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Ganz besonders möchte ich mich bei meinem Mann bedanken, der mich moralisch und

finanziell unterstützt hat und an mich geglaubt hat, auch wenn ich selbst gezweifelt

habe.



Abstract

Zielsetzung dieser Arbeit ist die Schätzung der Wählerwanderung zwischen der Bun-

destagswahl im Jahr 2013 und der Oberbürgermeisterwahl im Jahr 2015 in Mannheim

anhand von Aggregat- und Individualdaten. Hierfür wurden die amtlichen Ergebnisse

in Form von Aggregatdaten und eine Nachwahlbefragung in Form der Individualdaten

zur Verfügung gestellt. Es kommen zwei Modelle zur Anwendung, das Multinomial-

Dirichlet-Modell von Rosen et al. (2001) und das Multinomial-Log-Normal-Modell von

Greiner und Quinn (2009, 2010). Beide hierarchischen Modelle basieren auf der Bay-

esianischen Inferenz. Die Analyse erfolgt zum einen anhand der Aggregatdaten durch

die ökologischen Versionen der Modelle und zum anderen anhand der Kombination

von Individual- und Aggregatdaten durch die hybriden Versionen der Modelle. Das

Multinomial-Dirichlet-Modell wurde von Schlesinger (2013) zum Hybridmodell ergänzt.

In seiner Version ermöglicht er Vorwissen in das Modell zu integrieren. Alle Berech-

nungen und Grafiken in der Arbeit werden mit der Statistiksoftware R (R Core Team,

2015) erzeugt. Konkret dienen zwei Pakete für die Analyse. Das Erste, eiwild Paket,

wurde von Schlesinger (2014) in R implementiert und das Zweite, RxCEcolInf Paket,

wurde von Greiner et al. (2013) entwickelt. Die Güte der Schätzung lässt sich nicht

überprüfen, da der wahre Zustand der Wählerwanderung zwischen zwei betrachteten

Wahlen nicht bekannt ist. Infolgedessen werden die Modelle durch Konvergenzdiagnose

und Vergleich der erzeugten Ketten bewertet. Anhand der betrachteten Daten wird die

Konvergenz beim Multinomial-Log-Normal-Modell nicht erkannt. Das Multinomial-

Dirichlet-Modell ist für die praktische Umsetzung besser geeignet und hat in allen

Versionen des Modells die präziseren und zuverlässigeren Ergebnisse im Vergleich zum

Multinomial-Log-Normal-Modell erzeugt. Die Individualdaten tragen in dieser Arbeit

zur Stabilität der Ketten bei beiden Modellen bei. Einen Zuschuss leistet hierbei auch

das integrierbare Vorwissen beim Multinomial-Dirichlet-Modell. Letztendlich werden

die Ergebnisse anhand des Multinomial-Dirichlet-Hybridmodells mit dem Hyperpriori-

Parameter Gamma(λ1 = 30, λ2 = 1) für die Zellen der Loyalen ermittelt und interpre-

tiert. Es zeigt sich eine sehr starke Wanderung der Wähler aller Parteien zur Kategorie

Nichtwähler. Die Ausnahme sind die Wähler der Grünen und der FDP. Daraus lässt

sich schließen, dass die Bedeutung der Nichtwähler bei der Wählerwanderungsanalyse

weder von den Politikern noch von den Statistikern ignoriert werden darf.
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Dirichlet-Modells ohne Kovariablen . . . . . . . . . . . . . . . . . . . . 17

3.2 Zusammenfassung der Verteilungen des ökologischen Multinomial-Log-
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6.1 Die Übergangstabelle zwischen der Bundestagswahl 2013 und

der Oberbürgermeisterwahl 2015 anhand des Multinomial-Dirichlet-

Hybridmodells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1)

für die Zellen der Loyalen . . . . . . . . . . . . . . . . . . . . . . . . . 77

X



A.1 Die Liste aller Parteien aus dem Datensatz der amtlichen Endergebnisses

der Bundestagswahl im Jahr 2013 . . . . . . . . . . . . . . . . . . . . . 85
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1 Einleitung

1.1 Motivation

Einige Wähler bleiben ihrer Partei nach einer Legislaturperiode nicht loyal. Das Interes-

se der Politiker, Soziologen, Politologen und der Öffentlichkeit an der Neuorientierung

und der Wegrichtung bei der Stimmenvergabe ist sehr groß. Bleibt ein Wähler, der

beispielsweise die Partei P bei der Bundestagswahl 2009 gewählt hat, treu oder wählt

er eine andere Partei? Zu welcher Partei wandert seine Stimme und wie hoch sind die

Wahrscheinlichkeiten, dass der Wähler zu anderen Parteien wechselt? In der Statistik

haben die Wissenschaftler unterschiedliche Methoden entwickelt, um solche Fragestel-

lungen beantworten zu können.

Eine Methode stellt die Analyse der Individualdaten dar, die mithilfe einer

Nachwahlbefragung (Eng. Exit-Poll) erhoben werden können. Die Bürgerinnen und

Bürger werden nach der Wahl am Ausgang der Wahllokale gebeten, sich zu äußern,

wie sie gewählt haben (Payne et al., 1986; Greiner und Quinn, 2012). Um die

Wählerwanderung zu schätzen, können die Wähler auch über ihre letzte Wahl be-

fragt werden. Die Schätzung durch diese Methode ist aus mehreren Gründen anfällig

für Verzerrungen. Zum einen weigern sich viele Wähler an der Befragung teilzuneh-

men (Greiner und Quinn, 2012; Payne et al., 1986). Dies ist problematisch, da sich die

Wähler, die ihre Teilnahme an der Studie verweigern, in ihrem Wahlverhalten in der

Regel von den Wählern unterscheiden, die teilgenommen haben. Zum zweiten können

sich einige der Befragten an die Vergabe ihrer Wahlstimme bei der letzten Wahl nicht

mehr erinnern, wodurch fehlende oder falsche Angaben auftreten können. Himmelwelt

et al. (1978) untersuchen das Problem und ermitteln, dass die falschen Angaben mit

dem Zeitabstand zunehmen. Die Wähler der großen Parteien und die Wähler, die loyal

geblieben sind, konnten sich dabei besser an ihre letzte Wahl erinnern. Obwohl ihre

Studie das nicht bestätigt, berichten Himmelwelt et al. (1978), dass gemäß anderen

Autoren die Angabe einer gesellschaftlich akzeptierten Antwort eine weitere Quelle für

Fehler darstellen kann. Dies umfasst beispielsweise die Unterschätzung der Nichtwähler
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oder die Überschätzung der Partei, die gewonnen hat. Payne et al. (1986) geben an,

dass die Briefwähler bei einer Umfrage im Vorfeld der Wahlen nicht betrachtet wer-

den können. Darüber hinaus ist die Durchführung einer Nachwahlbefragung am Aus-

gang der Wahllokale kosten- und arbeitsaufwändig (Greiner und Quinn, 2012). Aus

erwähnten Gründen sind Individualdaten oft unzuverlässig oder nicht verfügbar.

Andererseits stehen die offiziellen amtlichen Wahlergebnisse kostenlos jedem zur

Verfügung. Diese Daten sind vollständig, jedoch nach den Wahlgebiet oder Wahlbe-

zirk gruppiert, sprich aggregiert (Ambühl, 2003, S. 8). Die ”Beziehungen zwischen

Variablen auf der Aggregatebene können, müssen aber nicht ähnliche Beziehungen

auf der Individualebene widerspiegeln“ (Gschwend, 2006, S. 227). Deswegen besteht

bei der Schlussfolgerung von Aggregatdaten auf das individuelle Verhalten die Ge-

fahr, den sogenannten ökologischen 1 Fehlschluss (Pappi, 1977 in: Gschwend, 2006) zu

treffen. Zum Beispiel stellt man sich vor, dass in einem Stadtbezirk eine positive Kor-

relation zwischen den Asylbewerbern und den Anstieg der Angriffe mit gefährlichen

Körperverletzungen beobachtet wurde. Daraus könnte man schließen, dass die Asylbe-

werber für solche Angriffe verantwortlich sind. Hypothetisch wäre es jedoch möglich,

dass Asylbewerber in diesen Stadtbezirken öfter von Rechtsextremen angegriffen wur-

den. Vor dem ökologischen Korrelationsproblem warnte Robinson schon im Jahr 1950.

Von diesem Zeitpunkt an sind viele Methodiker auf der Suche nach einem fehlerfreien

Verfahren der ökologischen Inferenz. Um die Vorteile der Aggregat- und Individualda-

ten ausnutzen zu können, wurden letztendlich die neuen Hybridmodelle entwickelt, die

zur Bestimmung der Wählerwanderung die beiden Datenquellen kombinieren.

Für die Analyse in dieser Arbeit werden zwei hierarchische Modelle, die auf Bay-

esianischer Inferenz basieren, in ihrer ökologischen und hybriden Version mithilfe der

Statistiksoftware R (R Core Team, 2015) angewendet. Das ökologische Multinomial-

Dirichlet-Modell von Rosen et al. (2001) wurde von Schlesinger (2013) zum Hybridmo-

dell ergänzt. Die beiden Versionen werden hier in seinem Paket eiwild (Schlesinger,

2014) berechnet. Das ökologische und hybride Multinomial-Log-Normal-Modell von

Greiner und Quinn (2009, 2010) wurde von Autoren im RxCEcolInf Paket (Greiner et

al., 2013) implementiert.
1Als ökologisch werden die Daten bezeichnet, wenn die Sub-Gruppen von Individuen bezüglich der

geographischen bzw. ökologischen Einheiten oder Regionen (Stadtbezirk, Stadt, Land, usw.) aufgebaut
werden (Robinson, 1950; Cho und Manski, 2009).
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1.2 Struktur der Arbeit

Da die Schätzungen der betrachteten hierarchischen Modelle auf Markov-Chain-Monte-

Carlo-Verfahren basieren, wird im Abschnitt 2.1 des Kapitels 2 die Basis der Baye-

sianischen Inferenz und die Funktionsweise der Markov-Chain-Monte-Carlo-Verfahren

vorgestellt. Im Abschnitt 2.2 werden ferner die möglichen Vorgehensweisen bei der

Konvergenzdiagnose der Markov-Ketten erläutert. Dazu werden die Begriffe Burn-In,

Thinning und Sample erklärt, welche für die Interpretation der Konvergenz und der

Ergebnisse von Relevanz sind.

Eine theoretische Einführung und die Darstellung der Grundprinzipien der

ökologischen Inferenz erfolgen im Kapitel 3. Im Abschnitt 3.1 werden zuerst die grund-

legenden Modelle der ökologischen Inferenz aufgezeigt. Nach einer kurzen Beschrei-

bung deren Vormodelle erfolgt im Abschnitt 3.2 die Darstellung der interessierenden

ökologischen, hierarchischen Modelle, des Multinomial-Dirichlet-Modells von Rosen et

al. (2001) und des Multinomial-Log-Normal-Modells von Greiner und Quinn (2009,

2010). Schließlich befasst sich der Abschnitt 3.3 mit deren Erweiterung auf die Hybrid-

modelle, welche durch die Individualdaten ergänzt werden.

Im Abschnitt 4.1 des Kapitels 4 wird die Datengrundlage vorgestellt und beschrie-

ben. Der Unterabschnitt 4.1.1 erläutert den Inhalt und Ursprung der Aggregatdaten,

die amtlichen Ergebnisse der Bundestagswahl (2013) und der Oberbürgermeisterwahl

(2015). Folglich beschreibt der Unterabschnitt 4.1.2 die Ergebnisse und die Problema-

tik der Individualdaten, die durch eine Nachwahlbefragung in Mannheim (Juni, 2015)

erhoben worden sind. Im Abschnitt 4.2 wird die theoretische Begründung und die Be-

schreibung der Datenaufbereitung dargelegt.

Im Kapitel 5 werden die wichtigen Funktionen der verwendeten Pakete beschrieben.

Unterdessen wird im Unterabschnitt 5.1.4 erläutert, wie beim Multinomial-Dirichlet-

Modell die Hyperpriori-Parameter die Priori-Verteilung beeinflussen und wie das Vor-

wissen (Schlesinger, 2013), falls vorhanden, für die Verbesserung der Schätzung ver-

wendet werden kann.

Im Kapitel 6 erfolgt die Konvergenzdiagnose der erzeugten Ketten und Vergleich

der Ketten und Modelle für das Multinomial-Dirichlet-Modell im Abschnitt 6.1 und

für das Multinomial-Log-Normal-Modell im Abschnitt 6.2. Letztendlich werden im

Abschnitt 6.3 die Ergebnisse des gewählten Multinomial-Dirichlet-Hybridmodells mit

Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) dargestellt und beschrieben.
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2 Einführung in die Bayes-Inferenz

und MCMC Verfahren

2.1 Bayes-Inferenz

Der grundlegende Unterschied zwischen Bayesianischer und frequentistischer Inferenz

stammt aus der unterschiedlichen Betrachtung des unbekannten Parameters θ. In der

Bayesianischen Inferenz wird θ als zufällige Variable betrachtet, hingegen ist θ in der

frequentistischen Inferenz eine feste Größe (Held und Bové, 2014, S. 167). Eine andere

bedeutende Eigenschaft besteht in der Quantifizierung der Unsicherheit in der Inferenz

durch die Wahrscheinlichkeitsmodelle, wodurch die Anpassung komplexer Modelle mit

vielen Parametern möglich ist (Gelman et al., 2014, S. 3 f.). Die Information über den

unbekannten Parameter θ lässt sich a priori und a posteriori als Dichte einer Wahr-

scheinlichkeitsverteilung darstellen. Vor der Beobachtung der Daten wird eine Priori-

Verteilung p(θ) definiert, während die Posteriori-Verteilung f(θ|x) das vollständige

Wissen über den unbekannten Parameter enthält, welches durch die Datenbeobach-

tung verfügbar wird (Held und Bové, 2014, S. 167).

Die Berechnung der Posteriori-Verteilungsfunktion beruht auf dem Theorem von

Thomas Bayes. Gegeben seien Ereignisse A und B, wobei P (B) > 0. Die Wahrschein-

lichkeit, dass ein Ereignis A eintritt, wenn wir wissen, dass Ereignis B bereits eingetre-

ten ist, ist nach dem Bayes Theorem

P (A|B) = P (B|A)P (A)
P (B) . (2.1)

Damit lässt sich die Posteriori-Verteilung als

f(θ|x) = f(x|θ)p(θ)
f(x) (2.2)

bestimmen, wobei die sogenannte marginale Likelihood f(x) für stetige θ gleich∫
f(x|θ)p(θ)dθ ist. Die Funktion f(x|θ) stellt die Likelihood L(θ) dar. Hierbei ist die

marginale Likelihood f(x) unabhängig von θ, respektive eine Konstante, und kann
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demzufolge weggelassen werden. Die Posteriori-Verteilung reduziert sich dadurch letzt-

endlich auf

f(θ|x) ∝ f(x|θ)p(θ). (2.3)

(Held und Bové, 2014, S. 170; Gelman et al., 2014, S. 7)

Als geeigneter Punktschätzer kann der Posteriori-Mittelwert

E(θ|x) =
∫
θf(θ|x)dθ, (2.4)

sowie der Posteriori-Median und der Posteriori-Mode berechnet werden. Zur Berech-

nung des Erwartungswertes und anderer Kennzahlen einer Posteriori-Verteilung ist die

Integration einer Funktion erforderlich, die in einigen Fällen analytisch nicht lösbar ist.

In solchen Fällen können verschiedene numerische Verfahren zur Berechnung dienen.

Falls die Dimension des unbekannten Parametervektors niedrig ist, bietet Monte-Carlo-

Integration eine Alternative. Ansonsten können Markov-Chain-Monte-Carlo-Verfahren

angewendet werden. (Held und Bové, 2014, S. 171, 247 f., 258)

2.1.1 Monte-Carlo-Integration

Unter der Annahme, dass es möglich wäre, die unabhängigen Zufallszahlen

θ(1), . . . , θ(M) aus der Posteriori-Verteilung f(θ|x) zu ziehen, lässt sich der Posteriori-

Erwartungswert aus der Gleichung 2.4 folgendermaßen approximieren:

Ê(θ|x) = 1
M

M∑
m=1

θ(m) (2.5)

Dank des Gesetzes der großen Zahlen konvergiert die Schätzung zum wahren Wert

für M → ∞. Mit anderen Worten, für sehr viele Ziehungen sollte der approximierte

Erwartungswert konsistent sein. (Held und Bové, 2014, S. 258)

2.1.2 Markov-Chain-Monte-Carlo- (MCMC-) Verfahren

Wenn es hingegen nicht möglich ist, die unabhängigen Zufallszahlen θ(1), . . . , θ(M) aus

der Posteriori-Verteilung f(θ|x) zu ziehen, kann die Simulation der Markov-Kette zur

Anwendung kommen. Eine Reihe von Zufallsvariablen θ(1), . . . , θ(m), . . . heißt Markov-

Kette, wenn für jedes m die bedingte Verteilung f(θ(m)|θ(1), . . . , θ(m−1)) nur vom vor-

herigen Wert θ(m−1) abhängt. Bei der Simulation wird θ∗ aus einer Vorschlagsdichte

f ∗(θ|θ(m−1)) gezogen, mit einer Wahrscheinlichkeit α akzeptiert und als neuer Zustand
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θ(m) eingesetzt. Bei einer Ablehnung von θ∗ wird der vorherige Zustand der Kette θ(m−1)

erneut verwendet, sprich θ(m) = θ(m−1). Das Ziel ist, durch Iterationen eine stationäre

Posteriori-Verteilung zu erreichen. Das heißt, eine Markov-Kette zu erzeugen, die gegen

die Posteriori-Verteilung f(θ|x) konvergiert. Dann kann der Posteriori-Erwartungswert

mithilfe der gezogenen Werte θ(m), wie in der Gleichung 2.5, bestimmt werden. (Gelman

et al., 2014, S. 275; Held und Bové, 2014, S. 269 f.)

Beim Metropolis-Hastings-Algorithmus lässt sich die Akzeptanzwahrscheinlichkeit

durch

α = min
{

1, f(θ∗|x)
f(θ(m−1)|x)

Posteriori-Ratio

× f ∗(θ(m−1)|θ∗)
f ∗(θ∗|θ(m−1))
Vorschlags-Ratio

}
(2.6)

bestimmen. Metropolis-Algorithmus und Gibbs-Sampler gelten als die Sonderfälle

der Metropolis-Hastings-Methode. Beim Metropolis-Algorithmus ist f ∗(θ(m−1)|θ∗) =

f ∗(θ∗|θ(m−1)). Das heißt, die Vorschlags-Ratio besitzt den Wert eins und dementspre-

chend reduziert sich die Akzeptanzwahrscheinlichkeit auf

α = min
{

1, f(θ∗|x)
f(θ(m−1)|x)

Posteriori-Ratio

}
. (2.7)

Bei dem Gibbs-Sampler ist die Vorschlagsdichte gleich der Posteriori-Dichte, respektive

f(θ∗|x) = f(θ(m−1)|x), und demzufolge gilt α = 1. Dies ist der Fall, wenn Ziehungen

aus vollständig bedingten Dichten f(θj|x, θ−j) möglich sind, da f(θj|x, θ−j) ∝ f(θ|x)

gilt. Eine vollständig bedingte Dichte entspricht der Dichte eines Subvektors θj bedingt

auf alle anderen Subvektoren von θ, außer θj. Bei den komplexen Modellen kann es vor-

kommen, dass einige vollständig bedingte Dichten bekannten Verteilungen zugeordnet

werden können und die anderen nicht. In dem Fall ist es möglich, den Metropolis-

Algorithmus und den Gibbs-Sampler zu kombinieren, was oftmals Metropolis-within-

Gibbs-Sampler genannt wird. (Gelman et al., 2014, S. 276 ff.; Held und Bové, 2014, S.

270)

2.1.3 Priori-Verteilung

Ein essenzieller Schritt der Bayesianischen Inferenz ist die Bestimmung der Priori-

Verteilung p(θ). Das Vorwissen über den Parameter θ ist dabei selten ausreichend um
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eine Verteilung zu definieren, die den unbekannten Parameter präzise beschreibt. Die

mangelhaften Informationen müssen deswegen oftmals mit subjektiven Auswertungen

ergänzt werden. Diese Unsicherheit motiviert die Kritiker des Bayesianischen Ansat-

zes, denn schließlich beeinflusst die Wahl der Priori-Verteilung die Posteriori-Inferenz.

(Robert, 2007, S. 105 f.)

Wenn das Priori-Wissen über θ unzulänglich wird, lässt sich dennoch der Einfluss

von der Priori-Verteilung auf die Posteriori-Inferenz durch verschiedenen Methoden

kontrollieren oder unterdrücken (mehr zum Thema in Held und Bové, 2014, S. 179-191).

Die Methode, die hier von Relevanz ist, entspricht der Wahl einer nichtinformativen

Priori-Verteilung (Held und Bové, 2014, S. 183). Im Unterabschnitt 5.1.4 (Seite 50)

und 5.2.4 (Seite 56) des Kapitels 5 wird im Kontext der betrachteten ökologischen

und hybriden Modelle die nichtinformative Priori-Verteilung sowie das Einsetzen des

Vorwissens in die Analyse durch die informative Priori-Verteilung weiter diskutiert.

Die hierarchischen Modelle nutzen das Prinzip der Bayesianischen Inferenz und

setzen eine zusätzliche Priori-, die sogenannte Hyperpriori-Verteilung ein, um den un-

bekannten Parameter θ genauer zu bestimmen. Dabei sind mehrere bedingte Niveaus

der Verteilung möglich, indem das jeweilige Niveau die unzureichenden Informationen

des vorherigen Niveaus ergänzt. Der Vorteil dieses Ansatzes ist die Verbesserung der

Robustheit der erzeugten Schätzer. Allerdings kann die Interpretation der Parameter

und deren Beziehungen über mehrere Niveaus abstrakt und schwierig nachvollziehbar

werden. Die Komplexität überträgt sich ferner auf die Berechnung der Schätzer, die

lediglich mithilfe von numerischen Verfahren umsetzbar ist. (Robert, 2007, S. 113, 458,

468)

2.2 Konvergenzdiagnose

Bei MCMC Verfahren ist in erster Linie wichtig, genug Iterationen durchzuführen,

um die Konvergenz, das heißt eine stationäre Posteriori-Verteilung, zu erreichen. Die

Theorie liefert jedoch kein Antwort auf die Frage, wie viele Iterationen notwendig

sind. Stattdessen beschreiben einige Autoren, wie man die Konvergenz erkennen und

überprüfen kann und welche Probleme dabei zu beachten und zu beheben sind (mehr

zum Thema in: Cowles und Carlin, 1996; Gelman und Shirley, 2011; Gelman et al.,

2014, S. 281-286; Geyer, 2011, S. 17-21). Generell sind zwei gegenläufige Richtungen

zu erkennen. Zum einen, ob die Konvergenz auf der Basis einer längeren Kette (Geyer,
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2011) oder zum anderen, anhand mehrerer kleinerer Ketten (Gelman et al., 2014; Gel-

man und Shirley, 2011) festgelegt sein soll. Gemäß Cowles und Carlin (1996, S. 903)

steckt die Lösung in einem Kompromiss zwischen den beiden Ansätzen.

