

(Ambiihl, 2003, S. 27). Dabei betonen Duncan und Davis (1953, S. 666), dass die Appro-
ximation umso genauer wird, je mehr Stichproben vorhanden sind. Konkret bedeutet
dies bei der Wahlerwanderungsanalyse, dass die Schatzung anhand von Wahlbezirken
eine genauere Approximation liefert als die Schatzung anhand von Stadtbezirken, da
ein Stadtbezirk die aggregierten Daten tiber mehrere Wahlbezirke beinhaltet.

Die Methode ist einfach, schrankt die Menge der moglichen Losungen ein (Ambiihl,
2003, S. 28) und setzt vor allem keine fragwiirdigen Annahmen voraus (Cho und Man-
ski, 2009, S. 7). Trotzdem wurde das Vorgehen oft kritisiert, da die geschitzten Grenzen
oftmals zu breit und deswegen wenig informativ und prézise sind (Ambiihl, 2003, S.

28; Klima et al., 2015, S. 3).
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3.2 Entwicklung der hierarchischen Modelle
3.2.1 King: Das EI Modell

Ein neuer Ansatz von King im Jahr 1997 verbindet die beiden oben beschriebenen Me-
thoden, die Okologische Regression und die Methode der Rénder. Im Gegensatz zum
Verfahren von Goodman (1953) findet die Schitzung der interessierenden Parameter
beim EI Modell von King (1997) fiir jede Stichprobe ¢ statt und erlaubt hierfiir Abwei-
chungen zwischen den Wahlkreisen. Auflerdem erfolgt die Analyse auf zwei Ebenen und
die Parameter 31 und (% werden als zufillige Effekte betrachtet. Dabei werden 3 und
B4 durch die Methode der Rénder fiir jeden Wahlbezirk beschriankt, um unrealistische
Schétzungen, die aulerhalb des Einheitsintervalls liegen, zu vermeiden. (King, 1997, S.
26; Gschwend, 2006, S. 230)

Ausgehend von der Gleichung 3.4 setzt King eine Trunkierte-Bivariate-Normal-
Verteilung fiir die zufilligen Effekte 3 und 3% voraus. Das heift, die Normal-Verteilung
wird auf das Einheitsquadrat [0,1] x [0, 1] reduziert. In dem ersten Schritt werden
fiinf Parameter p,, fg,; 05, 0p8,: Oppp und o3, geschétzt, wobei fiir die Kovarianz
08,8, = 0p,p gilt. Aus der geschitzten Verteilung werden im zweiten Schritt Bayesia-
nische Simulationen durchgefiihrt, um die interessierenden Schatzwerte EA} und 85 zu
erzeugen. (Ambiihl, 2003, S. 34 f.; Gschwend, 2006, S. 231 f.)

Primére Vorteile dieses Modells sind das Vermeiden unrealistischer Losungen aufler-
halb des Einheitsintervalls (Ambitihl, 2003, S. 35 f.) und die Abmilderung der selten
zutreffenden Annahme der gleichen Ubergangswahrscheinlichkeiten (Gschwend, 2006,
S. 231). Dennoch betonen Cho und Manski (2009, S. 10), dass die Verteilungsannah-
me des EI Modells an sich die Annahme der &hnlichen Ubergangswahrscheinlichkeiten
umfasst. Deswegen unterscheidet sich diese Annahme, geméfl den Autoren, nicht we-
sentlich von den Annahmen des Modells von Goodman (1953). Letztendlich kénnen
die beiden Ansétze gleichermaflen zu falschen Ergebnissen fithren, wenn die Annahmen
nicht erfiillt sind (Cho und Manski, 2009, S. 10). Allerdings stellt das Verfahren von
King (1997) einen Ausgangspunkt und die Motivation fiir die nachfolgenden hierarchi-
schen Modelle dar, da die Schétzung der interessierenden Parameter auf zwei Ebenen

durchgefihrt wird (Klima et al., 2015, S. 5).
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3.2.2 Rosen: Multinomial-Dirichlet-Modell

Aus dem vorherigen Modell entwickelten King et al. (1999) ein hierarchisches Binomial-
Beta-Modell fiir 2 x 2 Tabellen. Nachfolgend haben Rosen et al. (2001) dieses erwei-
tert, um die Analyse fiir R x C' Tabellen zu ermoglichen. Das Modell wird hier mit
einer allgemeinen Notation (siehe Tabelle 3.3) und anhand des Beispiels fiir die Ana-
lyse der Ubergangswahrscheinlichkeiten zwischen zwei Wahlen (vergleiche Tabelle 3.2)
prasentiert. Gegeben seien R Parteien aus der ersten Wahl und C' Parteien aus der zwei-
ten Wahl in einem Gebiet mit 7 = 1,...,p Wahlbezirke. Folglich stellen Y;,,..., Y,
die Anteile der Wahler dar, die in dem Wahlbezirk i die Partei ¢ bei der zweiten Wahl
gewahlt haben. Analog stellen X ;,..., Xg; die Anteile der Wahler dar, die in dem
Wahlbezirk i ihre Stimme an die Partei r bei der ersten Wahl vergeben haben. Die
unbekannten Parameter 37, bezeichnen die Ubergangswahrscheinlichkeiten von Par-
tei r zur Partei c. Weiterhin werden die absoluten Haufigkeiten der zweiten Wahl als

Y= (Y, ..., Y4,) bezeichnet, wobei Index a fiir absolut steht.

2. WAHL
. . c-1
r=1 B B2 S 1- % B X1
— . . C=i
5 r=2 B Bao 1- 2 Bs. Xo
=
, c-1 R-1
T:R ZRl /3%2 1-— Zl 5}%0 1— Z:IXTZ
c-1
Yi: Ya, e 1— > Yo 1
c=1

Tabelle 3.3: R x C Tabelle der Wahldaten mit relativen Héaufigkeiten (libernommen
von Rosen et al. (2001, S. 137) und angepasst an die Wahlerwanderungsanalyse und
die Notation in dieser Arbeit).

Auf der ersten Ebene des Verfahrens gehen Rosen et al. (2001) von einer
Multinomial-Verteilung fiir Y;* aus (siche Abbildung 3.1, Gleichung 3.13). Hierzu gilt
1

R
i = B1.X1,i + B5cXai + -+ + Bro(1 — Z Xypi) = Z P s (3.11)
r=1

r=1 =
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fir jeden Parameter 6, ,,...,60c;, wobei ¢, 6.; = 1 ist (Rosen et al., 2001, S. 137).

Die Likelihood lasst sich beziiglich des Wahlbezirkes i folgendermaflen bestimmen:

[y

o a o= Gl
By X oo X g X (L= 3 o) Tem Ve (3.12)

=il

(o}

(Rosen et al., 2001, S. 137). Dabei bezeichnet N; = ¥, Y die Anzahl aller Wihler im
Wahlbezirk . Auf der zweiten Ebene nehmen die Autoren eine unabhangige Dirichlet-
Verteilung fiir 8¢ an (sieche Abbildung 3.1, Gleichung 3.14) und setzen die Parameter

" in Abhéngigkeit einer Kovariable Z; (Rosen et al., 2001, S. 137). Die Modellierung
mit Kovariablen ist hier allerdings nicht von Interesse, weswegen im weiteren Verlauf
ein Modell ohne Kovariablen betrachtet wird. Dieser Ansatz wurde von Lau et al.
(2007, S. 46) in R (R Core Team, 2015) als Zusatzpaket eiPack (Lau et al., 2012)
implementiert. Demnach ist auf der letzten Ebene eine Gamma-Hyperpriori-Verteilung
fir die Parameter .. angenommen (Abbildung 3.1, Gleichung 3.15), obwohl Rosen et
al. (2001, S. 138) eine Exponential-Hyperpriori-Verteilung vorschlagen.

Multinomial-Dirichlet-Modell

ERSTE EBENE:  Y;* ~ Multinomial(N;,6;) (3.13)

mit  Y° = (Yfz, e Y&i) » Anzahl der Wihler der Parteien 1,...,C

)

0, = (9171-, ce 9(;7%') » Anteil der Wihler der Parteien 1,...,C

R C
ec,i - Z /Bich,i Z ec,i =1 E(y;c;) - Niec,i
r=1 c=1

ZWEITE EBENE:  8,; ©© Dirichlet(cy1, ..., a,¢), fir r=1,... R (3.14)

mit ﬁm’ = ( :1, ceey ;C) » Ubergangswahrscheinlichkeiten
C
7 ] aTC
/B’L — 1 E( (2 ) —
sz:l rC rC chzl Qe

DRITTE EBENE: o & Gamma(Ay,Xy), firr=1,....,R, c=1,...,C
(3.15)

mit  E(ay.) = —

Abbildung 3.1: Zusammenfassung der Verteilungen des okologischen Multinomial-
Dirichlet-Modells ohne Kovariablen (Rosen et al., 2001, S. 137; Lau et al., 2007, S.
46; Gelman et al., 2014, S. 576-579).
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Nach dem Bayes Theorem lésst sich eine Posteriori-Verteilung proportional zu

p(Daten|Bi,i=1,....p) x p(Bi,i =1,...,pla) X p(a) (3.16)
P C ya

= [I1I¢. (3.17)
i=1c=1

p R © Qpe c »
< 11 {anf;l(%g E( ) } (3.18)

i=1r=1
Ed )\31 A—1 _

x T IT 5=t exp{—Asan} (3.19)
r=1c=1 F<)\1)

bestimmen (Rosen et al., 2001, S. 138). Da das Modell ohne Kovariablen betrach-
tet wird, ist die urspriingliche Parametrisierung d, exp(¥,. + 0z,) (siche dazu Ro-
sen et al., 2001, S. 137 f.) hier durch «,. ersetzt und die Gamma- anstelle der
Exponential-Verteilung dargelegt. Die Schiatzung ist weder analytisch noch durch
Integration moglich, weshalb die Inferenz mithilfe von Markov-Chain-Monte-Carlo-
Verfahren durchgefiihrt wird. Die Autoren verwenden dazu einen Gibbs-Sampler. Die,
fiir die Ziehungen benétigten, vollstéindig bedingten Dichten fiir 5/, und a,. kénnen
jedoch nicht einer bekannten Verteilung zugeordnet werden, weshalb letztendlich ein

Metropolis-Algorithmus angewendet wird (Rosen et al., 2001, S. 138 f.).

3.2.3 Greiner und Quinn: Multinomial-Log-Normal-Modell

Ein alternatives, hierarchisches Vorgehen fiir R x C' Tafeln kam im Jahr 2009 von
Greiner und Quinn. Gegeniiber dem obigen Modell von Rosen et al. (2001), werden von
den Autoren anstelle von Ubergangswahrscheinlichkeiten /3%, die absoluten Haufigkeiten
der inneren Zellen direkt ermittelt. Sie argumentieren, dass der Vorteil des Ansatzes
die Gewichtung der Kreuztabellen einzelner Wahlbezirke proportional zur deren Grofie
ist. Zum Beispiel liefert eine 2 x 2 Tabelle mehr Information mit Randsummen von 400
und 600 als eine Tabelle mit Randsummen von 40 und 60. Hingegen werden, geméfl den
Autoren, bei den Methoden, die die relative Haufigkeiten verwenden, beide Situationen
gleich bewertet. Denn beiden héatten die Randsummen von 40 Prozent und 60 Prozent.
Ein bedeutender Nachteil des Verfahrens, im Gegensatz zum Multinomial-Dirichlet-
Modell von Rosen et al. (2001), ist die Gefahr von einem langsamen und schwerfélligen
Modell-Fitting. (Greiner und Quinn, 2009, S. 68 f.; Greiner und Quinn, 2010, S. 1778
ff.)
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c=1 c=2 c=C
=1 Ny N o Xy,
E r=2 N3, Ny, N2iC Xéz,z‘
=
~ :

e W g, N

Tabelle 3.4: R x C Tabelle der Wahldaten mit absoluten Haufigkeiten (iibernommen
von Greiner und Quinn (2009, S. 68), verallgemeinert und angepasst an die
Waéhlerwanderungsanalyse und die Notation in dieser Arbeit).

Um die Konsistenz bei der Notation beizubehalten (siche Tabelle 3.4), re-
prasentieren nach wie vor Yy, ..., Y, die Anzahl der Wéhler, welche in dem Wahlbezirk
i die Partei ¢ bei der zweiten Wahl gewahlt haben und analog stellen X7{;, ..., X, die
Anzahl der Wahler dar, welche in dem Wahlbezirk ¢ ihre Stimme der Partei r bei
der ersten Wahl gegeben haben. Die interessierenden unbekannten Parameter werden
als N/, bezeichnet und stellen die Anzahl der Wahler dar, die in dem Wahlbezirk 4
von Partei r zur Partei ¢ gewandert sind. Die gesamte Anzahl der Wahler in einem

Wahlbezirk ¢ ist somit gleich
R c R C
N=> X3 =3Y4=3 S N.. (3.20)
r=1 c=1 r=1c=1

Die Ubergangswahrscheinlichkeiten kénnen im Nachhinein einfach durch

7
i_Nrc

= 3.21
rc X;z’l ( )

bestimmt werden (Greiner und Quinn, 2009, S. 68; 2010, S. 1779).

Die Autoren beschreiben das Modell anhand eines Anwendungsbeispiels, bei dem
die Schatzung der inneren Zellen in Abhangigkeit der Kovariable , Bevolkerungsgruppe
geméfl Hautfarbe“ ermittelt werden soll (Greiner und Quinn, 2009, S. 68; 2010, S. 1775
f.). Dementsprechend stehen die nachfolgenden Annahmen des Modells urspriinglich im
Verhéltnis zum sogenannten ,racial block voting” oder ,racially polarized voting®, das
einen Umstand bezeichnet, in dem die Individuen innerhalb einer Gruppe éhnliches und

zwischen den Gruppen unterschiedliches Verhalten ausdriicken (Greiner und Quinn,
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2010, S. 1775). Das kann sich durchaus auf den Fall der Wéhlerwanderung anwenden
lassen, da die Wechselstimmen in der Regel die Tendenz haben, zur derjenigen Partei
abzuwandern, die &hnliche Ansichten und soziale Werte vertritt, wie die zuvor gewéhlte
Partei (Andreadis und Chadjipadelis, 2009, S. 207). In diesem Sinne gehen Greiner und
Quinn (2009) davon aus, dass jeder Wéhler die Wahrscheinlichkeit besitzt, eine der C
Parteien bei der zweiten Wahl zu unterstiitzen, welche von seiner Wahlentscheidung
bei der ersten Wahl und dem Wahlbezirk ¢+ abhéngig ist. Sie nehmen die Randsummen
fiir jeden Wahlbezirk i als fest an und betrachten die individuellen Wahlentscheidungen

bei der zweiten Wahl unabhéngig voneinander (Greiner und Quinn, 2009, S. 70).

Multinomial-Log-Normal-Modell

ERSTE EBENE: (INY,...,N/!s) ~ Multinom(X?,,0,,) (3.22)

e

mit Qm- = (Qil, ce e 9:;0) » Wahrscheinlichkeiten, die Parteien
1, ..., C zu wihlen, falls bei der ersten Wahl Partei 1 gewihlt wurde.

C C
ZN;c:ng 29:‘021 E(N;c):Xael
c=1 c=1

T, rc

wobei  Njj,...,Nig AL Ni ... Nig AL ... Il Nk, ..., Nk

ZWEITE EBENE:  w; = (wi;,w3;, ..., wWg,)" (3.23)
M; gl 223312 e glR
21 2 e 2R
~ Nrgon) [ 1= Nz U= . : : :
K T Digm o0 B
. 071 o=
mit w,, = <l0g< ; ) ..., log (Z—))
' rC rC
DRITTE EBENE:  p ~ N (o, Ko) (3.24)

3 ~ invWish,,(¥)

Abbildung 3.2: Zusammenfassung der Verteilungen des 6kologischen Multinomial-
Log-Normal-Modells (Greiner und Quinn, 2009, S. 70 f.; Gelman et al., 2014, S. 576

Auf der ersten Ebene setzen Greiner und Quinn (2009, S. 70) eine unabhéngige
Multinomial-Verteilung fir jede der R Zeilen voraus (siehe Abbildung 3.2, Glei-
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chung 3.22). In Bezug auf die zeilenweise Unabhéngigkeit ldsst sich die Likelihood
multiplikativ aus R multinomialverteilten Vektoren zusammensetzen. Auf der zwei-
ten Ebene transformieren die Autoren logistisch die R, C-dimensionale, multinomia-
le Wahrscheinlichkeitsvektoren 6, ; fiir jeden Wahlbezirk i. Hierfiir betrachten sie die
Nichtwdhler, das heifit die Spalte C, als Referenzkategorie. Die transformierten R
Vektoren w,;, jeweils mit einer reduzierten (C' — 1) Dimension, nehmen sie als un-
abhéngig und identisch R(C' — 1)-dimensional normalverteilt an (siehe Abbildung 3.2,
Gleichung 3.23). Letztendlich setzen sie auf der letzten Ebene eine Normal- und ei-
ne Inverse-Wishart-Hyperpriori-Verteilung fiir die Parameter g und ¥ voraus (siehe
Abbildung 3.2; Gleichung 3.24).

Um die gemeinsame Posteriori-Verteilung zu bestimmen, summieren Greiner und
Quinn (2009) iiber die ersten (C'—1)4 (R—1) unbekannten Zellen fiir jeden Wahlbezirk
¢ und integrieren tiber den Parameter 6,.. Die Spaltensummen betrachten sie hierbei
als Funktionen der vollstandigen Daten, welche unbeobachtet sind. Mit einer Matrix
Nieop, deren i-te Zeile die Randsummen des i-ten Wahlbezirkes enthélt und dem Para-
metervektor 6; = (01,,63,,...,0F,) bestimmen Greiner und Quinn (2009, S. 71 f.) die

Posteriori-Verteilung folgendermaflen:

P 2| Npeop) o p(p, 2) H U (3.25)

0G i (Nfy) O0Gy;  (NipNig )

3.26 Z-Z > >

N11:UGN{1 NfQZUGN{'Q(Nlil) NiC—leGNi'Cil(Niil""’NfC—Q)
OGyi (NiysNic_s) OGN;HHWH, Np_1,0-2)

Z ...... Z

NéLl:UGNé'l(Nfl""’N}C—I) N;éfl,C—l:UGN%_LC_I(Nillf'"NIi'{fl,CfQ)
(3.26)
Xis X3 X
N D I o N AR NS N% Nb,...Nbo
(3.27)
Ni1,i oN12,; Nic,: Na1,i yN22 s Noc;
X (9111,11" 9121,12‘ 91016; ) (‘9212,2 9222,12' 9262'Cz )
NRri,i yNR2,i Nrc,i
- (Oris 0nay - - 057 ) (3.28)
_ 1 _
< (B V2exp { =3t — TSN — )} (329)
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X (6310} ...0ic 051055 ... 050 - 0R10%ky ... 0%Rc) " (3.30)

x I(Nj; + Ng; + -+ + Nj; = Y%) (3.31)
: I(Nf2+N§2+"'+N§§2:Y2%i) (3.32)
+I(Nic+ Njc + -+ + Npo = Y8,) (3.33)

x I(N{; + Niy + -+ + Nic = X{)) (3.34)
- I(N3y + Njy + -+ + Nio = X3,) (3.35)
 I(Njy + Npy + -+ + Npo = X5 ) (3.36)
CI(05 + 6+ -+ 05 =1) (3.38)
IO 4 0+ O =1)  db; (3.39)

Die Notation wurde hierbei verallgemeinert. UG und OG in der Gleichung 3.26 kenn-
zeichnen, dass die unteren und die oberen Grenzen bei der Summierung beriicksichtigt
werden. Die Notation in Klammern bedeutet, dass die Summierung jeweiliger Grofie
von allen vorher summierten Groflen abhédngt. Die Indikatorfunktionen in den Glei-
chungen 3.31 - 3.36 priifen, dass die Zeilen- und Spaltensummen der unbeobachteten
inneren Zellen den beobachteten Randsummen entsprechen. Die Gleichungen 3.37 -
3.39 bedingen eine zeilenweise Summierung der Parameter 67, auf den Wert eins. Die
Schétzung der interessierenden Parameter N,. findet mittels Gibbs-Sampler statt, wo-
bei die Réander deterministisch berticksichtigt werden (Greiner und Quinn, 2009, S. 72).
Fir nicht standardisierte bedingte Verteilungen (Gleichungen 3.27-3.29 und 3.36-3.38)
wird der Metropolis-Hastings-Algorithmus angewendet (Greiner und Quinn, 2009, S.
80). Das Verfahren wurde von Autoren in R (R Core Team, 2015) als Zusatzpaket
RxCEcolInf (Greiner et al., 2013) implementiert.
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3.3 Hybridmodelle
3.3.1 Grundlage und Notation

Falls Individualdaten verfiigbar sind, konnen diese fernerhin in die Analyse integriert
werden. Die Modelle, die eine Kombination der Aggregat- und Individualdaten erfassen,
werden Hybridmodelle genannt. Als Erganzungen zur Okologischen Inferenz werden
diese unter dem gleichen Kapitel beschrieben. Grundsétzlich gelten jedoch die Modelle,

die Individualdaten in die Analyse einschliefen, nicht mehr als Modelle der 6kologischen

Inferenz.
INDIVIDUALDATEN AGGREGATDATEN
X=0 no; gy X0 — 20,
X =1 Ny, $(11,i Xf,z — xtll,i

=y oy o Ni=Ye—(ni—y) Y-y Ni—m

7

Tabelle 3.5: Links: 2 x 2 Tabelle der Individualdaten mit absoluten Haufigkeiten.
Rechts: 2 x 2 Tabelle der Aggregatdaten mit absoluten Haufigkeiten, adaptiert
beziiglich der Individualdaten (iibernommen von Wakefield (2004, S. 418) und an-
gepasst an die Notation in dieser Arbeit).

Ein Hybridmodell hat Wakefield im Jahr 2004 aus einem Vorschlagsverfahren fiir
2 x 2 Fiélle entwickelt. Seine Notation wurde in der Tabelle 3.5 so angepasst, dass
die absoluten Haufigkeiten der Individualdaten mit kleinen Buchstaben analog zu den
groflen Buchstaben der absoluten Haufigkeiten der Aggregatdaten bezeichnet sind. Die
inneren Zellen der Tabelle der Individualdaten, ny; und n;;, bilden an dieser Stelle
die beobachteten Werte. Wakefield (2004, S. 419) adaptiert die Daten fiir die Analyse,
indem er die Randsummen der Individualdaten von den entsprechenden Randsummen
der Aggregatdaten subtrahiert. Er berichtet, dass die Verbesserung der Analyse bereits
durch kleine Stichproben erreicht werden kann. Dennoch warnt er, dass die Stichproben
reprasentativ sein sollen. Besonders anfillig fiir Verzerrungen kénnen Nachwahlbefra-
gungen sein, da die Befragten nicht immer ehrlich iiber ihre politischen Ansichten
antworten (Wakefield, 2004, 420 f.).

Sein Verfahren hat andere Methodiker motiviert, die Individualdaten in ihre Metho-

den fiir R x C Félle zu integrieren. Eine Erweiterung des Hybridmodells von Wakefield
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(2004) auf das Multinomial-Dirichlet-Modell fiir R x C' Falle von Rosen et al. (2001) hat
Schlesinger im Jahr 2013 in seiner Masterarbeit begriindet. Schliefllich implementierte
er das Modell in R (R Core Team, 2015) als Zusatzpaket eiwild - Ecological Inference
with Individual level Data (Schlesinger, 2014). Das Multinomial-Log-Normal-Modell
von Greiner und Quinn (2009, 2010) geht bereits von einem Individual-Level aus und
ermoglicht damit eine einfache Erginzung des Modells durch die Individualdaten. Die
hybride Version ihres Ansatzes ist im RxCEcolInf Paket (Greiner et al., 2013) in R (R

Core Team, 2015) integriert.

2. WAHL
c=1 c=2 . c=C

_ i i i a
L T= 1 ni, ni, e nic 1,

3 r=2 n’ n’ n’ x2
§ = 21 22 e 20 2,i

—

_ i i i a

r=~R n', Ny Ngo Tk,
a a a
Y1 Y2 e Yo n;

Tabelle 3.6: R x C Tabelle der Individualwahldaten mit absoluten Haufigkeiten
(tibernommen von Schlesinger (2013, S. 34) und angepasst an die Notation in dieser
Arbeit).

2. WAHL
c=1 c=2 c=C
. . c-1
r=1 B 12 e 1 - 21 Bie. Xf,i - 'rlllz
c=
= ) . c-1 .
5 r=2 B B e 1— X B Xg,i - x%z
c=1
=
—
3 7 e 7 a a
r=R Bri Bra e - }::1 Bhe XR,i — TR,
Y-yl Yoi—v3, e Y& — ey N; —n;

Tabelle 3.7: R x C Tabelle der Aggregatwahldaten mit absoluten Héufigkeiten, die
beziiglich der Individualwahldaten adaptiert werden (iibernommen von Schlesinger
(2013, S. 35) und angepasst an die Notation in dieser Arbeit).