Unabhängig davon, welches Diagnoseverfahren verwendet wird, ist Vorsicht bei den

Schlussfolgerungen geboten, denn ”Diagnostics can only reliably be used to determine a

lack of convergence and not detect convergence per se.“, wie Brooks et al. (2003, in: Gel-

man und Shirley, 2011, S. 165) betonen. Da sich die Meinungen und die Vorgehenswei-

sen unterscheiden, können Entscheidungen teilweise von der subjektiven Auswertung

der Wissenschaftler, von der Präferenz zu einigen Verfahren und Autoren oder sogar

von den technischen Eigenschaften der verfügbaren Computerausstattung abhängen.

Im weiteren Verlauf werden drei relevante Begriffe, Burn-In, Thinning und Sample

erklärt.

2.2.1 Burn-In

Gelman et al. (2014, S. 282) warnen, dass die Startwerte die gewünschte Verteilung der

simulierten Werte beeinflussen, weshalb die Iterationen am Anfang der Kette ignoriert

werden sollten. Sie empfehlen, mit einer kleinen Anzahl von Iterationen anzufangen, die

erste Hälfte der Kette zu verwerfen und das Vorgehen so lang zu wiederholen, bis die

Konvergenz erreicht wird. Alternativ können die vorherigen Iterationen an der Stelle

abgeschnitten werden, wo die stationäre Verteilung beginnt (Gelman et al., 2014, S.

282; Held und Bové, 2014, S. 272). Mit einem Trace Plot lassen sich die gezogenen

Simulationen gegen die Iterationen grafisch darstellen und damit kann untersucht wer-

den, ob die Konvergenz nach der Burn-In-Phase visuell erreicht wird (Held und Bové,

2014, S. 272).

Geyer (2011, S. 20 f.) steht dem Burn-In Konzept kritisch gegenüber. Obwohl er

es als ungefährlich bezeichnet, ist dies seiner Meinung nach eine unnötige Methode zur

Bestimmung eines guten Startwertes. Als Alternative schlägt er vor, die nächste Kette

an dem Punkt anzufangen, wo die letzte Kette beendet wurde oder wo der Modus der

stationären Verteilung liegt. Der Autor argumentiert, dass die Verzerrung unwesentlich

bleibt, sofern die Kette lang genug ist.
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2.2.2 Thinning

Unabhängig davon, ob die Kette konvergiert oder nicht, sind die Ziehungen aus MCMC

Verfahren nicht unabhängig, wodurch die Genauigkeit und die Effizienz der Schätzer

reduziert werden (Gelman et al., 2014, S. 282; Link und Eaton, 2012, S. 112). Thin-

ning ist eine übliche Methode, bei der jede k-te Ziehung berücksichtigt wird und der

Rest verworfen wird, um eine Verringerung der Autokorrelation zu erzielen (Link und

Eaton, 2012, S. 112). Thinning ist bei Modellen mit vielen Parametern ein praktisches

Verfahren, wenn die Speicherkapazität des Computers begrenzt ist. Deswegen schlagen

Gelman et al. (2014, S. 283) vor, k so zu wählen, dass letztendlich 1 000 Iterationen

gespeichert werden.

Dennoch kritisieren Link und Eaton (2012, S. 114 f.) in ihrem Artikel ”On Thin-

ning of Chains in MCMC“ die verbreitete Anwendung dieses Vorgehens. Sie argumen-

tieren, dass die Approximation der Schätzer anhand von ganzen Ketten im Vergleich

zu verdünnten Ketten genauer wird. Denn durch das Verdünnen gehen letztendlich

viele Daten verloren. Trotzdem treten sie dem Vorgehen nicht ausschließlich kritisch

gegenüber und bestätigen, dass in einigen Fällen, wie zum Beispiel bei der oben ge-

nannten begrenzten Speicherkapazität, das Thinning nützlich sein kann.

2.2.3 Sample

Nach dem Verwerfen der ersten Iterationen und der Anwendung des Thinnings werden

die gespeicherten Werte als eine Stichprobe (Eng. Sample) betrachtet, die für die Be-

rechnung des Posteriori-Erwartungswertes mittels Gleichung 2.5 verwendet wird. Der

Stichprobenumfang ist somit geringer als die Anzahl der durchgeführten Iterationen.

Hingegen wird der Stichprobenumfang gleich der Anzahl der Iterationen sein, falls die

Schätzer ohne Thinning und Burn-In approximiert werden.
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3 Ökologische Inferenz:

Grundlagen und Entwicklung einiger Modelle

Die erste bekannte Verwendung der ökologischen Inferenz stammt aus dem Jahr

1919 von Wiliam Ogburn und Inez Goltra (Gow, 1985; Bulmer 1984; in: King, 1997, S.

3). Robinson (1950) kritisiert diese und andere Studien, die sich auf die ökologischen

Korrelationen verlassen. Seine Warnung galt dem Unterschied zwischen der individu-

ellen Korrelation, deren Variablen deskriptive Eigenschaften von Individuen darstellen

und der ökologischen Korrelation, deren Variablen deskriptive Eigenschaften, wie Pro-

zente oder Mittelwerte, von Gruppen abbilden (Robinson, 1950, S. 351). Gemäß dem

Autor darf ein Wissenschaftler aus der ökologischen Korrelation nicht auf die individu-

elle Korrelation schließen, denn ”...there are a large number of individual correlations

which might correspond to any given ecological correlation“ (Robinson, 1950, S. 354).

Wie können sich trotzdem Informationen über individuelles Verhalten aus Aggre-

gatdaten gewinnen lassen? Die Suche nach der Antwort resultiert in einer Menge statis-

tischer Verfahren, die unterschiedliche Wege zur interessierenden Schätzung anbieten.

In diesem Kapitel werden im Abschnitt 3.1 die grundlegenden Modelle, die Ökologische

Regression von Goodman (1953) und die Methode der Ränder von Duncan und Da-

vis (1953), beschrieben. Im Abschnitt 3.2 befindet sich eine Darstellung des EI Mo-

dells von King (1997), ein Basismodell für die weitere Entwicklung der hierarchischen

Modelle. Danach werden die zwei interessierenden Modelle, das Multinomial-Dirichlet-

Modell von Rosen et al. (2001) und das Multinomial-Log-Normal-Modell von Greiner

und Quinn (2009), erläutert. Die Erweiterung der ökologischen, hierarchischen Modelle

zu Hybridmodellen, die mit Hilfe der Individualdaten eine Verbesserung der Schätzung

erzielen können, wird anschließend im Abschnitt 3.3 dargelegt.
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3.1 Grundlegende Modelle

3.1.1 Goodman: Ökologische Regression

Die erste Antwort auf das ökologische Korrelationsproblem von Robinson (1950) kam

im Jahr 1953 von Goodman. In seinem Artikel ”Ecological Regressions and Behavior

of Individuals“ geht er davon aus, dass die Feststellung von Robinson im Allgemeinen

gilt, dennoch sollte ein Regressionsmodell möglich sein, wenn bestimmte Bedingungen

erfüllt sind (Goodman, 1953, S. 663). Im Nachfolgenden wird das Anwendungsbeispiel

von Goodman verändert und die Notation teilweise angepasst übernommen.

Gegeben sei eine Population, die anhand von zwei Merkmalen in einer Vierfelder-

tafel dargestellt werden kann. Beispielsweise lassen sich anhand von Geschlecht und

Berufstätigkeit vier Gruppen aus einer Population der Arbeitsfähigen erkennen, die

weiblichen Berufstätigen GWB, die männlichen Berufstätigen GMB, die weiblichen Ar-

beitslosen GWA und die männlichen Arbeitslosen GMA. In dem Fall definiert Goodman

(1953) einen unbekannten Parameter β1 als die durchschnittliche Wahrscheinlichkeit,

dass eine weibliche Person berufstätig ist, beziehungsweise einen unbekannten Parame-

ter β2 als die durchschnittliche Wahrscheinlichkeit, dass eine weibliche Person arbeitslos

ist (siehe Tabelle 3.1). Diese Parameter werden im Kontext der Wählerwanderung als

die Übergangswahrscheinlichkeiten bezeichnet (Ambühl, 2003, S. 9).

GW GM

GB β1 1− β1 X

GA β2 1− β2 1−X

Y 1− Y 1

Tabelle 3.1: Parameter des Ökologischen Regressionsmodells von Goodman (1953, S.
663 f.) in 2× 2 Tabellenform, angepasst an die Notation in dieser Arbeit. Hinweis:
Die zeilenweisen Randsummen der inneren Zellen besitzen nicht die Werte X und
1−X, sondern eins.

Betrachten wir eine Stichprobe i, die gB,i Individuen aus der Gruppe GB und gA,i

Individuen aus der Gruppe GA enthält, dann wäre Xi = gB,i/(gB,i + gA,i) der bekannte

Anteil der Individuen aus der Gruppe GB in der Stichprobe i und der (bekannte)

erwartete Anteil der Individuen aus der Gruppe GW wäre gleich

E(Yi) = β1Xi + β2(1−Xi) (3.1)

(Goodman, 1953, S. 664). Nach einer Umformung der Gleichung
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E(Yi) = β1Xi + β2(1−Xi)

= β1Xi + β2 − β2Xi

= β2︸︷︷︸+ (β1 − β2)︸ ︷︷ ︸Xi

= θ0 + θ1 ·Xi, (3.2)

mit β2 = θ0 und θ1 = β1 − β2 = β1 − θ0 ⇔ β1 = θ0 + θ1,

lassen sich gemäß dem Autor die unbekannten Parameter β1 und β2 anhand mehrerer

Stichproben unverzerrt durch den kleinsten Quadrat Schätzer von θ0 und θ1 bestimmen

(Goodman, 1953, S. 664).

Um das Identifikationsproblem bei dem Verfahren zu vermeiden und eine ein-

deutige Lösung zu finden (Cho und Manski, 2009, S. 9), setzt Goodman (1953, S.

664) die Annahme fest, dass die unbekannten Parameter β1 und β2 bei allen Stich-

proben konstant sind. Im Fall der Wählerwanderungsanalyse bedeutet dies, dass die

Übergangswahrscheinlichkeiten für alle Wahlgebiete oder Wahlbezirke identisch sein

sollen (Ambühl, 2003, S. 10). Goodman (1953) warnt, dass anhand seiner Methode

Schätzwerte außerhalb des Intervalls [0, 1] möglich sind. In dem Fall fordert er, die

oben genannte Annahme zu überprüfen. Falls diese sich bestätigt, sollte nach seinem

Vorschlag beispielsweise die negative Übergangswahrscheinlichkeit β2 als 0 betrachtet

werden. Davon ausgehend liefert die Lösung der Gleichung E(Yi) = Xiβ1 die neue

Schätzung für β1 (Goodman, 1953, S. 664).

Obwohl die Durchführung und Interpretation des Ökologischen Regressionsmodells

relativ einfach ist, werden die Annahmen gleicher Übergangswahrscheinlichkeiten in

der Realität selten erfüllt (Ambühl, 2003, S. 31). Die Überprüfung dieser Annahme

aus den Randsummen ist nach Ambühl (2003) vor allem nicht möglich, weswegen

Goodman keine verlässliche Methode dazu bietet.

3.1.2 Ökologische Regression bei der Wählerwanderungsanalyse

Am Beispiel einer R × C Tabelle demonstrieren Klima et al. (2015, S. 3), wie sich

die Methode von Goodman für die Wählerwanderungsanalyse erweitern lässt. In der

Tabelle 3.2 stellen die R Zeilen die Parteien aus der ersten Wahl und die C Spal-

ten die Parteien aus der zweiten Wahl dar. Die Ränder repräsentieren die relativen
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Häufigkeiten, das heißt die Ergebnisse der ersten und der zweiten Wahl, während die

β Koeffizienten die Übergangswahrscheinlichkeiten darstellen. Man kann beispielsweise

βNW,CSU als die Wahrscheinlichkeit interpretieren, dass ein Wähler, der bei der ersten

Wahl nicht gewählt hat, bei der zweiten Wahl seine Stimme der CSU gibt.

Partei CSU2 SPD2 . . . NW2

CSU1 βCSU,CSU βCSU,SPD . . . βCSU,NW P (CSU1,i)

SPD1 βSPD,CSU βSPD, SPD . . . βSPD, NW P (SPD1,i)
... ... ... . . . ... ...

NW1 βNW,CSU βNW,SPD . . . βNW,NW P (NW1,i)

P (CSU2,i) P (SPD2,i) . . . P (NW2,i) 1

Tabelle 3.2: Wahldaten zwischen zwei Wahlen für den Wahlbezirk i: Relative
Häufigkeiten P und Übergangswahrscheinlichkeiten β (Klima et al., 2015, Tabel-
le 1, Gleichung 2).

Um die β Koeffizienten zu schätzen, stellt man mittels einer Regression jede der C

Parteien aus der zweiten Wahl ins Verhältnis zu allen Parteien aus der ersten Wahl.

Zum Beispiel stellen Klima et al. (2015, S. 4) die Gleichung

P (CSU2,i) = βCSU,CSU · P (CSU1,i) + βSPD,CSU · P (SPD1,i)

+ . . . + βNW,CSU · P (NW1,i). (3.3)

für die CSU auf (siehe die farbig markierte Zellen der Tabelle 3.2).

3.1.3 Duncan und Davis: Methode der Ränder

Im Jahr 1953 schlugen Duncan und Davis in ihrem Artikel ”An alternative to Ecological

Correlation“ ein anderes Verfahren zur Lösung des Korrelationsproblems von Robinson

vor. Ihre Idee besteht darin, die individuelle Korrelation über das kleinste Maximum

und über das größte Minimum zu approximieren (Duncan und Davis, 1953, S. 666).

Für jede Stichprobe beziehungsweise für jeden Wahlkreis i lässt sich die Gleichung

Yi = βi1Xi + βi2(1−Xi) (3.4)

(Gschwend, 2006, S. 228 f.) folgendermaßen umformulieren:
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⇔ βi1Xi = Yi − βi2(1−Xi)

--
--

-

⇔ βi2(1−Xi) = Yi − βi1Xi (3.5)

⇔ βi1 = Yi
Xi

− 1−Xi

Xi

βi2

--
--

-

⇔ βi2 = Yi
1−Xi

− Xi

1−Xi

βi1. (3.6)

Die Übergangswahrscheinlichkeiten βi1 und βi2 liegen im Intervall [0, 1], wobei βi1 ma-

ximal wird, wenn βi2 = 0 ist und minimal, wenn βi2 = 1 ist (Gschwend, 2006, S. 230).

Dementsprechend können die Grenzen von βi1 und βi2 aus den Gleichungen 3.6 durch

βi1 ∈
[
max

(
0, Yi − (1−Xi)

Xi

)
; min

(
Yi
Xi

, 1
)]

(3.7)

βi2 ∈
[
max

(
0, Yi −Xi

1−Xi

)
; min

(
Yi

1−Xi

, 1
)]

(3.8)

für jede Stichprobe i bestimmt werden (Ambühl, 2003, S. 27; Cho und Manski, 2009, S.

7; Gschwend, 2006, S. 230). Weiterhin kann man die unteren und die oberen Grenzen für

die gesamte Population, β̄U1 , β̄O1 , β̄U2 und β̄O2 durch die gewichtete Summe der unteren

und der oberen Grenzen von βi1 beziehungsweise von βi2 folgendermaßen berechnen:

β̄U
1 = 1∑

i

NiXi

∑
i

βU,i
1 XiNi β̄O

1 = 1∑
i

NiXi

∑
i

βO,i
1 XiNi (3.9)

β̄U
2 = 1∑

i

Ni(1−Xi)
∑

i

βU,i
2 (1−Xi)Ni β̄O

2 = 1∑
i

Ni(1−Xi)
∑

i

βO,i
2 (1−Xi)Ni (3.10)

(Ambühl, 2003, S. 27). Dabei betonen Duncan und Davis (1953, S. 666), dass die Appro-

ximation umso genauer wird, je mehr Stichproben vorhanden sind. Konkret bedeutet

dies bei der Wählerwanderungsanalyse, dass die Schätzung anhand von Wahlbezirken

eine genauere Approximation liefert als die Schätzung anhand von Stadtbezirken, da

ein Stadtbezirk die aggregierten Daten über mehrere Wahlbezirke beinhaltet.

Die Methode ist einfach, schränkt die Menge der möglichen Lösungen ein (Ambühl,

2003, S. 28) und setzt vor allem keine fragwürdigen Annahmen voraus (Cho und Man-

ski, 2009, S. 7). Trotzdem wurde das Vorgehen oft kritisiert, da die geschätzten Grenzen

oftmals zu breit und deswegen wenig informativ und präzise sind (Ambühl, 2003, S.

28; Klima et al., 2015, S. 3).
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3.2 Entwicklung der hierarchischen Modelle

3.2.1 King: Das EI Modell

Ein neuer Ansatz von King im Jahr 1997 verbindet die beiden oben beschriebenen Me-

thoden, die Ökologische Regression und die Methode der Ränder. Im Gegensatz zum

Verfahren von Goodman (1953) findet die Schätzung der interessierenden Parameter

beim EI Modell von King (1997) für jede Stichprobe i statt und erlaubt hierfür Abwei-

chungen zwischen den Wahlkreisen. Außerdem erfolgt die Analyse auf zwei Ebenen und

die Parameter βi1 und βi2 werden als zufällige Effekte betrachtet. Dabei werden βi1 und

βi2 durch die Methode der Ränder für jeden Wahlbezirk beschränkt, um unrealistische

Schätzungen, die außerhalb des Einheitsintervalls liegen, zu vermeiden. (King, 1997, S.

26; Gschwend, 2006, S. 230)

Ausgehend von der Gleichung 3.4 setzt King eine Trunkierte-Bivariate-Normal-

Verteilung für die zufälligen Effekte βi1 und βi2 voraus. Das heißt, die Normal-Verteilung

wird auf das Einheitsquadrat [0, 1] × [0, 1] reduziert. In dem ersten Schritt werden

fünf Parameter µβ1 , µβ2 , σ2
β1 , σβ1β2 , σβ2β1 und σ2

β2 geschätzt, wobei für die Kovarianz

σβ1β2 = σβ2β1 gilt. Aus der geschätzten Verteilung werden im zweiten Schritt Bayesia-

nische Simulationen durchgeführt, um die interessierenden Schätzwerte β̂i1 und β̂i2 zu

erzeugen. (Ambühl, 2003, S. 34 f.; Gschwend, 2006, S. 231 f.)

Primäre Vorteile dieses Modells sind das Vermeiden unrealistischer Lösungen außer-

halb des Einheitsintervalls (Ambühl, 2003, S. 35 f.) und die Abmilderung der selten

zutreffenden Annahme der gleichen Übergangswahrscheinlichkeiten (Gschwend, 2006,

S. 231). Dennoch betonen Cho und Manski (2009, S. 10), dass die Verteilungsannah-

me des EI Modells an sich die Annahme der ähnlichen Übergangswahrscheinlichkeiten

umfasst. Deswegen unterscheidet sich diese Annahme, gemäß den Autoren, nicht we-

sentlich von den Annahmen des Modells von Goodman (1953). Letztendlich können

die beiden Ansätze gleichermaßen zu falschen Ergebnissen führen, wenn die Annahmen

nicht erfüllt sind (Cho und Manski, 2009, S. 10). Allerdings stellt das Verfahren von

King (1997) einen Ausgangspunkt und die Motivation für die nachfolgenden hierarchi-

schen Modelle dar, da die Schätzung der interessierenden Parameter auf zwei Ebenen

durchgeführt wird (Klima et al., 2015, S. 5).
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3.2.2 Rosen: Multinomial-Dirichlet-Modell

Aus dem vorherigen Modell entwickelten King et al. (1999) ein hierarchisches Binomial-

Beta-Modell für 2 × 2 Tabellen. Nachfolgend haben Rosen et al. (2001) dieses erwei-

tert, um die Analyse für R × C Tabellen zu ermöglichen. Das Modell wird hier mit

einer allgemeinen Notation (siehe Tabelle 3.3) und anhand des Beispiels für die Ana-

lyse der Übergangswahrscheinlichkeiten zwischen zwei Wahlen (vergleiche Tabelle 3.2)

präsentiert. Gegeben seien R Parteien aus der ersten Wahl und C Parteien aus der zwei-

ten Wahl in einem Gebiet mit i = 1, . . . , p Wahlbezirke. Folglich stellen Y1,i, . . . , YC,i

die Anteile der Wähler dar, die in dem Wahlbezirk i die Partei c bei der zweiten Wahl

gewählt haben. Analog stellen X1,i, . . . , XR,i die Anteile der Wähler dar, die in dem

Wahlbezirk i ihre Stimme an die Partei r bei der ersten Wahl vergeben haben. Die

unbekannten Parameter βirc bezeichnen die Übergangswahrscheinlichkeiten von Par-

tei r zur Partei c. Weiterhin werden die absoluten Häufigkeiten der zweiten Wahl als

Y a
i = (Y a

1,i, . . . , Y
a
C,i) bezeichnet, wobei Index a für absolut steht.

2. WAHL

1.
W

A
H

L

c = 1 c = 2 . . . c = C

r = 1 βi11 βi12 . . . 1−
C−1∑
c=1
βi1c X1,i

r = 2 βi21 βi22 . . . 1−
C−1∑
c=1
βi2c X2,i

... ... ... . . . ... ...

r = R βiR1 βiR2 . . . 1−
C−1∑
c=1
βiRc 1−

R−1∑
r=1

Xr,i

Y1,i Y2,i . . . 1−
C−1∑
c=1

Yc,i 1

Tabelle 3.3: R× C Tabelle der Wahldaten mit relativen Häufigkeiten (übernommen
von Rosen et al. (2001, S. 137) und angepasst an die Wählerwanderungsanalyse und
die Notation in dieser Arbeit).

Auf der ersten Ebene des Verfahrens gehen Rosen et al. (2001) von einer

Multinomial-Verteilung für Y a
i aus (siehe Abbildung 3.1, Gleichung 3.13). Hierzu gilt

θc,i = βi1cX1,i + βi2cX2,i + · · ·+ βiRc(1−
R−1∑
r=1

Xr,i) =
R∑
r=1

βircXr,i (3.11)
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für jeden Parameter θ1,i, . . . , θC,i, wobei ∑C
c=1 θc,i = 1 ist (Rosen et al., 2001, S. 137).