Zugunsten des Multinomial-Dirichlet-Hybridmodells bestétigt eine Simulationsstu-
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die von Klima et al. (2016) die Ergebnisse von Wakefield (2004). Es hat sich wie-
derkehrend gezeigt, dass eine kleine Stichprobe die Schétzung verbessern kann. Um
deren Hybridmodell zu evaluieren, haben Greiner und Quinn (2010) ebenfalls eine Si-
mulationsstudie durchgefiihrt und kamen zu gleichen Ergebnissen. Sie schlagen vor,
das Hybridmodell immer vor den reinen okologischen Modellen zu bevorzugen, wenn
Individualdaten vorhanden sind (Greiner und Quinn, 2010, S. 1785). Vorsicht ist gebo-
ten, falls bei der Stichprobe eine Bevolkerungsgruppe dominiert, warnen die Autoren.
In Bezug auf die Wahlerwanderungsanalyse sollten die Wahler einer Partei der ersten
Wabhl nicht eine Mehrheit der Befragten ausmachen. In den folgenden Unterabschnitten

werden die beiden Hybridmodelle und ihre Annahmen kurz beschrieben.

3.3.2 Multinomial-Dirichlet-Hybridmodell

Schlesinger (2013) beschreibt das Verfahren gleichermafien auf dem Anwendungsbei-
spiel der Wahlerwanderungsanalyse zwischen zwei Wahlen, jedoch folgt er annédhernd
der Notation von Wakefield (2004), die hier wiederum angeglichen wird. Fur
den Fall, dass die Daten einer Nachwahlbefragung zur Verfiigung stehen, erwei-
tert er die Tabelle 3.5 (links) auf eine R x C Tabelle, um die unbekannten
Ubergangswahrscheinlichkeiten f,. zu schétzen (sieche Tabelle 3.6). Er nimmt an,
dass n!, fiir einige Wahlbezirke aus den Daten bekannt sind, wobei (0 < i < p),
(0<ys <Y, (0 <2, < X%) und np, € [0,min{y?,;, z%;}] gilt (Schlesinger, 2013,
S. 34).

Entsprechend der zeilenweisen Binomial-Verteilung beim Ansatz von Wakefield

(2004), setzt Schlesinger (2013, S. 34 f.) auf der ersten Ebene des Verfahrens eine

unabhéngige zeilenweise Multinomial-Verteilung fiir n';, ..., n' voraus. Deren Para-

a
7,49

gilt (siehe die Abbildung 3.3, Gleichung 3.40). Hierbei nimmt er an, dass Individual-

meter sind 87, ..., B! und die Zeilensummen z¢;, wobei nach wie vor <, 3. =1
und Aggregatdaten die gleichen Ubergangswahrscheinlichkeiten f3:. ergeben. Die Rand-
summen der Aggregatdaten werden, wie im Unterabschnitt 3.3.1 (Tabelle 3.5), gemafl
den Informationen aus den Individualdaten je nach Wahlbezirk ¢ angepasst (siehe Ta-
belle 3.7).

Alle drei Ebenen der Aggregatdaten folgen den gleichen Verteilungen wie das
Multinomial-Dirichlet-Modell von Rosen et al. (2001), wobei auf der ersten Ebene die

Spaltensummen modifiziert werden. Demnach definiert Schlesinger (2013, S. 35) an die-
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ser Stelle eine Multinomial-Verteilung fir Yy, —y{,, ..., Y&, —y¢,; mit den Parametern
N;—n;und 0y 4, ..., 0c, (siche Abbildung 3.3, Gleichung 3.41). Falls Vorwissen, wie zum
Beispiel Wahlempfehlungen, vorhanden ist, kann dieses auf der dritten Ebene durch die

zellspezifischen Hyperpriori-Verteilungen fiir o, verwendet werden (Schlesinger, 2013).

Multinomial-Dirichlet-Hybridmodell

INDIVIDUALDATEN

ERSTE EBENE:  (n'},...,n';) ~ Multinomial(z®;; B.,...B8 )

)

(3.40)
C .
mit: Z,B;C:L r=1,...,R
c=1
AGGREGATDATEN
ERSTE EBENE:  (Y\%; — 41, .-, Y&, — y&.) (3.41)
~ Multinomial(N; — n;; 6y,,...,0¢;)
C R Xae, _ o
it: 90i — ]-7 eci — :-chia Xri =
mi ; 7 , 7;1 15} : : N.—n,
ZWEITE EBENE:  (B.,,...8..) ~ Dirichlet(a,,...a,c) (3.42)
DRITTE EBENE:  «,. ~ Gamma(A, A2) (3.43)
oder zellspezifisch: o, ~ Gamma(A[°, Ay°) (3.44)

Abbildung 3.3: Zusammenfassung der Verteilungen des Multinomial-Dirichlet-
Hybridmodells (Schlesinger, 2013, S. 35 f.).

Die gemeinsame Posteriori-Verteilung erweitert sich bei der Verwendung von Indi-

vidualdaten und ergibt sich schliellich durch

f( ic’ Ozrchm', Y;:[,Liv nica yg,iv (/\17 )‘2)) X (3'45)
p R C o
x TTTITI(B..)" |INDIVIDUALDATEN (3.46)
=1l =1l e=ll
p C a a
x [T T (Bes) e e (3.47)
i=1c=1

p C Qe @ } .
< TTTT {EE=eed [y (3.49
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oy L exp{ e} (3.49)
I'(A1)

R C

< 1111

=l =1l

Bei denjenigen Wahlbezirken ¢, fiir die keine Individualdaten vorhanden sind, reduziert
sich die Posteriori-Verteilung auf die ohne Individualdaten (siehe Unterabschnitt 3.2.2,
Gleichungen 3.17-3.19), da nl, in der Gleichung 3.46 und y¢; in der Gleichung 3.47
in diesem Fall gleich null sind. Zur Schétzung werden Markov-Chain-Monte-Carlo-

Methoden, speziell Metropolis-within-Gibbs-Sampler, durchgefiihrt. (Schlesinger, 2013,
S. 36)

3.3.3 Multinomial-Log-Normal-Hybridmodell

Gemaf Greiner und Quinn (2009, 2010) impliziert die Annahme der festen Randsum-
men fiir jeden Wahlbezirk 7, dass die Randsummen unabhéngig vom Prozess der Da-
tensammlung sind. Hierbei nehmen sie die Wahrscheinlichkeit, eine der C' Parteien bei
der zweiten Wahl zu unterstiitzen, abhéngig von der Wahlentscheidung bei der ersten
Wahl und dem Wahlbezirk 7 an. Die individuellen Wahlentscheidungen bei der zwei-
ten Wahl betrachten sie als unabhéngig voneinander. Diese Annahmen resultieren in
den unabhéngigen Multinomial-Verteilungen fiir die R Zeilen der unbekannten inneren
Zellen bei den Aggregatdaten, die dem individuellen Wahlverhalten entsprechen (Grei-
ner und Quinn, 2009, S. 70; Greiner und Quinn, 2010, S. 1781). Demnach kénnen die
Individualdaten ohne zusétzliche Annahmen ins Modell integriert werden.

Fiir eine Stichprobe S, die s aus p Wahlbezirken enthélt, erweitern Greiner und
Quinn (2009, S. 78) die Posteriori-Verteilung aus der Gleichungen 3.25 - 3.39, durch
die Likelihood:

N\ n
o 5 $a . xa . z.a .
! ' X, VX2 X (3.50)
a a a 1, 2,i R,
T Ti; Loi ~°° TR,
,e ni1 Hni2 nic
N1 N124 - N1cy
o no1 AN22 na2c
X 0571053% - - - 5% (3.52)
N1 Mags =+ N2c,i
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a I(i€S)

LR QrEIgnE2 | . grEC (3.53

X R1 YRo RC 53)
NR1i NMR24: °°° NRC

Die Notation wurde hier beziiglich der Tabelle 3.6 angepasst. Der Indikator ¢ € §
weist darauf hin, dass ausschliellich die Wahlbezirke betrachtet werden, die in der
Stichprobe vorhanden sind. In der Posteriori-Verteilung, bedingt auf den beobachteten
Individualdaten, werden N!, Parameter fiir jedes i € S adaptiert (Greiner und Quinn,
2009). Eine genauere Beschreibung wird im Jahr 2009 dennoch nicht gegeben. Ferner
leiten sie an, dass nach dieser Ergénzung aus der gemeinsamen Posteriori-Verteilung
die interessierenden Schatzwerte, in gleicher Weise wie bei der 6kologischen Inferenz,
durch Metropolis-within-Gibbs-Sampler gezogen werden kénnen (Greiner und Quinn,
2009, S. 78). Im Jahr 2010 definieren Autoren die gemeinsame Posteriori-Verteilung

des Hybridmodells in einer reduzierten Form proportional zu:

N (pl o, ko) X Inv — Wish,, (o|¥) (3.54)
NN N
gi M g,
X H / Z (H Mi | ) Z (H Ni | ) (3.55)
g M:;nbeob s re 'Z.nbeob e re
1 1
x (|2|—% . {_2(%- )T — u)}) d@l} (3.56)

(Greiner und Quinn, 2010, S. 1782). Hierbei definieren sie M!, durch N/, — n!_. Die
Gleichung 3.54 stellt die Hyperpriori-Verteilungen dar. Die weitere Erlauterung dieser
Posteriori-Verteilung ist jedoch unklar, da die Autoren vier Zeilen beschreiben und
nur drei darstellen. Die zweite und die dritte Zeile bezeichnen sie als Multinomial-
Verteilung der inneren Zellen und die vierte Zeile als Multivariate-Normal-Verteilung.
Es ist klar, dass sich die Beschreibung der vierten Zeile auf die Priori-Verteilung in der
Gleichung 3.56 bezieht. Bei der Darstellung der Multinomial-Verteilung scheint eine
Zeile zu fehlen. Demnach bleibt es unklar, wie genau die Posteriori-Verteilung durch

die Individualdaten ergénzt wird.
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4 Die Datenbasis

4.1 Datengrundlage und deskriptive Analyse

In diesem Abschnitt werden der Inhalt und der Ursprung der Aggregat- und Indivi-
dualdaten beschrieben. Vor Beginn der Analyse liefern grafische Darstellungen einen
ersten Uberblick iiber das Wahlverhalten. Zur Erstellung der Diagramme kommen die
folgenden R-Pakete zum Einsatz: ggplot2 (Wickham, 2009), ggthemes (Arnold, 2016),
scales (Wickham, 2016), gridExtra (Auguie, 2016) und circlize (Gu et al., 2014;
Gu, 2015).

4.1.1 Amtliche Ergebnisse der betrachteten Wahlen

Aggregatdaten — amtliches Endergebnis
Bundestagswahl 2013

50%-

§40%

o 35.06%

o

.S 30%- 27.53%

0

c

8 20%

£

£ 11.08%

= 10%

& . 7.53%  gop 5 79, 1:32%
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CcDU SPD Griine Die Linke ' ' Sonétige

Abbildung 4.1: Amtliches Endergebnis der Bundestagswahl im Jahr 2013. Quelle:
Stadt Mannheim (2013).

Die amtlichen Endergebnisse der Bundestagswahl im Jahr 2013 lassen sich von

der offiziellen Internetseite der Stadt Mannheim (2013) herunterladen. In der Datei
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btw_wahlbezirke neu sind die Daten iiber die Erst- und Zweitstimmen der Bundes-
tagswahl im .x1s Format enthalten, wobei nur die Zweitstimmen in der Analyse be-
trachtet werden. Es sind die Ergebnisse der 137796 Wahler von insgesamt 198 525
Wahlberechtigten fiir 20 Parteien zur Verfiigung gestellt. Die Ergebnisse aller 135 744
giiltigen Stimmen sind in der Abbildung 4.1 dargestellt. Auf der x-Achse liegen die
sechs grofiten Parteien: CDU, SPD, Grine, Die Linke, AfD und FDP, wie auch die
Kategorie Sonstige, die alle kleinen Parteien umfasst. Die y-Achse zeigt wie viele Stim-
men in Prozent die jeweilige Partei gewonnen hat. Mit 35.06 Prozent erreichte die CDU
damals eine Mehrheit der Stimmen, wéihrend die SPD 27.53 Prozent erzielte. Darauf
folgen die Griinen mit 11.08, Die Linke mit 7.53, AfD mit 6, FDP mit 5.46 und alle
andere Parteien, die im Ganzen 7.32 Prozent erhielten. Das Prinzip und der Grund
fiir die Zusammenfassung der kleinen Parteien in eine Kategorie wird in dem Unterab-
schnitt 4.2.1 auf der Seite 40 diskutiert. Im Anhang A.1.1 auf der Seite 85 ist die Liste

aller Parteien zu finden.

Aggregatdaten — amtliches Endergebnis
Oberburgermeisterwahl 2015

50%-
46.79%
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SPD CcDU Mannheimer Sonétige
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Abbildung 4.2: Amtliches Endergebnis der Oberbiirgermeisterwahl im Jahr 2015.
Quelle: Stadt Mannheim (2015b).

Amtliche Ergebnisse der Oberbiirgermeisterwahl aus dem Jahr 2015
(Stadt Mannheim, 2015b) sind fiir den ersten Wahlkreis im Juni so-

wie fir den zweiten Wahlkreis im Juli verfiighar. Hier wird die Datei
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obw2015_auswertungen _amtliches_endergebnis_fur_internet.xls vom Juni
fir die Analyse verwendet, da die Nachwahlbefragung bereits im Juni im ersten
Wahlkreis durchgefithrt wurde. Obwohl die Anzahl der Wahlberechtigten im Jahr
2015 um 35556 hoher war als im Jahr 2013, sank 2015 die Anzahl der Wéahler auf
71866 und damit die Wahlbeteiligung von 69.4 Prozent auf nur 30.7 Prozent. Fir
den ersten Wahlkreis sind die Ergebnisse der vier starksten Kandidaten, Dr. Peter
Kurz (SPD), Christopher Probst (Mannheimer Liste), Peter Rosenberger (CDU) und
Christian Sommer (Die Partei) freigegeben. Die Stimmen der anderen Kandidaten
wurden unter der Kategorie Andere Gewdhlte bereits bei den amtlichen Ergebnissen
zusammengezihlt. Im weiteren Verlauf wird diese Kategorie als Sonstige bezeichnet,
um die Darstellungen der beiden Wahlen abzugleichen. Der Kandidat Christian
Sommer (Die Partei) wurde dieser Kategorie zugeteilt (siehe Unterabschnitt 4.2.1).
Wie die giiltigen Stimmen verteilt wurden zeigt die Abbildung 4.2. Auf der x-Achse
sind die Kandidaten abgebildet und auf der y-Achse der Stimmenanteil der jeweiligen
Kandidaten in Prozent. ,Amtsinhaber Dr. Peter Kurz wird von den Mannheimer
Kreisverbéinden der SPD, der Griinen und der Linken unterstiitzt, Peter Rosenberger
von der CDU und Christopher Probst von der Mannheimer Liste“ (Schredle, 2015).
Da die SPD, die Grinen und Die Linke bei der Bundestagswahl 2013 insgesamt
46.14 Prozent erhielten, scheint der Gewinn von Dr. Peter Kurz mit 46.79 Prozent
erwartungsgeméf}. Peter Rosenberger erzielte 33.83 Prozent, genau 1.23 Prozent
weniger als die CDU zwei Jahre vorher. Kandidat der Mannheimer Liste, Christopher
Probst, bekam 15.94 Prozent der Stimmen und alle anderen Kandidaten sammelten
insgesamt 3.44 Prozent aller Stimmen.

Das Stadtgebiet Mannheim besteht aus 17 Bezirken (siehe dazu Anhang A.1.2,
Seite 86), die bei einer Wahl in Wahlgebaude und Wahlbezirke unterteilt werden. Das
Prinzip der Zuordnung von Straflen zu den Wahlbezirken und Wahlgebauden kann sich
von Wahl zur Wahl éndern. Bei der Bundestagswahl im Jahr 2013 wurden hierfiir 52
Wahlgebédude und 189 Wahlbezirke erstellt und bei der Oberbiirgermeisterwahl im Jahr
2015 wurde das Stadtgebiet in 68 Wahlgebdude und 123 Wahlbezirke unterteilt. Eine
Ubersicht der elementaren Zahlen zum Populationsumfang und zur Bezirksunterteilung
ist fir das gesamte Stadtgebiet sowie fiir die Brief- und Urnenwéhler getrennt, in der

Tabelle 4.1 dargelegt.
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BUNDESTAGSWAHL 2013

Gesamt Urnenwéhler Briefwéhler

Summe Wahlberechtigte 198 525
Wahlberechtigte ohne Wahlschein 157474
Wahlberechtigte mit Wahlschein 41051

Wahler insgesamt 137796 100299 37497

darunter mit Wahlschein 37984 487 37497

Ungiltige Stimmen 2052 1706 346

Giiltige Stimmen 135744 98593 37151

Anzahl Stadtbezirke 17 17 17

Anzahl Wahlgebaude 52 51 1

Anzahl Wahlbezirke 189 150 39

OBERBURGERMEISTERWAHL 2015
Gesamt Urnenwéhler Briefwéhler

Summe Wahlberechtigte 234081
Wahlberechtigte ohne Wahlschein 210953
Wahlberechtigte mit Wahlschein 23128

Wahler insgesamt 71866 50995 20871

darunter mit Wahlschein 21110 239 20871

Ungiltige Stimmen 641 474 167

Giiltige Stimmen 71225 50521 20704

Anzahl Stadtbezirke 17 17 17

Anzahl Wahlgebédude 68 51 17

Anzahl Wahlbezirke 123 96 27

Tabelle 4.1: Ubersicht der wichtigsten Zahlen zum Populationsumfang
und zur Bezirksunterteilung bei der Bundestagswahl 2013 (oben) und der
Oberbiirgermeisterwahl 2015 (unten).

4.1.2 Nachwahlbefragung

Die Nachwahlbefragung (Felderer, 2015, personliche Kommunikation) wurde im Rah-
men der Lehrveranstaltung Empirisches Forschungspraktikum bei der Mannheimer
Oberbiirgermeisterwahl im Juni 2015 fiir fiinf Wahlbezirke durchgefithrt. Unter an-
deren sollten die Befragten zwei Fragen beantworten, die hier von Interesse sind: , Fuir
welchen Kandidaten haben Sie heute gestimmt?“,  Wenn Sie nun an die letzte Bun-
destagswahl im September 2013 denken: Welche Partei haben Sie damals mit IThrer
Zweitstimme gewdhlt?“. Diese Daten ermoglichen einen ersten Einblick in das Indivi-
dualwahlverhalten der Wahler.

Von insgesamt 1575 Teilnehmern verweigerten 100 eine oder beide Fragen, 8 gaben
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Fehlende Werte bei der Nachwahlbefragung
Angekreuzt bei der Bundestagswahl
SPD Griine Die Linke CDU AfD FDP Sonstige Nichtwahler

2 0 6 0 2 0 1

Anzahl
N

0.59 % 0.64 % 0% 15% 0% 1.83 % 0% 1.06 %

Fehlende Werte
Oberburgermeisterwahl
Anteil

Angekreuzt bei der Oberburgermeisterwahl
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Abbildung 4.3: Fehlende Werte bei der Nachwahlbefragung. Anzahl bezeichnet die
Héufigkeit der fehlenden Werte bei einer Wahl in Abhédngigkeit von den Angaben
bei der anderen Wahl. Der Anteil stellt das Verhéltnis von Anzahl der fehlenden
Werte bei einer Wahl zur Summe aller Angaben fiir die jeweilige Partei oder fiir den
jeweiligen Kandidaten bei der anderen Wahl in Prozent dar.

mehr als eine Antwort und 79 konnten sich nicht mehr erinnern, wem sie ihre Stimme im
Jahr 2013 gegeben haben. Alle genannten Félle wurden als fehlende Werte betrachtet
und geloscht, wodurch 185 Beobachtungen verloren gehen. In der Abbildung 4.3 l&sst
sich erkennen, dass deutlich mehr Werte bei der Angabe zur Bundestagswahl 2013 feh-
len. Obwohl eine Mehrheit bei der Frage zur Oberbiirgermeisterwahl (2015) den Kan-
didat Dr. Peter Kurz angekreuzt haben, zeigt das Verhéltnis von Anzahl der fehlenden
Werte zur Summe aller Angaben fiir die jeweiligen Kandidat, dass sich die Wéhler al-
ler drei groflen Kandidaten angenahert gleichméaflig iiber ihre Wahl im Jahr 2013 nicht
geduflert haben. Insgesamt lehnten 45 Probanden ab, eine Antwort auf beide Fragen zu
geben. In der Abbildung 4.3 sind diese nicht dargestellt. Neben dem Problem der feh-
lenden Werte, muss noch ergénzt werden, dass der Anteil der Nichtwdhler bei der Befra-
gung, die nach der Wahl vor Ort stattfand, hochstwahrscheinlich nicht dem wirklichen
Zustand der Nichtwdhler entspricht. Denn, die Wahlberechtigten, die nicht gewahlt ha-
ben, treten in der Regel auch nicht am Wahlort auf. Aulerdem werden die Briefwéhler
bei der Befragung nicht betrachtet. Ferner wird im Unterabschnitt 4.2.4 (Seite 43)
erklart, warum das Ignorieren der Briefwahler bei der Wahlerwanderungsanalyse pro-

blematisch sein kann.
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Individualdaten — Ergebnis der Nachwahlbefragung

Bundestagswahl 2013 Oberbirgermeisterwahl 2015
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Abbildung 4.4: Oben: Die Wahlergebnisse anhand der Nachwahlbefragung fiir die
Bundestagswahl 2013 (links) und fiir die Oberbiirgermeisterwahl 2015 (rechts). Un-
ten: Die Differenz zwischen den Wahlergebnissen der Individual- und den Aggregat-
daten fiir die Bundestagswahl 2013 und fiir die Oberbiirgermeisterwahl 2015.

Wie sich die Befragten bei dem Fragebogen geduflert haben ist in der Abbildung 4.4
(oben) dargestellt, wobei die Nichtwdhler nicht beriicksichtigt sind. In der unteren Gra-
fik wird zusétzlich die Differenz zu den amtlichen Ergebnissen abgebildet. Die Differenz
bei der Oberbiirgermeisterwahl 2015 (unten rechts) zeigt eine bessere Ubereinstimmung
mit den amtlichen Ergebnissen. Die hochste Abweichung von 3.56 Prozent liegt beim
Kandidaten Christopher Probst vor. Bei der Bundestagswahl 2013 (unten links) weist
die Grafik generell etwas hohere Abweichungen auf. Unterdessen ist eine deutliche
Uberschéitzung des Stimmenanteils der Grimen um 12.82 Prozent zu erkennen. Zur Un-
tersuchung der moglichen Ursachen fiir diese Storung werden zusétzlich drei Grafiken
erzeugt. Zuerst soll eine Darstellung der Ergebnisse nach Wahlbezirken in der Abbil-
dung 4.5 zeigen, ob die Wahl der Bezirke bei der Durchfithrung der Nachwahlbefragung
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die Ergebnisse beeinflussen kénnte. Hierfiir werden lediglich die fiinf Wahlbezirke se-
lektiert, die bei der Nachwahlbefragung betrachtet wurden. In den Abbildungen A.2
(Seite 87) und A.3 (Seite 88) im Anhang A.1.3 befinden sich zusétzlich die Ergebnisse
aller Wahlbezirke. Fiir alle drei Grafiken werden die Wahlbezirke aggregiert, sodass die
gleichen Ebenen bei der Bundestagswahl (2013) und bei der Oberbiirgermeisterwahl
(2015) mit der Nachwahlbefragung verglichen werden kénnen. Im Unterabschnitt 4.2.3
auf der Seite 42 wird das Prinzip der Zusammensetzung der Wahlbezirke beschrieben.
Aus den Grafiken ldsst sich nicht erkennen, dass die amtlichen Ergebnisse der betrach-
teten Gebiete im Vergleich zu den Ubrigen einen héheren Stimmenanteil fir die Grinen
aufweisen. Amtliches Ergebnis des Bezirkes 01251 weicht im Vergleich zu anderen nach
oben ab. Dennoch wird der Stimmenanteil in der Nachwahlbefragung an dieser Stelle

noch starker iiberschéatzt.

Stimmenanteil in Abhangigkeit der Wahlbezirke
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Abbildung 4.5: Stimmenanteil in Abhéngigkeit der Wahlbezirke bei der Bundestags-
wahl 2013 (oben) und der Oberbiirgermeisterwahl 2015 (unten) fiir fiinf Wahlbezir-
ke, die bei der Nachwahlbefragung betrachtet wurden. Die dargestellten Wahlbezirke
werden so aggregiert, dass alle Ebenen bei der Bundestagswahl (2013) und bei der
Oberbiirgermeisterwahl (2015) identisch sind und den Wahlbezirken bei der Nach-
wahlbefragung entsprechen.

Obwohl rein grafische Beschreibungen nicht ausreichend sind um den Einfluss ei-
ner Variable festzustellen, so bietet eine visuelle Untersuchung der Strukturen von
Alter und Bildungsabschluss der Befragten eine grobe Beschreibung der moglichen
Einfliisse auf die Verzerrung. Die Grafik in der Abbildung 4.6 zeigt keine Indikatoren,
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dass die Uberschitzung der Grinen durch das Alter der Befragten verursacht wur-
de. Das Durchschnittsalter der Befragten, welche angeblich die CDU, AfD und FDP
gewahlt haben, ist etwas hoher als das mittlere Alter aller Befragten. Die Befragten,
die sich fir die Grinen und Die Linke entschieden haben, sind im Durchschnitt ein
wenig jiinger. Diejenigen, die Sonstige angekreuzt haben, weisen ein um 9.13 Jahre
niedrigeres mittleres Alter auf. Die Stadt Mannheim (2015¢, S. 5, 15 f.) teilt mit, dass
die Wahlbeteiligung bei der Oberbiirgermeisterwahl 2015 in den &lteren Altersgruppen
generell hoher war, insbesondere bei den 70-Jéhrigen und Alteren, wobei das Durch-
schnittsalter der Wahlberechtigten im Juni 48.4 Jahre betrug. Demzufolge entspricht
das mittlere Alter der Befragten beinahe dem durchschnittlichen Alter in der Popula-
tion der Wahlberechtigten.