Die Likelihood lässt sich bezüglich des Wahlbezirkes i folgendermaßen bestimmen:

θ
Y a

1,i

1,i × . . .× θ
Y a

C−1,i

C−1,i × (1−
C−1∑
c=1

θc,i)Ni−
∑C−1

c=1 Y a
c,i (3.12)

(Rosen et al., 2001, S. 137). Dabei bezeichnet Ni = ∑C
c=1 Y

a
c,i die Anzahl aller Wähler im

Wahlbezirk i. Auf der zweiten Ebene nehmen die Autoren eine unabhängige Dirichlet-

Verteilung für βir an (siehe Abbildung 3.1, Gleichung 3.14) und setzen die Parameter

βirc in Abhängigkeit einer Kovariable Zi (Rosen et al., 2001, S. 137). Die Modellierung

mit Kovariablen ist hier allerdings nicht von Interesse, weswegen im weiteren Verlauf

ein Modell ohne Kovariablen betrachtet wird. Dieser Ansatz wurde von Lau et al.

(2007, S. 46) in R (R Core Team, 2015) als Zusatzpaket eiPack (Lau et al., 2012)

implementiert. Demnach ist auf der letzten Ebene eine Gamma-Hyperpriori-Verteilung

für die Parameter αrc angenommen (Abbildung 3.1, Gleichung 3.15), obwohl Rosen et

al. (2001, S. 138) eine Exponential-Hyperpriori-Verteilung vorschlagen.

Multinomial-Dirichlet-Modell

ERSTE EBENE: Y a
i ∼ Multinomial(Ni,θi) (3.13)

mit Y a
i = (Y a

1,i, . . . , Y
a
C,i) I Anzahl der Wähler der Parteien 1, . . . , C

θi = (θ1,i, . . . , θC,i) I Anteil der Wähler der Parteien 1, . . . , C

θc,i =
R∑
r=1

βircXr,i

C∑
c=1

θc,i = 1 E(Y a
c,i) = Niθc,i

ZWEITE EBENE: βr,i
iid∼ Dirichlet(αr1, . . . ,αrC), für r = 1, . . . , R (3.14)

mit βr,i = (βir1, . . . , βirC) I Übergangswahrscheinlichkeiten
C∑
c=1

βirc = 1 E(βirc) = αrc∑C
c=1 αrc

DRITTE EBENE: αrc
iid∼ Gamma(λ1,λ2), für r = 1, . . . , R, c = 1, . . . , C

(3.15)

mit E(αrc) = λ1

λ2

Abbildung 3.1: Zusammenfassung der Verteilungen des ökologischen Multinomial-
Dirichlet-Modells ohne Kovariablen (Rosen et al., 2001, S. 137; Lau et al., 2007, S.
46; Gelman et al., 2014, S. 576-579).
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Nach dem Bayes Theorem lässt sich eine Posteriori-Verteilung proportional zu

p(Daten|βi, i = 1, . . . , p)× p(βi, i = 1, . . . , p|α)× p(α) (3.16)

=
p∏
i=1

C∏
c=1

θ
Y a

c,i

c,i (3.17)

×
p∏
i=1

R∏
r=1

{
Γ(∑C

c=1 αrc)∏C
c=1 Γ(αrc)

C∏
c=1

(βirc)αrc−1
}

(3.18)

×
R∏
r=1

C∏
c=1

λλ1
2

Γ(λ1)α
λ1−1
rc exp{−λ2αrc} (3.19)

bestimmen (Rosen et al., 2001, S. 138). Da das Modell ohne Kovariablen betrach-

tet wird, ist die ursprüngliche Parametrisierung dr exp(γrc + δZi
) (siehe dazu Ro-

sen et al., 2001, S. 137 f.) hier durch αrc ersetzt und die Gamma- anstelle der

Exponential-Verteilung dargelegt. Die Schätzung ist weder analytisch noch durch

Integration möglich, weshalb die Inferenz mithilfe von Markov-Chain-Monte-Carlo-

Verfahren durchgeführt wird. Die Autoren verwenden dazu einen Gibbs-Sampler. Die,

für die Ziehungen benötigten, vollständig bedingten Dichten für βirc und αrc können

jedoch nicht einer bekannten Verteilung zugeordnet werden, weshalb letztendlich ein

Metropolis-Algorithmus angewendet wird (Rosen et al., 2001, S. 138 f.).

3.2.3 Greiner und Quinn: Multinomial-Log-Normal-Modell

Ein alternatives, hierarchisches Vorgehen für R × C Tafeln kam im Jahr 2009 von

Greiner und Quinn. Gegenüber dem obigen Modell von Rosen et al. (2001), werden von

den Autoren anstelle von Übergangswahrscheinlichkeiten βirc die absoluten Häufigkeiten

der inneren Zellen direkt ermittelt. Sie argumentieren, dass der Vorteil des Ansatzes

die Gewichtung der Kreuztabellen einzelner Wahlbezirke proportional zur deren Größe

ist. Zum Beispiel liefert eine 2×2 Tabelle mehr Information mit Randsummen von 400

und 600 als eine Tabelle mit Randsummen von 40 und 60. Hingegen werden, gemäß den

Autoren, bei den Methoden, die die relative Häufigkeiten verwenden, beide Situationen

gleich bewertet. Denn beiden hätten die Randsummen von 40 Prozent und 60 Prozent.

Ein bedeutender Nachteil des Verfahrens, im Gegensatz zum Multinomial-Dirichlet-

Modell von Rosen et al. (2001), ist die Gefahr von einem langsamen und schwerfälligen

Modell-Fitting. (Greiner und Quinn, 2009, S. 68 f.; Greiner und Quinn, 2010, S. 1778

ff.)
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2. WAHL

1.
W

A
H

L

c = 1 c = 2 . . . c = C

r = 1 N i
11 N i

12 . . . N i
1C Xa

1,i

r = 2 N i
21 N i

22 . . . N i
2C Xa

2,i
... ... ... . . . ... ...

r = R N i
R1 N i

R2 . . . N i
RC Xa

R,i

Y a
1,i Y a

2,i . . . Y a
C,i Ni

Tabelle 3.4: R×C Tabelle der Wahldaten mit absoluten Häufigkeiten (übernommen
von Greiner und Quinn (2009, S. 68), verallgemeinert und angepasst an die
Wählerwanderungsanalyse und die Notation in dieser Arbeit).

Um die Konsistenz bei der Notation beizubehalten (siehe Tabelle 3.4), re-

präsentieren nach wie vor Y a
1i, . . . , Y

a
Ci die Anzahl der Wähler, welche in dem Wahlbezirk

i die Partei c bei der zweiten Wahl gewählt haben und analog stellen Xa
1i, . . . , X

a
Ri die

Anzahl der Wähler dar, welche in dem Wahlbezirk i ihre Stimme der Partei r bei

der ersten Wahl gegeben haben. Die interessierenden unbekannten Parameter werden

als N i
rc bezeichnet und stellen die Anzahl der Wähler dar, die in dem Wahlbezirk i

von Partei r zur Partei c gewandert sind. Die gesamte Anzahl der Wähler in einem

Wahlbezirk i ist somit gleich

Ni =
R∑
r=1

Xa
r,i =

C∑
c=1

Y a
c,i =

R∑
r=1

C∑
c=1

N i
rc. (3.20)

Die Übergangswahrscheinlichkeiten können im Nachhinein einfach durch

βirc = N i
rc

Xa
r,i

(3.21)

bestimmt werden (Greiner und Quinn, 2009, S. 68; 2010, S. 1779).

Die Autoren beschreiben das Modell anhand eines Anwendungsbeispiels, bei dem

die Schätzung der inneren Zellen in Abhängigkeit der Kovariable ”Bevölkerungsgruppe

gemäß Hautfarbe“ ermittelt werden soll (Greiner und Quinn, 2009, S. 68; 2010, S. 1775

f.). Dementsprechend stehen die nachfolgenden Annahmen des Modells ursprünglich im

Verhältnis zum sogenannten ”racial block voting“ oder ”racially polarized voting“, das

einen Umstand bezeichnet, in dem die Individuen innerhalb einer Gruppe ähnliches und

zwischen den Gruppen unterschiedliches Verhalten ausdrücken (Greiner und Quinn,
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2010, S. 1775). Das kann sich durchaus auf den Fall der Wählerwanderung anwenden

lassen, da die Wechselstimmen in der Regel die Tendenz haben, zur derjenigen Partei

abzuwandern, die ähnliche Ansichten und soziale Werte vertritt, wie die zuvor gewählte

Partei (Andreadis und Chadjipadelis, 2009, S. 207). In diesem Sinne gehen Greiner und

Quinn (2009) davon aus, dass jeder Wähler die Wahrscheinlichkeit besitzt, eine der C

Parteien bei der zweiten Wahl zu unterstützen, welche von seiner Wahlentscheidung

bei der ersten Wahl und dem Wahlbezirk i abhängig ist. Sie nehmen die Randsummen

für jeden Wahlbezirk i als fest an und betrachten die individuellen Wahlentscheidungen

bei der zweiten Wahl unabhängig voneinander (Greiner und Quinn, 2009, S. 70).

Multinomial-Log-Normal-Modell

ERSTE EBENE: (N i
r1, . . . ,N

i
rC) ∼ Multinom(Xa

r,i,θr,i) (3.22)

mit θr,i = (θir1, . . . , θirC) I Wahrscheinlichkeiten, die Parteien

1, . . . , C zu wählen, falls bei der ersten Wahl Partei r gewählt wurde.

C∑
c=1

N i
rc = Xa

r,i

C∑
c=1

θirc = 1 E(N i
rc) = Xa

r,iθ
i
rc

wobei N i
11, . . . , N

i
1C ⊥⊥ N i

21, . . . , N
i
2C ⊥⊥ . . . ⊥⊥ N i

R1, . . . , N
i
RC

ZWEITE EBENE: ωi = (ωT1,i,ωT2,i, . . . ,ωTR,i)T (3.23)

∼ NRx(C−1)

µ =


µT1
µT2
. . .
µTR

 ,Σ =


Σ1 Σ12 · · · Σ1R
Σ21 Σ2 · · · Σ2R

... ... ... ...
ΣR1 ΣR2 · · · ΣR




mit ωTr,i =
(
log

(
θir1
θirC

)
, . . . , log

(
θirC−1
θirC

))

DRITTE EBENE: µ ∼ N(µ0,K0) (3.24)

Σ ∼ invWishν0(Ψ0)

Abbildung 3.2: Zusammenfassung der Verteilungen des ökologischen Multinomial-
Log-Normal-Modells (Greiner und Quinn, 2009, S. 70 f.; Gelman et al., 2014, S. 576
ff.).

Auf der ersten Ebene setzen Greiner und Quinn (2009, S. 70) eine unabhängige

Multinomial-Verteilung für jede der R Zeilen voraus (siehe Abbildung 3.2, Glei-
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chung 3.22). In Bezug auf die zeilenweise Unabhängigkeit lässt sich die Likelihood

multiplikativ aus R multinomialverteilten Vektoren zusammensetzen. Auf der zwei-

ten Ebene transformieren die Autoren logistisch die R, C-dimensionale, multinomia-

le Wahrscheinlichkeitsvektoren θr,i für jeden Wahlbezirk i. Hierfür betrachten sie die

Nichtwähler, das heißt die Spalte C, als Referenzkategorie. Die transformierten R

Vektoren ωr,i, jeweils mit einer reduzierten (C − 1) Dimension, nehmen sie als un-

abhängig und identisch R(C − 1)-dimensional normalverteilt an (siehe Abbildung 3.2,

Gleichung 3.23). Letztendlich setzen sie auf der letzten Ebene eine Normal- und ei-

ne Inverse-Wishart-Hyperpriori-Verteilung für die Parameter µ und Σ voraus (siehe

Abbildung 3.2; Gleichung 3.24).

Um die gemeinsame Posteriori-Verteilung zu bestimmen, summieren Greiner und

Quinn (2009) über die ersten (C−1)+(R−1) unbekannten Zellen für jeden Wahlbezirk

i und integrieren über den Parameter θrc. Die Spaltensummen betrachten sie hierbei

als Funktionen der vollständigen Daten, welche unbeobachtet sind. Mit einer Matrix

Nbeob, deren i-te Zeile die Randsummen des i-ten Wahlbezirkes enthält und dem Para-

metervektor θi = (θT1,i, θT2,i, . . . , θTR,i) bestimmen Greiner und Quinn (2009, S. 71 f.) die

Posteriori-Verteilung folgendermaßen:

p(µ,Σ|Nbeob) ∝ p(µ,Σ)
p∏
i=1

[∫
(3.25)

3.26
OG

Ni
11∑

N i
11=UG

Ni
11

OG
Ni

12
(N i

11)∑
N i

12=UG
Ni

12
(N i

11)
· · ·

OG
Ni

1C−1
(N i

11,...,N
i
1C−2)∑

N i
1C−1=UG

Ni
1C−1

(N i
11,...,N

i
1C−2)

OG
Ni

21
(N i

11,...,N
i
1C−1)∑

N i
21=UG

Ni
21

(N i
11,...,N

i
1C−1)

· · · · · ·

OG
Ni

R−1,C−1
(N i

11,···,N
i
R−1,C−2)∑

N i
R−1,C−1=UG

Ni
R−1,C−1

(N i
11,···,N

i
R−1,C−2)

(3.26)(
Xa

1,i
N i

11 N
i
12 . . . N

i
1C

)(
Xa

2,i
N i

21 N
i
22 . . . N

i
2C

)
· · ·
(

Xa
R,i

N i
R1 N

i
R2 . . . N

i
RC

)

(3.27)

×
(
θ
N11,i

11,i θ
N12,i

12,i . . . θ
N1C,i

1C,i

) (
θ
N21,i

21,i θ
N22,i

22,i . . . θ
N2C,i

2C,i

)
· · ·

·
(
θ
NR1,i

R1,i θ
NR2,i

R2,i . . . θ
NRC,i

RC,i

)
(3.28)

× |Σ|−1/2exp
{
−1

2(ω∗i − µ)TΣ−1(ω∗i − µ)
}

(3.29)
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× (θi11θ
i
12 . . . θ

i
1C θi21θ

i
22 . . . θ

i
2C · · · θiR1θ

i
R2 . . . θ

i
RC)−1 (3.30)

× I(N i
11 +N i

21 + · · ·+N i
R1 = Y a

1,i) (3.31)

· I(N i
12 +N i

22 + · · ·+N i
R2 = Y a

2,i) (3.32)
...

· I(N i
1C +N i

2C + · · ·+N i
RC = Y a

C,i) (3.33)

× I(N i
11 +N i

12 + · · ·+N i
1C = Xa

1,i) (3.34)

· I(N i
21 +N i

22 + · · ·+N i
2C = Xa

2,i) (3.35)
...

· I(N i
R1 +N i

R2 + · · ·+N i
RC = Xa

R,i) (3.36)

× I(θi11 + θi12 + · · ·+ θi1C = 1) (3.37)

· I(θi21 + θi22 + · · ·+ θi2C = 1) (3.38)
...

· I(θiR1 + θiR2 + · · ·+ θiRC = 1) dθi

]
(3.39)

Die Notation wurde hierbei verallgemeinert. UG und OG in der Gleichung 3.26 kenn-

zeichnen, dass die unteren und die oberen Grenzen bei der Summierung berücksichtigt

werden. Die Notation in Klammern bedeutet, dass die Summierung jeweiliger Größe

von allen vorher summierten Größen abhängt. Die Indikatorfunktionen in den Glei-

chungen 3.31 - 3.36 prüfen, dass die Zeilen- und Spaltensummen der unbeobachteten

inneren Zellen den beobachteten Randsummen entsprechen. Die Gleichungen 3.37 -

3.39 bedingen eine zeilenweise Summierung der Parameter θirc auf den Wert eins. Die

Schätzung der interessierenden Parameter Nrc findet mittels Gibbs-Sampler statt, wo-

bei die Ränder deterministisch berücksichtigt werden (Greiner und Quinn, 2009, S. 72).

Für nicht standardisierte bedingte Verteilungen (Gleichungen 3.27-3.29 und 3.36-3.38)

wird der Metropolis-Hastings-Algorithmus angewendet (Greiner und Quinn, 2009, S.

80). Das Verfahren wurde von Autoren in R (R Core Team, 2015) als Zusatzpaket

RxCEcolInf (Greiner et al., 2013) implementiert.
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3.3 Hybridmodelle

3.3.1 Grundlage und Notation

Falls Individualdaten verfügbar sind, können diese fernerhin in die Analyse integriert

werden. Die Modelle, die eine Kombination der Aggregat- und Individualdaten erfassen,

werden Hybridmodelle genannt. Als Ergänzungen zur ökologischen Inferenz werden

diese unter dem gleichen Kapitel beschrieben. Grundsätzlich gelten jedoch die Modelle,

die Individualdaten in die Analyse einschließen, nicht mehr als Modelle der ökologischen

Inferenz.

INDIVIDUALDATEN AGGREGATDATEN

Y = 0 Y = 1 Y = 0 Y = 1

X = 0 n0,i xa0,i Xa
0,i − xa0,i

X = 1 n1,i xa1,i Xa
1,i − xa1,i

ni − yai yai ni Ni − Y a
i − (ni − yai ) Y a

i − yai Ni − ni

Tabelle 3.5: Links: 2 × 2 Tabelle der Individualdaten mit absoluten Häufigkeiten.
Rechts: 2 × 2 Tabelle der Aggregatdaten mit absoluten Häufigkeiten, adaptiert
bezüglich der Individualdaten (übernommen von Wakefield (2004, S. 418) und an-
gepasst an die Notation in dieser Arbeit).

Ein Hybridmodell hat Wakefield im Jahr 2004 aus einem Vorschlagsverfahren für

2 × 2 Fälle entwickelt. Seine Notation wurde in der Tabelle 3.5 so angepasst, dass

die absoluten Häufigkeiten der Individualdaten mit kleinen Buchstaben analog zu den

großen Buchstaben der absoluten Häufigkeiten der Aggregatdaten bezeichnet sind. Die

inneren Zellen der Tabelle der Individualdaten, n0,i und n1,i, bilden an dieser Stelle

die beobachteten Werte. Wakefield (2004, S. 419) adaptiert die Daten für die Analyse,

indem er die Randsummen der Individualdaten von den entsprechenden Randsummen

der Aggregatdaten subtrahiert. Er berichtet, dass die Verbesserung der Analyse bereits

durch kleine Stichproben erreicht werden kann. Dennoch warnt er, dass die Stichproben

repräsentativ sein sollen. Besonders anfällig für Verzerrungen können Nachwahlbefra-

gungen sein, da die Befragten nicht immer ehrlich über ihre politischen Ansichten

antworten (Wakefield, 2004, 420 f.).

Sein Verfahren hat andere Methodiker motiviert, die Individualdaten in ihre Metho-

den für R×C Fälle zu integrieren. Eine Erweiterung des Hybridmodells von Wakefield
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(2004) auf das Multinomial-Dirichlet-Modell für R×C Fälle von Rosen et al. (2001) hat

Schlesinger im Jahr 2013 in seiner Masterarbeit begründet. Schließlich implementierte

er das Modell in R (R Core Team, 2015) als Zusatzpaket eiwild - Ecological Inference

with Individual level Data (Schlesinger, 2014). Das Multinomial-Log-Normal-Modell

von Greiner und Quinn (2009, 2010) geht bereits von einem Individual-Level aus und

ermöglicht damit eine einfache Ergänzung des Modells durch die Individualdaten. Die

hybride Version ihres Ansatzes ist im RxCEcolInf Paket (Greiner et al., 2013) in R (R

Core Team, 2015) integriert.

2. WAHL

1.
W

A
H

L

c = 1 c = 2 . . . c = C

r = 1 ni11 ni12 . . . ni1C xa1,i

r = 2 ni21 ni22 . . . ni2C xa2,i
... ... ... . . . ... ...

r = R niR1 niR2 . . . niRC xaR,i

ya1,i ya2,i . . . yaC,i ni

Tabelle 3.6: R × C Tabelle der Individualwahldaten mit absoluten Häufigkeiten
(übernommen von Schlesinger (2013, S. 34) und angepasst an die Notation in dieser
Arbeit).

2. WAHL

1.
W

A
H

L

c = 1 c = 2 . . . c = C

r = 1 βi11 βi12 . . . 1−
C−1∑
c=1
βi1c Xa

1,i − xa1,i

r = 2 βi21 βi22 . . . 1−
C−1∑
c=1
βi2c Xa

2,i − xa2,i
... ... ... . . . ... ...

r = R βiR1 βiR2 . . . 1−
C−1∑
c=1
βiRc Xa

R,i − xaR,i

Y a
1,i − ya1,i Y a

2,i − ya2,i . . . Y a
C,i − yaC,i Ni − ni

Tabelle 3.7: R × C Tabelle der Aggregatwahldaten mit absoluten Häufigkeiten, die
bezüglich der Individualwahldaten adaptiert werden (übernommen von Schlesinger
(2013, S. 35) und angepasst an die Notation in dieser Arbeit).

Zugunsten des Multinomial-Dirichlet-Hybridmodells bestätigt eine Simulationsstu-
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die von Klima et al. (2016) die Ergebnisse von Wakefield (2004). Es hat sich wie-

derkehrend gezeigt, dass eine kleine Stichprobe die Schätzung verbessern kann. Um

deren Hybridmodell zu evaluieren, haben Greiner und Quinn (2010) ebenfalls eine Si-

mulationsstudie durchgeführt und kamen zu gleichen Ergebnissen. Sie schlagen vor,

das Hybridmodell immer vor den reinen ökologischen Modellen zu bevorzugen, wenn

Individualdaten vorhanden sind (Greiner und Quinn, 2010, S. 1785). Vorsicht ist gebo-

ten, falls bei der Stichprobe eine Bevölkerungsgruppe dominiert, warnen die Autoren.

In Bezug auf die Wählerwanderungsanalyse sollten die Wähler einer Partei der ersten

Wahl nicht eine Mehrheit der Befragten ausmachen. In den folgenden Unterabschnitten

werden die beiden Hybridmodelle und ihre Annahmen kurz beschrieben.

3.3.2 Multinomial-Dirichlet-Hybridmodell

Schlesinger (2013) beschreibt das Verfahren gleichermaßen auf dem Anwendungsbei-

spiel der Wählerwanderungsanalyse zwischen zwei Wahlen, jedoch folgt er annähernd

der Notation von Wakefield (2004), die hier wiederum angeglichen wird. Für

den Fall, dass die Daten einer Nachwahlbefragung zur Verfügung stehen, erwei-

tert er die Tabelle 3.5 (links) auf eine R × C Tabelle, um die unbekannten

Übergangswahrscheinlichkeiten βrc zu schätzen (siehe Tabelle 3.6). Er nimmt an,

dass nirc für einige Wahlbezirke aus den Daten bekannt sind, wobei (0 ≤ i ≤ p),

(0 ≤ yac,i ≤ Y a
c,i), (0 ≤ xar,i ≤ Xa

r,i) und nirc ∈ [0,min{yac,i, xar,i}] gilt (Schlesinger, 2013,

S. 34).

Entsprechend der zeilenweisen Binomial-Verteilung beim Ansatz von Wakefield

(2004), setzt Schlesinger (2013, S. 34 f.) auf der ersten Ebene des Verfahrens eine

unabhängige zeilenweise Multinomial-Verteilung für nir1, . . . , nirC voraus. Deren Para-

meter sind βir1, . . . , β
i
rC und die Zeilensummen xar,i, wobei nach wie vor ∑C

c=1 β
i
rc = 1

gilt (siehe die Abbildung 3.3, Gleichung 3.40). Hierbei nimmt er an, dass Individual-

und Aggregatdaten die gleichen Übergangswahrscheinlichkeiten βirc ergeben. Die Rand-

summen der Aggregatdaten werden, wie im Unterabschnitt 3.3.1 (Tabelle 3.5), gemäß

den Informationen aus den Individualdaten je nach Wahlbezirk i angepasst (siehe Ta-

belle 3.7).