Alter der Befragten bei der Nachwahlbefragung

mittleres Alter:
55.22 51.28 45.9 45,72 36.77 50.88

©
o

(o]
o

Alter der Befragten

W
o

CDU SPD Griine Die Linke ' ' Sonétige Alle
Angekreuzt bei der Bundestagswahl

Abbildung 4.6: Alter der Befragten bei der Nachwahlbefragung in Abhingigkeit der
Angaben bei der Bundestagswahl (2013).

Die Betrachtung der Bildungsabschlussquoten in der Tabelle 4.2 zeigt einen hohen
Anteil von Personen mit Hochschulabschluss. Da die wahre Struktur des Bildungsab-
schlusses der Wahlberechtigten nicht bekanntgegeben wird, dienen die Informationen
iiber den Bildungsabschluss der Bevolkerung Baden-Wiirttembergs als ein Vergleichs-
maf. Das Statistisches Bundesamt (2015, S. 65, 67) berichtet, dass 4.0 Prozent der
Bevolkerung die Schule besuchen, 36.8 Prozent besitzen einen Volks- beziehungsweise
Hauptschulabschluss, 26.7 Prozent einen Real- oder Mittelschulabschluss, 12.7 Prozent
haben das Abitur oder Fachabitur und 17.3 Prozent Fachhochschul- oder Hochschulab-
schluss. Zu 0.5 Prozent sind die Angaben nicht bekannt und 2.0 Prozent haben keinen

allgemeinen Schulabschluss. Dementsprechend erscheint in der Stichprobe einerseits ein
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um 26.31 Prozent geringerer Anteil des Volks- oder Hauptschulabschlusses und ein um
5.63 Prozent geringerer Anteil des Real- oder Mittelschulabschlusses. Andererseits weist
die Stichprobe einen um 8.52 Prozent hoheren Anteil bei Abitur oder Fachabitur und
einen um 39.44 Prozent hoheren Anteil des Hochschulabschlusses auf. Die Befragten,
die die Grinen angekreuzt haben, besitzen zu 61.04 Prozent einen Hochschulabschluss.
Somit liegt hier starke Abweichung von der Hochschulabschlussquote der Bevolkerung
vor und eine generell hohere Quote im Vergleich zur allen anderen Befragten. Da die
Struktur des Bildungsabschlusses der Wahlberechtigten nicht bekannt gegeben wird,
lasst sich allerdings keine zuverldssige Schlussfolgerung iiber die Quelle des Fehlers

anhand von Bildungsabschlussquoten ziehen.

Bildungsabschluss der Befragten bei der Nachwahlbefragung
Angekreuzt bei der Bundestagswahl

cbu SPD Griine Die Linke AfD FDP Sonstige Alle
Noch Schiiler 0% 061% 0% 0% 0% 0% 0% 0.16 %
Hauptsehuiabschiuss 12-14% 15.03% 3.25% 9.09% 1591% 12.38% 3.33% 10.49 %
Real., 26.12% 24.85% 12.34% 15.15% 31.82% 20% 6.67% 21.07 %

Mittelschulabschluss

Abitur / Fachabitur 19% 19.02% 23.38% 30.3% 1591% 2095% 40% 21.22%
Hochschulabschluss 42.74 % 39.26 % 61.04 % 45.45 % 36.36 % 46.67 % 50% 46.74 %

Kein Abschluss 0% 1.23 % 0% 0% 0% 0% 0 % 0.32 %

Tabelle 4.2: Bildungsabschluss der Befragten bei der Nachwahlbefragung in
Abhéngigkeit der Angaben bei der Bundestagswahl (2013).

Bildungsabschluss

Die Ergebnisse der Wahlerwanderung sind anhand von Individualdaten in Form der
prozentualen Ubergangsanteile in der Tabelle 4.3 gegeben und in der Abbildung 4.7
zusétzlich visuell dargestellt. Im Anhang A.1.4 auf der Seite 89 befindet sich eine gleich-
artige Darstellung ohne die Kategorie Nichtwihler. Eine Ubergangstabelle zwischen
zwei gleichartigen Wahlen, beispielsweise der Bundestagswahl 2009 und der Bundes-
tagswahl 2013, wird normalerweise so erzeugt, dass die Ubergangszellen der selben
Parteien beider Wahlen, die sogenannten Loyalen oder Treuen, auf der Diagonale lie-
gen. Die Ubrigen, die Wechselnden, werden nichtdiagonal positioniert (Klima et al.,
2015, S. 2). Hierfiir werden die Treuen geméfl den oben erwéahnten Wahlempfehlun-

gen untereinander gestellt, das heifit als Loyale betrachtet. Demzufolge entspricht die
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bisherige Aufstellung nicht der Reihenfolge der Parteien im weiteren Verlauf der Arbeit.

Nachwahlbefragung 2015
Oberbirgermeisterwahl 2015

Dr. Peter Peter Christopher
Kurz Rosenberger Probst Sonstige Nichtwahler
(SPD) (CDU) (Mannheimer Liste)

SPD 70.33 % 17.21 % 10.09 % 2.37% 0%
® Griine 68.06 % 13.55 % 11.94 % 5.16 % 1.29 %
g Die Linke 56.34 % 11.27 % 11.27 % 19.72 % 141 %
‘;‘; CbuU 24.81 % 62.28 % 11.14 % 1.77 % 0%
§ AD 12.77 % 48.94 % 36.17 % 0% 2.13%
g FDP 28.04 % 52.34 % 17.76 % 1.87 % 0%
@ Sonstige 43.33 % 0% 16.67 % 40 % 0%

Nichtwahler 52.69 % 29.03 % 7.53 % 7.53 % 3.23%

Tabelle 4.3: Die Ubergangstabelle zwischen der Bundestagswahl 2013 und der
Oberbiirgermeisterwahl 2015 anhand der Nachwahlbefragung.

Abbildung 4.7: Die Ubergangswahrscheinlichkeiten zwischen der Bundestagswahl
2013 (links) und der Oberbiirgermeisterwahl 2015 (rechts) anhand der Nachwahl-
befragung. Die Breite jedes Pfeilendes driickt den Anteil an Stimmen aus, den der
jeweilige Kandidat von verschiedenen Parteien gewonnen hat.

Die Wurzeln der inneren Pfeile des Kreisdiagramms in der Abbildung 4.7, gefarbt
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nach den dazugehorigen Parteien, fangen bei der Bundestagswahl 2013 an und enden
bei der Oberbiirgermeisterwahl 2015. Dabei driickt die Breite jedes Pfeilendes den An-
teil an Stimmen aus, den der jeweilige Kandidat von verschiedenen Parteien gewonnen
hat. Fiir eine bessere Ubersicht werden die Namen verkiirzt, wobei sich der ganze Name
der Kandidaten aus der Tabelle 4.3 ablesen lasst. Die Abkiirzung NW bezeichnet die
Nichtwdhler. Zusammen mit der Tabelle 4.3 zeigt die Grafik, dass die oben genann-
te Behauptung der Unterschatzung der Nichtwdhler bei der Oberbiirgermeisterwahl
(2015) bestétigt werden kann.

Die Differenz zwischen den Randsummen der Nachwahlbefragung und den amtli-
chen Ergebnissen beweist, dass bei den Individualdaten ein Bias vorliegt. Dementspre-
chend ist die Analyse der Wéhlerwanderung ausschlieflich anhand von Individualdaten
in diesem Fall nicht zuverlassig. Neben den erganzten moglichen Indizien, respektive
den fehlenden Werten, der Bildungsstruktur der Befragten, der unterschatzte Anteil
der Nichtwdhler und das Ignorieren der Briefwéhler, stellt die Teilnahmeverweigerung
eine weitere Gefahr fiir die Stérung in den Daten dar. Die bessere Ubereinstimmung
der Antworten mit den amtlichen Ergebnissen bei der Oberbiirgermeisterwahl im Jahr
2015 als bei der Bundestagswahl im Jahr 2013 spricht dafiir, dass der Zeitabstand auch

eine negative Rolle spielen konnte.

4.2 Aufbereitung der Daten

Die Analyse der Wéhlerwanderung ist ein Sonderfall der 6kologischen Inferenz in dem
Sinne, dass eine hohere Riicksicht auf die Datenaufbereitung gerichtet werden sollte. In
diesem Abschnitt erfolgt eine Angabe der primiren Punkte und die Beschreibung der
moglichen und der angewendeten Vorgehensweisen bei der Datenaufbereitung. Keller-
mann (2011), Ambiihl (2003), Andreadis und Chadjipadelis (2009) beschrieben bereits
einige Vorschritte, die durchgefithrt werden kénnen oder sogar miissen. Allerdings wid-
men Klima et al. (2015) dem Thema etwas mehr Aufmerksamkeit und zeigen in ihrem
Artikel, dass das Vorgehen bei der Datenaufbereitung die Schatzungen bedeutend be-
einflussen kann. Ferner evaluieren die Autoren anhand von Simulationsstudien, wie viel
Einfluss auf die Qualitdt der Schatzung durch verschiedene Vorgehensweisen bei eini-
gen Modellen genommen werden kann. Deren Ergebnisse stellen den Ausgangspunkt

fiir einige Entscheidungen bei der Datenaufbereitung in dieser Arbeit dar.
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4.2.1 Anzahl der Parteien

Der erste relevante Punkt reprasentiert die Anzahl der Parteien, die in der Analyse be-
trachtet werden sollten. Kellermann (2011, S. 34) weist darauf hin, dass eine moglichst
starke Reduktion der Parteien erforderlich ist, um eine Verringerung der zu schiatzenden
Parameter zu schaffen. Die kleinen Parteien beeinflussen die Gesamtanzahl an Stimmen
nur minimal, was bei der Schétzung ihrer Ubergangswahrscheinlichkeiten meistens zu
falschen Ergebnissen fithrt (Achen und Shively, 1995 in: Andreadis und Chadjipadelis,
2009, S. 206 f.; Kellermann, 2011, S. 34). Achen und Shively schlagen deshalb vor, die
kleinen Parteien den grofien, beziiglich der gemeinsamen Ideologie, zuzuordnen.
Derweilen kommt eine andere Vorgehensweise in dieser Arbeit zur Anwendung. Es
konnen alternativ alle kleinen Parteien unter einer Kategorie zusammengefasst wer-
den (Ambiihl, 2003, S. 20; Andreadis und Chadjipadelis, 2009, S 209 f.; Kellermann,
2011, S. 34). Dementsprechend werden hier alle Parteien und Kandidaten, die weniger
als 5% der gesamten Stimmenanzahl aufweisen, der Kategorie Sonstige unterstellt. In
der Tabelle 4.4 sind alle dazugehorigen Parteien aufgelistet. Von den Kandidaten der
Oberbiirgermeisterwahl 2015 blieb alleinig Christian Sommer (Die Partei) mit 3.27
Prozent der Stimmen fir die Zuordnung zur Kategorie Andere Gewdhlte, die letztend-

lich in Sonstige umbenannt wurde.

Partei Anteil
01 PIRATEN 32 %
02 NPD 1.2 %
03  TIER-SCHUTZ-PARTEI 1.0 %
04 REP 0.4 %
05 RENTNER 0.4 %
06 FREIE-WAHLER 0.3 %
07 ODP 0.2 %
08  VOLKSABSTIMMUNG 0.2 %
09 PARTEI DER VERNUNFT 0.1 %
10 PRO-DEUTSCHLAND 0.1 %
11  BIG 0.1 %
12 BiSo 0.0 %
13  MLPD 0.1 %
14 PBC 0.1 %
Y Sonstige ~7.4%

Tabelle 4.4: Kleine Parteien, die bei der Bundestagswahl (2013) der Kategorie Sons-
tige zugeordnet wurden.

40



Zudem empfehlen Kellermann (2011, S. 34) und Ambtihl (2003, S. 19) die Wahlbe-
rechtigten, die nicht oder ungiiltig gewéhlt haben, als zusatzliche Kategorie Nichtwdhler
zu betrachten. In dieser Arbeit wurde die neue Variable durch die Differenz zwischen
der Variable Summe Wahlberechtigte und Gultige Stimmen erzeugt. Eine grafische
Darstellung der wahlbezirkspezifischen amtlichen Ergebnisse, in der die Nichtwdhler
betrachtet werden, liegt im Anhang A.1.5 auf der Seite 90 fiir die Bundestagswahl
2013 (Abbildung A.5) und fiir die Oberbiirgermeisterwahl 2015 (Abbildung A.6) vor.

4.2.2 Bevoélkerungsianderung

Das zweite Problem erfasst die Verdnderung der Population zwischen zwei betrachteten
Wahlen, die durch Neuwahler, den Gestorbenen und den Umzug von Personen auftritt
(Ambiihl, 2003, S. 20; Kellermann, 2011, S. 34; Klima et al., 2015, S. 14 f.). Dadurch
wird die Annahme gleicher Population verletzt und der Populationsumfang N sowie
die Anzahl der Wahler fiir jeden Wahlbezirk N; werden bei der ersten und der zweiten
Wahl nicht identisch sein. Deshalb ist es unbedingt nétig, die Daten vor der Analyse
anzupassen.

Sind die Daten zur Bevolkerungsédnderung verfiigbar, dann lassen sich die
Verdnderungen als neue Kategorien im Modell betrachten, indem die noch nicht Wdhler
als zusitzliche Variable bei der ersten Wahl und nicht mehr Wihler bei der zweiten
Wahl betrachtet werden (Ambiihl, 2003, S. 20; Klima et al., 2015, S. 15). Die inneren
Zellen dieser Kategorien betragen 0 (siehe Tabelle 4.5), da keine Person, die nach der
ersten Wahl gestorben oder weggezogen ist, in der zweiten Wahl ein Neuwéhler oder

ein Zugezogener sein kann (Klima et al., 2015, S. 15).

2. WAHL
P1 P2 ... Gestorbene Weggezogene
5| =
é 2
Neuwéhler 0 0
Zugezogene 0 0

N;

Tabelle 4.5: 'Iabelle der Wahldaten mit zusédtzlichen Kategorien zur
Bevilkerungsanderung (iibernommen von Klima et al. (2015, S. 15) und ver-
allgemeinert).
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Bei der praktischen Umsetzung kommt es allerdings haufig vor, dass die Daten zur
Bevolkerungsanderung nicht verfiighar sind. Zwei Vorgehen sind in diesem Fall moglich.
Das erste wurde von Hawkes (1969, in: Kellermann, 2011, S. 35 f.) vorgeschlagen. Er
nimmt an, dass die Bevolkerungsédnderung keinen Einfluss auf das Wahlverhalten hat,
d.h. die neuen Wihler vergeben ihre Stimmen ahnlich wie nicht mehr Wdhler. Dem-
zufolge kann die Differenz geméafl der Stimmvergabe verteilt werden. Beispielsweise,
wenn bei der zweiten Wahl mehr wahlberechtigte Personen als bei der ersten vor-
handen sind, wird die Differenz zur ersten Wahl proportional zur Stimmvergabe bei
der zweiten Wahl zugerechnet (mehr zur Berechnung in Kellermann, 2011, S. 35 f.).
Die zweite Moglichkeit wére die Addition der Differenz von der Anzahl der Wahl-
berechtigten zwischen den beiden Wahlen und der Nichtwdihler Kategorie. Keine der
oben genannten Methoden ist anhand der Simulationsstudie von Klima et al. (2015)
beim Vorgehen mit der Bevolkerungsdnderung zu bevorzugen. Deshalb kommt hier
die unkomplizierte Methode zur Anwendung. Die Differenz zwischen der Summe der
Wahlberechtigten bei der Bundestagswahl (2013) und der Summe der Wahlberechtig-
ten bei der Oberbiirgermeisterwahl (2015) wurde zur Nichtwdhler Kategorie bei der
Bundestagswahl (2013) gerechnet.

4.2.3 Verdnderung der Wahlbezirke

Ein weiteres Problem verursacht die Verdnderung der Aufstellung von Wahlbezirken
zwischen zwei Wahlen, die durch die Vereinigung oder die Aufteilung der Bezirke ent-
stehen kann (Klima et al., 2015, S. 14). Da die Variable Wahlbezirk bei der Analyse
als Identitatsvariable betrachtet wird, ist es notwendig, die konstanten Gebiete vor der
Analyse zu definieren. Bei den hier betrachteten zwei Wahlen ist diese Veranderung
besonders stark ausgefallen. Fiir die Urnenwéahler wurden aus urspriinglich 150 Wahl-
bezirken aus der Bundestagswahl 2013 lediglich 96 bei der Oberbiirgermeisterwahl 2015
gebildet (siehe auch Tabelle 4.1). Eine Zuordnung der Strafien zu den Wahlbezirken ist
von dem Wahlbiiro der Stadt Mannheim (2016, personliche Kommunikation) fiir beide
Wahlen bekannt gegeben worden, woraus hergeleitet werden konnte, wie die Wahlbe-
zirke verknuipft worden sind. Eine Auflistung der Beziehungen zwischen umgeordneten
Bezirken ist im Anhang A.1.6 auf der Seite 91 zu finden. Uberall, wo ein Wahlbezirk
der Bundestagswahl 2013 so zugeschnitten ist, dass bei der Oberbiirgermeisterwahl

2015 einige Straflen einem und die iibrigen dem anderen Wahlbezirk zugeordnet sind,
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mussten alle auf einer Ebene aggregiert werden (alle grau gefarbten Wahlbezirke in
der Tabelle A.3). Dadurch konnten letztendlich nur 67 konstante Ebenen fiir die Iden-
titdtsvariable erstellt werden. Klima et al. (2015, 2016) betonen, dass in dieser Ma§-
nahme, die eine reduzierte Anzahl an Gebiete fiir die Analyse bereitstellt, eine weitere
Fehlerquelle vorliegt, denn damit reduziert sich auch der Informationsumfang. Ihre Si-
mulationsstudie zeigt, dass die Anzahl der Wahlbezirke einen bedeutenden Einfluss auf

die Schitzung hat (Klima et al., 2015, S. 18).

4.2.4 Briefwihler

Jeder Wahlberechtigte hat die Moglichkeit, einen Wahlschein zu beantragen, um seine
Stimme per Briefwahl zu vergeben. Diese Moglichkeit erzeugt aus zwei Griinde einen
zusétzlichen Ursprung fiir Komplikationen bei der Datenaufbereitung. Erstens, das
Wahlverhalten der Briefwéahler unterscheidet sich in der Regel von dem Wahlverhal-
ten der Urnenwéhler. Aus diesem Grund diirfen die Briefwahler bei der Analyse nicht
ignoriert werden, was iibrigens die Simulationsstudie von Klima et al. (2015) bestétigt.
Denn das Ausschlielen der Briefwéahler fithrt bei allen Modellen zu schlechteren Ergeb-
nissen. Zweitens, die Ergebnisse der Briefwahler werden in spezifischen postalischen
Wahlbezirken dargestellt, die iiblicherweise nicht identisch mit den Wahlbezirken bei
der Urnenwahl sind. Das bedeutet, dass zusatzliche Berechnungen notwendig sind, um
Briefwahler in die Analyse einzuschliefen. Die Simulationsstudie zeigt hierbei, dass
die Schétzung desto genauer wird, je praziser die Aufteilung gemacht werden konnte.
(Klima et al., 2015, S. 15 f., 20 ff.)

Die Dbetrachteten Datensidtze in dieser Arbeit enthalten die Varia-
ble Wahlb. mit_Wahlschein, die fiir jeden Wahlbezirk die Anzahl der Wahlbe-
rechtigten angibt, die einen Wahlschein beantragt haben. Diese Variable kann zur
einigermaflen zuverldssigen Gewichtung bei der Addition der Briefwahler dienen, da
die Wahlbeteiligung der Wahlberechtigten mit Wahlschein in der Regel sehr hoch ist
(Klima et al., 2015, S. 15 f.). Im Hinblick auf die Tatsache, dass die Anzahl und
die Bezeichnung der Stadtbezirke bei den Brief- und Urnenwéhlern iibereinstimmen,
kann der Anteil der Wahlberechtigten mit Wahlschein fiir jeden Wahlbezirk nach dem
dazugehorigen Stadtbezirk berechnet werden. Dabei betrigt die Summe aller berech-
neten Anteile innerhalb eines Stadtbezirkes eins. Diese Anteile konnen weiterhin mit

der Summe der Briefwéhler je nach Stadtbezirk multipliziert werden, um die Anzahl
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der Briefwahler separat pro Wahlbezirk zu bekommen. Letztendlich lésst sich die
gewichtete Anzahl der Briefwéhler zu den Urnenwéahler addieren. Die damit erzeugten
Dezimalziffern miissen noch in ganze Zahlen umgeformt werden. Durch die Rundung
tritt jedoch ein Fehler auf, sprich in einigen Zellen zeigt sich eine Abweichung von
ein bis zwei Stimmen. Da die wahren Randsummen je Stadtbezirk bekannt gegeben
wurden, konnen diese zur Uberpriifung und zur Korrektur des Rundungsfehlers
verwendet werden. Die wahren spaltenweisen Randsummen lassen sich diesbeziiglich
durch das Aggregieren aller (nicht gewichteten) Brief- und Urnenwéhler je Stadtbezirk
berechnen. Da die Nichtwdhler bei der Berechnung betrachtet werden, entspricht
die Variable Summe Wahlberechtigten den wahren zeilenweisen Randsummen. Das
Vorgehen bei der Korrektur ist, zuerst die ganzen Zahlen so zu generieren, dass alle
Nachkommastellen weggeworfen werden. Danach wird ein Vektor mit den Ordnungs-
nummern der verworfenen Reste erzeugt. Dieser Vektor dient dazu, eine Stimme
zuerst an der Stelle einzufiigen, wo der grofite Dezimalrest vorliegt, falls bei dieser
Zelle die gewichteten Zeilen- und Spaltensummen mit den wahren Randsummen nicht
iibereinstimmen. Alle Werte, die noch addiert werden miissen um die Randsummen
anzupassen, werden einer Nullmatrix zugeordnet, die letztendlich zum gewichteten
Datensatz addiert wird. Dieser Prozess wiederholt sich so lang, bis alle Randsummen
angepasst wurden.

Im Anhang A.1.7 auf der Seite 92 befindet sich eine Darstellung der Differenzen
zwischen den Brief- und den Urnenwéhlern der beiden betrachteten Wahlen. In der Ab-
bildung A.7 werden hierbei die Differenzen ohne die Kategorie Nichtwdhler betrachtet
und in der Abbildung A.8 ist diese Kategorie beriicksichtigt. Der Programmcode zur
Berechnung des gewichteten Datensatzes in R (R Core Team, 2015) wurde auf einem
reduzierten Beispieldatensatz simuliert, der die amtlichen Ergebnisse der ersten zwei
Wahlbezirke der Oberbiirgermeisterwahl 2015 beinhaltet. Diese Simulation ist wegen
des Umfangs im elektronischer Anhang E dargelegt.

4.2.5 Die Endform der Aggregat- und Individualdaten

Vor der Darstellung der Ergebnisse im Kapitel 6 wird im Kapitel 5 beschrieben, wie die
Analyse anhand der betrachteten Modellen in R (R Core Team, 2015) jeweils mit und
ohne Individualdaten durchgefiihrt werden kann. Beim letzten Schritt der Datenaufbe-

reitung miussen die Daten in eine Form gebracht werden, die fiir die Analyse im eiwild
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Paket von Schlesinger (2014) oder im RxCEcolInf Paket von Greiner et al. (2013) ge-
eignet ist. Wahrend sich das geforderte Format der Individualdaten unterscheidet, wird

hingegen die Form der Aggregatdaten in beiden Paketen gleichartig definiert.

WBZ P1 P2 e NW_13 K1 K2 e NW_15
1 Xﬂ1 X§,1 e X%,l Yfl Yzal U Yg,l
2 Xip  X3o e Xpo Yo Yo e Yéo
67 Xf,ﬁ? Xél,m T X}%,e’? Yff67 Y2tf67 e Y(?,67

Tabelle 4.6: Die Endform der Aggregatdaten zwischen einer Bundestagswahl und
einer Oberbiirgermeisterwahl fiir 67 Wahlbezirke.

WGB P1K1 Pl1K2 --- P1.NW.15 P2K1 ... ... NW_13.NW_15
5 n ni, T n?c ng; o “SRC
18 nit nis oo nie nyi e nhe
T I T R S it
31 nii niy - nit nyy e nHe
TR T T e

Tabelle 4.7: Die Endform der Individualdaten zwischen einer Bundestagswahl und
einer Oberbiirgermeisterwahl fiir 5 fiktive Wahlbezirke beim Multinomial-Dirichlet-
Hybridmodell im eiwild Paket (Schlesinger, 2014).

Wie die Endform der Aggregatdaten zwischen einer Bundestagswahl und einer
Oberbiirgermeisterwahl fiir 67 Wahlbezirke gestaltet werden soll, zeigt die Beispielta-
belle 4.6. Die beiden betrachteten Datensatze der amtlichen Ergebnisse werden anhand
der vorher erzeugten konstanten Ebenen der Identitatsvariable vereinigt. Die Ergebnis-
se der ersten Wahl (X{;,---, X% ;) und der zweiten Wahl (Y/%;,---,Y{§,) werden somit
fiir jeden Wahlbezirk ¢ in einem Datensatz mit insgesamt 67 beziehungsweise p Zei-
len gespeichert. In der Tabelle 4.6 bezeichnen die Abktirzungen WBZ, P, K und NW
den Wahlbezirk, die Partei, den Kandidaten und die Nichtwdhler. Die gleich genann-
ten Variablen beider Wahlen bekommen einen Suffix mit dem Jahr der dazugehorigen
Wahl zur Differenzierung. Bei einer Wéhlerwanderungsanalyse zwischen zwei gleichar-
tigen Wahlen, zum Beispiel zweier Bundestagswahlen, sollen alle gleichen Parteien mit
einem Suffix bezeichnet werden.

Bei den Hybridmodellen werden die absoluten inneren Zellen der Kreuztabelle von
den Individualdaten je beobachteten Wahlbezirk in einer Zeile erfasst. Die Zeilenan-

zahl des Datensatzes fiir die Analyse im eiwild Paket (Schlesinger, 2014, S. 10) ist
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identisch zur Anzahl der betrachteten Wahlbezirke bei der Nachwahlbefragung. Eine
Darstellung von fiinf fiktiven Wahlbezirke befindet sich in der Tabelle 4.7. Fir die
Analyse im RxCEcolInf Paket (Greiner et al., 2013, S. 12 f.) miissen hingegen die
Individualdaten in eine Matrix umgeformt werden. Die Zeilenanzahl dieser Matrix ist
gleich der Anzahl der Wahlbezirke bei den Aggregatdaten. An der Stelle wo keine In-
dividualdaten vorhanden sind, werden zeilenweise Nullvektoren eingefiigt, sodass jede
Zeile dieser Matrix den jeweiligen Zeilen in den Aggregatdaten entspricht. Die Spalten-
namen besitzen zusitzlich einen Prifix ,KK.“2. Analog zum Beispiel in der Tabelle 4.7

wird eine Mustermatrix in der Abbildung 4.8 hergestellt.

KK.P1. K1 KK.P1.K2 --- KK.PINW15 KK.P2.K1 --- ... KK.NW_13 T
NW 15
[1] 0 0 0 o ... 0
[2] 0 0 0 0 e 0
[3] 0 0 0 0 e 0
[4] 0 0 0 o ... 0
[5] n?l ”?2 ”‘?c ”gl """ ”%C
(6] 0 0 0 0 e ... 0
[17] 0 0O - 0 0 e e 0
[18] niy ni oo nig 05 R nhe
[19] 0 0 .- 0 0 e 0
[23] 0 0 0 e ... 0
24 o i i e
[25] 0 0 0 .. 0
[29] 0 0 o ... 0
[31] nii nts o nit n3p e nhe
[32] 0 0 0 o ... 0
[63] 0 0 0 0o - 0
[64] ni nts o nie ngi e e
[65] 0 0 . 0 0 e ... 0
[66] 0 0 . 0 0 e ... 0
L [67] 0 0 . 0 0 e 0 |

Abbildung 4.8: Die Matrix-Endform der Individualdaten zwischen einer Bundestags-
wahl und einer Oberbiirgermeisterwahl fiir 5 fiktive Wahlbezirke beim Multinomial-
Log-Normal-Hybridmodell im RxCEcolInf Paket (Greiner et al., 2013).

2Greiner und Quinn (2009, S. 78) bezeichnen die beobachtete Anzahl der inneren Zellen der Kreuz-
tabelle mit K¢,
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5 Praktische Anwendung der Modelle in r

5.1 Multinomial-Dirichlet-Modell

Fiir die Analyse anhand des Multinomial-Dirichlet-Modells von Rosen et al. (2001)
sind zwei Zusatzpakete in R verfugbar, das eiPack Paket von Lau et al. (2012) und das
eiwild Paket von Schlesinger (2014). Da das Paket von Schlesinger die Kombination
der Individual- und Aggregatdaten ermoglicht (siehe Unterabschnitt 3.3.2 des Kapi-
tels 3), werden die Ubergangswahrscheinlichkeiten in dieser Arbeit mithilfe von seinem
Paket erzeugt.

Im eiwild Paket lésst sich die Analyse mittels der Funktion

indAggEi (form, aggr, indi= , IDCols=c("ID"),
whichPriori="gamma", prioriPars=1list(shape=4, rate=2),
startValsAlpha= , startValsBeta= s

betaVars= , alphaVars= s

Tt = W N =

sample, burnin=0, thinning=1, verbose=1, ...)

durchfiihren. Die grau gefiarbten Befehle werden bei der Analyse mit ihren Defaultwert
verwendet. Mit dem Befehl whichPriori ist es alternativ moglich, die Exponential-
Hyperpriori-Verteilung zu wahlen und mit startValsAlpha und startValsBeta lassen
sich in einer Matrixform die Startwerte fiir & und S festlegen. Bei dem Defaultwert NULL
werden die Startwerte zuféllig aus den entsprechenden Verteilungen gezogen. (Schle-

singer, 2014, S. 9)

5.1.1 Die Datensatze

Durch den aggr und indi Befehle gibt man die Datensétze an, wobei fiir die Ana-
lyse ohne Individualdaten beim Argument indi der Defaultwert NULL unverindert
bleiben soll. Der Name der Identitétsvariable kann durch den Befehl IDCols definiert
werden, wenn diese anders als ,ID“ genannt wird. Fur die Analyse mit Individual-
daten muss zusétzlich die Identitdtsvariable des Individualdatensatzes angefiigt wer-
den, sodass der eingegebene Vektor der Lange zwei die entsprechenden Namen der

beiden Identitdtsvariablen enthéalt. Im Unterabschnitt 4.2.5 des Kapitels 4 wurde be-
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reits beschrieben, in welcher Form die Datensétze vorliegen miissen, um die Analyse
durchfithren zu konnen. Als Beispiel hat der Autor ein Datenset integriert, der durch
data(topleveldat) abrufbar ist. Dieser umfasst zwei Musterdatensétze. Die beiden,
aggr und indi, Datensétze sind in einer reduzierten Form in der Abbildung 5.1 dar-
gestellt. Neben der Eingabe der Daten muss noch das Verhéltnis der Ergebnisse der
zweiten Wahl zu den Ergebnissen der ersten Wahl durch eine Formel definiert werden.
Fir die Datensétze aus der Abbildung 5.1 kann diese beispielsweise durch

Form <- cbind(CSU_2, SPD_2, LINK_2, GRUN_2) ~ cbind(CSU_1, SPD_1, Link_ 1) 6

festgelegt werden. (Schlesinger, 2014, S. 9 ff.; 2013, S. 38)

Beispieldatensatz der Aggregatdaten (aggr)

ID CSU1 SPD 1 Link 1 CSU 2 SPD 2 LINK 2 GRUN 2

1 1 2327 1447 194 1925 1015 274 754
2 2 883 674 78 742 405 129 359
3 3 8867 5946 684 7349 3855 1191 3102
Beispieldatensatz der Individualdaten (indi)
ID CSU_1.CSU_2 CSU_1.SPD_2 CSU_1.LINK_2 CSU_1.GRUN_2 ... Link_1.GRUN_2
1 13 11 56 26 22 500 30
2 18 37 39 59 56 50a 5
3 5 16 55 41 61 500 20

Abbildung 5.1: Beispieldatensédtze der Individual- und Aggregatdaten aus dem
eiwild Paket (Schlesinger, 2014, S. 19).

5.1.2 Sample, Burn-In und Thinning

Die gewtinschte Stichprobengroflie der Kette kann mit dem Befehl sample eingefiigt wer-
den. Diese entspricht der Anzahl an Ziehungen, die nach dem Burn-In und Thinning
gespeichert werden soll. Die gesamte Anzahl der durchgefiihrten Iterationen im eiwild
Paket ist gleich dem eingegebenen burnin Wert addiert zum Produkt von sample und
thinning. Mit den Defaultwerten thinning = 1 und burnin = 0 ist somit sample
identisch zur gesamten Anzahl der Iterationen. Der Befehl verbose erlaubt das Mo-
nitoring wahrend des Prozesses, indem, abhéngig vom eingegebenem Wert, auf dem
Bildschirm angezeigt wird, wie viele Tterationen bereits durchgefiihrt wurden. (Schle-

singer, 2014, S. 9)
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5.1.3 Varianz und Akzeptanzwahrscheinlichkeit

Die Befehle betaVars und alphaVars ermoglichen, die Varianzen der Vorschlagsdich-
ten von § und « im Voraus festzulegen. Diese beeinflussen die Akzeptanzwahrschein-
lichkeit, welche durch kleine Varianzen zu hoch werden kann und umgekehrt. Bei der
kleinen Varianz und hohen Akzeptanzwahrscheinlichkeit macht die Markov-Kette viele
kleine Schritte und erfasst damit nicht den ganzen Wertebereich. Hingegen wird bei
der hohen Varianz und niedriger Akzeptanzwahrscheinlichkeit der breitere Wertebe-
reich berticksichtigt, wihrenddessen die neuen Werte zu oft abgelehnt werden. Dadurch
kann sich die Kette bei einem Wert zu lang halten. (Schlesinger, 2013, S. 43)

Um diese Umsténde zu vermeiden, empfiehlt Schlesinger (2013) mithilfe der Funk-
tion

tuneVars(form, aggr, indi= , IDCols=c("ID"),
whichPriori="gamma", prioriPars=1list(shape=4, rate=2),

accRat=c(0.4, 0.6), minProp=0.7, maxiter=20, sample=10000,

verbose=10000, verboseTune= , improv= s 10
betaVars= , alphaVars= s 11
startValsAlpha= , startValsBeta= y ees) 12

vor der Analyse die optimalen Varianzen zu finden. Alle Befehle bis auf sample und
verbose, die identisch wie bei der indAggEi () Funktion sind, sollen hier in gleicher
Weise definiert werden. Der Stichprobenumfang wurde hingegen bei der tuneVars()
Funktion von dem Autor durch sample auf den Defaultwert von 10000 gesetzt und
muss nicht nach der Maigabe des Stichprobenumfangs bei der indAggEi () bestimmt
werden. Hierzu ist verbose beliebig zu wahlen. Die tuneVars() Funktion hat noch
zusétzlich fiinf spezifische Befehle. Der Befehl accRat gibt den Bereich ein, in dem sich
die Akzeptanzraten befinden sollen und minProp legt den Anteil der Parameter fest,
die sich in diesem Bereich befinden sollen. Eine Stichprobe wird demnach entweder so
lang wieder gezogen, bis das vorgegebene minProp erreicht wurde, oder bis zum Durch-
lauf aller Iterationen, deren Anzahl durch maxiter bestimmt wird. Fiir die Analyse in
dieser Arbeit wird minProp auf 0.8 und maxiter auf 50 gesetzt. Zur Beschreibung der
restlichen Befehle siche die Literaturangabe. Nachdem der durch die tuneVars() er-
zeugte Output als Objekt gespeichert wurde, beispielsweise unter dem Name tune,
konnen letztendlich die optimierten Varianzen mit betaVars=tune[["betaVars"]]
und alphaVars=tune[["alphaVars"]] ins Modell integriert werden. (Schlesinger,

2014, S. 9; Schlesinger, 2013, S. 44 f.)
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5.1.4 Hyperpriori-Parameter und Priori-Wissen

Nach der Untersuchung des Einflusses der Gamma-Hyperpriori-Verteilung von .. auf
die Dirichlet-Priori-Verteilung von /., nimmt Schlesinger (2013) fiir die Hyperpriori-
Parameter die Defaultwerte Gamma(A; = 4, A\ = 2) aus dem eiPack Paket (Lau et
al., 2012). Diese Wahl ermoglicht einen moglichst breiten Wertebereich fiir die Ziehun-
gen von f3%, (Schlesinger, 2013, S. 55). Dennoch warnt der Autor, dass die Bestimmung
einer vollstdndig nichtinformativen Priori-Verteilung fiir die Félle mit C' > 2 nicht
moglich ist. Fiir die Schitzung der Ubergangswahrscheinlichkeiten der Loyalen ist bei
der Wahlerwanderungsanalyse vor allem problematisch, dass bei mehreren betrachteten
Parteien der zweiten Wahl hohe Werte von 3¢, selten gezogen werden (Schlesinger, 2013;
Klima et al., 2016). Gemaf Klima et al. (2016) wird dieser Effekt mit der Zunahme der
betrachteten Parteien noch stérker. Die Ergdnzung des Multinomial-Dirichlet-Modells
im eiwild Paket (Schlesinger, 2014) ermoglicht die Hyperpriori-Parameter zellspezi-
fisch zu definieren. Dadurch ldsst sich Vorwissen ins Modell integrieren, respektive
die informative Priori wird eingesetzt, um einen héheren Bereich fiir die Loyalen zu
erzielen. Falls bekannt ist, dass einige Parteien eine hohe Unterstiitzung bekommen,
erwarten Klima et al. (2016, S. 10) einen sinnvollen Verteilungsbereich zwischen 0.6
und 1 fiir die Loyalen. Anhand von Simulationsstudien berichten sie, dass eine Ver-
besserung der Schatzung durch eine informative Priori erzielt werden kann, wenn die
Anzahl an Wahlbezirken oder Wahlkreisen niedrig ist.
Mithilfe der Funktion

prioriPlot(pars, which, cols, alphaSample=10000, betaSample=300, plot= ) 13

kann im eiwild Paket der Einfluss der Hyperpriori-Verteilung von a,.. auf die Priori-
Verteilung von 3¢, grafisch dargestellt und untersucht werden. Die Funktion fiihrt zuerst
eine Simulation durch, um «,1,...,a.c aus Hyperpriori-Verteilung und S¢,..., 8%
aus Dir(ay1, ..., a;¢) zu zichen. Falls nicht anders definiert, werden 10 000 Iterationen
(alphaSample) durchgefithrt und bei jeder Iteration werden (3¢, ..., 3!, (betaSample)
300 mal gezogen. Damit werden letztendlich alphaSample X betaSample Ziehungen
von [, gespeichert und grafisch dargestellt. Nach der visuellen Untersuchung lassen
sich Hyperpriori-Parameter A; und A\, durch den Befehl prioriPars in Funktionen
indAggEi () und tuneVars() zellspezifisch definieren. Fiir die Datensétze aus der Ab-

bildung 5.1 kénnen beispielsweise mit einer Liste, die zwei Matrizen enthalt, die Para-
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meter wie folgt bestimmt werden:

PrioriPars <- list(shape =matrix(c(30, 4, 4, 4, 14
4, 30, 4, 4, 15

4, 4, 30, 4), nrow=3, ncol=4, byrow= ), 16

rate =matrix(c(1, 2, 2, 2, 17

2,1, 2, 2, 18

2, 2, 1, 2), nrow=3, ncol=4, byrow= )) 19

Die Parameter A\7¢ und A\}° werden durch die Befehle shape und rate definiert. (Schle-

singer, 2014, S. 11, 14; Schlesinger, 2013, S. 51 f.)

Einfluss der Hyperpriori-Parameter auf die Verteilung von Birc

Gamma(i = 4, A, = 2) Gamma(i =4, A, = 2)
2 Spalten 5 Spalten
150000 - 4e+05 -
=
e 3e+05 -
=2 g
» 100000
5 2e+05 -
:ZCE“ 50000 -
1e+05 -
0- 0e+00 -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Bre

Abbildung 5.2: Einfluss der Defaultwerte der Hyperpriori-Parameter Gamma(A; =
4, Ny = 2), auf die Verteilung von (3¢, im eiwild Paket bei zwei Spalten (links) und
bei fiinf Spalten (rechts).

Die Grafiken der Priori-Verteilung sind in dieser Arbeit mit dem ggplot2 Paket
(Wickham, 2009) hergestellt worden, wobei die Ziehungen mithilfe der prioriPlot ()
Funktion erzeugt wurden, um einen Datensatz fiir die ggplot2 Grafik zu erstellen. In
der Abbildung 5.2 ist ein Vergleich der Félle C' = 2 und C' = 5 Spalten mit Defaultwer-
te Gamma(A\ = 4, Ay = 2) dargestellt. Da die gezogenen Verteilungen fiir jede Spalte ¢
und fiir eine beliebige Anzahl der Zeilen R gleich sind, wird in der Abbildung 5.2 ledig-
lich eine Grafik fiir den Fall mit zwei Spalten (links) und eine Grafik fiir den Fall mit fiinf
Spalten (rechts) dargestellt. Die Anzahl der Zeilen R hat aufgrund der zeilenweisen Ver-
teilungsannahme keinen Einfluss auf die Verteilung von /3¢, (Schlesinger, 2013, S. 52).
Die Grafik bestétigt, dass fiir C' = 2 mit den Defaultwerten der Hyperpriori-Parameter
eine gleichméfige, nichtinformative Priori-Verteilung erzeugt wird. Die rechtsschiefe
Verteilung fiir C' = 5 zeigt, dass die Werte iiber 0.6 kaum gezogen werden. Die betrach-

teten Datensétze bestehen insgesamt aus fiinf Kategorien fiir die zweite Wahl. Aufgrund
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der geringen Anzahl an Wahlbezirken und hohen Anzahl an Kategorien kénnten die
Loyalen unterschatzt werden. Weiterhin wird in der Abbildung 5.3 visuell untersucht,
ob fir C' =5 die Werte von Gamma(A; = 30, Ay = 1) und Gamm(A; = 30, \y = 2)
fiir die Loyalen (links) die Verteilung von !, verbessern kénnen. Fiir die anderen vier
Spalten (rechts) sind dabei die Defaultwerte Gammma(\; = 4, Ay = 2) verwendet wor-
den. Mittels der prioriPlot () Funktion wird fiir zellspezifisch definierte Parameter,
fiir jede Spalte getrennt, eine Grafik erzeugt. Hier sind die gleichen Spalten ¢ = 2,3,4,5
wiederum in einer Grafik dargestellt. Eine Verbesserung des Verteilungsbereiches fiir
die Loyalen und ein schmalerer Wertebereich fiir die anderen zeigt sich in beiden Fallen.
Der Bereich zwischen 0.6 und 1, der von Klima et al. (2016) empfohlen wurde, wird
durch die Werte Gamma(A; = 30, Ao = 1) annéhernd erreicht. Eine Mehrheit der ge-
zogenen Werte liegt dabei zwischen 0.7 und 0.9. Ein etwas breiterer Bereich ergibt sich
durch Gamma(\; = 30, Ay = 2), wobei grotenteils die Werte zwischen 0.5 und 0.8

gezogen werden.

Einfluss der Hyperpriori-Parameter auf die Verteilung von Birc

Gamma(A4 = 30, A, = 1) Gamma(Ay =4, Ay = 2)
f=il,@=1 r=1,c=2,3,45
6e+05 - 1.5e+06 -
4e+05 - 1.0e+06 -
2e+05 - 5.0e+05 -
0e+00 - 1 1 1 1 1 1 0.0e+00 - 1 1 1 1 1 1
.% 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X~
2 Gamma(A = 30, A, = 2) Gamma(Ay =4, A, = 2)
>
o r=1,c=1 r=1,c=2,345
5e+05 -
4e+05 - 9e+05 -
3e+05 -
6e+05 -
2e+05 -
16+05 - S
0e+00 i 1 1 1 1 1 1 0e+00 i 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

BFC

Abbildung 5.3: Einfluss der Hyperpriori-Parameter auf die Verteilung von [,
bei einer Zeile und fiinf Spalten im eiwild Paket. Oben: Hyperpriori-Parameter
Gamma(A; = 30,y = 1) (links) fiir eine Zelle und Defaultwerte fiir die iibrigen
Vier (rechts). Unten: Hyperpriori-Parameter Gamma(A; = 30, \y = 2) (links) fiir
eine Zelle und Defaultwerte fiir die iibrigen Vier (rechts).
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5.2 Multinomial-Log-Normal-Modell

Fiir die Wahlerwanderungsanalyse anhand des Multinomial-Log-Normal-Modells wer-
den im RxCEcolInf Paket von Greiner et al. (2013) zwei verschiedene Funktionen fiir
die Analyse mit und ohne Individualdaten verwendet. Demzufolge kann die 6kologische

Inferenz mithilfe der Funktion

Analyze(fstring, rho.vec, data = s 20
num.iters=1e+06, save.every =1000, burnin =10000, 21
mu.vec.0=rep(log((0.45/(mu.dim -1))/0.55), mu.dim), 22
kappa=10, nu =(mu.dim+6), psi =mu.dim, 23
mu.vec.cu=runif (mu.dim, -3, O0), NNs.start = s 24
THETAS . start= s e 25
print.every=10000) 26

durchgefiithrt werden. Die Funktion fiir die Analyse mit Individualdaten

AnalyzeWithExitPoll(fstring, rho.vec, exitpoll, data = s 27
num.iters=1e+06, save.every =1000, burnin =10000, 28

.., MMs.start= Y e 29

print.every=10000) 30

unterscheidet sich grundsétzlich nur in der Bezeichnung und in ein paar Befehle. Dem-
nach beziehen sich die folgenden Beschreibungen auf die beiden Funktionen, falls nicht
anders angegeben. Die Befehle mu.vec. cu, NNs.start und THETAS. start ermoglichen,
in der gleichen Abfolge, die Startwerte fiir den Vektor p, fiir die absoluten Haufigkeiten
der inneren Zellen N!, und fiir die Wahrscheinlichkeiten der inneren Zellen 6, zu be-
stimmen. Bei dem Hybridmodell lassen sich zusétzlich durch MMs . start die Startwerte
fiir die unbeobachteten Werte, das heifit fiir die Differenzen N/, — n!_, bestimmen.

Die Autoren empfehlen die Verwendung der Defaultwerte, wobei Startwerte zuféllig

gezogen werden. (Greiner et al., 2013, S. 3 ., 10 ff.)

5.2.1 Die Datensatze

Die Eingabe der Daten erfolgt durch den Befehl data fiir die Aggregatdaten und
exitpoll fiir die Individualdaten. Die Ergebnisse der Nachwahlbefragung miissen
hierfiir in einer bestimmten Form vorliegen. Die Endform wurde bereits im Unterab-
schnitt 4.2.5 des Kapitels 4 beschrieben und in der Abbildung 4.8 dargestellt. Zusétzlich
werden in der Abbildung 5.4 die Daten, die im RxCEcolInf Paket simuliert wurden,

in einer reduzierten Form présentiert. Die Beispieldaten lassen sich durch die Funktion
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SimData <- gendata.ep() generieren und mit dem Befehl SimData$GQdata fiir die
Aggregatdaten oder SimData$EPInv$returnmat.ep fiir die Individualdaten abrufen
(Greiner et al., 2013, S. 20). Die Identitétsvariable ist im RxCEcolInf Paket nicht von
Relevanz, da die Zeilen der Individualdaten und deren Reihenfolge an die Zeilen der

Aggregatdaten angepasst werden miissen.

Simulierte Aggregatdaten (SimData$GQdata)

bla whi his Dem Rep Abs

precinctl 279 723 36 170 201 667
precinct2 2 15 1016 155 211 667
precinct3 123 262 630 76 249 690
precinct4 105 69 849 231 255 537
precinctb 1 348 697 92 210 744
precinct6 17 1 1022 171 127 742
precinct? 64 920 7 69 190 732
precinct8 186 827 0 112 340 561
precinct9 546 400 82 284 81 663
precinctl10 384 622 9 133 328 554

Simulierte Individualdaten (SimData$EPInv$returnmat.ep)

KK.bla.Dem KK.bla.Rep KK.bla.Abs KK.whi.Dem ... KK.his.Abs
(1, 1] 0 0 0 0
2, 1
(3, 1
4, 1]
(5, 1
(6, 1
7, 1
(8, 1
(9, 1
(10, ]

-
O W OO O O O O O

O WO OO OO oo
N

O R, OO OO O OO

O 01 O O O O O O O

O N OO OO O O O O

Abbildung 5.4: Eine verkiirzte Darstellung der simulierten Beispieldatensédtze aus
dem RxCEcolInf Paket (Greiner et al., 2013, S. 20).

Das Verhaltnis zwischen den Parteien oder den Kandidaten der ersten und der zwei-
ten Wahl wird durch den Befehl fstring eingegeben. Fiir die simulierten Datensétze
in der Abbildung 5.4 lédsst sich diese beispielsweise durch

Fstring <- "Dem, Rep, Abs ~ bla, whi, his" 31

bestimmen (Greiner et al., 2013, S. 14). Die Reihenfolge der eingegebenen Parteien oder
Kandidaten spielt hierbei eine wesentliche Rolle, da die letzte Spalte als Referenzkate-
gorie automatisch gewéhlt wird (Greiner et al., 2013, S. 6). Das heif3t, man kann durch
Verdnderung der Reihenfolge eine andere Spalte als Referenzkategorie bestimmen. Es
lohnt sich ferner hinzuweisen, dass bei der Eingabe kein zusétzlicher Abstand auftreten

darf. Wird in einem String Character in R ein Zeilenbruch vorgenommen, so wird auto-
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matisch \n eingefiigt. Das heifit, die Formel muss innerhalb der Anfithrungszeichen in
einer Zeile eingegeben werden. Im Fall von groflen R und C' kann das unpraktisch sein
und zur Untibersichtlichkeit des Codes fithren. Alternativ lasst sich die Formel in meh-
reren Zeilen eintragen und im Nachhinein korrigieren. Beispielsweise konnen mittels
der Funktion

str_replace_all(Fstring, "\n", "") 32

aus dem stringr Paket (Wickham, 2015b) die Abstdnde aus dem gespeichertem String
Objekt geloscht werden. Greiner et al. (2013) thematisieren diese Problematik bei der
Beschreibung des Paketes nicht. Sie stellen sogar einige Beispiele dar, deren Formeln

in zwei Zeilen geschrieben sind (Greiner et al., 2013, S. 2 f., 9) und somit den Fehler

Error in ‘colnames<- ‘(‘xtmp*‘, value =c("Bosley", "Roberts", "Ribaudo",
length of ’dimnames’ [2] not equal to array extent

erzeugen.