Alle drei Ebenen der Aggregatdaten folgen den gleichen Verteilungen wie das

Multinomial-Dirichlet-Modell von Rosen et al. (2001), wobei auf der ersten Ebene die

Spaltensummen modifiziert werden. Demnach definiert Schlesinger (2013, S. 35) an die-
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ser Stelle eine Multinomial-Verteilung für Y a
1,i−ya1,i, . . . , Y a

C,i−yaC,i mit den Parametern

Ni−ni und θ1,i, . . . , θC,i (siehe Abbildung 3.3, Gleichung 3.41). Falls Vorwissen, wie zum

Beispiel Wahlempfehlungen, vorhanden ist, kann dieses auf der dritten Ebene durch die

zellspezifischen Hyperpriori-Verteilungen für αrc verwendet werden (Schlesinger, 2013).

Multinomial-Dirichlet-Hybridmodell

INDIVIDUALDATEN

ERSTE EBENE: (nir1, . . . ,nirC) ∼ Multinomial(xar,i; βir1, . . .βirC)
(3.40)

mit:
C∑
c=1

βirc = 1, r = 1, . . . , R

AGGREGATDATEN

ERSTE EBENE: (Y a
1,i − ya1,i, . . . ,Y a

C,i − yaC,i) (3.41)
∼ Multinomial(Ni − ni; θ1,i, . . . ,θC,i)

mit:
C∑
c=1

θc,i = 1, θc,i =
R∑
r=1

βircXr,i, Xr,i =
Xa
r,i − xar,i
Ni − ni

ZWEITE EBENE: (βir1, . . .βirC) ∼ Dirichlet(αr1, . . .αrC) (3.42)

DRITTE EBENE: αrc ∼ Gamma(λ1,λ2) (3.43)

oder zellspezifisch: αrc ∼ Gamma(λrc1 ,λrc2 ) (3.44)

Abbildung 3.3: Zusammenfassung der Verteilungen des Multinomial-Dirichlet-
Hybridmodells (Schlesinger, 2013, S. 35 f.).

Die gemeinsame Posteriori-Verteilung erweitert sich bei der Verwendung von Indi-

vidualdaten und ergibt sich schließlich durch

f(βirc, αrc|Xr,i, Y
a
c,i, n

i
rc, y

a
c,i, (λ1, λ2)) ∝ (3.45)

×
p∏
i=1

R∏
r=1

C∏
c=1

(βirc)n
i
rc

]
INDIVIDUALDATEN (3.46)

×
p∏
i=1

C∏
c=1

(θc,i)Y
a

c,i−y
a
c,i (3.47)

×
p∏
i=1

R∏
r=1

{
Γ(∑C

c=1 αrc)∏C
c=1 Γ(αrc)

C∏
c=1

(βirc)αrc−1
}

(3.48)
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×
R∏
r=1

C∏
c=1

λλ1
2

Γ(λ1)α
λ1−1
rc exp{−λ2αrc}. (3.49)

Bei denjenigen Wahlbezirken i, für die keine Individualdaten vorhanden sind, reduziert

sich die Posteriori-Verteilung auf die ohne Individualdaten (siehe Unterabschnitt 3.2.2,

Gleichungen 3.17-3.19), da nirc in der Gleichung 3.46 und yac,i in der Gleichung 3.47

in diesem Fall gleich null sind. Zur Schätzung werden Markov-Chain-Monte-Carlo-

Methoden, speziell Metropolis-within-Gibbs-Sampler, durchgeführt. (Schlesinger, 2013,

S. 36)

3.3.3 Multinomial-Log-Normal-Hybridmodell

Gemäß Greiner und Quinn (2009, 2010) impliziert die Annahme der festen Randsum-

men für jeden Wahlbezirk i, dass die Randsummen unabhängig vom Prozess der Da-

tensammlung sind. Hierbei nehmen sie die Wahrscheinlichkeit, eine der C Parteien bei

der zweiten Wahl zu unterstützen, abhängig von der Wahlentscheidung bei der ersten

Wahl und dem Wahlbezirk i an. Die individuellen Wahlentscheidungen bei der zwei-

ten Wahl betrachten sie als unabhängig voneinander. Diese Annahmen resultieren in

den unabhängigen Multinomial-Verteilungen für die R Zeilen der unbekannten inneren

Zellen bei den Aggregatdaten, die dem individuellen Wahlverhalten entsprechen (Grei-

ner und Quinn, 2009, S. 70; Greiner und Quinn, 2010, S. 1781). Demnach können die

Individualdaten ohne zusätzliche Annahmen ins Modell integriert werden.

Für eine Stichprobe S, die s aus p Wahlbezirken enthält, erweitern Greiner und

Quinn (2009, S. 78) die Posteriori-Verteilung aus der Gleichungen 3.25 - 3.39, durch

die Likelihood:

(
Ni

ni

)−1(
ni

xa1,i x
a
2,i · · · xaR,i

)
X
xa

1,i

1,i X
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×
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)
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11 θ
n12
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n1C
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×
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×
(

xaR,i
nR1,i nR2,i · · · nRC,i

)
θnR1
R1 θ

nR2
R2 · · · θ

nRC
RC

}I(i∈S)

(3.53)

Die Notation wurde hier bezüglich der Tabelle 3.6 angepasst. Der Indikator i ∈ S

weist darauf hin, dass ausschließlich die Wahlbezirke betrachtet werden, die in der

Stichprobe vorhanden sind. In der Posteriori-Verteilung, bedingt auf den beobachteten

Individualdaten, werden N i
rc Parameter für jedes i ∈ S adaptiert (Greiner und Quinn,

2009). Eine genauere Beschreibung wird im Jahr 2009 dennoch nicht gegeben. Ferner

leiten sie an, dass nach dieser Ergänzung aus der gemeinsamen Posteriori-Verteilung

die interessierenden Schätzwerte, in gleicher Weise wie bei der ökologischen Inferenz,

durch Metropolis-within-Gibbs-Sampler gezogen werden können (Greiner und Quinn,

2009, S. 78). Im Jahr 2010 definieren Autoren die gemeinsame Posteriori-Verteilung

des Hybridmodells in einer reduzierten Form proportional zu:

N(µ|µ0, κ0)× Inv −Wishν0(σ|Ψ0) (3.54)

×
∏
i
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(3.55)

×
(
|Σ|−

1
2 exp

{
−1

2(ωi − µ)TΣ−1(ωi − µ)
})

dθi

]
(3.56)

(Greiner und Quinn, 2010, S. 1782). Hierbei definieren sie M i
rc durch N i

rc − nirc. Die

Gleichung 3.54 stellt die Hyperpriori-Verteilungen dar. Die weitere Erläuterung dieser

Posteriori-Verteilung ist jedoch unklar, da die Autoren vier Zeilen beschreiben und

nur drei darstellen. Die zweite und die dritte Zeile bezeichnen sie als Multinomial-

Verteilung der inneren Zellen und die vierte Zeile als Multivariate-Normal-Verteilung.

Es ist klar, dass sich die Beschreibung der vierten Zeile auf die Priori-Verteilung in der

Gleichung 3.56 bezieht. Bei der Darstellung der Multinomial-Verteilung scheint eine

Zeile zu fehlen. Demnach bleibt es unklar, wie genau die Posteriori-Verteilung durch

die Individualdaten ergänzt wird.
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4 Die Datenbasis

4.1 Datengrundlage und deskriptive Analyse

In diesem Abschnitt werden der Inhalt und der Ursprung der Aggregat- und Indivi-

dualdaten beschrieben. Vor Beginn der Analyse liefern grafische Darstellungen einen

ersten Überblick über das Wahlverhalten. Zur Erstellung der Diagramme kommen die

folgenden R-Pakete zum Einsatz: ggplot2 (Wickham, 2009), ggthemes (Arnold, 2016),

scales (Wickham, 2016), gridExtra (Auguie, 2016) und circlize (Gu et al., 2014;

Gu, 2015).

4.1.1 Amtliche Ergebnisse der betrachteten Wahlen
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Bundestagswahl 2013

Abbildung 4.1: Amtliches Endergebnis der Bundestagswahl im Jahr 2013. Quelle:
Stadt Mannheim (2013).

Die amtlichen Endergebnisse der Bundestagswahl im Jahr 2013 lassen sich von

der offiziellen Internetseite der Stadt Mannheim (2013) herunterladen. In der Datei
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btw_wahlbezirke_neu sind die Daten über die Erst- und Zweitstimmen der Bundes-

tagswahl im .xls Format enthalten, wobei nur die Zweitstimmen in der Analyse be-

trachtet werden. Es sind die Ergebnisse der 137 796 Wähler von insgesamt 198 525

Wahlberechtigten für 20 Parteien zur Verfügung gestellt. Die Ergebnisse aller 135 744

gültigen Stimmen sind in der Abbildung 4.1 dargestellt. Auf der x-Achse liegen die

sechs größten Parteien: CDU, SPD, Grüne, Die Linke, AfD und FDP, wie auch die

Kategorie Sonstige, die alle kleinen Parteien umfasst. Die y-Achse zeigt wie viele Stim-

men in Prozent die jeweilige Partei gewonnen hat. Mit 35.06 Prozent erreichte die CDU

damals eine Mehrheit der Stimmen, während die SPD 27.53 Prozent erzielte. Darauf

folgen die Grünen mit 11.08, Die Linke mit 7.53, AfD mit 6, FDP mit 5.46 und alle

andere Parteien, die im Ganzen 7.32 Prozent erhielten. Das Prinzip und der Grund

für die Zusammenfassung der kleinen Parteien in eine Kategorie wird in dem Unterab-

schnitt 4.2.1 auf der Seite 40 diskutiert. Im Anhang A.1.1 auf der Seite 85 ist die Liste

aller Parteien zu finden.
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Abbildung 4.2: Amtliches Endergebnis der Oberbürgermeisterwahl im Jahr 2015.
Quelle: Stadt Mannheim (2015b).

Amtliche Ergebnisse der Oberbürgermeisterwahl aus dem Jahr 2015

(Stadt Mannheim, 2015b) sind für den ersten Wahlkreis im Juni so-

wie für den zweiten Wahlkreis im Juli verfügbar. Hier wird die Datei
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obw2015_auswertungen_amtliches_endergebnis_fur_internet.xls vom Juni

für die Analyse verwendet, da die Nachwahlbefragung bereits im Juni im ersten

Wahlkreis durchgeführt wurde. Obwohl die Anzahl der Wahlberechtigten im Jahr

2015 um 35 556 höher war als im Jahr 2013, sank 2015 die Anzahl der Wähler auf

71 866 und damit die Wahlbeteiligung von 69.4 Prozent auf nur 30.7 Prozent. Für

den ersten Wahlkreis sind die Ergebnisse der vier stärksten Kandidaten, Dr. Peter

Kurz (SPD), Christopher Probst (Mannheimer Liste), Peter Rosenberger (CDU) und

Christian Sommer (Die Partei) freigegeben. Die Stimmen der anderen Kandidaten

wurden unter der Kategorie Andere Gewählte bereits bei den amtlichen Ergebnissen

zusammengezählt. Im weiteren Verlauf wird diese Kategorie als Sonstige bezeichnet,

um die Darstellungen der beiden Wahlen abzugleichen. Der Kandidat Christian

Sommer (Die Partei) wurde dieser Kategorie zugeteilt (siehe Unterabschnitt 4.2.1).

Wie die gültigen Stimmen verteilt wurden zeigt die Abbildung 4.2. Auf der x-Achse

sind die Kandidaten abgebildet und auf der y-Achse der Stimmenanteil der jeweiligen

Kandidaten in Prozent. ”Amtsinhaber Dr. Peter Kurz wird von den Mannheimer

Kreisverbänden der SPD, der Grünen und der Linken unterstützt, Peter Rosenberger

von der CDU und Christopher Probst von der Mannheimer Liste“ (Schredle, 2015).

Da die SPD, die Grünen und Die Linke bei der Bundestagswahl 2013 insgesamt

46.14 Prozent erhielten, scheint der Gewinn von Dr. Peter Kurz mit 46.79 Prozent

erwartungsgemäß. Peter Rosenberger erzielte 33.83 Prozent, genau 1.23 Prozent

weniger als die CDU zwei Jahre vorher. Kandidat der Mannheimer Liste, Christopher

Probst, bekam 15.94 Prozent der Stimmen und alle anderen Kandidaten sammelten

insgesamt 3.44 Prozent aller Stimmen.

Das Stadtgebiet Mannheim besteht aus 17 Bezirken (siehe dazu Anhang A.1.2,

Seite 86), die bei einer Wahl in Wahlgebäude und Wahlbezirke unterteilt werden. Das

Prinzip der Zuordnung von Straßen zu den Wahlbezirken und Wahlgebäuden kann sich

von Wahl zur Wahl ändern. Bei der Bundestagswahl im Jahr 2013 wurden hierfür 52

Wahlgebäude und 189 Wahlbezirke erstellt und bei der Oberbürgermeisterwahl im Jahr

2015 wurde das Stadtgebiet in 68 Wahlgebäude und 123 Wahlbezirke unterteilt. Eine

Übersicht der elementaren Zahlen zum Populationsumfang und zur Bezirksunterteilung

ist für das gesamte Stadtgebiet sowie für die Brief- und Urnenwähler getrennt, in der

Tabelle 4.1 dargelegt.
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BUNDESTAGSWAHL 2013
Gesamt Urnenwähler Briefwähler

Summe Wahlberechtigte 198 525
Wahlberechtigte ohne Wahlschein 157 474

Wahlberechtigte mit Wahlschein 41 051
Wähler insgesamt 137 796 100 299 37 497

darunter mit Wahlschein 37 984 487 37 497
Ungültige Stimmen 2 052 1 706 346

Gültige Stimmen 135 744 98 593 37 151
Anzahl Stadtbezirke 17 17 17

Anzahl Wahlgebäude 52 51 1
Anzahl Wahlbezirke 189 150 39

OBERBÜRGERMEISTERWAHL 2015
Gesamt Urnenwähler Briefwähler

Summe Wahlberechtigte 234 081
Wahlberechtigte ohne Wahlschein 210 953

Wahlberechtigte mit Wahlschein 23 128
Wähler insgesamt 71 866 50 995 20 871

darunter mit Wahlschein 21 110 239 20 871
Ungültige Stimmen 641 474 167

Gültige Stimmen 71 225 50 521 20 704
Anzahl Stadtbezirke 17 17 17

Anzahl Wahlgebäude 68 51 17
Anzahl Wahlbezirke 123 96 27

Tabelle 4.1: Übersicht der wichtigsten Zahlen zum Populationsumfang
und zur Bezirksunterteilung bei der Bundestagswahl 2013 (oben) und der
Oberbürgermeisterwahl 2015 (unten).

4.1.2 Nachwahlbefragung

Die Nachwahlbefragung (Felderer, 2015, persönliche Kommunikation) wurde im Rah-

men der Lehrveranstaltung Empirisches Forschungspraktikum bei der Mannheimer

Oberbürgermeisterwahl im Juni 2015 für fünf Wahlbezirke durchgeführt. Unter an-

deren sollten die Befragten zwei Fragen beantworten, die hier von Interesse sind: ”Für

welchen Kandidaten haben Sie heute gestimmt?“, ”Wenn Sie nun an die letzte Bun-

destagswahl im September 2013 denken: Welche Partei haben Sie damals mit Ihrer

Zweitstimme gewählt?“. Diese Daten ermöglichen einen ersten Einblick in das Indivi-

dualwahlverhalten der Wähler.

Von insgesamt 1 575 Teilnehmern verweigerten 100 eine oder beide Fragen, 8 gaben
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Fehlende Werte bei der Nachwahlbefragung
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Abbildung 4.3: Fehlende Werte bei der Nachwahlbefragung. Anzahl bezeichnet die
Häufigkeit der fehlenden Werte bei einer Wahl in Abhängigkeit von den Angaben
bei der anderen Wahl. Der Anteil stellt das Verhältnis von Anzahl der fehlenden
Werte bei einer Wahl zur Summe aller Angaben für die jeweilige Partei oder für den
jeweiligen Kandidaten bei der anderen Wahl in Prozent dar.

mehr als eine Antwort und 79 konnten sich nicht mehr erinnern, wem sie ihre Stimme im

Jahr 2013 gegeben haben. Alle genannten Fälle wurden als fehlende Werte betrachtet

und gelöscht, wodurch 185 Beobachtungen verloren gehen. In der Abbildung 4.3 lässt

sich erkennen, dass deutlich mehr Werte bei der Angabe zur Bundestagswahl 2013 feh-

len. Obwohl eine Mehrheit bei der Frage zur Oberbürgermeisterwahl (2015) den Kan-

didat Dr. Peter Kurz angekreuzt haben, zeigt das Verhältnis von Anzahl der fehlenden

Werte zur Summe aller Angaben für die jeweiligen Kandidat, dass sich die Wähler al-

ler drei großen Kandidaten angenähert gleichmäßig über ihre Wahl im Jahr 2013 nicht

geäußert haben. Insgesamt lehnten 45 Probanden ab, eine Antwort auf beide Fragen zu

geben. In der Abbildung 4.3 sind diese nicht dargestellt. Neben dem Problem der feh-

lenden Werte, muss noch ergänzt werden, dass der Anteil der Nichtwähler bei der Befra-

gung, die nach der Wahl vor Ort stattfand, höchstwahrscheinlich nicht dem wirklichen

Zustand der Nichtwähler entspricht. Denn, die Wahlberechtigten, die nicht gewählt ha-

ben, treten in der Regel auch nicht am Wahlort auf. Außerdem werden die Briefwähler

bei der Befragung nicht betrachtet. Ferner wird im Unterabschnitt 4.2.4 (Seite 43)

erklärt, warum das Ignorieren der Briefwähler bei der Wählerwanderungsanalyse pro-

blematisch sein kann.
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Individualdaten − Ergebnis der Nachwahlbefragung
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Abbildung 4.4: Oben: Die Wahlergebnisse anhand der Nachwahlbefragung für die
Bundestagswahl 2013 (links) und für die Oberbürgermeisterwahl 2015 (rechts). Un-
ten: Die Differenz zwischen den Wahlergebnissen der Individual- und den Aggregat-
daten für die Bundestagswahl 2013 und für die Oberbürgermeisterwahl 2015.

Wie sich die Befragten bei dem Fragebogen geäußert haben ist in der Abbildung 4.4

(oben) dargestellt, wobei die Nichtwähler nicht berücksichtigt sind. In der unteren Gra-

fik wird zusätzlich die Differenz zu den amtlichen Ergebnissen abgebildet. Die Differenz

bei der Oberbürgermeisterwahl 2015 (unten rechts) zeigt eine bessere Übereinstimmung

mit den amtlichen Ergebnissen. Die höchste Abweichung von 3.56 Prozent liegt beim

Kandidaten Christopher Probst vor. Bei der Bundestagswahl 2013 (unten links) weist

die Grafik generell etwas höhere Abweichungen auf. Unterdessen ist eine deutliche

Überschätzung des Stimmenanteils der Grünen um 12.82 Prozent zu erkennen. Zur Un-

tersuchung der möglichen Ursachen für diese Störung werden zusätzlich drei Grafiken

erzeugt. Zuerst soll eine Darstellung der Ergebnisse nach Wahlbezirken in der Abbil-

dung 4.5 zeigen, ob die Wahl der Bezirke bei der Durchführung der Nachwahlbefragung
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die Ergebnisse beeinflussen könnte. Hierfür werden lediglich die fünf Wahlbezirke se-

lektiert, die bei der Nachwahlbefragung betrachtet wurden. In den Abbildungen A.2

(Seite 87) und A.3 (Seite 88) im Anhang A.1.3 befinden sich zusätzlich die Ergebnisse

aller Wahlbezirke. Für alle drei Grafiken werden die Wahlbezirke aggregiert, sodass die

gleichen Ebenen bei der Bundestagswahl (2013) und bei der Oberbürgermeisterwahl

(2015) mit der Nachwahlbefragung verglichen werden können. Im Unterabschnitt 4.2.3

auf der Seite 42 wird das Prinzip der Zusammensetzung der Wahlbezirke beschrieben.

Aus den Grafiken lässt sich nicht erkennen, dass die amtlichen Ergebnisse der betrach-

teten Gebiete im Vergleich zu den Übrigen einen höheren Stimmenanteil für die Grünen

aufweisen. Amtliches Ergebnis des Bezirkes 01251 weicht im Vergleich zu anderen nach

oben ab. Dennoch wird der Stimmenanteil in der Nachwahlbefragung an dieser Stelle

noch stärker überschätzt.

Stimmenanteil in Abhängigkeit der Wahlbezirke
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Abbildung 4.5: Stimmenanteil in Abhängigkeit der Wahlbezirke bei der Bundestags-
wahl 2013 (oben) und der Oberbürgermeisterwahl 2015 (unten) für fünf Wahlbezir-
ke, die bei der Nachwahlbefragung betrachtet wurden. Die dargestellten Wahlbezirke
werden so aggregiert, dass alle Ebenen bei der Bundestagswahl (2013) und bei der
Oberbürgermeisterwahl (2015) identisch sind und den Wahlbezirken bei der Nach-
wahlbefragung entsprechen.

Obwohl rein grafische Beschreibungen nicht ausreichend sind um den Einfluss ei-

ner Variable festzustellen, so bietet eine visuelle Untersuchung der Strukturen von

Alter und Bildungsabschluss der Befragten eine grobe Beschreibung der möglichen

Einflüsse auf die Verzerrung. Die Grafik in der Abbildung 4.6 zeigt keine Indikatoren,
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dass die Überschätzung der Grünen durch das Alter der Befragten verursacht wur-

de. Das Durchschnittsalter der Befragten, welche angeblich die CDU, AfD und FDP

gewählt haben, ist etwas höher als das mittlere Alter aller Befragten. Die Befragten,

die sich für die Grünen und Die Linke entschieden haben, sind im Durchschnitt ein

wenig jünger. Diejenigen, die Sonstige angekreuzt haben, weisen ein um 9.13 Jahre

niedrigeres mittleres Alter auf. Die Stadt Mannheim (2015c, S. 5, 15 f.) teilt mit, dass

die Wahlbeteiligung bei der Oberbürgermeisterwahl 2015 in den älteren Altersgruppen

generell höher war, insbesondere bei den 70-Jährigen und Älteren, wobei das Durch-

schnittsalter der Wahlberechtigten im Juni 48.4 Jahre betrug. Demzufolge entspricht

das mittlere Alter der Befragten beinahe dem durchschnittlichen Alter in der Popula-

tion der Wahlberechtigten.

Alter der Befragten bei der Nachwahlbefragung
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Abbildung 4.6: Alter der Befragten bei der Nachwahlbefragung in Abhängigkeit der
Angaben bei der Bundestagswahl (2013).

Die Betrachtung der Bildungsabschlussquoten in der Tabelle 4.2 zeigt einen hohen

Anteil von Personen mit Hochschulabschluss. Da die wahre Struktur des Bildungsab-

schlusses der Wahlberechtigten nicht bekanntgegeben wird, dienen die Informationen

über den Bildungsabschluss der Bevölkerung Baden-Württembergs als ein Vergleichs-

maß. Das Statistisches Bundesamt (2015, S. 65, 67) berichtet, dass 4.0 Prozent der

Bevölkerung die Schule besuchen, 36.8 Prozent besitzen einen Volks- beziehungsweise

Hauptschulabschluss, 26.7 Prozent einen Real- oder Mittelschulabschluss, 12.7 Prozent

haben das Abitur oder Fachabitur und 17.3 Prozent Fachhochschul- oder Hochschulab-

schluss. Zu 0.5 Prozent sind die Angaben nicht bekannt und 2.0 Prozent haben keinen

allgemeinen Schulabschluss. Dementsprechend erscheint in der Stichprobe einerseits ein
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um 26.31 Prozent geringerer Anteil des Volks- oder Hauptschulabschlusses und ein um

5.63 Prozent geringerer Anteil des Real- oder Mittelschulabschlusses. Andererseits weist

die Stichprobe einen um 8.52 Prozent höheren Anteil bei Abitur oder Fachabitur und

einen um 39.44 Prozent höheren Anteil des Hochschulabschlusses auf. Die Befragten,

die die Grünen angekreuzt haben, besitzen zu 61.04 Prozent einen Hochschulabschluss.

Somit liegt hier starke Abweichung von der Hochschulabschlussquote der Bevölkerung

vor und eine generell höhere Quote im Vergleich zur allen anderen Befragten. Da die

Struktur des Bildungsabschlusses der Wahlberechtigten nicht bekannt gegeben wird,

lässt sich allerdings keine zuverlässige Schlussfolgerung über die Quelle des Fehlers

anhand von Bildungsabschlussquoten ziehen.

Bildungsabschluss der Befragten bei der Nachwahlbefragung

CDU SPD Grüne Die Linke AfD FDP Sonstige Alle

0 %

12.14 %

26.12 %

19 %

42.74 %

0 %

100 %

0.61 %

15.03 %

24.85 %

19.02 %

39.26 %

1.23 %

100 %

0 %

3.25 %

12.34 %

23.38 %

61.04 %

0 %

100 %

0 %

9.09 %

15.15 %

30.3 %

45.45 %

0 %

100 %

0 %

15.91 %

31.82 %

15.91 %

36.36 %

0 %

100 %

0 %

12.38 %

20 %

20.95 %

46.67 %

0 %

100 %

0 %

3.33 %

6.67 %

40 %

50 %

0 %

100 %

0.16 %

10.49 %

21.07 %

21.22 %

46.74 %

0.32 %

100 %

Noch Schüler

Volks-, 
Hauptschulabschluss

Real-, 
Mittelschulabschluss

Abitur / Fachabitur

Hochschulabschluss

Kein Abschluss

Summe

B
ild

un
gs

ab
sc

hl
us

s

Angekreuzt bei der Bundestagswahl

Tabelle 4.2: Bildungsabschluss der Befragten bei der Nachwahlbefragung in
Abhängigkeit der Angaben bei der Bundestagswahl (2013).

Die Ergebnisse der Wählerwanderung sind anhand von Individualdaten in Form der

prozentualen Übergangsanteile in der Tabelle 4.3 gegeben und in der Abbildung 4.7

zusätzlich visuell dargestellt. Im Anhang A.1.4 auf der Seite 89 befindet sich eine gleich-

artige Darstellung ohne die Kategorie Nichtwähler. Eine Übergangstabelle zwischen

zwei gleichartigen Wahlen, beispielsweise der Bundestagswahl 2009 und der Bundes-

tagswahl 2013, wird normalerweise so erzeugt, dass die Übergangszellen der selben

Parteien beider Wahlen, die sogenannten Loyalen oder Treuen, auf der Diagonale lie-

gen. Die Übrigen, die Wechselnden, werden nichtdiagonal positioniert (Klima et al.,

2015, S. 2). Hierfür werden die Treuen gemäß den oben erwähnten Wahlempfehlun-

gen untereinander gestellt, das heißt als Loyale betrachtet. Demzufolge entspricht die
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bisherige Aufstellung nicht der Reihenfolge der Parteien im weiteren Verlauf der Arbeit.

Nachwahlbefragung 2015

Dr. Peter
Kurz
(SPD)

Peter
Rosenberger

(CDU)

Christopher
Probst

(Mannheimer Liste)
Sonstige Nichtwähler

70.33 %

68.06 %

56.34 %

24.81 %

12.77 %

28.04 %

43.33 %

52.69 %

17.21 %

13.55 %

11.27 %

62.28 %

48.94 %

52.34 %

0 %

29.03 %

10.09 %

11.94 %

11.27 %

11.14 %

36.17 %

17.76 %

16.67 %

7.53 %

2.37 %

5.16 %

19.72 %

1.77 %

0 %

1.87 %

40 %

7.53 %

0 %

1.29 %

1.41 %

0 %

2.13 %

0 %

0 %

3.23 %

SPD

Grüne

Die Linke

CDU

AfD

FDP

Sonstige

Nichtwähler

B
un

de
st

ag
sw

ah
l 2

01
3

Oberbürgermeisterwahl 2015

Tabelle 4.3: Die Übergangstabelle zwischen der Bundestagswahl 2013 und der
Oberbürgermeisterwahl 2015 anhand der Nachwahlbefragung.
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Abbildung 4.7: Die Übergangswahrscheinlichkeiten zwischen der Bundestagswahl
2013 (links) und der Oberbürgermeisterwahl 2015 (rechts) anhand der Nachwahl-
befragung. Die Breite jedes Pfeilendes drückt den Anteil an Stimmen aus, den der
jeweilige Kandidat von verschiedenen Parteien gewonnen hat.

Die Wurzeln der inneren Pfeile des Kreisdiagramms in der Abbildung 4.7, gefärbt
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nach den dazugehörigen Parteien, fangen bei der Bundestagswahl 2013 an und enden

bei der Oberbürgermeisterwahl 2015. Dabei drückt die Breite jedes Pfeilendes den An-

teil an Stimmen aus, den der jeweilige Kandidat von verschiedenen Parteien gewonnen

hat. Für eine bessere Übersicht werden die Namen verkürzt, wobei sich der ganze Name

der Kandidaten aus der Tabelle 4.3 ablesen lässt. Die Abkürzung NW bezeichnet die

Nichtwähler. Zusammen mit der Tabelle 4.3 zeigt die Grafik, dass die oben genann-

te Behauptung der Unterschätzung der Nichtwähler bei der Oberbürgermeisterwahl

(2015) bestätigt werden kann.

Die Differenz zwischen den Randsummen der Nachwahlbefragung und den amtli-

chen Ergebnissen beweist, dass bei den Individualdaten ein Bias vorliegt. Dementspre-

chend ist die Analyse der Wählerwanderung ausschließlich anhand von Individualdaten

in diesem Fall nicht zuverlässig. Neben den ergänzten möglichen Indizien, respektive

den fehlenden Werten, der Bildungsstruktur der Befragten, der unterschätzte Anteil

der Nichtwähler und das Ignorieren der Briefwähler, stellt die Teilnahmeverweigerung

eine weitere Gefahr für die Störung in den Daten dar. Die bessere Übereinstimmung

der Antworten mit den amtlichen Ergebnissen bei der Oberbürgermeisterwahl im Jahr

2015 als bei der Bundestagswahl im Jahr 2013 spricht dafür, dass der Zeitabstand auch

eine negative Rolle spielen könnte.

4.2 Aufbereitung der Daten

Die Analyse der Wählerwanderung ist ein Sonderfall der ökologischen Inferenz in dem

Sinne, dass eine höhere Rücksicht auf die Datenaufbereitung gerichtet werden sollte. In

diesem Abschnitt erfolgt eine Angabe der primären Punkte und die Beschreibung der

möglichen und der angewendeten Vorgehensweisen bei der Datenaufbereitung. Keller-

mann (2011), Ambühl (2003), Andreadis und Chadjipadelis (2009) beschrieben bereits

einige Vorschritte, die durchgeführt werden können oder sogar müssen. Allerdings wid-

men Klima et al. (2015) dem Thema etwas mehr Aufmerksamkeit und zeigen in ihrem

Artikel, dass das Vorgehen bei der Datenaufbereitung die Schätzungen bedeutend be-

einflussen kann. Ferner evaluieren die Autoren anhand von Simulationsstudien, wie viel

Einfluss auf die Qualität der Schätzung durch verschiedene Vorgehensweisen bei eini-

gen Modellen genommen werden kann. Deren Ergebnisse stellen den Ausgangspunkt

für einige Entscheidungen bei der Datenaufbereitung in dieser Arbeit dar.
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4.2.1 Anzahl der Parteien

Der erste relevante Punkt repräsentiert die Anzahl der Parteien, die in der Analyse be-

trachtet werden sollten. Kellermann (2011, S. 34) weist darauf hin, dass eine möglichst

starke Reduktion der Parteien erforderlich ist, um eine Verringerung der zu schätzenden

Parameter zu schaffen. Die kleinen Parteien beeinflussen die Gesamtanzahl an Stimmen

nur minimal, was bei der Schätzung ihrer Übergangswahrscheinlichkeiten meistens zu

falschen Ergebnissen führt (Achen und Shively, 1995 in: Andreadis und Chadjipadelis,

2009, S. 206 f.; Kellermann, 2011, S. 34). Achen und Shively schlagen deshalb vor, die

kleinen Parteien den großen, bezüglich der gemeinsamen Ideologie, zuzuordnen.

Derweilen kommt eine andere Vorgehensweise in dieser Arbeit zur Anwendung. Es

können alternativ alle kleinen Parteien unter einer Kategorie zusammengefasst wer-

den (Ambühl, 2003, S. 20; Andreadis und Chadjipadelis, 2009, S 209 f.; Kellermann,

2011, S. 34). Dementsprechend werden hier alle Parteien und Kandidaten, die weniger

als 5% der gesamten Stimmenanzahl aufweisen, der Kategorie Sonstige unterstellt. In

der Tabelle 4.4 sind alle dazugehörigen Parteien aufgelistet. Von den Kandidaten der

Oberbürgermeisterwahl 2015 blieb alleinig Christian Sommer (Die Partei) mit 3.27

Prozent der Stimmen für die Zuordnung zur Kategorie Andere Gewählte, die letztend-

lich in Sonstige umbenannt wurde.

Partei Anteil
01 PIRATEN 3.2 %
02 NPD 1.2 %
03 TIER-SCHUTZ-PARTEI 1.0 %
04 REP 0.4 %
05 RENTNER 0.4 %
06 FREIE-WÄHLER 0.3 %
07 ÖDP 0.2 %
08 VOLKSABSTIMMUNG 0.2 %
09 PARTEI DER VERNUNFT 0.1 %
10 PRO-DEUTSCHLAND 0.1 %
11 BIG 0.1 %
12 BüSo 0.0 %
13 MLPD 0.1 %
14 PBC 0.1 %

Σ Sonstige ≈ 7.4 %

Tabelle 4.4: Kleine Parteien, die bei der Bundestagswahl (2013) der Kategorie Sons-
tige zugeordnet wurden.
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Zudem empfehlen Kellermann (2011, S. 34) und Ambühl (2003, S. 19) die Wahlbe-

rechtigten, die nicht oder ungültig gewählt haben, als zusätzliche Kategorie Nichtwähler

zu betrachten. In dieser Arbeit wurde die neue Variable durch die Differenz zwischen

der Variable Summe_Wahlberechtigte und Gültige_Stimmen erzeugt. Eine grafische

Darstellung der wahlbezirkspezifischen amtlichen Ergebnisse, in der die Nichtwähler

betrachtet werden, liegt im Anhang A.1.5 auf der Seite 90 für die Bundestagswahl

2013 (Abbildung A.5) und für die Oberbürgermeisterwahl 2015 (Abbildung A.6) vor.

4.2.2 Bevölkerungsänderung

Das zweite Problem erfasst die Veränderung der Population zwischen zwei betrachteten

Wahlen, die durch Neuwähler, den Gestorbenen und den Umzug von Personen auftritt

(Ambühl, 2003, S. 20; Kellermann, 2011, S. 34; Klima et al., 2015, S. 14 f.). Dadurch

wird die Annahme gleicher Population verletzt und der Populationsumfang N sowie

die Anzahl der Wähler für jeden Wahlbezirk Ni werden bei der ersten und der zweiten

Wahl nicht identisch sein. Deshalb ist es unbedingt nötig, die Daten vor der Analyse

anzupassen.

Sind die Daten zur Bevölkerungsänderung verfügbar, dann lassen sich die

Veränderungen als neue Kategorien im Modell betrachten, indem die noch nicht Wähler

als zusätzliche Variable bei der ersten Wahl und nicht mehr Wähler bei der zweiten

Wahl betrachtet werden (Ambühl, 2003, S. 20; Klima et al., 2015, S. 15). Die inneren

Zellen dieser Kategorien betragen 0 (siehe Tabelle 4.5), da keine Person, die nach der

ersten Wahl gestorben oder weggezogen ist, in der zweiten Wahl ein Neuwähler oder

ein Zugezogener sein kann (Klima et al., 2015, S. 15).

2. WAHL

1.
W

A
H

L

P1 P2 . . . Gestorbene Weggezogene
P1
P2
...

Neuwähler 0 0
Zugezogene 0 0

Ni

Tabelle 4.5: Tabelle der Wahldaten mit zusätzlichen Kategorien zur
Bevölkerungsänderung (übernommen von Klima et al. (2015, S. 15) und ver-
allgemeinert).
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Bei der praktischen Umsetzung kommt es allerdings häufig vor, dass die Daten zur

Bevölkerungsänderung nicht verfügbar sind. Zwei Vorgehen sind in diesem Fall möglich.

Das erste wurde von Hawkes (1969, in: Kellermann, 2011, S. 35 f.) vorgeschlagen. Er

nimmt an, dass die Bevölkerungsänderung keinen Einfluss auf das Wahlverhalten hat,

d.h. die neuen Wähler vergeben ihre Stimmen ähnlich wie nicht mehr Wähler. Dem-

zufolge kann die Differenz gemäß der Stimmvergabe verteilt werden. Beispielsweise,

wenn bei der zweiten Wahl mehr wahlberechtigte Personen als bei der ersten vor-

handen sind, wird die Differenz zur ersten Wahl proportional zur Stimmvergabe bei

der zweiten Wahl zugerechnet (mehr zur Berechnung in Kellermann, 2011, S. 35 f.).

Die zweite Möglichkeit wäre die Addition der Differenz von der Anzahl der Wahl-

berechtigten zwischen den beiden Wahlen und der Nichtwähler Kategorie. Keine der

oben genannten Methoden ist anhand der Simulationsstudie von Klima et al. (2015)

beim Vorgehen mit der Bevölkerungsänderung zu bevorzugen. Deshalb kommt hier

die unkomplizierte Methode zur Anwendung. Die Differenz zwischen der Summe der

Wahlberechtigten bei der Bundestagswahl (2013) und der Summe der Wahlberechtig-

ten bei der Oberbürgermeisterwahl (2015) wurde zur Nichtwähler Kategorie bei der

Bundestagswahl (2013) gerechnet.

4.2.3 Veränderung der Wahlbezirke

Ein weiteres Problem verursacht die Veränderung der Aufstellung von Wahlbezirken

zwischen zwei Wahlen, die durch die Vereinigung oder die Aufteilung der Bezirke ent-

stehen kann (Klima et al., 2015, S. 14). Da die Variable Wahlbezirk bei der Analyse

als Identitätsvariable betrachtet wird, ist es notwendig, die konstanten Gebiete vor der

Analyse zu definieren. Bei den hier betrachteten zwei Wahlen ist diese Veränderung

besonders stark ausgefallen. Für die Urnenwähler wurden aus ursprünglich 150 Wahl-

bezirken aus der Bundestagswahl 2013 lediglich 96 bei der Oberbürgermeisterwahl 2015

gebildet (siehe auch Tabelle 4.1). Eine Zuordnung der Straßen zu den Wahlbezirken ist

von dem Wahlbüro der Stadt Mannheim (2016, persönliche Kommunikation) für beide

Wahlen bekannt gegeben worden, woraus hergeleitet werden konnte, wie die Wahlbe-

zirke verknüpft worden sind. Eine Auflistung der Beziehungen zwischen umgeordneten

Bezirken ist im Anhang A.1.6 auf der Seite 91 zu finden. Überall, wo ein Wahlbezirk

der Bundestagswahl 2013 so zugeschnitten ist, dass bei der Oberbürgermeisterwahl

2015 einige Straßen einem und die übrigen dem anderen Wahlbezirk zugeordnet sind,
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mussten alle auf einer Ebene aggregiert werden (alle grau gefärbten Wahlbezirke in

der Tabelle A.3). Dadurch konnten letztendlich nur 67 konstante Ebenen für die Iden-

titätsvariable erstellt werden. Klima et al. (2015, 2016) betonen, dass in dieser Maß-

nahme, die eine reduzierte Anzahl an Gebiete für die Analyse bereitstellt, eine weitere

Fehlerquelle vorliegt, denn damit reduziert sich auch der Informationsumfang. Ihre Si-

mulationsstudie zeigt, dass die Anzahl der Wahlbezirke einen bedeutenden Einfluss auf

die Schätzung hat (Klima et al., 2015, S. 18).

4.2.4 Briefwähler

Jeder Wahlberechtigte hat die Möglichkeit, einen Wahlschein zu beantragen, um seine

Stimme per Briefwahl zu vergeben. Diese Möglichkeit erzeugt aus zwei Gründe einen

zusätzlichen Ursprung für Komplikationen bei der Datenaufbereitung. Erstens, das

Wahlverhalten der Briefwähler unterscheidet sich in der Regel von dem Wahlverhal-

ten der Urnenwähler. Aus diesem Grund dürfen die Briefwähler bei der Analyse nicht

ignoriert werden, was übrigens die Simulationsstudie von Klima et al. (2015) bestätigt.

Denn das Ausschließen der Briefwähler führt bei allen Modellen zu schlechteren Ergeb-

nissen. Zweitens, die Ergebnisse der Briefwähler werden in spezifischen postalischen

Wahlbezirken dargestellt, die üblicherweise nicht identisch mit den Wahlbezirken bei

der Urnenwahl sind. Das bedeutet, dass zusätzliche Berechnungen notwendig sind, um

Briefwähler in die Analyse einzuschließen. Die Simulationsstudie zeigt hierbei, dass

die Schätzung desto genauer wird, je präziser die Aufteilung gemacht werden konnte.

(Klima et al., 2015, S. 15 f., 20 ff.)

Die betrachteten Datensätze in dieser Arbeit enthalten die Varia-

ble Wahlb._mit_Wahlschein, die für jeden Wahlbezirk die Anzahl der Wahlbe-

rechtigten angibt, die einen Wahlschein beantragt haben. Diese Variable kann zur

einigermaßen zuverlässigen Gewichtung bei der Addition der Briefwähler dienen, da

die Wahlbeteiligung der Wahlberechtigten mit Wahlschein in der Regel sehr hoch ist

(Klima et al., 2015, S. 15 f.). Im Hinblick auf die Tatsache, dass die Anzahl und

die Bezeichnung der Stadtbezirke bei den Brief- und Urnenwählern übereinstimmen,

kann der Anteil der Wahlberechtigten mit Wahlschein für jeden Wahlbezirk nach dem

dazugehörigen Stadtbezirk berechnet werden. Dabei beträgt die Summe aller berech-

neten Anteile innerhalb eines Stadtbezirkes eins. Diese Anteile können weiterhin mit

der Summe der Briefwähler je nach Stadtbezirk multipliziert werden, um die Anzahl
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der Briefwähler separat pro Wahlbezirk zu bekommen. Letztendlich lässt sich die

gewichtete Anzahl der Briefwähler zu den Urnenwähler addieren. Die damit erzeugten

Dezimalziffern müssen noch in ganze Zahlen umgeformt werden. Durch die Rundung

tritt jedoch ein Fehler auf, sprich in einigen Zellen zeigt sich eine Abweichung von

ein bis zwei Stimmen. Da die wahren Randsummen je Stadtbezirk bekannt gegeben

wurden, können diese zur Überprüfung und zur Korrektur des Rundungsfehlers

verwendet werden. Die wahren spaltenweisen Randsummen lassen sich diesbezüglich

durch das Aggregieren aller (nicht gewichteten) Brief- und Urnenwähler je Stadtbezirk

berechnen. Da die Nichtwähler bei der Berechnung betrachtet werden, entspricht

die Variable Summe Wahlberechtigten den wahren zeilenweisen Randsummen. Das

Vorgehen bei der Korrektur ist, zuerst die ganzen Zahlen so zu generieren, dass alle

Nachkommastellen weggeworfen werden. Danach wird ein Vektor mit den Ordnungs-

nummern der verworfenen Reste erzeugt. Dieser Vektor dient dazu, eine Stimme

zuerst an der Stelle einzufügen, wo der größte Dezimalrest vorliegt, falls bei dieser

Zelle die gewichteten Zeilen- und Spaltensummen mit den wahren Randsummen nicht

übereinstimmen. Alle Werte, die noch addiert werden müssen um die Randsummen

anzupassen, werden einer Nullmatrix zugeordnet, die letztendlich zum gewichteten

Datensatz addiert wird. Dieser Prozess wiederholt sich so lang, bis alle Randsummen

angepasst wurden.

Im Anhang A.1.7 auf der Seite 92 befindet sich eine Darstellung der Differenzen

zwischen den Brief- und den Urnenwählern der beiden betrachteten Wahlen. In der Ab-

bildung A.7 werden hierbei die Differenzen ohne die Kategorie Nichtwähler betrachtet

und in der Abbildung A.8 ist diese Kategorie berücksichtigt. Der Programmcode zur

Berechnung des gewichteten Datensatzes in R (R Core Team, 2015) wurde auf einem

reduzierten Beispieldatensatz simuliert, der die amtlichen Ergebnisse der ersten zwei

Wahlbezirke der Oberbürgermeisterwahl 2015 beinhaltet. Diese Simulation ist wegen

des Umfangs im elektronischer Anhang E dargelegt.