5.2.2 Sample, Burn-In und Thinning

Mit dem Befehl num. iters wird im RxCEcolInf Paket die Anzahl aller Iterationen defi-
niert. Thinning kann durch save.every und Burn-In durch burnin bestimmt werden.
Dabei muss die Anzahl der Iterationen nach dem Burn-In (num.iters-burnin) durch
den Wert von Thinning (save.every) teilbar sein. Die endgiiltige Stichprobengrofie
oder Sample lasst sich schliefllich durch (num.iters-burnin)/save.every berechnen.
Die Defaultwerte num.iters = 1000000, save.every = 1000 und burnin = 10000
liefern somit eine Stichprobe der Grofie 990. Mit dem Befehl print.every kann be-
stimmt werden, wie viele Iterationen des Prozesses auf dem Bildschirm gezeigt werden.

(Greiner et al., 2013, S. 4 f., 9)

5.2.3 Varianz und Akzeptanzwahrscheinlichkeit

Fiir die 6kologische Inferenz wird mittels der Funktion

Tune (fstring, data= 5 33
num.runs=12, num.iters=10000, 34
rho.vec=rep(0.05, ntables), 35
kappa=10, nu=(mu.dim+6), psi=mu.dim, 36
mu.vec.0=rep(log((.45/(mu.dim-1))/.55), mu.dim), 37
mu.vec.cu=runif (mu.dim, -3, 0), ...) 38

und fiir das Hybridmodell mittels der Funktion
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TuneWithExitPoll(fstring, exitpoll, data = , num.runs=12, 39

num.iters=10000, rho.vec =rep(0.05, ntables), ...) 40
ein Vektor generiert, der mit der Kovarianzmatrix > multipliziert werden kann, um die
Akzeptanzwahrscheinlichkeiten zu optimieren. Die Eingabe von fstring, data und
exitpoll erfolgt analog zur Funktion Analyse() oder AnalyseWithExitPoll(). Der
Befehl num.runs gibt die Anzahl der Wiederholungen an und der Befehl num.iters
bestimmt die Anzahl der Iterationen. Fiir die Analyse in dieser Arbeit wird num.runs
auf 50 Wiederholungen gesetzt und die vorgegebene Anzahl der Iterationen von 10 000
wird verwendet. In die Funktion Tune () oder TuneWithExitPoll() lassen sich durch
rho.vec die Startwerte dieses Vektors bestimmen. Diese werden dann mittels der Funk-
tion angepasst, um die Akzeptanzwahrscheinlichkeiten zwischen 0.2 und 0.5 fiir die
Ziehungen von 6!, zu erlangen. Ist der Output der Funktion beispielsweise unter dem
Namen Tune_LN gespeichert, so ldsst sich der optimierte Vektor durch die Eingabe von
rho.vec = Tune_LN$rhos in die Funktion Analyse() oder AnalyseWithExitPoll()
integrieren. (Greiner et al., 2013, S. 22, 25)

5.2.4 Hyperpriori-Parameter

Greiner et al. (2013) ermoglichen dem Benutzer die vorbestimmten Hyperpriori-
Parameter bei der Analyse und bei der Varianzanpassung (Tuning) zu &ndern.
Das Einbeziehen des Vorwissens durch zellspezifische Bestimmung ist dennoch nicht
moglich. Deswegen werden bei der Analyse anhand des Multinomial-Log-Normal-
Modells die Defaultwerte akzeptiert. Fiir die Normal-Hyperpriori-Verteilung von dem
Priori-Parameter p bestimmt der skalare Wert kappa = 10 (k) die Diagonale der Ko-
varianzmatrix und der Vektor mu.vec.0 = rep(log((0.45/(mu.dim - 1))/0.55),
mu.dim) (uo) die Mittelwerte. Fiir die Inverse-Wishart-Hyperpriori-Verteilung von dem
Priori-Parameter > werden die Freiheitsgrade mit nu = (mu.dim + 6) (1) und die

Diagonale der Matrixparameter durch den skalaren Wert psi = mu.dim (¢)) definiert.
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6 Ergebnisse

In diesem Kapitel erfolgt die Konvergenzdiagnose der erzeugten Ketten, Vergleich
der Ketten und Modelle und letztendlich die Darstellung der Ergebnisse eines gewéhlten
Modells. Die Ketten der beiden betrachteten Modelle werden zuerst mit zehn Millio-
nen Iterationen fiir jede Version des Modells berechnet. Damit kann untersucht wer-
den, ob das Modell konvergiert und welches Thinning und Burn-In fiir ein Sample
von 1000 Ziehungen geeignet ist. Dem Grunde nach werden danach fiir jedes Modell
drei verdiinnte Ketten erzeugt. Deren Vergleich soll erkennen lassen, ob bei mehre-
ren Durchfiihrungen die gleichen Ergebnisse erzeugt werden. Die Giite eines Modells
lasst sich nicht iiberpriifen, da die wahren Ubergangswahrscheinlichkeiten nicht be-
kannt sind. Deswegen kann ein Modell nur auf Grund der Konvergenzdiagnose und des
Vergleichs der Ergebnisse innerhalb und zwischen den Modellen gewahlt werden. Die
subjektive Auswertung spielt dabei auch eine Rolle und kann nicht vermieden werden.

Die Konvergenz der Ketten wird visuell untersucht. Dafiir sind die grafische Dar-
stellungen der Density (Dichte) und Trace Plots der gezogenen absoluten Haufigkeiten
der inneren Zellen niitzlich. Die absoluten Haufigkeiten werden im eiwild (Schlesin-
ger, 2014) mit counts und im RxCEcolInf (Greiner et al., 2013) mit NNs bezeichnet.
Fir die Erstellung der Grafiken in diesem Kapitel kommen die folgenden R-Pakete
zum Einsatz: ggplot2 (Wickham, 2009), ggthemes (Arnold, 2016), scales (Wickham,
2016), gridExtra (Auguie, 2016), grid (R Core Team, 2015), RColorBrewer (Neu-
wirth, 2014), circlize (Gu et al., 2014; Gu, 2015), stringr (Wickham, 2015b) und
reshape2 (Wickham, 2015a). Da sich einige Grafiken iiber ganze Seiten erstrecken,
lassen sich diese nicht passend in den Text integrieren. Deswegen werden alle Grafiken
in folgenden Abschnitten am Ende des dazugehorigen Abschnitts oder Unterabschnitts
dargelegt.

Aus den erzeugten Ketten koénnen die Posteriori-Mittelwerte der absolu-
ten Haufigkeiten fiir jede Zelle der Wahlerwanderungstabelle berechnet wer-
den. Je nach Interesse lassen sich danach die relativen Héaufigkeiten oder

Ubergangswahrscheinlichkeiten bestimmen. Um die Differenzen zwischen den Ergeb-
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nissen von verschiedenen Modellen oder Ketten darstellen zu koénnen, werden zwei
Vergleichsmafle verwendet. Der Hauptunterschied liegt darin, ob die Distanzen anhand
von Ubergangswahrscheinlichkeiten oder von relativen Haufigkeiten der inneren Zellen

berechnet werden und wie sich die Differenzen letztendlich interpretieren lassen. Fiir

und T8, schligt Schlesinger (2013, S. 59) den Mean

ueber

zwei Ubergangstabellen 74

ueber

Absolut Error vor, der folgendermaflen definiert wird:

1
RxC

R C )
Z Z‘ﬁ ueber ﬁ uebe'r

r=1c=1

MAE(TA,... T2, ) =

ueber’ = ueber

(6.1)

Der Mean Absolut Error oder MAE kann Werte zwischen 0 und 1 annehmen und wird
als durchschnittliche Differenz pro Zelle interpretiert. Ein alternatives Vergleichsmafl
stellt die Absolute Distanz oder AD dar, die fiir zwei Wéahlerwanderungstabellen mit

relativen Haufigkeiten, T, und T2, durch

rel»

R C
AD T;il?Tvil ZZ rel TTEZZ( )l (62)

berechnet werden kann (Klima et al., 2015, S. 9). Dieses Mafi kann Werte zwischen 0
und 2 annehmen. Nach Halbierung lasst sich AD/2 als Anteil der Stimmen interpretie-
ren, die innerhalb einer Tabelle umverteilt werden miissen, um zwei identische Tabellen
zu erhalten. Hierbei bezeichnet Absolut in der Bezeichnung des Vergleichsmafles, dass
negative Differenzen in positive Werte transformiert werden. Das Ignorieren des Vorzei-
chens ist bei der Berechnung von beiden Vergleichsmaflen notig, da sich die negativen
und die positiven Werte ansonsten bei der Summierung gegenseitig entwerten wiirden.
Uber die Differenzen zwischen den Ergebnissen lassen sich im Prinzip auf Basis der
beiden Vergleichsmafle ahnliche Schlussfolgerungen ziehen. Dadurch dass die Distan-
zen anhand von Ubergangswahrscheinlichkeiten berechnet werden, betrachtet MAE
alle Zeilen gleichwertig. Hingegen weisen die kleinen Parteien der ersten Wahl bei der

Berechnung des AD niedrigere Differenzen auf als die groflen Parteien.

6.1 Multinomial-Dirichlet-Modell

Die Simulationsstudie von Klima et al. (2016, S. 19) zeigt eine Verbesserung der
Schatzung durch die Verwendung einer informative Priori bei kleiner Anzahl an Wahl-
bezirken. Zudem ist bekannt, dass Dr. Peter Kurz von der SPD, Grinen und Die

Linken unterstiitzt wurde und dass die CDU Herrn Peter Rosenberger empfohlen hat
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(Schredle, 2015). Dementsprechend werden bei der Schiatzung anhand des Multinomial-
Dirichlet-Modells (Rosen et al., 2001) die zellspezifischen Hyperpriori-Parameter der
Gamma-Verteilung definiert (Schlesinger, 2013). Die Wahler, die bei der ersten Wahl ei-
ne Partei gewéhlt haben, die einen bestimmten Kandidaten unterstiitzt und diesem ihre
Stimme in der zweiten Wahl gegeben haben, werden hierbei als Loyale betrachtet. Die
Idee ist neben einem Modell mit Defaultwerten Gamma(A; = 4, Ay = 2) noch zwei Mo-
delle mit Vorwissen, jeweils mit und ohne Individualdaten, zu berechnen und zu verglei-
chen. Fiir die Loyalen wird Gamma(A; = 30, Ay = 1) und Gamma(\; = 30, Ay = 2)
verwendet, wahrend fiir die iibrigen Zellen die Defaultwerte unverédndert bleiben. Der
Einfluss dieser Parameter auf die Verteilung von f, ist bereits in der Abbildung 5.3
(Seite 52) des Kapitels 5 dargestellt. Zur Uberpriifung der Konvergenz im Unterab-
schnitt 6.1.1 und zum Vergleich der Ketten im Unterabschnitt 6.1.2 werden neben den
vier Zellen von Loyalen, SPD.Kurz, Gune.Kurz, Linke.Kurz und CDU.Rosenberger,
noch Sonstige_13.Sonstige 15 und Nichtwéhler_ 13.Nichtwdhler_ 15 bei der gra-

fischen Darstellung betrachtet.

6.1.1 Konvergenzdiagnose

In der Abbildung 6.1 (links) auf der Seite 61 befindet sich die Darstellung der Trace
of Counts fiir die gewéhlten inneren Zellen des Multinomial-Dirichlet-Modells ohne
Vorwissen. Von insgesamt zehn Millionen Iterationen wird lediglich jede tausends-
te abgebildet, um die Grofle der zu speichernden Grafik zu reduzieren. Dabei wird
die Nummer der durchgefiihrten und nicht der abgebildeten Iteration auf der x-Achse
der Grafik dargestellt. Da die Berechnung der Mittelwerte die Speichergrofe der Gra-
fik nicht beeinflusst, werden diese aus allen gezogenen Werten jeweiliger Zellen be-
rechnet und mit den waagerechten weilen Linien in der Grafik markiert. Die rechte
Grafik zeigt die Dichten und die Mittelwerte der Counts der zweiten und der letz-
ten Million aller Iterationen. Anstelle der ersten Million wird hier die Zweite darge-
stellt, um den Einfluss der Startwerte auf die Zellen Sonstige_13.Sonstige_ 15 und
Nichtwdhler 13.Nichtwdhler 15 zu vermeiden. Diese driicken die Dichten auf die
Seite, wodurch die Ubersichtlichkeit der Dichten begrenzt ist. Das Ziel hierbei ist die
Kettenteile am Anfang und am Ende zu vergleichen, um untersuchen zu koénnen, ob
die Kette stationéar ist.

Aus den Grafiken ist visuell zu erkennen, dass das Okologische Multinomial-
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Dirichlet-Modell ohne Vorwissen eine stationédre Verteilung wahrscheinlich erreicht hat.
Die Zellen Giine . Kurz und Linke . Kurz weisen eine seht gute Ubereinstimmung am An-
fang und am Ende der Kette auf. Eine minimale Abweichung im Mittelwert zeigt sich
am Anfang der Kette im Vergleich zu den wenig niedrigeren Werte am Ende der Kette
bei der Zelle SPD.Kurz. Etwas hohere Werte werden am Anfang der Kette bei der Zelle
CDU.Rosenberger gezogen. Bei der Zelle Sonstige 13.Sonstige_15 tritt ein Abfallen
im Verlauf der Kette auf. Solche Stoérungen sind jedoch bei kleinen Kategorien, bei
denen wenig Daten vorhanden sind, zu erwarten. Der Mittelwert scheint jedoch nicht
sehr stark davon beeinflusst zu sein. Die Kette der Nichtwéhler 13.Nichtwdhler_ 15
Zelle ist wegen des Startwertes nach oben gedriickt. Dadurch lésst sich nicht genau er-
kennen, ob irgendwelche Storungen erscheinen. Die Dichte zeigt hierbei, dass die Werte
bei der letzten Million etwas hoher sind als bei der Zweiten. Obwohl die Startwerte bei
Sonstige 13.Sonstige_15 und Nichtwahler 13.Nichtwédhler_ 15 von dem Rest der
Kette stark abweichen, wurde die Konvergenz bei allen Ketten schnell erreicht. Bereits
ein Burn-In von 100000, der mit senkrechten roten Linien in die Grafik gezeichnet
wird, sollte hier reichen, um den Einfluss der Startwerte zu unterdriicken.

Um das geeignete Thinning zu bestimmen, wird ferner die Autokorrelation unter-
sucht. In der Abbildung 6.2 (links) auf der Seite 62 zeigt sich nach dem Burn-In von
100000 ohne Thinning fir die Stichprobe von 1000 Ziehungen eine hohe Autokorrela-
tion bei allen Zellen. Obwohl einige Autoren dem Thinning kritisch gegeniiber stehen
(siche Unterabschnitt 2.2.2 des Kapitels 2 auf der Seite 9), verwenden Klima et al.
(2015, S. 9 f.) ein hohes Thinning bei Modellen der 6kologischen Inferenz zur Behe-
bung von starker Autokorrelation bei der Wahlerwanderungsanalyse. Dementsprechend
wird nach der Untersuchung ein Thinning von 2000 angewendet, da diese die Korre-
lation ausreichend verringert (siehe Abbildung 6.2, rechts). Die tibrigen Versionen des
Multinomial-Dirichlet-Modells weisen ahnliche Entwicklungen und Merkmale bei der
Konvergenz und bei der Autokorrelation auf. Demzufolge werden fiir alle Modelle iden-
tisches Thinning und Burn-In verwendet. Die gleichartige grafische Darstellungen der
Ketten und der Autokorrelation sind fir alle Versionen des Modells im Anhang A.2.1
(ab der Seite 93) und A.2.2 (ab der Seite 98) zu finden.
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Multinomial-Dirichlet-Modell ohne Vorwissen

Trace of Counts Density of Counts
(jede tausendste Iteration) (zweite und letzte Million)
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Abbildung 6.1: Die Ketten (links) und die Dichten (rechts) der gezogenen abso-
luten Haufigkeiten (Counts) von fiinf gewahlten inneren Zellen des ékologischen
Multinomial-Dirichlet-Modells ohne Vorwissen. Links: Von zehn Millionen Iteratio-
nen wird jede tausendste dargestellt. Die senkrechten roten Linien kennzeichnen die
100 000-ste von zehn Millionen Iterationen. Die waagerechten weiflen Linien zeigen
die Mittelwerte aller gezogenen Werte. Rechts: Die Dichten der zweiten und der letz-
ten Million aller Iterationen und die dazugehorigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Modell ohne Vorwissen

Autokorrelation
Sample: 1000, Burnin: 100000
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Abbildung 6.2: Die Autokorrelationen der gezogenen absoluten Haufigkeiten
(Counts) von fiinf gewédhlten inneren Zellen des 6kologischen Multinomial-Dirichlet-
Modells ohne Vorwissen, anhand einer Stichprobe mit 1000 Ziehungen nach dem
Burn-In von 100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.



Multinomial-Dirichlet-Modell ohne Vorwissen

Trace of Counts Density of Counts
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Abbildung 6.3: Drei verdiinnte Ketten der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des 6kologischen Multinomial-Dirichlet-
Modells ohne Vorwissen. Sample: 1000, Burn-In: 100 000 und Thinning: 2 000. Links:
Trace of Counts der drei Ketten und die dazugehdrigen Mittelwerte (waagerechte
Linien). Rechts: Dichten der verdiinnten Ketten und die gleichen Mittelwerte senk-
recht dargestellt.
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6.1.2 Ketten- und Modellvergleich

Drei Ketten, die nach dem Burn-In und Thinning fir das Multinomial-Dirichlet-Modell
ohne Vorwissen erzeugt sind, werden in der Abbildung 6.3 auf der Seite 63 dargestellt.
Links in der Grafik befinden sich die Ketten, die sich entsprechend der Farbe unterschei-
den lassen. Hierbei wird auf der x-Achse die Nummer der Iteration in der Stichprobe
dargestellt. Rechts in der Grafik werden die Dichten der jeweiligen Ketten und deren
Mittelwerte prasentiert und mit entsprechenden Farben differenziert.

Die Zellen CDU.Rosenberger, Sonstige_13.Sonstige_15 und
Nichtwdhler 13.Nichtwdhler 15 zeigen etwas hohere Unterschiede zwischen
den drei erzeugten Ketten als die {iibrigen dargestellten Zellen. Bei der Zelle
Sonstige_13.Sonstige_15 weist die griine Kette im Mittel einen Abfallen im
Vergleich zur orangen und violetten Kette auf. Bei einigen Versionen des Modells
scheinen die Ketten, die hier eine Abweichung untereinander aufweisen, stabiler zu
sein. Deren Darstellung befindet sich im Anhang A.2.3 (ab der Seite 103). Zusatzlich
werden die Grafiken erzeugt, welche die drei verdiinnten Ketten aller Zellen in einer
Matrixform darstellen. Diese sind aus Griinden der Ubersichtlichkeit im elektronischen
Anhang dargelegt. Die Auflistung der Dateien, die in digitaler Version der Arbeit
beigelegt werden, ist im Anhang E auf der Seite 117 zu finden.

Nach einer visuellen Untersuchung soll ferner der Vergleich anhand von absolu-
ten Distanzen (AD) fiur jede Version des Modells préziser zeigen, wie hoch die Un-
terschiede zwischen den Ergebnissen iiber alle Zellen innerhalb der gleichen Modelle
sowie zwischen verschiedenen Versionen des Modells sind. Zusétzlich werden die durch-
schnittlichen absoluten Differenzen pro Zelle (MAE) im Anhang A.2.4 auf der Seite 108
prasentiert. In der Abbildung 6.4 auf der Seite 66 sind die absoluten Distanzen zwischen
den Ergebnissen von drei erzeugten Ketten innerhalb der Modelle in Prozentpunkten
dargestellt. Die AD Werte sind hierbei iiber die Diagonale identisch beziehungswei-
se symmetrisch. Es zeigt sich, dass das Multinomial-Dirichlet-Hybridmodell bei allen
Hyperpriori-Parameter die niedrigeren Distanzen zwischen den Ergebnissen der Ketten
aufweist als das 6kologische Multinomial-Dirichlet-Modell. Die Summe aller Distanzen
der drei 6kologischen Modelle betragt hierbei 13.68 Prozent. Deutlich geringerer ist
die Summe aller Distanzen der Hybridmodelle mit dem Wert von 4.5 Prozent. Von
allen betrachteten Modellen zeigen sich bei den Hybridmodellen mit Vorwissen die ge-

ringsten Unterschiede zwischen den Ketten. Es ist anzumerken, dass eine Abnahme
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von AD zwischen den Ketten durch die Integration des Vorwissens erreicht wird, aller-
dings nicht so stark wie durch das Verwenden der Individualdaten. Die Abnahme durch
die Integration des Vorwissens ist jedoch innerhalb des 6kologischen Modells mittels
MAE nicht zu erkennen (siche Abbildung A.24 im Anhang A.2.4 auf der Seite 108).
Beim 6kologischen Modell mit Vorwissen unterscheidet sich die erste Kette (violett) bei
Gamma(A; = 30, A\; = 1) von der Zweiten und der Dritten stérker. Dieser Unterschied
wird bei der AD unterdriickt, da ein starkes Abfallen der ersten Ketten bei der Zelle
AfD.Probst auftritt. Aulerdem liegt die erste Kette bei der Zelle AfD.Nichtwdhler
etwas hoher als die Zweite und die Dritte. Anhand von AD werden die Distanzen bei
kleinen Parteien, in diesem Fall AfD, niedriger als anhand von MAE. Beim 6kologischen
Modell mit Vorwissen Gamma(A; = 30, A\; = 2) unterscheidet sich die dritte Kette von
der Ersten und der Zweiten stiarker. Hier tritt eines Abfallen der dritten Kette (griin)
bei der Zelle Sonstige_13.Rosenberger auf. Diese Storungen lassen sich visuell mittels
der Darstellungen der Ketten aller Zellen erkennen, welche im elektronischen Anhang
aufgefithrt werden.

Die Abbildung 6.5 auf der Seite 66 présentiert die absoluten Distanzen zwischen
den Ergebnissen von verschiedenen Versionen des Modells. Analog ist die Matrix mit
den AD Werte symmetrisch. Zum Vergleich wurde hierbei die erste der drei erzeug-
ten Ketten fiir jede Version des Modells genommen. Wiederum zeigt sich, dass das
Hybridmodell iiber alle Versionen stabiler ist als das 6kologische Modell. Den grofiten
Unterschied zu allen anderen Modellen weist das okologische Modell ohne Vorwissen
auf. Die Modelle mit Vorwissen weisen im Allgemeinen die niedrigsten absoluten Dis-
tanzen auf.

Weiterhin werden die zellspezifischen absoluten Differenzen der Modelle zur Nach-
wahlbefragung dargestellt. Um den Lesefluss dieser Arbeit nicht zu stéren befindet sich
die Abbildung 6.12 am Ende des Unterabschnittes 6.2 auf der Seite 74. In der Gra-
fik sind die zellspezifischen Differenzen fiir jede Version des Modells in einem Box-Plot
dargestellt. Unten sind die durchschnittlichen absoluten Differenzen (Mean Absolut Er-
ror) gegeben und mit ,MAE* in den abgebildeten Box-Plots eingezeichnet. Diese Gra-
fik dient lediglich zum Vergleich und liefert keine Information iiber die Qualitat der
Schétzung. Erwartungsgemafl weisen die 6kologischen Modelle fast doppelt so grofe
Differenzen zur Nachwahlbefragung auf als die Hybridmodelle. Die geringsten zellspe-

zifischen Differenzen und MAE zeigen sich bei dem Hybridmodell ohne Vorwissen.
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Absolute Distanz (AD): Kettenvergleich

ohne Vorwissen

Kette3 1.85% 1.79 %

Kette 2 2.34 % 1.79 %

Kette 1 2.34% 1.85%

Kette 3 0.43 % 0.64 %

Kette2 0.64 % 0.64 %

Kette 1 0.64 % 0.43 %
Kette 1  Kette2  Kette 3

mit Vorwissen (A; = 30, A, = 1)

2.01 % 0.88 %
1.88 % 0.88 %

1.88 % 2.01 %

0.53% 0.43 %

0.42 % 0.43 %

0.42 % 0.53 %

Kette 1 Kette 2 Kette 3

mit Vorwissen (A, = 30, A, = 2)

1.19% 1.13%
0.61 % 1.13%

0.61% 1.19%

0.49 % 0.55 %

0.37 % 0.55 %

0.37 % 0.49 %

Kette 1 Kette 2 Kette 3

uareplehalbby

puUgAH

Abbildung 6.4: Absolute Distanzen (AD) in Prozentpunkten zwischen den Ergeb-
nissen der drei verdiinnten Ketten fiir jede Version des ékologischen (oben) und
des hybriden (unten) Multinomial-Dirichlet-Modells. Die Werte sind je nach Modell
symmetrisch tiber die Diagonale.