4.2.5 Die Endform der Aggregat- und Individualdaten

Vor der Darstellung der Ergebnisse im Kapitel 6 wird im Kapitel 5 beschrieben, wie die

Analyse anhand der betrachteten Modellen in R (R Core Team, 2015) jeweils mit und

ohne Individualdaten durchgeführt werden kann. Beim letzten Schritt der Datenaufbe-

reitung müssen die Daten in eine Form gebracht werden, die für die Analyse im eiwild
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Paket von Schlesinger (2014) oder im RxCEcolInf Paket von Greiner et al. (2013) ge-

eignet ist. Während sich das geforderte Format der Individualdaten unterscheidet, wird

hingegen die Form der Aggregatdaten in beiden Paketen gleichartig definiert.

WBZ P1 P2 · · · NW 13 K1 K2 · · · NW 15

1 Xa
1,1 Xa

2,1 · · · Xa
R,1 Y a

1,1 Y a
2,1 · · · Y a

C,1

2 Xa
1,2 Xa

2,2 · · · Xa
R,2 Y a

1,2 Y a
2,2 · · · Y a

C,2
...

...
...

. . .
...

...
...

. . .
...

67 Xa
1,67 Xa

2,67 · · · Xa
R,67 Y a

1,67 Y a
2,67 · · · Y a

C,67

Tabelle 4.6: Die Endform der Aggregatdaten zwischen einer Bundestagswahl und
einer Oberbürgermeisterwahl für 67 Wahlbezirke.

WGB P1.K1 P1.K2 · · · P1.NW 15 P2.K1 · · · · · · NW 13.NW 15

5 n5
11 n5

12 · · · n5
1C n5

21 · · · · · · n5
RC

18 n18
11 n18

12 · · · n18
1C n18

21 · · · · · · n18
RC

24 n24
11 n24

12 · · · n24
1C n24

21 · · · · · · n24
RC

31 n31
11 n31

12 · · · n31
1C n31

21 · · · · · · n31
RC

64 n64
11 n64

12 · · · n64
1C n64

21 · · · · · · n64
RC

Tabelle 4.7: Die Endform der Individualdaten zwischen einer Bundestagswahl und
einer Oberbürgermeisterwahl für 5 fiktive Wahlbezirke beim Multinomial-Dirichlet-
Hybridmodell im eiwild Paket (Schlesinger, 2014).

Wie die Endform der Aggregatdaten zwischen einer Bundestagswahl und einer

Oberbürgermeisterwahl für 67 Wahlbezirke gestaltet werden soll, zeigt die Beispielta-

belle 4.6. Die beiden betrachteten Datensätze der amtlichen Ergebnisse werden anhand

der vorher erzeugten konstanten Ebenen der Identitätsvariable vereinigt. Die Ergebnis-

se der ersten Wahl (Xa
1,i, · · · , Xa

R,i) und der zweiten Wahl (Y a
1,i, · · · , Y a

C,i) werden somit

für jeden Wahlbezirk i in einem Datensatz mit insgesamt 67 beziehungsweise p Zei-

len gespeichert. In der Tabelle 4.6 bezeichnen die Abkürzungen WBZ, P, K und NW

den Wahlbezirk, die Partei, den Kandidaten und die Nichtwähler. Die gleich genann-

ten Variablen beider Wahlen bekommen einen Suffix mit dem Jahr der dazugehörigen

Wahl zur Differenzierung. Bei einer Wählerwanderungsanalyse zwischen zwei gleichar-

tigen Wahlen, zum Beispiel zweier Bundestagswahlen, sollen alle gleichen Parteien mit

einem Suffix bezeichnet werden.

Bei den Hybridmodellen werden die absoluten inneren Zellen der Kreuztabelle von

den Individualdaten je beobachteten Wahlbezirk in einer Zeile erfasst. Die Zeilenan-

zahl des Datensatzes für die Analyse im eiwild Paket (Schlesinger, 2014, S. 10) ist
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identisch zur Anzahl der betrachteten Wahlbezirke bei der Nachwahlbefragung. Eine

Darstellung von fünf fiktiven Wahlbezirke befindet sich in der Tabelle 4.7. Für die

Analyse im RxCEcolInf Paket (Greiner et al., 2013, S. 12 f.) müssen hingegen die

Individualdaten in eine Matrix umgeformt werden. Die Zeilenanzahl dieser Matrix ist

gleich der Anzahl der Wahlbezirke bei den Aggregatdaten. An der Stelle wo keine In-

dividualdaten vorhanden sind, werden zeilenweise Nullvektoren eingefügt, sodass jede

Zeile dieser Matrix den jeweiligen Zeilen in den Aggregatdaten entspricht. Die Spalten-

namen besitzen zusätzlich einen Präfix ”KK.“2. Analog zum Beispiel in der Tabelle 4.7

wird eine Mustermatrix in der Abbildung 4.8 hergestellt.



KK.P1.K1 KK.P1.K2 · · · KK.P1.NW 15 KK.P2.K1 · · · · · · KK.NW 13
.NW 15

[1] 0 0 · · · 0 0 · · · · · · 0
[2] 0 0 · · · 0 0 · · · · · · 0
[3] 0 0 · · · 0 0 · · · · · · 0
[4] 0 0 · · · 0 0 · · · · · · 0
[5] n5

11 n5
12 · · · n5

1C n5
21 · · · · · · n5

RC

[6] 0 0 · · · 0 0 · · · · · · 0
...

...
...

. . .
...

...
. . .

...
[17] 0 0 · · · 0 0 · · · · · · 0
[18] n18

11 n18
12 · · · n18

1C n18
21 · · · · · · n18

RC

[19] 0 0 · · · 0 0 · · · · · · 0
...

...
...

. . .
...

...
. . .

...
[23] 0 0 · · · 0 0 · · · · · · 0
[24] n24

11 n24
12 · · · n24

1C n24
21 · · · · · · n24

RC

[25] 0 0 · · · 0 0 · · · · · · 0
...

...
...

. . .
...

...
. . .

...
[29] 0 0 · · · 0 0 · · · · · · 0
[31] n31

11 n31
12 · · · n31

1C n31
21 · · · · · · n31

RC

[32] 0 0 · · · 0 0 · · · · · · 0
...

...
...

. . .
...

...
. . .

...
[63] 0 0 · · · 0 0 · · · · · · 0
[64] n64

11 n64
12 · · · n64

1C n64
21 · · · · · · n64

RC

[65] 0 0 · · · 0 0 · · · · · · 0
[66] 0 0 · · · 0 0 · · · · · · 0
[67] 0 0 · · · 0 0 · · · · · · 0



Abbildung 4.8: Die Matrix-Endform der Individualdaten zwischen einer Bundestags-
wahl und einer Oberbürgermeisterwahl für 5 fiktive Wahlbezirke beim Multinomial-
Log-Normal-Hybridmodell im RxCEcolInf Paket (Greiner et al., 2013).

2Greiner und Quinn (2009, S. 78) bezeichnen die beobachtete Anzahl der inneren Zellen der Kreuz-
tabelle mit Ki

rc.
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5 Praktische Anwendung der Modelle in R

5.1 Multinomial-Dirichlet-Modell

Für die Analyse anhand des Multinomial-Dirichlet-Modells von Rosen et al. (2001)

sind zwei Zusatzpakete in R verfügbar, das eiPack Paket von Lau et al. (2012) und das

eiwild Paket von Schlesinger (2014). Da das Paket von Schlesinger die Kombination

der Individual- und Aggregatdaten ermöglicht (siehe Unterabschnitt 3.3.2 des Kapi-

tels 3), werden die Übergangswahrscheinlichkeiten in dieser Arbeit mithilfe von seinem

Paket erzeugt.

Im eiwild Paket lässt sich die Analyse mittels der Funktion

1indAggEi(form, aggr, indi=NULL, IDCols=c("ID"),

2whichPriori="gamma", prioriPars=list(shape=4, rate=2),

3startValsAlpha=NULL, startValsBeta=NULL,

4betaVars=NULL, alphaVars=NULL,

5sample, burnin=0, thinning=1, verbose=1, ...)

durchführen. Die grau gefärbten Befehle werden bei der Analyse mit ihren Defaultwert

verwendet. Mit dem Befehl whichPriori ist es alternativ möglich, die Exponential-

Hyperpriori-Verteilung zu wählen und mit startValsAlpha und startValsBeta lassen

sich in einer Matrixform die Startwerte für α und β festlegen. Bei dem Defaultwert NULL

werden die Startwerte zufällig aus den entsprechenden Verteilungen gezogen. (Schle-

singer, 2014, S. 9)

5.1.1 Die Datensätze

Durch den aggr und indi Befehle gibt man die Datensätze an, wobei für die Ana-

lyse ohne Individualdaten beim Argument indi der Defaultwert NULL unverändert

bleiben soll. Der Name der Identitätsvariable kann durch den Befehl IDCols definiert

werden, wenn diese anders als ”ID“ genannt wird. Für die Analyse mit Individual-

daten muss zusätzlich die Identitätsvariable des Individualdatensatzes angefügt wer-

den, sodass der eingegebene Vektor der Länge zwei die entsprechenden Namen der

beiden Identitätsvariablen enthält. Im Unterabschnitt 4.2.5 des Kapitels 4 wurde be-
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reits beschrieben, in welcher Form die Datensätze vorliegen müssen, um die Analyse

durchführen zu können. Als Beispiel hat der Autor ein Datenset integriert, der durch

data(topleveldat) abrufbar ist. Dieser umfasst zwei Musterdatensätze. Die beiden,

aggr und indi, Datensätze sind in einer reduzierten Form in der Abbildung 5.1 dar-

gestellt. Neben der Eingabe der Daten muss noch das Verhältnis der Ergebnisse der

zweiten Wahl zu den Ergebnissen der ersten Wahl durch eine Formel definiert werden.

Für die Datensätze aus der Abbildung 5.1 kann diese beispielsweise durch

6Form <- cbind(CSU_2, SPD_2, LINK_2, GRUN_2) ∼ cbind(CSU_1, SPD_1, Link_1)

festgelegt werden. (Schlesinger, 2014, S. 9 ff.; 2013, S. 38)

Beispieldatensatz der Aggregatdaten (aggr)
ID CSU_1 SPD_1 Link_1 CSU_2 SPD_2 LINK_2 GRUN_2

1 1 2327 1447 194 1925 1015 274 754
2 2 883 674 78 742 405 129 359
3 3 8867 5946 684 7349 3855 1191 3102

Beispieldatensatz der Individualdaten (indi)
ID CSU_1.CSU_2 CSU_1.SPD_2 CSU_1.LINK_2 CSU_1.GRUN_2 ... Link_1.GRUN_2

1 13 11 56 26 22 ... 30
2 18 37 39 59 56 ... 5
3 5 16 55 41 61 ... 20

Abbildung 5.1: Beispieldatensätze der Individual- und Aggregatdaten aus dem
eiwild Paket (Schlesinger, 2014, S. 19).

5.1.2 Sample, Burn-In und Thinning

Die gewünschte Stichprobengröße der Kette kann mit dem Befehl sample eingefügt wer-

den. Diese entspricht der Anzahl an Ziehungen, die nach dem Burn-In und Thinning

gespeichert werden soll. Die gesamte Anzahl der durchgeführten Iterationen im eiwild

Paket ist gleich dem eingegebenen burnin Wert addiert zum Produkt von sample und

thinning. Mit den Defaultwerten thinning = 1 und burnin = 0 ist somit sample

identisch zur gesamten Anzahl der Iterationen. Der Befehl verbose erlaubt das Mo-

nitoring während des Prozesses, indem, abhängig vom eingegebenem Wert, auf dem

Bildschirm angezeigt wird, wie viele Iterationen bereits durchgeführt wurden. (Schle-

singer, 2014, S. 9)
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5.1.3 Varianz und Akzeptanzwahrscheinlichkeit

Die Befehle betaVars und alphaVars ermöglichen, die Varianzen der Vorschlagsdich-

ten von β und α im Voraus festzulegen. Diese beeinflussen die Akzeptanzwahrschein-

lichkeit, welche durch kleine Varianzen zu hoch werden kann und umgekehrt. Bei der

kleinen Varianz und hohen Akzeptanzwahrscheinlichkeit macht die Markov-Kette viele

kleine Schritte und erfasst damit nicht den ganzen Wertebereich. Hingegen wird bei

der hohen Varianz und niedriger Akzeptanzwahrscheinlichkeit der breitere Wertebe-

reich berücksichtigt, währenddessen die neuen Werte zu oft abgelehnt werden. Dadurch

kann sich die Kette bei einem Wert zu lang halten. (Schlesinger, 2013, S. 43)

Um diese Umstände zu vermeiden, empfiehlt Schlesinger (2013) mithilfe der Funk-

tion

7tuneVars(form, aggr, indi=NULL, IDCols=c("ID"),

8whichPriori="gamma", prioriPars=list(shape=4, rate=2),

9accRat=c(0.4, 0.6), minProp=0.7, maxiter=20, sample=10000,

10verbose=10000, verboseTune=TRUE, improv=NULL,

11betaVars=NULL, alphaVars=NULL,

12startValsAlpha=NULL, startValsBeta=NULL, ...)

vor der Analyse die optimalen Varianzen zu finden. Alle Befehle bis auf sample und

verbose, die identisch wie bei der indAggEi() Funktion sind, sollen hier in gleicher

Weise definiert werden. Der Stichprobenumfang wurde hingegen bei der tuneVars()

Funktion von dem Autor durch sample auf den Defaultwert von 10 000 gesetzt und

muss nicht nach der Maßgabe des Stichprobenumfangs bei der indAggEi() bestimmt

werden. Hierzu ist verbose beliebig zu wählen. Die tuneVars() Funktion hat noch

zusätzlich fünf spezifische Befehle. Der Befehl accRat gibt den Bereich ein, in dem sich

die Akzeptanzraten befinden sollen und minProp legt den Anteil der Parameter fest,

die sich in diesem Bereich befinden sollen. Eine Stichprobe wird demnach entweder so

lang wieder gezogen, bis das vorgegebene minProp erreicht wurde, oder bis zum Durch-

lauf aller Iterationen, deren Anzahl durch maxiter bestimmt wird. Für die Analyse in

dieser Arbeit wird minProp auf 0.8 und maxiter auf 50 gesetzt. Zur Beschreibung der

restlichen Befehle siehe die Literaturangabe. Nachdem der durch die tuneVars() er-

zeugte Output als Objekt gespeichert wurde, beispielsweise unter dem Name tune,

können letztendlich die optimierten Varianzen mit betaVars=tune[["betaVars"]]

und alphaVars=tune[["alphaVars"]] ins Modell integriert werden. (Schlesinger,

2014, S. 9; Schlesinger, 2013, S. 44 f.)
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5.1.4 Hyperpriori-Parameter und Priori-Wissen

Nach der Untersuchung des Einflusses der Gamma-Hyperpriori-Verteilung von αrc auf

die Dirichlet-Priori-Verteilung von βirc, nimmt Schlesinger (2013) für die Hyperpriori-

Parameter die Defaultwerte Gamma(λ1 = 4, λ2 = 2) aus dem eiPack Paket (Lau et

al., 2012). Diese Wahl ermöglicht einen möglichst breiten Wertebereich für die Ziehun-

gen von βirc (Schlesinger, 2013, S. 55). Dennoch warnt der Autor, dass die Bestimmung

einer vollständig nichtinformativen Priori-Verteilung für die Fälle mit C > 2 nicht

möglich ist. Für die Schätzung der Übergangswahrscheinlichkeiten der Loyalen ist bei

der Wählerwanderungsanalyse vor allem problematisch, dass bei mehreren betrachteten

Parteien der zweiten Wahl hohe Werte von βirc selten gezogen werden (Schlesinger, 2013;

Klima et al., 2016). Gemäß Klima et al. (2016) wird dieser Effekt mit der Zunahme der

betrachteten Parteien noch stärker. Die Ergänzung des Multinomial-Dirichlet-Modells

im eiwild Paket (Schlesinger, 2014) ermöglicht die Hyperpriori-Parameter zellspezi-

fisch zu definieren. Dadurch lässt sich Vorwissen ins Modell integrieren, respektive

die informative Priori wird eingesetzt, um einen höheren Bereich für die Loyalen zu

erzielen. Falls bekannt ist, dass einige Parteien eine hohe Unterstützung bekommen,

erwarten Klima et al. (2016, S. 10) einen sinnvollen Verteilungsbereich zwischen 0.6

und 1 für die Loyalen. Anhand von Simulationsstudien berichten sie, dass eine Ver-

besserung der Schätzung durch eine informative Priori erzielt werden kann, wenn die

Anzahl an Wahlbezirken oder Wahlkreisen niedrig ist.

Mithilfe der Funktion

13prioriPlot(pars, which, cols, alphaSample=10000, betaSample=300, plot=TRUE)

kann im eiwild Paket der Einfluss der Hyperpriori-Verteilung von αrc auf die Priori-

Verteilung von βirc grafisch dargestellt und untersucht werden. Die Funktion führt zuerst

eine Simulation durch, um αr1, . . . , αrC aus Hyperpriori-Verteilung und βir1, . . . , β
i
rC

aus Dir(αr1, . . . , αrC) zu ziehen. Falls nicht anders definiert, werden 10 000 Iterationen

(alphaSample) durchgeführt und bei jeder Iteration werden βir1, . . . , βirC (betaSample)

300 mal gezogen. Damit werden letztendlich alphaSample × betaSample Ziehungen

von βirc gespeichert und grafisch dargestellt. Nach der visuellen Untersuchung lassen

sich Hyperpriori-Parameter λ1 und λ2 durch den Befehl prioriPars in Funktionen

indAggEi() und tuneVars() zellspezifisch definieren. Für die Datensätze aus der Ab-

bildung 5.1 können beispielsweise mit einer Liste, die zwei Matrizen enthält, die Para-
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meter wie folgt bestimmt werden:

14PrioriPars <- list(shape =matrix(c(30, 4, 4, 4,

154, 30, 4, 4,

164, 4, 30, 4), nrow=3, ncol=4, byrow=TRUE),

17rate = matrix(c(1, 2, 2, 2,

182, 1, 2, 2,

192, 2, 1, 2), nrow=3, ncol=4, byrow=TRUE))

Die Parameter λrc1 und λrc2 werden durch die Befehle shape und rate definiert. (Schle-

singer, 2014, S. 11, 14; Schlesinger, 2013, S. 51 f.)
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Abbildung 5.2: Einfluss der Defaultwerte der Hyperpriori-Parameter Gamma(λ1 =
4, λ2 = 2), auf die Verteilung von βirc im eiwild Paket bei zwei Spalten (links) und
bei fünf Spalten (rechts).

Die Grafiken der Priori-Verteilung sind in dieser Arbeit mit dem ggplot2 Paket

(Wickham, 2009) hergestellt worden, wobei die Ziehungen mithilfe der prioriPlot()

Funktion erzeugt wurden, um einen Datensatz für die ggplot2 Grafik zu erstellen. In

der Abbildung 5.2 ist ein Vergleich der Fälle C = 2 und C = 5 Spalten mit Defaultwer-

te Gamma(λ1 = 4, λ2 = 2) dargestellt. Da die gezogenen Verteilungen für jede Spalte c

und für eine beliebige Anzahl der Zeilen R gleich sind, wird in der Abbildung 5.2 ledig-

lich eine Grafik für den Fall mit zwei Spalten (links) und eine Grafik für den Fall mit fünf

Spalten (rechts) dargestellt. Die Anzahl der Zeilen R hat aufgrund der zeilenweisen Ver-

teilungsannahme keinen Einfluss auf die Verteilung von βirc (Schlesinger, 2013, S. 52).

Die Grafik bestätigt, dass für C = 2 mit den Defaultwerten der Hyperpriori-Parameter

eine gleichmäßige, nichtinformative Priori-Verteilung erzeugt wird. Die rechtsschiefe

Verteilung für C = 5 zeigt, dass die Werte über 0.6 kaum gezogen werden. Die betrach-

teten Datensätze bestehen insgesamt aus fünf Kategorien für die zweite Wahl. Aufgrund
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der geringen Anzahl an Wahlbezirken und hohen Anzahl an Kategorien könnten die

Loyalen unterschätzt werden. Weiterhin wird in der Abbildung 5.3 visuell untersucht,

ob für C = 5 die Werte von Gamma(λ1 = 30, λ2 = 1) und Gamm(λ1 = 30, λ2 = 2)

für die Loyalen (links) die Verteilung von βirc verbessern können. Für die anderen vier

Spalten (rechts) sind dabei die Defaultwerte Gammma(λ1 = 4, λ2 = 2) verwendet wor-

den. Mittels der prioriPlot() Funktion wird für zellspezifisch definierte Parameter,

für jede Spalte getrennt, eine Grafik erzeugt. Hier sind die gleichen Spalten c = 2, 3, 4, 5

wiederum in einer Grafik dargestellt. Eine Verbesserung des Verteilungsbereiches für

die Loyalen und ein schmalerer Wertebereich für die anderen zeigt sich in beiden Fällen.

Der Bereich zwischen 0.6 und 1, der von Klima et al. (2016) empfohlen wurde, wird

durch die Werte Gamma(λ1 = 30, λ2 = 1) annähernd erreicht. Eine Mehrheit der ge-

zogenen Werte liegt dabei zwischen 0.7 und 0.9. Ein etwas breiterer Bereich ergibt sich

durch Gamma(λ1 = 30, λ2 = 2), wobei größtenteils die Werte zwischen 0.5 und 0.8

gezogen werden.
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Abbildung 5.3: Einfluss der Hyperpriori-Parameter auf die Verteilung von βirc
bei einer Zeile und fünf Spalten im eiwild Paket. Oben: Hyperpriori-Parameter
Gamma(λ1 = 30, λ2 = 1) (links) für eine Zelle und Defaultwerte für die übrigen
Vier (rechts). Unten: Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 2) (links) für
eine Zelle und Defaultwerte für die übrigen Vier (rechts).
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5.2 Multinomial-Log-Normal-Modell

Für die Wählerwanderungsanalyse anhand des Multinomial-Log-Normal-Modells wer-

den im RxCEcolInf Paket von Greiner et al. (2013) zwei verschiedene Funktionen für

die Analyse mit und ohne Individualdaten verwendet. Demzufolge kann die ökologische

Inferenz mithilfe der Funktion

20Analyze(fstring, rho.vec, data =NULL,

21num.iters=1e+06, save.every =1000, burnin =10000,

22mu.vec.0=rep(log((0.45/(mu.dim -1))/0.55), mu.dim),

23kappa=10, nu =(mu.dim+6), psi =mu.dim,

24mu.vec.cu=runif(mu.dim, -3, 0), NNs.start =NULL,

25THETAS.start=NULL, ...,

26print.every=10000)

durchgeführt werden. Die Funktion für die Analyse mit Individualdaten

27AnalyzeWithExitPoll(fstring, rho.vec, exitpoll, data =NULL,

28num.iters=1e+06, save.every =1000, burnin =10000,

29..., MMs.start=NULL, ...,

30print.every=10000)

unterscheidet sich grundsätzlich nur in der Bezeichnung und in ein paar Befehle. Dem-

nach beziehen sich die folgenden Beschreibungen auf die beiden Funktionen, falls nicht

anders angegeben. Die Befehle mu.vec.cu, NNs.start und THETAS.start ermöglichen,

in der gleichen Abfolge, die Startwerte für den Vektor µ, für die absoluten Häufigkeiten

der inneren Zellen N i
rc und für die Wahrscheinlichkeiten der inneren Zellen θirc zu be-

stimmen. Bei dem Hybridmodell lassen sich zusätzlich durch MMs.start die Startwerte

für die unbeobachteten Werte, das heißt für die Differenzen N i
rc − nirc, bestimmen.

Die Autoren empfehlen die Verwendung der Defaultwerte, wobei Startwerte zufällig

gezogen werden. (Greiner et al., 2013, S. 3 f., 10 ff.)

5.2.1 Die Datensätze

Die Eingabe der Daten erfolgt durch den Befehl data für die Aggregatdaten und

exitpoll für die Individualdaten. Die Ergebnisse der Nachwahlbefragung müssen

hierfür in einer bestimmten Form vorliegen. Die Endform wurde bereits im Unterab-

schnitt 4.2.5 des Kapitels 4 beschrieben und in der Abbildung 4.8 dargestellt. Zusätzlich

werden in der Abbildung 5.4 die Daten, die im RxCEcolInf Paket simuliert wurden,

in einer reduzierten Form präsentiert. Die Beispieldaten lassen sich durch die Funktion
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SimData <- gendata.ep() generieren und mit dem Befehl SimData$GQdata für die

Aggregatdaten oder SimData$EPInv$returnmat.ep für die Individualdaten abrufen

(Greiner et al., 2013, S. 20). Die Identitätsvariable ist im RxCEcolInf Paket nicht von

Relevanz, da die Zeilen der Individualdaten und deren Reihenfolge an die Zeilen der

Aggregatdaten angepasst werden müssen.

Simulierte Aggregatdaten (SimData$GQdata)
bla whi his Dem Rep Abs

precinct1 279 723 36 170 201 667
precinct2 2 15 1016 155 211 667
precinct3 123 262 630 76 249 690
precinct4 105 69 849 231 255 537
precinct5 1 348 697 92 210 744
precinct6 17 1 1022 171 127 742
precinct7 64 920 7 69 190 732
precinct8 186 827 0 112 340 561
precinct9 546 400 82 284 81 663
precinct10 384 622 9 133 328 554

Simulierte Individualdaten (SimData$EPInv$returnmat.ep)
KK.bla.Dem KK.bla.Rep KK.bla.Abs KK.whi.Dem ... KK.his.Abs

[1, ] 0 0 0 0 ... 0
[2, ] 0 0 0 0 ... 0
[3, ] 0 0 0 0 ... 0
[4, ] 0 0 0 0 ... 0
[5, ] 0 0 0 0 ... 0
[6, ] 0 0 0 0 ... 0
[7, ] 0 0 0 0 ... 0
[8, ] 0 0 0 0 ... 0
[9, ] 19 3 21 5 ... 2
[10, ] 0 0 0 0 ... 0

Abbildung 5.4: Eine verkürzte Darstellung der simulierten Beispieldatensätze aus
dem RxCEcolInf Paket (Greiner et al., 2013, S. 20).

Das Verhältnis zwischen den Parteien oder den Kandidaten der ersten und der zwei-

ten Wahl wird durch den Befehl fstring eingegeben. Für die simulierten Datensätze

in der Abbildung 5.4 lässt sich diese beispielsweise durch

31Fstring <- "Dem, Rep, Abs ∼ bla, whi, his"

bestimmen (Greiner et al., 2013, S. 14). Die Reihenfolge der eingegebenen Parteien oder

Kandidaten spielt hierbei eine wesentliche Rolle, da die letzte Spalte als Referenzkate-

gorie automatisch gewählt wird (Greiner et al., 2013, S. 6). Das heißt, man kann durch

Veränderung der Reihenfolge eine andere Spalte als Referenzkategorie bestimmen. Es

lohnt sich ferner hinzuweisen, dass bei der Eingabe kein zusätzlicher Abstand auftreten

darf. Wird in einem String Character in R ein Zeilenbruch vorgenommen, so wird auto-
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matisch \n eingefügt. Das heißt, die Formel muss innerhalb der Anführungszeichen in

einer Zeile eingegeben werden. Im Fall von großen R und C kann das unpraktisch sein

und zur Unübersichtlichkeit des Codes führen. Alternativ lässt sich die Formel in meh-

reren Zeilen eintragen und im Nachhinein korrigieren. Beispielsweise können mittels

der Funktion

32str replace all(Fstring, "\n", "")

aus dem stringr Paket (Wickham, 2015b) die Abstände aus dem gespeichertem String

Objekt gelöscht werden. Greiner et al. (2013) thematisieren diese Problematik bei der

Beschreibung des Paketes nicht. Sie stellen sogar einige Beispiele dar, deren Formeln

in zwei Zeilen geschrieben sind (Greiner et al., 2013, S. 2 f., 9) und somit den Fehler
Error in ‘colnames<- ‘(‘*tmp*‘, value =c("Bosley", "Roberts", "Ribaudo", :
length of ’dimnames’ [2] not equal to array extent

erzeugen.

5.2.2 Sample, Burn-In und Thinning

Mit dem Befehl num.iters wird im RxCEcolInf Paket die Anzahl aller Iterationen defi-

niert. Thinning kann durch save.every und Burn-In durch burnin bestimmt werden.

Dabei muss die Anzahl der Iterationen nach dem Burn-In (num.iters-burnin) durch

den Wert von Thinning (save.every) teilbar sein. Die endgültige Stichprobengröße

oder Sample lässt sich schließlich durch (num.iters-burnin)/save.every berechnen.

Die Defaultwerte num.iters = 1000000, save.every = 1000 und burnin = 10000

liefern somit eine Stichprobe der Größe 990. Mit dem Befehl print.every kann be-

stimmt werden, wie viele Iterationen des Prozesses auf dem Bildschirm gezeigt werden.

(Greiner et al., 2013, S. 4 f., 9)

5.2.3 Varianz und Akzeptanzwahrscheinlichkeit

Für die ökologische Inferenz wird mittels der Funktion

33Tune(fstring, data=NULL,

34num.runs=12, num.iters=10000,

35rho.vec=rep(0.05, ntables),

36kappa=10, nu=(mu.dim+6), psi=mu.dim,

37mu.vec.0=rep(log((.45/(mu.dim-1))/.55), mu.dim),

38mu.vec.cu=runif(mu.dim, -3, 0), ...)

und für das Hybridmodell mittels der Funktion
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39TuneWithExitPoll(fstring, exitpoll, data =NULL, num.runs=12,

40num.iters=10000, rho.vec =rep(0.05, ntables), ...)

ein Vektor generiert, der mit der Kovarianzmatrix Σ multipliziert werden kann, um die

Akzeptanzwahrscheinlichkeiten zu optimieren. Die Eingabe von fstring, data und

exitpoll erfolgt analog zur Funktion Analyse() oder AnalyseWithExitPoll(). Der

Befehl num.runs gibt die Anzahl der Wiederholungen an und der Befehl num.iters

bestimmt die Anzahl der Iterationen. Für die Analyse in dieser Arbeit wird num.runs

auf 50 Wiederholungen gesetzt und die vorgegebene Anzahl der Iterationen von 10 000

wird verwendet. In die Funktion Tune() oder TuneWithExitPoll() lassen sich durch

rho.vec die Startwerte dieses Vektors bestimmen. Diese werden dann mittels der Funk-

tion angepasst, um die Akzeptanzwahrscheinlichkeiten zwischen 0.2 und 0.5 für die

Ziehungen von θirc zu erlangen. Ist der Output der Funktion beispielsweise unter dem

Namen Tune_LN gespeichert, so lässt sich der optimierte Vektor durch die Eingabe von

rho.vec = Tune_LN$rhos in die Funktion Analyse() oder AnalyseWithExitPoll()

integrieren. (Greiner et al., 2013, S. 22, 25)

5.2.4 Hyperpriori-Parameter

Greiner et al. (2013) ermöglichen dem Benutzer die vorbestimmten Hyperpriori-

Parameter bei der Analyse und bei der Varianzanpassung (Tuning) zu ändern.

Das Einbeziehen des Vorwissens durch zellspezifische Bestimmung ist dennoch nicht

möglich. Deswegen werden bei der Analyse anhand des Multinomial-Log-Normal-

Modells die Defaultwerte akzeptiert. Für die Normal-Hyperpriori-Verteilung von dem

Priori-Parameter µ bestimmt der skalare Wert kappa = 10 (κ) die Diagonale der Ko-

varianzmatrix und der Vektor mu.vec.0 = rep(log((0.45/(mu.dim - 1))/0.55),

mu.dim) (µ0) die Mittelwerte. Für die Inverse-Wishart-Hyperpriori-Verteilung von dem

Priori-Parameter Σ werden die Freiheitsgrade mit nu = (mu.dim + 6) (ν0) und die

Diagonale der Matrixparameter durch den skalaren Wert psi = mu.dim (ψ) definiert.
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6 Ergebnisse

In diesem Kapitel erfolgt die Konvergenzdiagnose der erzeugten Ketten, Vergleich

der Ketten und Modelle und letztendlich die Darstellung der Ergebnisse eines gewählten

Modells. Die Ketten der beiden betrachteten Modelle werden zuerst mit zehn Millio-

nen Iterationen für jede Version des Modells berechnet. Damit kann untersucht wer-

den, ob das Modell konvergiert und welches Thinning und Burn-In für ein Sample

von 1 000 Ziehungen geeignet ist. Dem Grunde nach werden danach für jedes Modell

drei verdünnte Ketten erzeugt. Deren Vergleich soll erkennen lassen, ob bei mehre-

ren Durchführungen die gleichen Ergebnisse erzeugt werden. Die Güte eines Modells

lässt sich nicht überprüfen, da die wahren Übergangswahrscheinlichkeiten nicht be-

kannt sind. Deswegen kann ein Modell nur auf Grund der Konvergenzdiagnose und des

Vergleichs der Ergebnisse innerhalb und zwischen den Modellen gewählt werden. Die

subjektive Auswertung spielt dabei auch eine Rolle und kann nicht vermieden werden.

Die Konvergenz der Ketten wird visuell untersucht. Dafür sind die grafische Dar-

stellungen der Density (Dichte) und Trace Plots der gezogenen absoluten Häufigkeiten

der inneren Zellen nützlich. Die absoluten Häufigkeiten werden im eiwild (Schlesin-

ger, 2014) mit counts und im RxCEcolInf (Greiner et al., 2013) mit NNs bezeichnet.

Für die Erstellung der Grafiken in diesem Kapitel kommen die folgenden R-Pakete

zum Einsatz: ggplot2 (Wickham, 2009), ggthemes (Arnold, 2016), scales (Wickham,

2016), gridExtra (Auguie, 2016), grid (R Core Team, 2015), RColorBrewer (Neu-

wirth, 2014), circlize (Gu et al., 2014; Gu, 2015), stringr (Wickham, 2015b) und

reshape2 (Wickham, 2015a). Da sich einige Grafiken über ganze Seiten erstrecken,

lassen sich diese nicht passend in den Text integrieren. Deswegen werden alle Grafiken

in folgenden Abschnitten am Ende des dazugehörigen Abschnitts oder Unterabschnitts

dargelegt.

Aus den erzeugten Ketten können die Posteriori-Mittelwerte der absolu-

ten Häufigkeiten für jede Zelle der Wählerwanderungstabelle berechnet wer-

den. Je nach Interesse lassen sich danach die relativen Häufigkeiten oder

Übergangswahrscheinlichkeiten bestimmen. Um die Differenzen zwischen den Ergeb-
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nissen von verschiedenen Modellen oder Ketten darstellen zu können, werden zwei

Vergleichsmaße verwendet. Der Hauptunterschied liegt darin, ob die Distanzen anhand

von Übergangswahrscheinlichkeiten oder von relativen Häufigkeiten der inneren Zellen

berechnet werden und wie sich die Differenzen letztendlich interpretieren lassen. Für

zwei Übergangstabellen TAueber und TBueber schlägt Schlesinger (2013, S. 59) den Mean

Absolut Error vor, der folgendermaßen definiert wird:

MAE(TAueber, TBueber) = 1
R× C

R∑
r=1

C∑
c=1
|βT

A
ueber

rc − βT
B
ueber

rc | (6.1)

Der Mean Absolut Error oder MAE kann Werte zwischen 0 und 1 annehmen und wird

als durchschnittliche Differenz pro Zelle interpretiert. Ein alternatives Vergleichsmaß

stellt die Absolute Distanz oder AD dar, die für zwei Wählerwanderungstabellen mit

relativen Häufigkeiten, TArel und TBrel, durch

AD(TArel, TBrel) =
R∑
r=1

C∑
c=1
|TArel(r, c)− TBrel(r, c)| (6.2)

berechnet werden kann (Klima et al., 2015, S. 9). Dieses Maß kann Werte zwischen 0

und 2 annehmen. Nach Halbierung lässt sich AD/2 als Anteil der Stimmen interpretie-

ren, die innerhalb einer Tabelle umverteilt werden müssen, um zwei identische Tabellen

zu erhalten. Hierbei bezeichnet Absolut in der Bezeichnung des Vergleichsmaßes, dass

negative Differenzen in positive Werte transformiert werden. Das Ignorieren des Vorzei-

chens ist bei der Berechnung von beiden Vergleichsmaßen nötig, da sich die negativen

und die positiven Werte ansonsten bei der Summierung gegenseitig entwerten würden.

Über die Differenzen zwischen den Ergebnissen lassen sich im Prinzip auf Basis der

beiden Vergleichsmaße ähnliche Schlussfolgerungen ziehen. Dadurch dass die Distan-

zen anhand von Übergangswahrscheinlichkeiten berechnet werden, betrachtet MAE

alle Zeilen gleichwertig. Hingegen weisen die kleinen Parteien der ersten Wahl bei der

Berechnung des AD niedrigere Differenzen auf als die großen Parteien.

6.1 Multinomial-Dirichlet-Modell

Die Simulationsstudie von Klima et al. (2016, S. 19) zeigt eine Verbesserung der

Schätzung durch die Verwendung einer informative Priori bei kleiner Anzahl an Wahl-

bezirken. Zudem ist bekannt, dass Dr. Peter Kurz von der SPD, Grünen und Die

Linken unterstützt wurde und dass die CDU Herrn Peter Rosenberger empfohlen hat
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(Schredle, 2015). Dementsprechend werden bei der Schätzung anhand des Multinomial-

Dirichlet-Modells (Rosen et al., 2001) die zellspezifischen Hyperpriori-Parameter der

Gamma-Verteilung definiert (Schlesinger, 2013). Die Wähler, die bei der ersten Wahl ei-

ne Partei gewählt haben, die einen bestimmten Kandidaten unterstützt und diesem ihre

Stimme in der zweiten Wahl gegeben haben, werden hierbei als Loyale betrachtet. Die

Idee ist neben einem Modell mit Defaultwerten Gamma(λ1 = 4, λ2 = 2) noch zwei Mo-

delle mit Vorwissen, jeweils mit und ohne Individualdaten, zu berechnen und zu verglei-

chen. Für die Loyalen wird Gamma(λ1 = 30, λ2 = 1) und Gamma(λ1 = 30, λ2 = 2)

verwendet, während für die übrigen Zellen die Defaultwerte unverändert bleiben. Der

Einfluss dieser Parameter auf die Verteilung von βirc ist bereits in der Abbildung 5.3

(Seite 52) des Kapitels 5 dargestellt. Zur Überprüfung der Konvergenz im Unterab-

schnitt 6.1.1 und zum Vergleich der Ketten im Unterabschnitt 6.1.2 werden neben den

vier Zellen von Loyalen, SPD.Kurz, Güne.Kurz, Linke.Kurz und CDU.Rosenberger,

noch Sonstige_13.Sonstige_15 und Nichtwähler_13.Nichtwähler_15 bei der gra-

fischen Darstellung betrachtet.

6.1.1 Konvergenzdiagnose

In der Abbildung 6.1 (links) auf der Seite 61 befindet sich die Darstellung der Trace

of Counts für die gewählten inneren Zellen des Multinomial-Dirichlet-Modells ohne

Vorwissen. Von insgesamt zehn Millionen Iterationen wird lediglich jede tausends-

te abgebildet, um die Größe der zu speichernden Grafik zu reduzieren. Dabei wird

die Nummer der durchgeführten und nicht der abgebildeten Iteration auf der x-Achse

der Grafik dargestellt. Da die Berechnung der Mittelwerte die Speichergröße der Gra-

fik nicht beeinflusst, werden diese aus allen gezogenen Werten jeweiliger Zellen be-

rechnet und mit den waagerechten weißen Linien in der Grafik markiert. Die rechte

Grafik zeigt die Dichten und die Mittelwerte der Counts der zweiten und der letz-

ten Million aller Iterationen. Anstelle der ersten Million wird hier die Zweite darge-

stellt, um den Einfluss der Startwerte auf die Zellen Sonstige_13.Sonstige_15 und

Nichtwähler_13.Nichtwähler_15 zu vermeiden. Diese drücken die Dichten auf die

Seite, wodurch die Übersichtlichkeit der Dichten begrenzt ist. Das Ziel hierbei ist die

Kettenteile am Anfang und am Ende zu vergleichen, um untersuchen zu können, ob

die Kette stationär ist.

Aus den Grafiken ist visuell zu erkennen, dass das ökologische Multinomial-
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Dirichlet-Modell ohne Vorwissen eine stationäre Verteilung wahrscheinlich erreicht hat.

Die Zellen Güne.Kurz und Linke.Kurz weisen eine seht gute Übereinstimmung am An-

fang und am Ende der Kette auf. Eine minimale Abweichung im Mittelwert zeigt sich

am Anfang der Kette im Vergleich zu den wenig niedrigeren Werte am Ende der Kette

bei der Zelle SPD.Kurz. Etwas höhere Werte werden am Anfang der Kette bei der Zelle

CDU.Rosenberger gezogen. Bei der Zelle Sonstige_13.Sonstige_15 tritt ein Abfallen

im Verlauf der Kette auf. Solche Störungen sind jedoch bei kleinen Kategorien, bei

denen wenig Daten vorhanden sind, zu erwarten. Der Mittelwert scheint jedoch nicht

sehr stark davon beeinflusst zu sein. Die Kette der Nichtwähler_13.Nichtwähler_15

Zelle ist wegen des Startwertes nach oben gedrückt. Dadurch lässt sich nicht genau er-

kennen, ob irgendwelche Störungen erscheinen. Die Dichte zeigt hierbei, dass die Werte

bei der letzten Million etwas höher sind als bei der Zweiten. Obwohl die Startwerte bei

Sonstige_13.Sonstige_15 und Nichtwähler_13.Nichtwähler_15 von dem Rest der

Kette stark abweichen, wurde die Konvergenz bei allen Ketten schnell erreicht. Bereits

ein Burn-In von 100 000, der mit senkrechten roten Linien in die Grafik gezeichnet

wird, sollte hier reichen, um den Einfluss der Startwerte zu unterdrücken.

Um das geeignete Thinning zu bestimmen, wird ferner die Autokorrelation unter-

sucht. In der Abbildung 6.2 (links) auf der Seite 62 zeigt sich nach dem Burn-In von

100 000 ohne Thinning für die Stichprobe von 1 000 Ziehungen eine hohe Autokorrela-

tion bei allen Zellen. Obwohl einige Autoren dem Thinning kritisch gegenüber stehen

(siehe Unterabschnitt 2.2.2 des Kapitels 2 auf der Seite 9), verwenden Klima et al.

(2015, S. 9 f.) ein hohes Thinning bei Modellen der ökologischen Inferenz zur Behe-

bung von starker Autokorrelation bei der Wählerwanderungsanalyse. Dementsprechend

wird nach der Untersuchung ein Thinning von 2 000 angewendet, da diese die Korre-

lation ausreichend verringert (siehe Abbildung 6.2, rechts). Die übrigen Versionen des

Multinomial-Dirichlet-Modells weisen ähnliche Entwicklungen und Merkmale bei der

Konvergenz und bei der Autokorrelation auf. Demzufolge werden für alle Modelle iden-

tisches Thinning und Burn-In verwendet. Die gleichartige grafische Darstellungen der

Ketten und der Autokorrelation sind für alle Versionen des Modells im Anhang A.2.1

(ab der Seite 93) und A.2.2 (ab der Seite 98) zu finden.
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Multinomial-Dirichlet-Modell ohne Vorwissen
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Abbildung 6.1: Die Ketten (links) und die Dichten (rechts) der gezogenen abso-
luten Häufigkeiten (Counts) von fünf gewählten inneren Zellen des ökologischen
Multinomial-Dirichlet-Modells ohne Vorwissen. Links: Von zehn Millionen Iteratio-
nen wird jede tausendste dargestellt. Die senkrechten roten Linien kennzeichnen die
100 000-ste von zehn Millionen Iterationen. Die waagerechten weißen Linien zeigen
die Mittelwerte aller gezogenen Werte. Rechts: Die Dichten der zweiten und der letz-
ten Million aller Iterationen und die dazugehörigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Modell ohne Vorwissen
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Abbildung 6.2: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Dirichlet-
Modells ohne Vorwissen, anhand einer Stichprobe mit 1 000 Ziehungen nach dem
Burn-In von 100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.

62



Multinomial-Dirichlet-Modell ohne Vorwissen
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Abbildung 6.3: Drei verdünnte Ketten der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Dirichlet-
Modells ohne Vorwissen. Sample: 1 000, Burn-In: 100 000 und Thinning: 2 000. Links:
Trace of Counts der drei Ketten und die dazugehörigen Mittelwerte (waagerechte
Linien). Rechts: Dichten der verdünnten Ketten und die gleichen Mittelwerte senk-
recht dargestellt.
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6.1.2 Ketten- und Modellvergleich

Drei Ketten, die nach dem Burn-In und Thinning für das Multinomial-Dirichlet-Modell

ohne Vorwissen erzeugt sind, werden in der Abbildung 6.3 auf der Seite 63 dargestellt.

Links in der Grafik befinden sich die Ketten, die sich entsprechend der Farbe unterschei-

den lassen. Hierbei wird auf der x-Achse die Nummer der Iteration in der Stichprobe

dargestellt. Rechts in der Grafik werden die Dichten der jeweiligen Ketten und deren

Mittelwerte präsentiert und mit entsprechenden Farben differenziert.

Die Zellen CDU.Rosenberger, Sonstige_13.Sonstige_15 und

Nichtwähler_13.Nichtwähler_15 zeigen etwas höhere Unterschiede zwischen

den drei erzeugten Ketten als die übrigen dargestellten Zellen. Bei der Zelle

Sonstige_13.Sonstige_15 weist die grüne Kette im Mittel einen Abfallen im

Vergleich zur orangen und violetten Kette auf. Bei einigen Versionen des Modells

scheinen die Ketten, die hier eine Abweichung untereinander aufweisen, stabiler zu

sein. Deren Darstellung befindet sich im Anhang A.2.3 (ab der Seite 103). Zusätzlich

werden die Grafiken erzeugt, welche die drei verdünnten Ketten aller Zellen in einer

Matrixform darstellen. Diese sind aus Gründen der Übersichtlichkeit im elektronischen

Anhang dargelegt. Die Auflistung der Dateien, die in digitaler Version der Arbeit

beigelegt werden, ist im Anhang E auf der Seite 117 zu finden.