Absolute Distanz (AD): Modellvergleich

Aggregatdaten Aggregatdaten Hybrid Hybrid
Aggregatdaten mit Vorwissen mit Vorwissen Hybrid mit Vorwissen mit Vorwissen
(30, 1) (30, 2) (30, 1) (30, 2)
Aggregatdaten 23.6 % 20.26 % 18.85 % 22.42 % 21.27 %
Aggregatdaten
mit \égBNi]S.)Sen 23.6 % 53% 17.85 % 12.62 % 13.45 %
Aggregatdaten
mit \ngNiéS)sen 20.26 % 5.3 % 14.35 % 10.59 % 10.8 %
Hybrid 18.85 % 17.85 % 14.35 % 7.56 % 6.04 %
Hybrid
mit \égrawii)sen 2242 % 12.62 % 10.59 % 7.56 % 1.68 %
Hybrid
mit \gBNig)sen 21.27 % 13.45 % 10.8 % 6.04 % 1.68 %

Abbildung 6.5: Absolute Distanzen (AD) in Prozentpunkten zwischen den Ergeb-
nissen von verschiedenen Versionen des Multinomial-Dirichlet-Modells (symmetrisch
iiber die Diagonale). Zum Vergleich wurde die erste der drei verdiinnten Ketten fiir
jede Version des Modells verwendet.

66



6.2 Multinomial-Log-Normal-Modell

Bei der Schétzung anhand des Multinomial-Log-Normal-Modells kann das Vorwissen
nicht durch zellspezifische Parameter der Hyperpriori-Verteilung ins Modell integriert
werden. Es sollte jedoch untersucht werden, ob die Wahl einer anderen Referenzkate-
gorie die Schétzung beeinflusst. Infolgedessen werden hier insgesamt vier Versionen des
Modells berechnet, zwei mit Referenzkategorie Nichtwahler 15 und zwei mit Referenz-
kategorie Kurz, jeweils mit und ohne Individualdaten. Eine Kette mit zehn Millionen
Iterationen, ohne Burn-In und Thinning, konnte mithilfe des RxCEcolInf (Greiner et
al., 2013) Paketes nicht erzeugt werden, da der Fehler

Finished MCMC routine. Processing output...

Error in cbind(mu, Sigma, NNs, LAMBDA, TURNOUT, GAMMA, BETA):
long vectors not supported yet: bind.c:1304
Calls: Analyze -> cbind

aufgetreten ist. Deswegen wurde bereits bei der ersten Berechnung ein Thinning von
100 ohne Burn-In verwendet. Dadurch werden von den erzeugten zehn Millionen Ite-
rationen schliefllich 100 000 gespeichert. Im folgenden Unterabschnitt werden bei den
grafischen Darstellungen die gleichen Zellen betrachtet wie beim Multinomial-Dirichlet-

Modell.

6.2.1 Konvergenzdiagnose

In der Abbildung 6.6 wird im Trace Plot (links) von insgesamt 100000 gespeicher-
ten Iterationen lediglich jede zehnte aufgezeichnet, womit die gleiche Anzahl an Ite-
rationen wie beim Multinomial-Dirichlet-Modell dargestellt wird. Auch wenn nur jede
hundertste Iteration gespeichert werden konnte, wurden letztendlich 10000 000 Itera-
tionen durchgefiithrt. Dementsprechend werden nach wie vor die Nummern der durch-
gefiihrten Iterationen auf der x-Achse der Grafik angegeben. Die Mittelwerte konnten
nur auf Basis der 100000 gespeicherten Iterationen berechnet werden und sind mit
waagerechten schwarzen Linien markiert. Die rechte Grafik zeigt die Dichten der ab-
soluten Héufigkeiten (Counts) der zweiten und der letzten Million Iterationen, wobei
wiederum nur jede hundertste Iteration betrachtet werden kann. Beim dargestellten
6kologischen Multinomial-Log-Normal-Modell mit automatisch gewahlter Referenzka-
tegorie Nichtwahler 15 wurde die Konvergenz scheinbar nicht erreicht. Eine stationére

Verteilung lésst sich iiber alle Zellen nicht erkennen. Dies gilt auch fiir die tibrigen Ver-
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sionen des Modells, welche im Anhang A.2.5 (ab der Seite 109) zu finden sind. Obwohl
eine weitere Untersuchung nicht notwendig ist, werden die gleichen Grafiken wie beim
Multinomial-Dirichlet-Modell erzeugt und kurz beschrieben. Die senkrechten roten Li-
nien im Trace Plot (Abbildung 6.6 links) kennzeichnen 2 000 000 Iterationen (von zehn
Millionen durchgefiihrten Iterationen), die im weiteren Verlauf verworfen werden. Die
Autokorrelation ist fiir das 6kologische Multinomial-Log-Normal-Modell mit Referenz-
kategorie Nichtwéhler 15 in der Abbildung 6.7 und fiir die anderen Versionen im
Anhang A.2.6 (ab der Seite 112) dargestellt. Die hohe Korrelation verringert sich nach
dem Burn-In und Thinning von 2000 bei allen Modellen kaum. Bei einigen Zellen
wird sie sogar hoher. Ein Modell mit Thinning, welches die Korrelation ausreichend

verringert, wére hier praktisch nicht berechenbar.

6.2.2 Ketten- und Modellvergleich

Mit dem Burn-In von 2000000 und dem Thinning von 2000 werden ferner drei Ketten
mit Referenzkategorie Nichtwahler 15 und eine Kette mit Referenzkategorie Kurz er-
zeugt. Die Grafik Trace of Counts und die Dichten (Density) der Ketten sind in der
Abbildung 6.8 auf der Seite 72 fiir das 6kologische Log-Normal-Modell und im Anhang
A.2.7 auf der Seite 115 fiir das Multinomial-Log-Normal-Hybridmodell dargestellt. Alle
dargelegten Zellen weisen ziemlich hohe Differenzen zwischen den Ketten auf. Bei der
Zelle Nichtwdhler 13.Nichtwdhler 15 zeigen sich hierbei etwas niedrigere Differen-
zen als bei den Restlichen.

Aus der Grafik ldsst sich kaum erkennen, ob die Schatzung durch die Verédnderung
der Referenzkategorie beeinflusst wird. Dafiir liefert der Vergleich von Ergebnissen iiber
alle Zellen mithilfe von AD in der Abbildung 6.9 auf der Seite 73 eine bessere Ubersicht.
Das heif3t, hier wird beim Kettenvergleich, neben den Ketten innerhalb der gleichen
Modelle, zusétzlich eine Kette mit nicht automatisch gewéhlter Referenzkategorie be-
trachtet. Mit und ohne Individualdaten zeigt sich, dass die Ergebnisse der Ketten mit
der Referenzkategorie Kurz hohere absolute Distanzen aufweisen als die Restlichen
untereinander. Allgemein und im Vergleich zum Multinomial-Dirichlet-Modell sind die
Distanzen zwischen den Ketten sehr hoch, wobei etwas niedrigeren absoluten Distanzen
beim Hybridmodell erkennbar sind als beim ¢kologischen Modell.

Der Modellvergleich wird in der Abbildung 6.10 auf der Seite 73 dargestellt. Hierfiir

wird die erste Kette mit Referenzkategorie Nichtwéhler_ 15 und wiederum die Kette
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mit Referenzkategorie Kurz, jeweils mit und ohne Individualdaten, genommen. Dem-
nach wiederholen sich beim Modellvergleich einige Zellen, die bereits beim Ketten-
vergleich dargestellt wurden. Der Modellvergleich zeigt allerdings, dass die Schéatzung
durch die Individualdaten stérker beeinflusst wird als durch die Verdnderung der Refe-
renzkategorie. Hierbei wird die Distanz zwischen dem 6kologischen und dem hybriden
Modell durch die Wahl der Referenzkategorie Kurz um 15.44 Prozent geringer. Der
Ketten- und Modellvergleich anhand von MAE wird im Anhang A.2.8 auf der Seite
108 prasentiert.

Die zellspezifischen absoluten Differenzen der Modelle zur Nachwahlbefragung wer-
den in der Abbildung 6.11 auf der Seite 74 dargestellt. Wie beim Multinomial-Dirichlet-
Modell weisen die 6kologischen Modelle doppelt so groflen Differenzen zur Nachwahl-
befragung auf als die Hybridmodelle. Beim Hybridmodell mit Referenzkategorie Kurz
zeigen sich die geringsten zellspezifischen Differenzen mit MAE von 7.72 Prozent. Bei
den anderen Versionen des Modells sind die zellspezifischen Differenzen und MAE all-

gemein hoher als beim Multinomial-Dirichlet-Modell.
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Multinomial-Log-Normal-Modell

Trace of Counts Density of Counts
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Abbildung 6.6: Die Ketten (links) und die Dichten (rechts) der gezogenen abso-
luten Héufigkeiten (Counts) von fiinf gewahlten inneren Zellen des Gkologischen
Multinomial-Log-Normal-Modells mit automatisch gewahlter Referenzkategorie
Nichtwdhler_15. Von zehn Millionen durchgefiihrten Iterationen konnte jede hun-
dertste gespeichert werden. Links wird von zehn Millionen Iterationen jede tausends-
te dargestellt. Die senkrechten roten Linien kennzeichnen die 2 000 000-ste von zehn
Millionen Iterationen. Die waagerechten schwarzen Linien zeigen die Mittelwerte
von 100000 gespeicherten Werten. Rechts: Die Dichten der zweiten und der letzten
Million (jede hundertste Iteration betrachtet) und die dazugehérigen Mittelwerte
(senkrechte Linien).
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Multinomial-Log-Normal-Modell

Autokorrelation
Sample: 1000, Burnin: 2000000
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Abbildung 6.7: Die Autokorrelationen der gezogenen absoluten Haufigkeiten
(Counts) von fiinf gewédhlten inneren Zellen des Okologischen Multinomial-Log-
Normal-Modells mit automatisch gewahlter Referenzkategorie Nichtwdhler_15 an-
hand einer Stichprobe mit 1000 Ziehungen nach dem Burn-In von 2000 000. Links:
Thinning von 100. Rechts: Thinning von 2 000.
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Multinomial-Log-Normal-Modell

Trace of Counts

Density of Counts
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Abbildung 6.8: Drei verdiinnte Ketten der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewédhlten inneren Zellen des oOkologischen Multinomial-Log-
Normal-Modells mit automatisch gewéhlter Referenzkategorie Nichtwdhler_15 und
eine verdiinnte Kette mit Referenzkategorie Kurz. Sample: 1000, Burn-In: 2000 000
und Thinning: 2000. Links: Trace of Counts der vier Ketten und die dazugehérigen
Mittelwerte (waagerechte Linien). Rechts: Dichten der Ketten und die gleichen Mit-
telwerte senkrecht dargestellt.
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Absolute Distanz (AD): Kettenvergleich
Aggregatdaten Hybrid

(CLEE NN 19.95 % 17.62 % 21.66 % GO 15.72 % 18.63 % 17.18 %

Kette 3 Kette 3

Kette 2 MICISRZ) Kette 2

Kette 1 Kette 1

Kette 1 Kette 2 Kette 3 Kette Ref Kette 1 Kette 2 Kette 3 Kette Ref

Abbildung 6.9: Absolute Distanzen (AD) in Prozentpunkten zwischen den Ergeb-
nissen der drei verdiinnten Ketten mit automatisch gewahlter Referenzkategorie
Nichtwdhler_15 und einer Kette mit Referenzkategorie Kurz bei dem 6kologischen
(links) und bei dem hybriden (rechts) Multinomial-Log-Normal-Modell. Die Werte
sind je nach Modell symmetrisch iiber die Diagonale.

Absolute Distanz (AD): Modellvergleich

Aggregatdaten Hybrid
Aggregatdaten Referenzkategorie Hybrid Referenzkategorie
‘Kurz* ‘Kurz'*
Aggregatdaten 19.95 % 39.26 % 34.35 %
Aggregatdaten
Referenzkategorie 19.95 % 34.01 % 23.82 %
‘Kurz*
Hybrid 39.26 % 34.01 % 15.72 %
Hybrid
Referenzkategorie 34.35 % 23.82 % 15.72 %
‘Kurz*

Abbildung 6.10: Absolute Distanzen (AD) in Prozentpunkten zwischen den Ergeb-
nissen von verschiedenen Versionen des Multinomial-Log-Normal-Modells (symme-
trisch iiber die Diagonale). Zum Vergleich wurde die erste der drei verdiinnten Ketten
mit Referenzkategorie Nichtwéhler_15 und die Kette mit Referenzkategorie Kurz,
jeweils fiir die Version mit und ohne Individualdaten, verwendet.
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Zellspezifische absolute Differenzen zur Nachwahlbefragung
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Abbildung 6.11: Zellspezifische absolute Differenzen der Ergebnisse von verschiede-
nen Versionen des Multinomial-Log-Normal-Modells zur Nachwahlbefragung. Unten:
Durchschnittliche absolute Differenzen pro Zelle (Mean Absolut Error).

Zellspezifische absolute Differenzen zur Nachwahlbefragung
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Abbildung 6.12: Zellspezifische absolute Differenzen der Ergebnisse von verschie-
denen Versionen des Multinomial-Dirichlet-Modells zur Nachwahlbefragung. Unten:
Durchschnittliche absolute Differenzen pro Zelle (Mean Absolut Error).
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6.3 Modellwahl und Darstellung der Ergebnisse

Welches Modell der Wahrheit am néchsten liegt, lasst sich nicht testen. Nach der Metho-
de der Elimination kénnen zuerst alle Versionen des Multinomial-Log-Normal-Modells
ausgeschlossen werden, da deren Ketten eine stationédre Verteilung nicht erreicht haben.
Aus diesem Grund bleibt die Wahl einer Version des Multinomial-Dirichlet-Modells. Als
Kriterium werden dafiir die absoluten Distanzen zwischen den Ketten und Modellen
verwendet. Es gibt hierbei keine Garantie, dass das Modell mit geringsten Differen-
zen zwischen den Ketten der Wahrheit entspricht. Allerdings konnen die Modelle, die
bei jeder Durchfithrung unterschiedliche Ergebnisse erzeugen, nicht prézise und zu-
verlassig sein. Demzufolge werden die betrachteten Modelle mithilfe von AD solange
eliminiert, bis ein Modell bleibt, das préziser und zuverléassiger als die Anderen ist.
Der néchste Schritt ist demnach das Ausschliefen aller Versionen des o6kologischen
Multinomial-Dirichlet-Modells. Alle verbleibenden drei Versionen des Hybridmodells
weisen niedrige Distanzen zwischen den drei Ketten auf. Die zwei Versionen des Hy-
bridmodells mit dem Vorwissen zeigen hierbei die niedrigste Distanz zwischen sich im
Vergleich zu allen anderen Distanzen zwischen den verschiedenen Versionen des Mo-
dells. Die Wahl eines der Multinomial-Dirichlet-Hybridmodelle mit Vorwissen wird von
den Ergebnissen der Simulationsstudie von Klima et al. (2016, S. 15 f., 19) unterstiitzt.
Denn die Studie zeigt, dass die Analyse nur anhand von Aggregatdaten durch das
Verwenden der Individualdaten verbessert wird, auch im Fall wenn die Nachwahlbefra-
gung einen Bias aufweist. Aulerdem wurde bei einer kleinen Anzahl an Wahlbezirken
eine Verbesserung der Schétzung durch die Verwendung einer informativen Priori be-
merkt. Zwischen den zwei iibrigen Modellen wird letztendlich das Hybridmodell mit
dem Hyperpriori-Parameter Gamma(A; = 30,\y = 1) gewahlt. Diese Entscheidung
wird zuféllig in R generiert, da die beiden verbleibenden Modelle nach Kriterium der
Differenzen zwischen den drei Ketten sehr ahnlich sind.

Die geschétzten Ubergangswahrscheinlichkeiten des gewéhlten Modells sind in der
Tabelle 6.1 angegeben und in der Abbildung 6.13 visuell dargestellt. Der Gewinner
der Oberbiirgermeisterwahl 2015 ist die Kategorie Nichtwdhler. Sogar 96.16 Prozent
der Wahlberechtigten, die bei der Bundestagswahl im Jahr 2013 nicht gewahlt haben,
verzichten auch bei der Oberbiirgermeisterwahl im Jahr 2015 auf ihr Recht zu wahlen.
Das heifit, keiner der Kandidaten konnte einen wesentlichen Anteil der Nichtwdhler

fiir sich erlangen. Nebenbei entschieden sich auch viele, die bei der Bundestagswahl
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2013 eine der Parteien gewahlt haben, bei der Oberbiirgermeisterwahl 2015 keinen
der Kandidaten zu unterstiitzen. So haben 79.71 Prozent der Wahler der kleinen Par-
teien, 61.8 Prozent der Wéhler von AfD, 54.71 Prozent der Wahler von SPD, 52.48
Prozent der Wéhler von CDU und 47.83 Prozent der Wahler von Die Linken bei der
Oberbiirgermeisterwahl 2015 nicht gewéahlt. Mit einer Nichtwéahlerquote von 31.49 Pro-
zent weisen die Wahler von FDP eine etwas hohere Beteiligungsquote im Vergleich zu
anderen auf. Der geringste Anteil der Nichtwdhler von 14.66 Prozent zeigt sich bei
den ehemaligen Wéahler der Grinen. Der echte Gewinner, Dr. Peter Kurz, profitierte
scheinbar gut von der Wahlempfehlungen. Mindestens von denen, die sich an der Wahl
beteiligten, bekam er eine Mehrheit der Stimmen. Obwohl nur 45.29 Prozent der SPD
Wiéhler und 52.17 Prozent der Wéhler von Die Linken bei der Oberbiirgermeisterwahl
2015 gewéhlt haben, gaben ihm 33.19 Prozent der SPD Wahler und 37.47 Prozent
der Wahler von Die Linken ihre Stimme. Von den Wahlern der Grinen erlangte Dr.
Peter Kurz sogar 66.54 Prozent. Uberzeugt hat er auch 22.01 Prozent der Wahler
der FDP. Der zweite Kandidat Peter Rosenberger erwarb 32.76 Prozent der Stim-
men der CDU Wibhler, was dem grofiten Anteil von diejenigen entspricht, die bei der
Oberbiirgermeisterwahl 2015 gewahlt haben. Er schaffte es, etwas mehr FDP Wahler
als Dr. Peter Kurz zu gewinnen, sprich 26.51 Prozent. Mit 15.01 Prozent haben ihm
doppelt so viele Wahler der AfD ihre Stimme gegeben. Nicht wesentlich weniger AfD
Wiéhler (14.02 Prozent) unterstiitzte den dritten Kandidaten Christopher Probst. Von
den Wiéhlern der FDP entschieden sich 16.15 Prozent fiir ihn. Andere gewéhlte Kan-
didaten unter der Kategorie Sonstige bekamen insgesamt eine niedrige Unterstiitzung
aller Wéhler. Der Anteil lag zwischen 0.23 und 3.85 Prozent.

Der hohe Anteil der Nichtwdhler und deren Aufteilung bietet moglicherweise eine
Erklarung fiir den Bias bei den Kategorien der Bundestagswahl (2013) in der Nach-
wahlbefragung. Denn es werden einerseits die Parteien unterschétzt, deren Wahler
ein hohen Anteil der Nichtwdhler bei der Oberbiirgermeisterwahl 2015 ausmachen.
Anderseits werden die Grinen und die FDP, deren Wahler eine hohere Wahlbe-
teiligung im Vergleich zu den Ubrigen aufweisen, iiberschitzt. Ein hoherer Anteil
der ehemaligen Wéhler von Grinen in der Population der Wahlbeteiligten bei der
Oberbiirgermeisterwahl 2015 ist in diesem Fall zu erwarten. Dementsprechend darf die
Rolle der Nichtwdhler bei der Wahlerwanderungsanalyse mittels einer Befragung nicht

ignoriert werden.
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(A; = 30, A, = 1)
Oberbulrgermeisterwahl 2015

Dr. Peter Peter Christopher
(Iégg) Ros(%ngﬁ)r 9er (Mann::i)mb:: Liste) SR Nichtwahier
SPD 33.19 % 5.11 % 6.17 % 0.82 % 54.71 %
©  Grine 66.54 % 8.19 % 6.92 % 3.69 % 14.66 %
S Delinke  37.47% 5.34 % 5.73 % 3.63 % 47.83 %
g cbu 6.97 % 32.76 % 7.2% 0.59 % 52.48 %
§ AfD 7.29 % 15.01 % 14.02 % 1.88 % 61.8 %
(0]
S FOP 22.01 % 26.51 % 16.15 % 3.85 % 31.49 %
D sonstige  7.43 % 3.57 % 5.93 % 336% | 79.01%

Nichtwahler 1.08 % 1.4 % 1.13 % 0.23 % _

Tabelle 6.1: Die Ubergangstabelle zwischen der Bundestagswahl 2013 und der
Oberbiirgermeisterwahl 2015 anhand des Multinomial-Dirichlet-Hybridmodells mit
Hyperpriori-Parameter Gamma(A; = 30, s = 1) fiir die Zellen der Loyalen und
Defaultwerte fiir die Restlichen.

Abbildung 6.13: Die Ubergangswahrscheinlichkeiten zwischen der Bundestagswahl
2013 (links) und der Oberbiirgermeisterwahl 2015 (rechts) anhand des Multinomial-
Dirichlet-Hybridmodells mit Hyperpriori-Parameter Gamma(A; = 30, Ay = 1) fiir
die Zellen der Loyalen und Defaultwerte fiir die Restlichen. Die Breite jedes Pfeilen-
des driickt den Anteil an Stimmen aus, den der jeweilige Kandidat von verschiedenen
Parteien gewonnen hat.
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7 Fazit

Ziel der vorliegenden Arbeit war die Schiatzung der Wahlerwanderung zwischen der
Bundestagswahl im Jahr 2013 und der Oberbiirgermeisterwahl im Jahr 2015 in Mann-
heim. Zu diesem Zweck waren die amtlichen Ergebnisse und eine Nachwahlbefragung
verfiighar. Das individuelle Wahlverhalten konnte aus der Nachwahlbefragung einfach
und schnell herausgezogen und dargestellt werden. Ein Vergleich der Randsummen mit
den amtlichen Ergebnissen wies jedoch darauf hin, dass die Individualdaten einen Bi-
as aufweisen. Dementsprechend ist die Analyse der Ubergéinge zwischen zwei Wahlen
nur anhand von vorhandenen Individualdaten unzuverléssig und unsicher. Die Analyse
anhand von Aggregatdaten ldsst sich mithilfe der 6kologischen Inferenz durchziehen.
Die neu entwickelten Hybridmodelle kombinieren dabei die 6kologische Inferenz und
die Individualdaten, um die Stdrken der beiden Ansétze nutzen zu kénnen. Demnach
wurden fiir die Wéhlerwanderungsanalyse zwei 6kologische hierarchische Modelle und
deren hybriden Versionen verwendet. Das Multinomial-Dirichlet-Modell von Rosen et
al. (2001) und dessen hybride Version von Schlesinger (2013) wurden mit dem eiwild
Paket (Schlesinger, 2014) berechnet. Die Analyse anhand des 6kologischen und des hy-
briden Multinomial-Log-Normal-Modells von Greiner und Quinn (2009, 2010) wurde
mit dem RxCEcolInf Paket (Greiner et al., 2013) durchgefiihrt.

Vor der Analyse ist die Datenaufbereitung ein relevanter Schritt. Als Erstes ist
die Anzahl der Parteien oder Kandidaten zu reduzieren, um die Anzahl der Parame-
ter zu verringern. Dabei wurden alle kleine Parteien beziehungsweise Kandidaten einer
Kategorie zugeordnet. Zweitens éndert sich die Population der Wahler mit dem Zeitab-
stand zwischen zwei Wahlen. Diese Differenz wurde zur Nichtwdihler Kategorie bei der
Bundestagswahl (2013) gerechnet. Aulerdem andert sich die Aufstellung der Wahlbe-
zirke zwischen zwei Wahlen. Durch die Anpassung der Wahlbezirke entstand hier eine
Reduktion. Dieser Informationsverlust kann beim Multinomial-Dirichlet-Modell durch
Integration von Vorwissen kompensiert werden. Die Simulationsstudie von Klima et
al. (2016) zeigt eine Verbesserung der Schiatzung durch die Verwendung von informa-

tiven Priori-Verteilung bei einer kleinen Anzahl an Wahlbezirken. Weiterhin werden
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die Ergebnisse der Briefwéahler in spezifischen postalischen Wahlbezirken dargestellt,
die nicht identisch mit den Wahlbezirke der Urnenwéahlern sind. Demzufolge mussten
die Briefwahler durch zusatzliche Berechnungen den Urnenwahler zugerechnet werden.
Schliefllich wurden die Datensétze der Individual- und Aggregatdaten in die notwendige
Form fiir die Analyse gebracht.

Bei der Schéitzung anhand des Multinomial-Dirichlet-Modells koénnen die zell-
spezifischen Hyperpriori-Parameter der Gamma-Verteilung definiert werden (Schle-
singer, 2013). Dementsprechend wurde das Vorwissen tber die Wahlempfehlungen
benutzt, um die Unterschatzung der Zellen der Loyalen zu verhindern. Es wurden
Gamma(A; = 30, Ay = 1) und Gamma(A; = 30, Ay = 2) als alternative Hyperpriori-
Parameter fiir die Zellen der Loyalen tiberpriift. Somit wurden insgesamt sechs Versio-
nen des Modells berechnet, eine mit Defaultwerte fiir alle Zellen, zwei mit erwahnten
Hyperpriori-Parameter fiir die Zellen der Loyalen und alle drei einmal in 6kologischer
Version und einmal in hybrider Version. Bei der Schitzung anhand des Multinomial-
Log-Normal-Modells wurden das 6kologische Modell und das Hybridmodell einmal mit
automatisch gewahlter Referenzkategorie und einmal mit der Referenzkategorie Kurz
berechnet.

Da sich die Giite der Modelle nicht testen lésst, wurde fiir die Modellwahl die
Konvergenzdiagnose der erzeugten Ketten sowie die absoluten Distanzen (AD) zwi-
schen den Ketten und Modellen als Kriterium verwendet. Von den zwei Hauptmodel-
len konnte zuerst das Multinomial-Log-Normal ausgeschlossen werden, da keine dessen
Versionen konvergiert. Hierbei verringerte das Verwenden der Individualdaten die AD
Werte zwischen den Ketten bei beiden Hauptmodellen. Demzufolge wurde als néchstes
das 6kologische Multinomial-Dirichlet-Modell ausgeschlossen. Die geringsten AD Werte
zeigen sich bei den zwei Hybridmodellen mit Vorwissen. Da sich die beiden Versionen
anhand der verwendeten Kriterien kaum unterschieden, wurde letztendlich das Hy-
bridmodell mit dem Hyperpriori-Parameter Gamma(A; = 30, Ay = 1) zufillig in R
gezogen.

Die Ergebnisse des gewahlten Modells zeigen eine sehr hohe Wanderung von allen
Parteien zu den Nichtwdhler mit der Ausnahme der Wéhler der Grinen und der FDP.
Da gerade diese Kategorien bei der Nachwahlbefragung iiberschétzt wurden, stellt sich
die Frage, ob das der Grund fiir den Bias darstellt. Wenn ja, sollte iiberlegt werden,
ob die Nachwahlbefragung am Ausgang der Wahllokale eine zuverlassige Methode fiir

79



die Wéhlerwanderungsanalyse ist. Allerdings berichten viele Autoren, dass so erhobene
Daten hilfreich sind, um die ¢kologische Inferenz zu verbessern (Greiner und Quinn,
2010; Wakefield, 2004), auch wenn ein Bias in den Daten vorliegt (Klima et al., 2016).
Als eine eigenstédndige Methode oder als die Unterstiitzung im Hybridmodell ist die te-
lefonische Befragung zusehen (Klima et al., 2016), denn somit kénnen die Nichtwdhler
sowie die Briefwahler in der Analyse betrachtet werden. Welche Aussagen liefern diese
Ergebnissen fiir die Politiker? Vor allem kann empfohlen werden, erforderliche Maf-
nahmen zu ergreifen, um die Biirgerinnen und Biirger zu animieren, ihr Wahlrecht zu
nutzen. Da die Analyse der politischen Situation nicht Teil dieser Arbeit ist, konnen
keine weiteren Hinweise tiber die Art und Weise der Mafinahmen gegeben werden.
Zielsetzung dieser Arbeit war es nicht zu beurteilen, welche der betrachteten Mo-
delle im Allgemeinen besser ist. Vor allem deswegen, weil anhand von den hier durch-
gefiihrten Analysen dies nicht moglich wéare. Dennoch lassen sich einige Vor- und Nach-
teile nennen, die durch die Anwendung bemerkt wurden. Das Multinomial-Log-Normal-
Modell ist in der praktischen Anwendung mithilfe des RxCEcolInf Paketes (Greiner
et al., 2013) komplizierter. Diese Kritik umfasst zuerst die erforderliche Formatierung
der Individualdaten (Unterabschnitt 4.2.5, S. 45 und 46) und die etwas komplizierte
Angabe von Sample, Thinning und Burn-In (Unterabschnitt 5.2.2, S. 55). Zuséatzlich
wird die Angabe von dem Verhéltnis zwischen den Kategorien der ersten und der zwei-
ten Wahl durch einen String Character umstandlich (Unterabschnitt 5.2.1, S, 54 und
55). Hierbei konnte die Bestimmung der Referenzkategorie besser gelost werden als
durch das aktuell notwendige Umschichten der Reihenfolge der eingegebenen Katego-
rien. Letztendlich erwahnen die Autoren selbst, dass das Modell-Fitting langsamer ist.
Dazukommend léasst sich im eiwild Paket (Schlesinger, 2013) Vorwissen durch zellspe-
zifische Hyperpriori-Parameter ins Modell integrieren (Unterabschnitt 5.1.4 ab Seite
50). Aus den erwéhnten Griinden wird die Analyse schliellich mit dem eiwild Paket
anhand des Multinomial-Dirichlet-Modells empfohlen, falls die Analyse auf ein Modell
begrenzt werden muss. Insbesondere wenn Vorwissen vorhanden ist und die Anzahl der
Wahlbezirke klein ausféllt. Ansonsten bietet sich an, die beiden Modelle durchzufiihren,

zu vergleichen und die Ergebnisse aus dem Modell mit stabilsten Ketten zu berechnen.
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A Anhang

A.1 Die Datenbasis

A.1.1 Parteien der Bundestagswahl 2013

01
02
03
04
05
06
07
08
09
10

BUNDESTAGSWAHL 2013

Partei

CDU

SPD

FDP
GRUNE
DIE LINKE
AfD
PIRATEN
NPD

REP
TIER-SCHUTZ-PARTEI

11
12
13
14
15
16
17
18
19
20

Partei

ODP

PBC
VOLKSABSTIMMUNG
MLPD

BiiSo

BIG
PRO-DEUTSCHLAND
FREIE-WAHLER
PARTEI DER VERNUNFT
RENTNER

Tabelle A.1: Die Liste aller Parteien aus dem Datensatz der amtlichen Endergebnisse
der Bundestagswahl im Jahr 2013 (Stadt Mannheim, 2013).
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A.1.2 Stadtbezirke Mannheim

[[f] | STADTMANNHEIM®

17 Stadtbezirke

Legende

01 Innenstadt/Jungbusch
02 Neckarstadt-West

03 Neckarstadt-Ost

04 Schwetzingerstadt/Oststadt
05 Lindenhof

06 Sandhofen

07 Schonau

08 Waldhof

09 Neuostheim/Neuhermsheim
10 Seckenheim

11 Friedrichsfeld

12 Kéfertal

13 Vogelstang

14 Wallstadt

15 Feudenheim

16 Neckarau

17 Rheinau

005 1 2 3 4

Abbildung A.1: Mannheim: Aufteilung der Stadtbezirke, iibernommen von Stadt
Mannheim (2015a).
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A.1.3 Die Ergebnisse beider Wahlen nach Wahlbezirke

Bundestagswahl 2013
Stimmenanteil in Abhangigkeit der Wahlbezirke

CDhu

0 - o 0,0 ©
40% 0000 JTTHQ 00090 00 Uonon © 0% o _ 0@g00
30%-° ©° 00 00° LIS iSAgeR —5°5
(0] (o]
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0%-

40%-

30%- ao000%0 o = o LI ¥ %00 0. .00 OU QO 2 —
5} 000 e} 000

20%-~ °° © 00908 90 °70

10%-

0%-

Grine
40%-
30%- . o
20%- o Oo o .
(@]
€ 10029 © ©5. 10000907900 ga = o S -
()] OOOOOOOoOOOOOO ] OOOOOOO [eXe) OOQO [¢)

o
& Die Linke

ctSlO%-'r'—:UOO'\“*\ _ 00 . e 1| | A

O000go 05e00 0o T © TS e500500 SN A SRS CEAcACHe)

FDP

40%-
30%-
20%-
10%-

0%-

Sonstige

Wahlbezirk
Datentyp o Aggregat e Individual

Abbildung A.2: Amtliches Ergebnis der Bundestagswahl 2013 in Abhéangigkeit der
Wahlbezirke und die Ergebnisse der Nachwahlbefragung fiir fiinf betrachtete Wahl-
bezirke. Die dargestellten Wahlbezirke werden so aggregiert, dass alle Ebenen gleich
sind wie bei der Oberbiirgermeisterwahl 2015.

87



Oberblurgermeisterwahl 2015
Stimmenanteil in Abhangigkeit der Wahlbezirke
Dr. Peter Kurz (SPD)
60%-6° 5 00,9 4 ;i exe) Oooo o)

°
> O \_)O
40%- o 0F 795004 0p00 ~00

O000g®00 ©

Peter Rosenberger (CDU)

O 40%- o o 5°8 409040
S U 00000% Ooo i roYe) 0o TO o)
(o)

Christopher Probst (Mannheimer Liste)

000 [¢]
.§2@%- Q (o) 060500 s o 0 0400 _ 004 045050 (o)
Y ¥Goo00T e oY o

o OooOOOOQOOO

Sonstige

Datentyp o Aggregat e Individual

Abbildung A.3: Amtliches Ergebnis der Oberbiirgermeisterwahl 2015 in
Abhéngigkeit der Wahlbezirke und die Ergebnisse der Nachwahlbefragung fiir fiinf
betrachtete Wahlbezirke. Die dargestellten Wahlbezirke werden so aggregiert, dass
alle Ebenen gleich sind wie bei der Bundestagswahl 2013.
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A.1.4 Die Ergebnisse der Wihlerwanderung anhand von Individualdaten

ohne Nichtwdhler bei der Oberbiirgermeisterwahl

Nachwahlbefragung 2015
Oberblrgermeisterwahl 2015

Dr. Peter Peter Christopher
Kurz Rosenberger Probst Sonstige
(SPD) (CDU) (Mannheimer Liste)
SPD 70.33 % 17.21 % 10.09 % 2.37%
® Griine 68.95 % 13.73 % 12.09 % 5.23%
@ Die Linke 57.14 % 1143 % 1143 % 20 %
g CcbuU 24.81 % 62.28 % 11.14 % 1.77 %
g ap 13.04 % 50 % 36.96 % 0%
[}
B FDP 28.04 % 52.34 % 17.76 % 1.87 %
@ Sonstige 43.33 % 0% 16.67 % 40 %
Nichtwahler 54.44 % 30 % 7.78 % 7.78 %

Tabelle A.2: Die Ubergangstabelle zwischen der Bundestagswahl 2013 und
der  Oberbiirgermeisterwahl 2015 anhand der Nachwahlbefragung, ohne
,Nichtwahler” bei der Oberbiirgermeisterwahl 2015.

Abbildung A.4: Die Ubergangswahrscheinlichkeiten zwischen der Bundestagswahl
2013 (links) und der Oberbiirgermeisterwahl 2015 (rechts) anhand der Nachwahlbe-
fragung, ohne ,Nichtwahler” bei der Oberbiirgermeisterwahl 2015. Die Breite jedes
Pfeilendes driickt den Anteil an Stimmen aus, den der jeweilige Kandidat von ver-
schiedenen Parteien gewonnen hat.
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A.1.5 Aggregatdaten - amtliches Ergebnis mit Nichtwdhler

Aggregatdaten — amtliches Endergebnis
Bundestagswahl 2013

60% -
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N 0%

2442 % 18.93 % 7.49 % 5%
cbu SPD Griine ' f ' Sonétige

Abbildung A.5: Wahlbezirkspezifische amtliche Endergebnisse der Bundestagswahl
2013 inklusive ,Nichtwéhler”. Unten: Der durchschnittliche Stimmenanteil tiber alle
Wahlbezirke in Prozent. Quelle: Stadt Mannheim (2013).

Aggregatdaten — amtliches Endergebnis
Oberbirgermeisterwahl 2015

-
S 5%
N
o
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.£ 50%-
©
—
c
g
04 -
$ 5% .
S ;
E | . | I
P | 2
0 0%
14.82 % 11.03 % 5.24 % 1.05%
Dr. Peter Peter Christépher '
Kurz Rosenberger Probst Sonstige
(SPD) (CDU) (Mannheimer Liste)

Abbildung A.6: Wahlbezirkspezifische ~ amtliche  Endergebnisse  der
Oberbiirgermeisterwahl 2015 inklusive ,Nichtwéhler®. Unten: Der durchschnittliche
Stimmenanteil iiber alle Wahlbezirke in Prozent. Quelle: Stadt Mannheim (2015b).
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A.1.6 Vereinigung der Wahlbezirke

Nr. BTW OBW Nr. BTW OBW Nr. BTW OBW Nr. BTW — OBW
01111 05111 10121 15111
1 01111 ] 05111 © L o10121 ) 15111
01112 21 05112 42 10122 56 15112
05112 10122 15112
DR o 05112 10122 ' 15112
9 01122 05113 10123 15113
o220 T T Bl 10231 16111
01122 43 10231 ~ b 16111
01123 05114 10232 16112
e S 16112
3 01131 — 01131 22 0511 10261 6
05115 = HoAl 57 16113 5 16112
4 01132 — 01132 b o5114 10262
T 05116 10341 16114
5 01251 45 10341 16114
01252 23 05121 — 05121 10342 16113
02111 s 10451 —_
02111 24 06111 46 o 10451 16121
6 02112 06112 58 16121
02112 25 06221 — 06221 11111 10122
02112 g [ 16251
02113 % 06222 > 06222 47 - 59 L6952 16251
02121 07111 LI 11112
o o . _— s (P2
7 07112 16253
02122 | 48 11121 11121 60 16252
02123 02122 11122 16254
28 07113 } 07119 — 16361
03111 16361
o 03111 07114 49 11132 } 11131 16362
03112 g 61 360
3 03112 29 07122 } 07121 i) o0
03113 03112 12112 16363 16362
03113 30 07231 — 07231 12112 16364
03113
03114 } 31 07341 — 07341 50 12113 » 12112 17111 17111
03121 08111 12114 62 17112
9 03121 08111 12114 17112
03122 08112 < 17112
32 12113
10 03131 131 08112 12115 s
o teils 08112 13111 17121
08113 63 17121
03141 , (13111 17122
03142 03141 08121 51 13112
N 13112 17231
11 03142 33 08122 08121 13112 — } 17231
03143 03142 08123 13113 64 723
13121 17232 17932
19 03151 — 03151 34 09111 — 09111 o 13121 17933
3 03261 } 03261 35 09231 — 09231 13122 65 17241 —s 17241
03262 09341
36 oam } 09341 Baly 13123 13122 66 17351 — 17351
13124
14 04111 — 04111 o o 17461 461
09352 } 13125 67 f‘_ii’;
4121 — 04121 746:
16 0 =0 - 09361 . 14111 i 17463 17462
17 04122 — 04122 e [ el 14112
04131 ) 9
B s 14112
18 04132 w 09363 D36 14113 3 14112
132 y
04132 i 09364 53 14114
04133 i
09471 i 14113
04241 . 09471 14115
19 04241 40 09472
04242 . 14115
09472 14114
09472 14116
04251 04251 09473
20 04252 10111 54 14221 — 14221
04252 41 10111
04252 10112 55 14331 — 14331
04253

Tabelle A.3: Vereinigung der Wahlbezirke zwischen der Bundestagswahl 2013 und
der Oberbiirgermeisterwahl 2015, wodurch 67 konstante Ebenen resultieren. Quelle:
Wahlbiiro der Stadt Mannheim (2016).
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A.1.7 Differenz des Stimmenanteils zwischen den Brief- und Urnenwihlern

Aggregatdaten -- amtliches Endergebnis
Differenz zwischen den Brief- und den Urnenwahlern

Bundestagswahl 2013 Oberburgermeisterwahl 2015
50%- 50%-
<
qN) 0/ _ o/ .
) 25% 25%
o
JER—- 2.26% 2.58% 2.32% o) 1.8% 0.59%
N 2.76% -2.43% -1.49% -0.49% © TA.66% -0.73%
[}
§-25%> -25%-
(@] Dr. Peter Peter Christopher
-50%- . . . . . . . -50%- quz Rosenperger Prqbst [
cbu SPD  Grine Die Linke Sonstige SPD CDU Mannheimer Sonstige
Liste

Abbildung A.7: Differenz der Stimmenanteile zwischen den Brief- und den Ur-
nenwiéhlern bei der Bundestagswahl 2013 (links) und bei der Oberbiirgermeisterwahl
2015 (rechts). Quelle: Stadt Mannheim (2013, 2015b).

Aggregatdaten -- amtliches Endergebnis
Differenz zwischen den Brief- und den Urnenwéahlern mit Nichtwahlern

Bundestagswahl 2013
50%-

0,
. ma 530% 523% . 04%  0.44% _345%  1.64%

-27.89%
-50%-

-100%-
CDhU SPD Grine Die Linke Sonstige

Oberburgermeisterwahl 2015
50%-
251% .  23.45%

10.86%

Differenz in Prozent

-50%-

Dr. Peter Peter Christopher -65.57%
100%- Kurz Rosenberger Probst
SPD CDU Mannheimer Sonstige
Liste

Abbildung A.8: Differenz der Stimmenanteile zwischen den Brief- und den Ur-
nenwéhlern bei der Bundestagswahl 2013 (oben) und bei der Oberbiirgermeisterwahl
2015 (unten) inklusive ,Nichtwéhler. Quelle: Stadt Mannheim (2013, 2015b).
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A.2 Konvergenzdiagnose, Ketten- und Modellvergleich
A.2.1 Multinomial-Dirichlet-Modell: Trace- und Density of Counts

Multinomial-Dirichlet-Modell mit Vorwissen Gamma(A4 = 30, A, = 1)

Trace of Counts Density of Counts
(jede tausendste Iteration) (zweite und letzte Million)
SPD.Kurz SPD.Kurz
15000 -
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2500 - 0.0000- , i i
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Lt 0.0004-
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w2 0.0001 -
9 2000- >0.0000- - , .
c o 4000 6000 8000
> C
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10000 - 0.0000-, i [ :
12500 15000 17500 20000
Sonstige_13.Sonstige_15 Sonstige_13.Sonstige_15
2000- A
1500~ 0.004 -
1000~
500 ik shbo il ool il g 00021
0- 0.000-, : . ;
0 300 600 900
100000 IS G G OIS Nichtwahler_13.Nichtwahler_15
80000 - 0.0004 -
60000 -
ey 0.0002-
20000~ . i i i i 0.0000- i i i f
0 2500000 5000000 7500000 10000000 91000 93000 95000 97000
Iteration Counts
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Abbildung A.9: Die Ketten (links) und die Dichten (rechts) der gezogenen abso-
luten Héufigkeiten (Counts) von fiinf gewahlten inneren Zellen des Gkologischen
Multinomial-Dirichlet-Modells mit Hyperpriori-Parameter Gamma(A; = 30, Ay = 1)
fiir die Zellen der Loyalen. Links: Von zehn Millionen Iterationen wird jede tausends-
te dargestellt. Die senkrechten roten Linien kennzeichnen die 100 000-ste von zehn
Millionen Iterationen. Die waagerechten weiflen Linien zeigen die Mittelwerte al-
ler gezogenen Werte. Rechts: Die Dichten der zweiten und der letzten Million aller
Iterationen und die dazugehoérigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Modell mit Vorwissen Gamma(A4 = 30, A, = 2)

Trace of Counts
(jede tausendste Iteration)

Density of Counts
(zweite und letzte Million)

SPD.Kurz SPD.Kurz
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Abbildung A.10: Die Ketten (links) und die Dichten (rechts) der gezogenen ab-
soluten Héufigkeiten (Counts) von fiinf gewahlten inneren Zellen des Gkologischen
Multinomial-Dirichlet-Modells mit Hyperpriori-Parameter Gamma(A; = 30, Ay = 2)
fiir die Zellen der Loyalen. Links: Von zehn Millionen Iterationen wird jede tausends-
te dargestellt. Die senkrechten roten Linien kennzeichnen die 100 000-ste von zehn
Millionen Iterationen. Die waagerechten weilen Linien zeigen die Mittelwerte al-
ler gezogenen Werte. Rechts: Die Dichten der zweiten und der letzten Million aller
Iterationen und die dazugehoérigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Hybridmodell ohne Vorwissen

Trace of Counts Density of Counts
(jede tausendste Iteration) (zweite und letzte Million)
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Abbildung A.11: Die Ketten (links) und die Dichten (rechts) der gezogenen absoluten
Haéufigkeiten (Counts) von fiinf gewéhlten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells ohne Vorwissen. Links: Von zehn Millionen Iterationen wird jede
tausendste dargestellt. Die senkrechten roten Linien kennzeichnen die 100 000-ste
von zehn Millionen Iterationen. Die waagerechten weilen Linien zeigen die Mittel-
werte aller gezogenen Werte. Rechts: Die Dichten der zweiten und der letzten Million
aller Iterationen und die dazugehérigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(i4 = 30, A, = 1)

Trace of Counts
(jede tausendste Iteration)

Density of Counts
(zweite und letzte Million)
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Abbildung A.12: Die Ketten (links) und die Dichten (rechts) der gezogenen absoluten
Haéufigkeiten (Counts) von fiinf gewéhlten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(A; = 30, Ay = 1) fiir die Zellen
der Loyalen. Links: Von zehn Millionen Iterationen wird jede tausendste dargestellt.
Die senkrechten roten Linien kennzeichnen die 100 000-ste von zehn Millionen Ite-
rationen. Die waagerechten weiflen Linien zeigen die Mittelwerte aller gezogenen
Werte. Rechts: Die Dichten der zweiten und der letzten Million aller Iterationen
und die dazugehdrigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(i4 = 30, A, = 2)

Trace of Counts
(jede tausendste Iteration)
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Abbildung A.13: Die Ketten (links) und die Dichten (rechts) der gezogenen absoluten
Haéufigkeiten (Counts) von fiinf gewéhlten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(A; = 30, Ay = 2) fiir die Zellen
der Loyalen. Links: Von zehn Millionen Iterationen wird jede tausendste dargestellt.
Die senkrechten roten Linien kennzeichnen die 100 000-ste von zehn Millionen Ite-
rationen. Die waagerechten weiflen Linien zeigen die Mittelwerte aller gezogenen
Werte. Rechts: Die Dichten der zweiten und der letzten Million aller Iterationen
und die dazugehdrigen Mittelwerte (senkrechte Linien).
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A.2.2 Multinomial-Dirichlet-Modell: Autokorrelationen

Multinomial-Dirichlet-Modell mit Vorwissen Gamma(A; = 30, A, = 1)

Autokorrelation
Sample: 1000, Burnin: 100000

Thinning: 1 Thinning: 2000
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g 0.25 - 0215
'E, 0.00 0.00
3]
E Counts.CDU.Rosenberger Counts.CDU.Rosenberger
© 1.00- 1.00 -
Z 0.75- 0.75-
0.50 - 0.50 -
0.25- 0.25-
0.00 0.00
Counts.Sonstige_13.Sonstige_15 Counts.Sonstige_13.Sonstige_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 2L
Counts.Nichtwahler 13.Nichtwéahler_15 Counts.Nichtwahler_13.Nichtwahler 15
1.00 - 1.00 -
0.75 - 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
0 10 20 30 0 10 20 30
Lag

Abbildung A.14: Die Autokorrelationen der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des 6kologischen Multinomial-Dirichlet-
Modells mit Hyperpriori-Parameter Gamma(A; = 30,y = 1) fiir die Zellen der
Loyalen, anhand einer Stichprobe mit 1000 Ziehungen nach dem Burn-In von
100000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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Multinomial-Dirichlet-Modell mit Vorwissen Gamma(A; = 30, A, = 2)

Autokorrelation
Sample: 1000, Burnin: 100000

Thinning: 1 Thinning: 2000
Counts.SPD.Kurz Counts.SPD.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Griine.Kurz Counts.Griine.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0238
0.00 0.00
Counts.Linke.Kurz Counts.Linke.Kurz
1.00 - 1.00 -
0.75 - 0.75 -
0.50 - 0.50 -
S 0.25- 0.25 -
E 0.00 0.00
3]
_c:> Counts.CDU.Rosenberger Counts.CDU.Rosenberger
© 1.00- 1.00 -
< 0.75- 0.75-
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0.00 0.00
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0.00 0.00
Counts.Nichtwahler _13.Nichtwéahler_15 Counts.Nichtwéahler_13.Nichtwahler_15
1.00 - 1.00 -
0.75 - 0.75 -
0.50 - 0.50 -
0.5 - 0.25 -
0.00 0.00
0 10 20 30 0 10 20 30
Lag

Abbildung A.15: Die Autokorrelationen der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des 6kologischen Multinomial-Dirichlet-
Modells mit Hyperpriori-Parameter Gamma(\; = 30, \y = 2) fiir die Zellen der
Loyalen, anhand einer Stichprobe mit 1000 Ziehungen nach dem Burn-In von
100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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Multinomial-Dirichlet-Hybridmodell ohne Vorwissen

Autokorrelation
Sample: 1000, Burnin: 100000

Thinning: 1
Counts.SPD.Kurz
1.00 -
0.75-
0.50 -
0.25-
0.00
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O¥5%
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Thinning: 2000
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0.25 -
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0.25 -
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0.75 -
0.50 -
0.25 -
0.00

Counts.Nichtwéahler_13.Nichtwahler_15
1.00 -

0.75 -
0.50 -
0.25 -
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Abbildung A.16: Die Autokorrelationen der gezogenen absoluten Héaufigkeiten

(Counts) von fiinf gewéhlten

inneren Zellen

des Multinomial-Dirichlet-

Hybridmodells ohne Vorwissen, anhand einer Stichprobe mit 1000 Ziehungen
nach dem Burn-In von 100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.



Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(A; = 30, A, = 1)

Autokorrelation
Sample: 1000, Burnin: 100000

Thinning: 1 Thinning: 2000
Counts.SPD.Kurz Counts.SPD.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.95 - 0.25 -
0.00 0.00
Counts.Griine.Kurz Counts.Griine.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25 - 0.25-
0.00 0.00
Counts.Linke.Kurz Counts.Linke.Kurz
1.00 - 1.00 -
0.75 - 0.75 -
0.50 - 0.50 -
g 0.25- 0.25 -
E 0.00 0.00
&
_c:> Counts.CDU.Rosenberger Counts.CDU.Rosenberger
© 1.00- 1.00 -
< 0.75- 0.75 -
0.50 - 0.50 -
0.25 - 0.25 -
0.00 0.00
Counts.Sonstige_13.Sonstige_15 Counts.Sonstige_13.Sonstige_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Nichtwahler _13.Nichtwéahler_15 Counts.Nichtwéahler_13.Nichtwahler_15
1.00 - 1.00 -
0.75 - 0.75 -
0.50 - 0.50 -
0.25 - 0.25 -
0.00 0.00
0 10 20 30 0 10 20 30
Lag

Abbildung A.17: Die Autokorrelationen der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewdhlten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(\; = 30,\y = 1) fiir die
Zellen der Loyalen, anhand einer Stichprobe mit 1000 Ziehungen nach dem Burn-In
von 100000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(A; = 30, A, = 2)

Autokorrelation
Sample: 1000, Burnin: 100000

Thinning: 1 Thinning: 2000
Counts.SPD.Kurz Counts.SPD.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25 - 0.25 -
0.00 0.00
Counts.Griine.Kurz Counts.Griine.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Linke.Kurz Counts.Linke.Kurz
1.00 - 1.00 -
0.75 - 0.75 -
0.50 - 0.50 -
S 0.25- 0.25 -
E 0.00 0.00
3]
_c:> Counts.CDU.Rosenberger Counts.CDU.Rosenberger
© 1.00- 1.00 -
< 0.75- 0.75-
0.50 - 0.50 -
0.25 - 0.25-
0.00 0.00
Counts.Sonstige_13.Sonstige_15 Counts.Sonstige_13.Sonstige_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25 - 0:25 =
0.00 L
Counts.Nichtwahler _13.Nichtwéahler_15 Counts.Nichtwéahler_13.Nichtwahler_15
1.00 - 1.00 -
0.75 - 0.75 -
0.50 - 0.50 -
0.25 - 0.25 -
0.00 0.00
0 10 20 30 0 10 20 30
Lag

Abbildung A.18: Die Autokorrelationen der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewdhlten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(\; = 30,\y = 2) fiir die
Zellen der Loyalen, anhand einer Stichprobe mit 1000 Ziehungen nach dem Burn-In
von 100000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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A.2.3 Multinomial-Dirichlet-Modell:

Trace of Counts nach Burn-In und Thinning

Multinomial-Dirichlet-Modell mit Vorwissen Gamma(A4 = 30, A, = 1)

Trace of Counts Density of Counts
SPD.Kurz SPD.Kurz
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o 10 200400~ == : : : . .
< i 4000 5000 6000 7000 8000 9000
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0.000 - . . - -
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95000 - 4e-04-
94000 -
93000 - 2e-04-
92000 -
91000- . i i i ; 0e+00-, i i i i i
0 250 500 750 1000 91000 92000 93000 94000 95000 96000
Iteration Counts

Abbildung A.19: Drei verdiinnte Ketten der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des 6kologischen Multinomial-Dirichlet-
Modells mit Hyperpriori-Parameter Gamma(\; = 30,\y = 1) fiir die Zellen der
Loyalen. Sample: 1000, Burn-In: 100 000 und Thinning: 2 000. Links: Trace of Counts
der drei Ketten und die dazugehérigen Mittelwerte (waagerechte Linien). Rechts:
Dichten der verdiinnten Ketten und die gleichen Mittelwerte senkrecht dargestellt.
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Multinomial-Dirichlet-Modell mit Vorwissen Gamma(A4 = 30, A, = 2)

Trace of Counts Density of Counts
SPD.Kurz SPD.Kurz
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Abbildung A.20: Drei verdiinnte Ketten der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des 6kologischen Multinomial-Dirichlet-
Modells mit Hyperpriori-Parameter Gamma(A, = 30, s = 2) fiir die Zellen der
Loyalen. Sample: 1000, Burn-In: 100 000 und Thinning: 2 000. Links: Trace of Counts
der drei Ketten und die dazugehdrigen Mittelwerte (waagerechte Linien). Rechts:
Dichten der verdiinnten Ketten und die gleichen Mittelwerte senkrecht dargestellt.
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Multinomial-Dirichlet-Hybridmodell ohne Vorwissen

Trace of Counts Density of Counts
SPD.Kurz SPD.Kurz
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Abbildung A.21: Drei verdiinnte Ketten der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells ohne Vorwissen. Sample: 1000, Burn-In: 100000 und Thinning:
2000. Links: Trace of Counts der drei Ketten und die dazugehorigen Mittelwerte
(waagerechte Linien). Rechts: Dichten der verdiinnten Ketten und die gleichen
Mittelwerte senkrecht dargestellt.
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(i4 = 30, A, = 1)

Trace of Counts Density of Counts
SPD.Kurz SPD.Kurz
4e-04-
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Abbildung A.22: Drei verdiinnte Ketten der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(A, = 30,\y = 1) fiir die
Zellen der Loyalen. Sample: 1000, Burn-In: 100000 und Thinning: 2000. Links:
Trace of Counts der drei Ketten und die dazugehdrigen Mittelwerte (waagerechte
Linien). Rechts: Dichten der verdiinnten Ketten und die gleichen Mittelwerte
senkrecht dargestellt.
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Counts

Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(i4 = 30, A, = 2)

Trace of Counts Density of Counts
SPD.Kurz SPD.Kurz
4e-04-
14000 - fyhibti4 flh i ; AT 36-04-
12000 - 2e-04-
10000 - ! | i I Rl 1e-04-
| 0e+00-, ' ’ ’
8000 8000 10000 12000 14000
Grine.Kurz Griine.Kurz

11000- | (|| 9 PR 9 71 R e 7117711 T 6e-04 -
10000 - 4e-04 -
9000 - |

2e-04 -
8000- ! { LI

0e+00-,

7000- ' ' ' '
7000 8000 9000 10000 11000
Linke.Kurz Linke.Kurz
5000 - | —| - 8e-04 -
6e-04 -
4000~ ({aiiER SR 0l kel s b b ol

‘ 4e-04-
3000~ FHTAU TR 0 i 26-04-
2000~ 0e+00-,

2000 3000 4000 5000
CDU.Rosenberger CDU.Rosenberger

18000 - - 5e-04-
4e-04-
16000 - L 3e-04-
14000 - [ TR EELY LT ARTRTEIE R R
1e-04-
12000 - 0e+00-

12000 14000 16000 18000

Density

Sonstige_13.Sonstige_15 Sonstige_13.Sonstige_15
1000 - 0.004 -
750- 1 f f it 0.008 -
500 - 0.002 -
. 0.001 -
0.000 - . . * ]
250 500 750 1000
Nichtwahler 13.Nichtwahler 15 Nichtwahler_13.Nichtwahler_15
96000 - | 6e-04-
95000 -
94000 - .
93000- i 2e-04 -
92000 -
91000- ' i g ; 0e+00-, " " i i ;
0 250 500 750 1000 91000 92000 93000 94000 95000 96000
Iteration Counts

Abbildung A.23: Drei verdiinnte Ketten der gezogenen absoluten Héaufigkeiten

(Counts) von fiinf gewéhlten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(A, = 30,\y = 2) fiir die
Zellen der Loyalen. Sample: 1000, Burn-In: 100000 und Thinning: 2000. Links:
Trace of Counts der drei Ketten und die dazugehdrigen Mittelwerte (waagerechte
Linien). Rechts: Dichten der verdiinnten Ketten und die gleichen Mittelwerte
senkrecht dargestellt.
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A.2.4 Multinomial-Dirichlet-Modell:
Ketten- und Modellvergleich mittels MAE

Mean Absolute Error (MAE): Kettenvergleich

ohne Vorwissen mit Vorwissen (A; =30, A\, =1) mit Vorwissen (A; = 30, A, = 2)
Kete3 0.4 % 0.44 % 0.88% 0.3 % 0.45 % 0.43 % 2
Q
@
Kete2 0.5 % 0.44% 0.86 % 0.3 % 0.19% 043% |
Q
2
Kette 1 05% 0.4% 0.86 % 0.88 % 0.19% 0.45% 3
Kette3 0.12 % 0.17 % 0.13% 0.12 % 0.13% 0.14 %
<
Kete2 0.16 % 0.17% 0.15% 0.12% 011 % 014% g
o
Kette 1 0.16 % 0.12 % 0.15% 0.13 % 0.11 % 0.13 %
Kette 1 Kette 2 Kette 3 Kette 1 Kette 2 Kette 3 Kette 1 Kette 2 Kette 3

Abbildung A.24: Mean Absolut Error (MAE) in Prozentpunkten zwischen den Er-
gebnissen von drei verdiinnten Ketten fiir jede Version des 6kologischen Multinomial-
Dirichlet-Modells (oben) und des Multinomial-Dirichlet-Hybridmodells (unten). Die
Werte sind je nach Modell symmetrisch tiber die Diagonale.

Mean Absolute Error (MAE): Modellvergleich

Aggregatdaten Aggregatdaten Hybrid Hybrid
Aggregatdaten mit Vorwissen mit Vorwissen Hybrid mit Vorwissen mit Vorwissen
(30, 1) (30, 2) (30, 1) (30, 2)
Aggregatdaten 8.28 % 6.34 % 5.82 % 7.44 % 6.97 %
Aggregatdaten
mit \églbwif)sen 8.28 % 2.26 % 5.96 % 4.27 % 4.56 %
Aggregatdaten
mit \ggwi;)sen 6.34 % 2.26 % 4.71 % 3.68 % 3.73%
Hybrid 5.82 % 5.96 % 4.71 % 2.57 % 2.03%
Hybrid
mit \ggwif)sen 7.44 % 4.27 % 3.68 % 2.57 % 0.6 %
Hybrid
mit \ggraNig)sen 6.97 % 4.56 % 3.73% 2.03% 0.6 %

Abbildung A.25: Mean Absolut Error (MAE) in Prozentpunkten zwischen den Er-
gebnissen von verschiedenen Versionen des Multinomial-Dirichlet-Modells (symme-
trisch tiber die Diagonale). Zum Vergleich wurde die erste der drei verdiinnten Ketten
fiir jede Version des Modells verwendet.
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A.2.5 Multinomial-Log-Normal-Modell: Trace- und Density of Counts

Multinomial-Log-Normal-Modell mit Referenzkategorie "Kurz'

Trace of Counts

(jede tausendste lteration)
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Abbildung A.26: Die Ketten (links) und die Dichten (rechts) der gezogenen ab-
soluten Héufigkeiten (Counts) von fiinf gewahlten inneren Zellen des Gkologischen
Multinomial-Log-Normal-Modells mit Referenzkategorie Kurz. Von zehn Millionen
durchgefiihrten Iterationen konnte jede hundertste gespeichert werden. Links wird
von zehn Millionen Iterationen jede tausendste dargestellt. Die senkrechten roten
Linien kennzeichnen die 2000 000-ste von zehn Millionen Iterationen. Die waage-
rechten schwarzen Linien zeigen die Mittelwerte von 100 000 gespeicherten Werten.
Rechts: Die Dichten der zweiten und der letzten Million (jede hundertste Iteration
betrachtet) und die dazugehérigen Mittelwerte (senkrechte Linien).
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Multinomial-Log-Normal-Hybridmodell

Trace of Counts Density of Counts
(jede tausendste Iteration) (zweite und letzte Million)
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Abbildung A.27: Die Ketten (links) und die Dichten (rechts) der gezoge-
nen absoluten Haufigkeiten (Counts) von fiinf gewéhlten inneren Zellen des
Multinomial-Log-Normal-Hybridmodells mit automatisch gewahlter Referenzkate-
gorie Nichtwdhler_ 15. Von zehn Millionen durchgefiihrten Iterationen konnte jede
hundertste gespeichert werden. Links wird von zehn Millionen Iterationen jede tau-
sendste dargestellt. Die senkrechten roten Linien kennzeichnen die 2 000 000-ste von
zehn Millionen Iterationen. Die waagerechten schwarzen Linien zeigen die Mittel-
werte von 100000 gespeicherten Werten. Rechts: Die Dichten der zweiten und der
letzten Million (jede hundertste Iteration betrachtet) und die dazugehoérigen Mittel-
werte (senkrechte Linien).
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Abbildung A.28: Die Ketten (links) und die Dichten (rechts) der gezogenen abso-
luten Héufigkeiten (Counts) von fiinf gewdhlten inneren Zellen des Multinomial-
Log-Normal-Hybridmodells mit Referenzkategorie Kurz. Von zehn Millionen durch-
gefiihrten Iterationen konnte jede hundertste gespeichert werden. Links wird von
zehn Millionen Iterationen jede tausendste dargestellt. Die senkrechten roten Lini-
en kennzeichnen die 2000 000-ste von zehn Millionen Iterationen. Die waagerechten
schwarzen Linien zeigen die Mittelwerte von 100 000 gespeicherten Werten. Rechts:
Die Dichten der zweiten und der letzten Million (jede hundertste Iteration betrach-
tet) und die dazugehérigen Mittelwerte (senkrechte Linien).
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A.2.6 Multinomial-Log-Normal-Modell: Autokorrelationen

Multinomial-Log-Normal-Modell mit Referenzkategorie “Kurz'

Autokorrelation
Sample: 1000, Burnin: 2000000

Thinning: 100 Thinning: 2000
Counts.Nichtwahler 13.Nichtwahler 15 Counts.Nichtwahler 13.Nichtwahler 15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Sonstige_13.Nichtwahler_15 Counts.Sonstige_13.Nichtwahler_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.FDP.Nichtwahler_15 Counts.FDP.Nichtwahler_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
E, 0.25 - 0.25 -
© 0.00 0.00
o
é Counts.AfD.Sonstige_15 Counts.AfD.Sonstige_15
© 1.00- 1.00 -
Z 0.75- 0.75-
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Griine.Rosenberger Counts.Griine.Rosenberger
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.SPD.Kurz Counts.SPD.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 — , . : 0.00 — . . .
0 10 20 30 0 10 20 30
Lag

Abbildung A.29: Die Autokorrelationen der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewédhlten inneren Zellen des o6kologischen Multinomial-Log-
Normal-Modells mit Referenzkategorie Kurz anhand einer Stichprobe mit 1000 Zie-
hungen nach dem Burn-In von 2000 000. Links: Thinning von 100. Rechts: Thinning
von 2 000.
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Multinomial-Log-Normal-Hybridmodell

Autokorrelation
Sample: 1000, Burnin: 2000000

Thinning: 100 Thinning: 2000
Counts.SPD.Kurz Counts.SPD.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Griine.Kurz Counts.Griine.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Linke.Kurz Counts.Linke.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
S 0.25- 0.25-
T 0.00 0.00
&
_é Counts.CDU.Rosenberger Counts.CDU.Rosenberger
© 1.00- 1.00 -
< 0.75- 0.75-
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Sonstige_13.Sonstige_15 Counts.Sonstige_13.Sonstige_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Nichtwahler _13.Nichtwéahler_15 Counts.Nichtwéahler_13.Nichtwahler_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 —, , . . 0.00 — , . :
0 10 20 30 0 10 20 30
Lag

Abbildung A.30: Die Autokorrelationen der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des Multinomial-Log-Normal-
Hybridmodells mit automatisch gewahlter Referenzkategorie Nichtwdhler_15 an-
hand einer Stichprobe mit 1000 Ziehungen nach dem Burn-In von 2000 000. Thin-
ning von 100. Rechts: Thinning von 2 000.
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Multinomial-Log-Normal-Hybridmodell mit Referenzkategorie "Kurz'

Autokorrelation
Sample: 1000, Burnin: 2000000

Thinning: 100 Thinning: 2000
Counts.Nichtwahler_13.Nichtwahler_15 Counts.Nichtwéahler_13.Nichtwahler_15
1.00 - 1.00 -
0.75 - 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Sonstige_13.Nichtwahler_15 Counts.Sonstige_13.Nichtwahler_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.FDP.Nichtwahler_15 Counts.FDP.Nichtwahler_15
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
S 0.25- 0.25-
T 0.00 0.00
o
_é Counts.AfD.Sonstige_15 Counts.AfD.Sonstige_15
© 1.00- 1.00 -
< 0.75- 0.75-
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.Griine.Rosenberger Counts.Griine.Rosenberger
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 0.00
Counts.SPD.Kurz Counts.SPD.Kurz
1.00 - 1.00 -
0.75- 0.75 -
0.50 - 0.50 -
0.25- 0.25 -
0.00 —, , . : 0.00 — , . :
0 10 20 30 0 10 20 30
Lag

Abbildung A.31: Die Autokorrelationen der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewéhlten inneren Zellen des Multinomial-Log-Normal-
Hybridmodells mit Referenzkategorie Kurz anhand einer Stichprobe mit 1000 Zie-
hungen nach dem Burn-In von 2000000. Thinning von 100. Rechts: Thinning von
2000.
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A.2.7 Multinomial-Log-Normal-Modell:

Trace of Counts nach Burn-In und Thinning

Multinomial-Log-Normal-Hybridmodell

Trace of Counts Density of Counts
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Abbildung A.32: Drei verdiinnte Ketten der gezogenen absoluten Héaufigkeiten
(Counts) von fiinf gewahlten inneren Zellen des Multinomial-Log-Normal-
Hybridmodells mit automatisch gewahlter Referenzkategorie Nichtwdhler_ 15 und
eine verdiinnte Kette mit Referenzkategorie Kurz. Sample: 1000, Burn-In: 2000 000
und Thinning: 2000. Links: Trace of Counts der vier Ketten und die dazugehdérigen
Mittelwerte (waagerechte Linien). Rechts: Dichten der Ketten und die gleichen Mit-
telwerte senkrecht dargestellt.
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A.2.8 Multinomial-Log-Normal-Modell: Ketten- und Modellvergleich mit-
tels MAE

Mean Absolute Error (MAE): Kettenvergleich
Aggregatdaten Hybrid

Kette Ref

Kette Ref  [reflal m)

Kette 3 Kette 3
Kette 2 Kette 2
Kette 1 8.61 % Kette 1

Kette 1 Kette 2 Kette 3 Kette Ref Kette 1 Kette 2 Kette 3 Kette Ref

Abbildung A.33: Mean Absolut Error (MAE) in Prozentpunkten zwischen den
Ergebnissen von drei verdiinnten Ketten mit automatisch gewahlter Referenzka-
tegorie Nichtwdhler_ 15 und einer Kette mit Referenzkategorie Kurz bei dem
6kologischen Multinomial-Log-Normal-Modell (links) und bei dem Multinomial-Log-
Normal-Hybridmodell (rechts). Die Werte sind je nach Modell symmetrisch iiber die
Diagonale.

Mean Absolute Error (MAE): Modellvergleich

Aggregatdaten Hybrid
Aggregatdaten Referenzkategorie Hybrid Referenzkategorie
‘Kurz'* ‘Kurz'
Aggregatdaten 8.61 % 13.8 % 12.66 %
Aggregatdaten
Referenzkategorie 8.61 % 11.6 % 8.79 %
‘Kurz*
Hybrid 13.8 % 11.6 % 5.46 %
Hybrid
Referenzkategorie 12.66 % 8.79 % 5.46 %
‘Kurz'*

Abbildung A.34: Mean Absolut Error (MAE) in Prozentpunkten zwischen den Er-
gebnissen von verschiedenen Versionen des Multinomial-Log-Normal-Modells (sym-
metrisch tiber die Diagonale). Zum Vergleich wurde die erste der drei verdiinnten
Ketten mit Referenzkategorie Nichtwédhler_15 und die Kette mit Referenzkategorie
Kurz, jeweils fiir die Version mit und ohne Individualdaten, verwendet.
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E Elektronischer Anhang

Der Inhalt der beigelegten CD ist in der Abbildung E.1 aufgelistet. Auf der CD
ist ebenfalls diese Arbeit in digitaler Version unter dem Name "MA_Kopecki.pdf"
vorhanden.

Im Ordner Briefwaehler_ Gewichtung Bs befindet sich der Beispielcode zur Addi-
tion der Briefwahler und die Erstellung des gewichteten Datensatzes in R, welcher mit-
tels der amtlichen Ergebnisse der ersten zwei Wahlbezirke der Oberbiirgermeisterwahl
2015 simuliert wird. Die benotigten Daten werden dem Ordner beigelegt.

Der Ordner Grafiken Ketten Matrix umfasst die Grafiken, welche die drei
verdiinnten Ketten aller Zellen in einer Matrixform fiir alle betrachteten Modelle dar-
stellen und eine README. txt Datei mit der Beschreibung der Grafiken.

Im Ordner R_Code sind alle Programmcodes vorhanden, welche fiir die Datenauf-
bereitung, die Erstellung der Grafiken und fiir die Analyse verwendet wurden. Die
erzeugten Dateien werden automatisch in den vier dazugehorigen Ordnern gespei-
chert und im weiteren Verlauf geladen. Das heifit, dieser Ordner und alle R Datei-
en missen dem ,Working Directory* beigelegt werden. Im Ordner Daten liegen die
noétigen rohen Datensétze vor. Aus Datenschutzgriinden diirfen die Daten fiir das Er-
stellen der Grafiken zum Alter und zur Bildung der Befragten nicht beiliegen. Die
Grafiken, die mithilfe des Codes nicht hergestellt werden koénnen, befinden sich im
Ordner Grafiken/Deskriptive_Analyse. Die R Dateien wurden fiir die Berechnun-
gen auf dem Server vorbereitet. Die Nummern der Dateien geben die Reihenfolge der
Durchfithrung an. Das heifit, die Datei unter der Nummer 02 kann erst dann durch-
gefiihrt werden, wenn der Durchlauf der Datei unter der Nummer 01 fertig ist. Die
Dateien, die die gleichen Nummern besitzen (beispielsweise 03a bis 03j), konnen auf
dem Server parallel berechnet werden. Eine Auflistung aller Pakete, die vor der Analyse
installiert werden miissen, befindet sich in der Datei 00_Pakete.R. Falls die Berechnun-
gen auf einem privaten Rechner durchgefithrt werden méchten, sind die Beschreibungen
am Anfang des Codes zu beachten.

Die Datei README. txt enthélt die vorliegende Beschreibung des CD Inhaltes.
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CD Inhalt

. Briefwaehler_Gewichtung_Bs
t@ Gewichtung_Bs.R

0BW2015.Rda
—® 03a_Analyse_Dir_agg 10Mill.R
L0 Grafiken Ketten_Matrix
— & 03b_Analyse_Dir_agg prioril_10Mill.R
— "~ E.6.14_DirAgg matixCounts.pdf
—® 03c_Analyse_Dir_agg priori2_ 10Mill.R
—"X E.6.15_DirAggP1_matixCounts.pdf
—® 03d_Analyse_Dir_hyb_10Mill.R
— ™ E.6.16_DirAggP2 _matixCounts.pdf
—® 03e_Analyse_Dir_hyb_prioril_10Mill.R
— ™ E.6.17_DirHyb_matixCounts.pdf
—® 03f_Analyse_Dir_hyb_priori2_10Mill.R
—"X E.6.18_DirHybP1_matixCounts.pdf
—® 03g_Analyse_LN_agg 10Mill.R
—"X E.6.19_DirHybP2_matixCounts.pdf
—® 03h_Analyse_LN_agg_ref_ 10Mill.R
—™2 E.6.20_LNagg_matixCounts.pdf
—® 03i_Analyse_LN_hyb_10Mill.R
— "X E.6.21_LNhyb_matixCounts.pdf
—® 03j_Analyse_LN_hyb_ref_10Mill.R

— .- README. txt
— @ 04_Konvergenzdiagnose_Grafiken
— . R_Code
—® 05a_Analyse_Dir_agg 1Tsd.R
| &4 Daten
— @ 05b_Analyse_Dir_agg prioril_1Tsd.R
" btw-wahlbezirke_neu.xls
—® 05c_Analyse_Dir_agg priori2_1Tsd.R
% exitpoll2015.x1s
—® 05d_Analyse_Dir_hyb_1Tsd.R
. obw2015_auswertungen_amtliches

_endergebnis_fur_internet.xls —® 05e_Analyse_Dir_hyb_prioril_1Tsd.R

.. Grafiken —® 05f_Analyse_Dir_hyb_priori2_1Tsd.R

—@® 05g_Analyse_LN_agg 1Tsd.R

.. Deskriptive_Analyse

t_} Abb.4.6_Alter.pdf — @ 05h_Analyse_LN_hyb_1Tsd.R

< Tab.4.2_Bildung.pdf — & 06_Modell-Kettenvergleich_Grafiken.R

— @ Konvergenzdiagnose_Funktionen.R

L Konvergenzdiagnose

@ Modell-Kettenvergleich_Funktionen.R

“il Modell-Kettenvergleich

Ll Strasseneinteilung
[ &0 Modelle_1Tsd t

=

Strasseneinteilung_BTW2013.x1ls
[ 8 Modelle_10Mill

)

strassenverzeichnis_obw_2015.x1ls

—® 00_Pakete.R — X MA_Kopecki .pdf

—® 01_Datenaufbereitung.R L README. txt

—@® 02_Deskriptive_Analyse_Grafiken.R

Abbildung E.1: Inhalt der beigelegten CD
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