Nach einer visuellen Untersuchung soll ferner der Vergleich anhand von absolu-

ten Distanzen (AD) für jede Version des Modells präziser zeigen, wie hoch die Un-

terschiede zwischen den Ergebnissen über alle Zellen innerhalb der gleichen Modelle

sowie zwischen verschiedenen Versionen des Modells sind. Zusätzlich werden die durch-

schnittlichen absoluten Differenzen pro Zelle (MAE) im Anhang A.2.4 auf der Seite 108

präsentiert. In der Abbildung 6.4 auf der Seite 66 sind die absoluten Distanzen zwischen

den Ergebnissen von drei erzeugten Ketten innerhalb der Modelle in Prozentpunkten

dargestellt. Die AD Werte sind hierbei über die Diagonale identisch beziehungswei-

se symmetrisch. Es zeigt sich, dass das Multinomial-Dirichlet-Hybridmodell bei allen

Hyperpriori-Parameter die niedrigeren Distanzen zwischen den Ergebnissen der Ketten

aufweist als das ökologische Multinomial-Dirichlet-Modell. Die Summe aller Distanzen

der drei ökologischen Modelle beträgt hierbei 13.68 Prozent. Deutlich geringerer ist

die Summe aller Distanzen der Hybridmodelle mit dem Wert von 4.5 Prozent. Von

allen betrachteten Modellen zeigen sich bei den Hybridmodellen mit Vorwissen die ge-

ringsten Unterschiede zwischen den Ketten. Es ist anzumerken, dass eine Abnahme
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von AD zwischen den Ketten durch die Integration des Vorwissens erreicht wird, aller-

dings nicht so stark wie durch das Verwenden der Individualdaten. Die Abnahme durch

die Integration des Vorwissens ist jedoch innerhalb des ökologischen Modells mittels

MAE nicht zu erkennen (siehe Abbildung A.24 im Anhang A.2.4 auf der Seite 108).

Beim ökologischen Modell mit Vorwissen unterscheidet sich die erste Kette (violett) bei

Gamma(λ1 = 30, λ1 = 1) von der Zweiten und der Dritten stärker. Dieser Unterschied

wird bei der AD unterdrückt, da ein starkes Abfallen der ersten Ketten bei der Zelle

AfD.Probst auftritt. Außerdem liegt die erste Kette bei der Zelle AfD.Nichtwähler

etwas höher als die Zweite und die Dritte. Anhand von AD werden die Distanzen bei

kleinen Parteien, in diesem Fall AfD, niedriger als anhand von MAE. Beim ökologischen

Modell mit Vorwissen Gamma(λ1 = 30, λ1 = 2) unterscheidet sich die dritte Kette von

der Ersten und der Zweiten stärker. Hier tritt eines Abfallen der dritten Kette (grün)

bei der Zelle Sonstige_13.Rosenberger auf. Diese Störungen lassen sich visuell mittels

der Darstellungen der Ketten aller Zellen erkennen, welche im elektronischen Anhang

aufgeführt werden.

Die Abbildung 6.5 auf der Seite 66 präsentiert die absoluten Distanzen zwischen

den Ergebnissen von verschiedenen Versionen des Modells. Analog ist die Matrix mit

den AD Werte symmetrisch. Zum Vergleich wurde hierbei die erste der drei erzeug-

ten Ketten für jede Version des Modells genommen. Wiederum zeigt sich, dass das

Hybridmodell über alle Versionen stabiler ist als das ökologische Modell. Den größten

Unterschied zu allen anderen Modellen weist das ökologische Modell ohne Vorwissen

auf. Die Modelle mit Vorwissen weisen im Allgemeinen die niedrigsten absoluten Dis-

tanzen auf.

Weiterhin werden die zellspezifischen absoluten Differenzen der Modelle zur Nach-

wahlbefragung dargestellt. Um den Lesefluss dieser Arbeit nicht zu stören befindet sich

die Abbildung 6.12 am Ende des Unterabschnittes 6.2 auf der Seite 74. In der Gra-

fik sind die zellspezifischen Differenzen für jede Version des Modells in einem Box-Plot

dargestellt. Unten sind die durchschnittlichen absoluten Differenzen (Mean Absolut Er-

ror) gegeben und mit ”MAE“ in den abgebildeten Box-Plots eingezeichnet. Diese Gra-

fik dient lediglich zum Vergleich und liefert keine Information über die Qualität der

Schätzung. Erwartungsgemäß weisen die ökologischen Modelle fast doppelt so große

Differenzen zur Nachwahlbefragung auf als die Hybridmodelle. Die geringsten zellspe-

zifischen Differenzen und MAE zeigen sich bei dem Hybridmodell ohne Vorwissen.
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Absolute Distanz (AD): Kettenvergleich
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Abbildung 6.4: Absolute Distanzen (AD) in Prozentpunkten zwischen den Ergeb-
nissen der drei verdünnten Ketten für jede Version des ökologischen (oben) und
des hybriden (unten) Multinomial-Dirichlet-Modells. Die Werte sind je nach Modell
symmetrisch über die Diagonale.

Absolute Distanz (AD): Modellvergleich

Aggregatdaten
Aggregatdaten
 mit Vorwissen 

(30, 1)

Aggregatdaten
 mit Vorwissen 

(30, 2)

23.6 %

20.26 %

23.6 %

5.3 %

20.26 %

5.3 %

Aggregatdaten

Aggregatdaten
 mit Vorwissen 

(30, 1)

Aggregatdaten
 mit Vorwissen 

(30, 2)

Hybrid
Hybrid

 mit Vorwissen 
(30, 1)

Hybrid
 mit Vorwissen 

(30, 2)

18.85 %

17.85 %

14.35 %

22.42 %

12.62 %

10.59 %

21.27 %

13.45 %

10.8 %

18.85 %

22.42 %

21.27 %

17.85 %

12.62 %

13.45 %

14.35 %

10.59 %

10.8 %

Hybrid

Hybrid
 mit Vorwissen 

(30, 1)

Hybrid
 mit Vorwissen 

(30, 2)

7.56 %

6.04 %

7.56 %

1.68 %

6.04 %

1.68 %

Abbildung 6.5: Absolute Distanzen (AD) in Prozentpunkten zwischen den Ergeb-
nissen von verschiedenen Versionen des Multinomial-Dirichlet-Modells (symmetrisch
über die Diagonale). Zum Vergleich wurde die erste der drei verdünnten Ketten für
jede Version des Modells verwendet.
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6.2 Multinomial-Log-Normal-Modell

Bei der Schätzung anhand des Multinomial-Log-Normal-Modells kann das Vorwissen

nicht durch zellspezifische Parameter der Hyperpriori-Verteilung ins Modell integriert

werden. Es sollte jedoch untersucht werden, ob die Wahl einer anderen Referenzkate-

gorie die Schätzung beeinflusst. Infolgedessen werden hier insgesamt vier Versionen des

Modells berechnet, zwei mit Referenzkategorie Nichtwähler_15 und zwei mit Referenz-

kategorie Kurz, jeweils mit und ohne Individualdaten. Eine Kette mit zehn Millionen

Iterationen, ohne Burn-In und Thinning, konnte mithilfe des RxCEcolInf (Greiner et

al., 2013) Paketes nicht erzeugt werden, da der Fehler
Finished MCMC routine. Processing output...

Error in cbind(mu, Sigma, NNs, LAMBDA, TURNOUT, GAMMA, BETA):
long vectors not supported yet: bind.c:1304
Calls: Analyze -> cbind

aufgetreten ist. Deswegen wurde bereits bei der ersten Berechnung ein Thinning von

100 ohne Burn-In verwendet. Dadurch werden von den erzeugten zehn Millionen Ite-

rationen schließlich 100 000 gespeichert. Im folgenden Unterabschnitt werden bei den

grafischen Darstellungen die gleichen Zellen betrachtet wie beim Multinomial-Dirichlet-

Modell.

6.2.1 Konvergenzdiagnose

In der Abbildung 6.6 wird im Trace Plot (links) von insgesamt 100 000 gespeicher-

ten Iterationen lediglich jede zehnte aufgezeichnet, womit die gleiche Anzahl an Ite-

rationen wie beim Multinomial-Dirichlet-Modell dargestellt wird. Auch wenn nur jede

hundertste Iteration gespeichert werden konnte, wurden letztendlich 10 000 000 Itera-

tionen durchgeführt. Dementsprechend werden nach wie vor die Nummern der durch-

geführten Iterationen auf der x-Achse der Grafik angegeben. Die Mittelwerte konnten

nur auf Basis der 100 000 gespeicherten Iterationen berechnet werden und sind mit

waagerechten schwarzen Linien markiert. Die rechte Grafik zeigt die Dichten der ab-

soluten Häufigkeiten (Counts) der zweiten und der letzten Million Iterationen, wobei

wiederum nur jede hundertste Iteration betrachtet werden kann. Beim dargestellten

ökologischen Multinomial-Log-Normal-Modell mit automatisch gewählter Referenzka-

tegorie Nichtwähler_15 wurde die Konvergenz scheinbar nicht erreicht. Eine stationäre

Verteilung lässt sich über alle Zellen nicht erkennen. Dies gilt auch für die übrigen Ver-
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sionen des Modells, welche im Anhang A.2.5 (ab der Seite 109) zu finden sind. Obwohl

eine weitere Untersuchung nicht notwendig ist, werden die gleichen Grafiken wie beim

Multinomial-Dirichlet-Modell erzeugt und kurz beschrieben. Die senkrechten roten Li-

nien im Trace Plot (Abbildung 6.6 links) kennzeichnen 2 000 000 Iterationen (von zehn

Millionen durchgeführten Iterationen), die im weiteren Verlauf verworfen werden. Die

Autokorrelation ist für das ökologische Multinomial-Log-Normal-Modell mit Referenz-

kategorie Nichtwähler_15 in der Abbildung 6.7 und für die anderen Versionen im

Anhang A.2.6 (ab der Seite 112) dargestellt. Die hohe Korrelation verringert sich nach

dem Burn-In und Thinning von 2 000 bei allen Modellen kaum. Bei einigen Zellen

wird sie sogar höher. Ein Modell mit Thinning, welches die Korrelation ausreichend

verringert, wäre hier praktisch nicht berechenbar.

6.2.2 Ketten- und Modellvergleich

Mit dem Burn-In von 2 000 000 und dem Thinning von 2 000 werden ferner drei Ketten

mit Referenzkategorie Nichtwähler_15 und eine Kette mit Referenzkategorie Kurz er-

zeugt. Die Grafik Trace of Counts und die Dichten (Density) der Ketten sind in der

Abbildung 6.8 auf der Seite 72 für das ökologische Log-Normal-Modell und im Anhang

A.2.7 auf der Seite 115 für das Multinomial-Log-Normal-Hybridmodell dargestellt. Alle

dargelegten Zellen weisen ziemlich hohe Differenzen zwischen den Ketten auf. Bei der

Zelle Nichtwähler_13.Nichtwähler_15 zeigen sich hierbei etwas niedrigere Differen-

zen als bei den Restlichen.

Aus der Grafik lässt sich kaum erkennen, ob die Schätzung durch die Veränderung

der Referenzkategorie beeinflusst wird. Dafür liefert der Vergleich von Ergebnissen über

alle Zellen mithilfe von AD in der Abbildung 6.9 auf der Seite 73 eine bessere Übersicht.

Das heißt, hier wird beim Kettenvergleich, neben den Ketten innerhalb der gleichen

Modelle, zusätzlich eine Kette mit nicht automatisch gewählter Referenzkategorie be-

trachtet. Mit und ohne Individualdaten zeigt sich, dass die Ergebnisse der Ketten mit

der Referenzkategorie Kurz höhere absolute Distanzen aufweisen als die Restlichen

untereinander. Allgemein und im Vergleich zum Multinomial-Dirichlet-Modell sind die

Distanzen zwischen den Ketten sehr hoch, wobei etwas niedrigeren absoluten Distanzen

beim Hybridmodell erkennbar sind als beim ökologischen Modell.

Der Modellvergleich wird in der Abbildung 6.10 auf der Seite 73 dargestellt. Hierfür

wird die erste Kette mit Referenzkategorie Nichtwähler_15 und wiederum die Kette
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mit Referenzkategorie Kurz, jeweils mit und ohne Individualdaten, genommen. Dem-

nach wiederholen sich beim Modellvergleich einige Zellen, die bereits beim Ketten-

vergleich dargestellt wurden. Der Modellvergleich zeigt allerdings, dass die Schätzung

durch die Individualdaten stärker beeinflusst wird als durch die Veränderung der Refe-

renzkategorie. Hierbei wird die Distanz zwischen dem ökologischen und dem hybriden

Modell durch die Wahl der Referenzkategorie Kurz um 15.44 Prozent geringer. Der

Ketten- und Modellvergleich anhand von MAE wird im Anhang A.2.8 auf der Seite

108 präsentiert.

Die zellspezifischen absoluten Differenzen der Modelle zur Nachwahlbefragung wer-

den in der Abbildung 6.11 auf der Seite 74 dargestellt. Wie beim Multinomial-Dirichlet-

Modell weisen die ökologischen Modelle doppelt so großen Differenzen zur Nachwahl-

befragung auf als die Hybridmodelle. Beim Hybridmodell mit Referenzkategorie Kurz

zeigen sich die geringsten zellspezifischen Differenzen mit MAE von 7.72 Prozent. Bei

den anderen Versionen des Modells sind die zellspezifischen Differenzen und MAE all-

gemein höher als beim Multinomial-Dirichlet-Modell.
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Abbildung 6.6: Die Ketten (links) und die Dichten (rechts) der gezogenen abso-
luten Häufigkeiten (Counts) von fünf gewählten inneren Zellen des ökologischen
Multinomial-Log-Normal-Modells mit automatisch gewählter Referenzkategorie
Nichtwähler_15. Von zehn Millionen durchgeführten Iterationen konnte jede hun-
dertste gespeichert werden. Links wird von zehn Millionen Iterationen jede tausends-
te dargestellt. Die senkrechten roten Linien kennzeichnen die 2 000 000-ste von zehn
Millionen Iterationen. Die waagerechten schwarzen Linien zeigen die Mittelwerte
von 100 000 gespeicherten Werten. Rechts: Die Dichten der zweiten und der letzten
Million (jede hundertste Iteration betrachtet) und die dazugehörigen Mittelwerte
(senkrechte Linien).
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Abbildung 6.7: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Log-
Normal-Modells mit automatisch gewählter Referenzkategorie Nichtwähler_15 an-
hand einer Stichprobe mit 1 000 Ziehungen nach dem Burn-In von 2 000 000. Links:
Thinning von 100. Rechts: Thinning von 2 000.
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Abbildung 6.8: Drei verdünnte Ketten der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Log-
Normal-Modells mit automatisch gewählter Referenzkategorie Nichtwähler_15 und
eine verdünnte Kette mit Referenzkategorie Kurz. Sample: 1 000, Burn-In: 2 000 000
und Thinning: 2 000. Links: Trace of Counts der vier Ketten und die dazugehörigen
Mittelwerte (waagerechte Linien). Rechts: Dichten der Ketten und die gleichen Mit-
telwerte senkrecht dargestellt.
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Absolute Distanz (AD): Kettenvergleich
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Abbildung 6.9: Absolute Distanzen (AD) in Prozentpunkten zwischen den Ergeb-
nissen der drei verdünnten Ketten mit automatisch gewählter Referenzkategorie
Nichtwähler_15 und einer Kette mit Referenzkategorie Kurz bei dem ökologischen
(links) und bei dem hybriden (rechts) Multinomial-Log-Normal-Modell. Die Werte
sind je nach Modell symmetrisch über die Diagonale.
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Abbildung 6.10: Absolute Distanzen (AD) in Prozentpunkten zwischen den Ergeb-
nissen von verschiedenen Versionen des Multinomial-Log-Normal-Modells (symme-
trisch über die Diagonale). Zum Vergleich wurde die erste der drei verdünnten Ketten
mit Referenzkategorie Nichtwähler_15 und die Kette mit Referenzkategorie Kurz,
jeweils für die Version mit und ohne Individualdaten, verwendet.
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Zellspezifische absolute Differenzen zur Nachwahlbefragung
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Abbildung 6.11: Zellspezifische absolute Differenzen der Ergebnisse von verschiede-
nen Versionen des Multinomial-Log-Normal-Modells zur Nachwahlbefragung. Unten:
Durchschnittliche absolute Differenzen pro Zelle (Mean Absolut Error).
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Abbildung 6.12: Zellspezifische absolute Differenzen der Ergebnisse von verschie-
denen Versionen des Multinomial-Dirichlet-Modells zur Nachwahlbefragung. Unten:
Durchschnittliche absolute Differenzen pro Zelle (Mean Absolut Error).
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6.3 Modellwahl und Darstellung der Ergebnisse

Welches Modell der Wahrheit am nächsten liegt, lässt sich nicht testen. Nach der Metho-

de der Elimination können zuerst alle Versionen des Multinomial-Log-Normal-Modells

ausgeschlossen werden, da deren Ketten eine stationäre Verteilung nicht erreicht haben.

Aus diesem Grund bleibt die Wahl einer Version des Multinomial-Dirichlet-Modells. Als

Kriterium werden dafür die absoluten Distanzen zwischen den Ketten und Modellen

verwendet. Es gibt hierbei keine Garantie, dass das Modell mit geringsten Differen-

zen zwischen den Ketten der Wahrheit entspricht. Allerdings können die Modelle, die

bei jeder Durchführung unterschiedliche Ergebnisse erzeugen, nicht präzise und zu-

verlässig sein. Demzufolge werden die betrachteten Modelle mithilfe von AD solange

eliminiert, bis ein Modell bleibt, das präziser und zuverlässiger als die Anderen ist.

Der nächste Schritt ist demnach das Ausschließen aller Versionen des ökologischen

Multinomial-Dirichlet-Modells. Alle verbleibenden drei Versionen des Hybridmodells

weisen niedrige Distanzen zwischen den drei Ketten auf. Die zwei Versionen des Hy-

bridmodells mit dem Vorwissen zeigen hierbei die niedrigste Distanz zwischen sich im

Vergleich zu allen anderen Distanzen zwischen den verschiedenen Versionen des Mo-

dells. Die Wahl eines der Multinomial-Dirichlet-Hybridmodelle mit Vorwissen wird von

den Ergebnissen der Simulationsstudie von Klima et al. (2016, S. 15 f., 19) unterstützt.

Denn die Studie zeigt, dass die Analyse nur anhand von Aggregatdaten durch das

Verwenden der Individualdaten verbessert wird, auch im Fall wenn die Nachwahlbefra-

gung einen Bias aufweist. Außerdem wurde bei einer kleinen Anzahl an Wahlbezirken

eine Verbesserung der Schätzung durch die Verwendung einer informativen Priori be-

merkt. Zwischen den zwei übrigen Modellen wird letztendlich das Hybridmodell mit

dem Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) gewählt. Diese Entscheidung

wird zufällig in R generiert, da die beiden verbleibenden Modelle nach Kriterium der

Differenzen zwischen den drei Ketten sehr ähnlich sind.

Die geschätzten Übergangswahrscheinlichkeiten des gewählten Modells sind in der

Tabelle 6.1 angegeben und in der Abbildung 6.13 visuell dargestellt. Der Gewinner

der Oberbürgermeisterwahl 2015 ist die Kategorie Nichtwähler. Sogar 96.16 Prozent

der Wahlberechtigten, die bei der Bundestagswahl im Jahr 2013 nicht gewählt haben,

verzichten auch bei der Oberbürgermeisterwahl im Jahr 2015 auf ihr Recht zu wählen.

Das heißt, keiner der Kandidaten konnte einen wesentlichen Anteil der Nichtwähler

für sich erlangen. Nebenbei entschieden sich auch viele, die bei der Bundestagswahl
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2013 eine der Parteien gewählt haben, bei der Oberbürgermeisterwahl 2015 keinen

der Kandidaten zu unterstützen. So haben 79.71 Prozent der Wähler der kleinen Par-

teien, 61.8 Prozent der Wähler von AfD, 54.71 Prozent der Wähler von SPD, 52.48

Prozent der Wähler von CDU und 47.83 Prozent der Wähler von Die Linken bei der

Oberbürgermeisterwahl 2015 nicht gewählt. Mit einer Nichtwählerquote von 31.49 Pro-

zent weisen die Wähler von FDP eine etwas höhere Beteiligungsquote im Vergleich zu

anderen auf. Der geringste Anteil der Nichtwähler von 14.66 Prozent zeigt sich bei

den ehemaligen Wähler der Grünen. Der echte Gewinner, Dr. Peter Kurz, profitierte

scheinbar gut von der Wahlempfehlungen. Mindestens von denen, die sich an der Wahl

beteiligten, bekam er eine Mehrheit der Stimmen. Obwohl nur 45.29 Prozent der SPD

Wähler und 52.17 Prozent der Wähler von Die Linken bei der Oberbürgermeisterwahl

2015 gewählt haben, gaben ihm 33.19 Prozent der SPD Wähler und 37.47 Prozent

der Wähler von Die Linken ihre Stimme. Von den Wählern der Grünen erlangte Dr.

Peter Kurz sogar 66.54 Prozent. Überzeugt hat er auch 22.01 Prozent der Wähler

der FDP. Der zweite Kandidat Peter Rosenberger erwarb 32.76 Prozent der Stim-

men der CDU Wähler, was dem größten Anteil von diejenigen entspricht, die bei der

Oberbürgermeisterwahl 2015 gewählt haben. Er schaffte es, etwas mehr FDP Wähler

als Dr. Peter Kurz zu gewinnen, sprich 26.51 Prozent. Mit 15.01 Prozent haben ihm

doppelt so viele Wähler der AfD ihre Stimme gegeben. Nicht wesentlich weniger AfD

Wähler (14.02 Prozent) unterstützte den dritten Kandidaten Christopher Probst. Von

den Wählern der FDP entschieden sich 16.15 Prozent für ihn. Andere gewählte Kan-

didaten unter der Kategorie Sonstige bekamen insgesamt eine niedrige Unterstützung

aller Wähler. Der Anteil lag zwischen 0.23 und 3.85 Prozent.

Der hohe Anteil der Nichtwähler und deren Aufteilung bietet möglicherweise eine

Erklärung für den Bias bei den Kategorien der Bundestagswahl (2013) in der Nach-

wahlbefragung. Denn es werden einerseits die Parteien unterschätzt, deren Wähler

ein hohen Anteil der Nichtwähler bei der Oberbürgermeisterwahl 2015 ausmachen.

Anderseits werden die Grünen und die FDP, deren Wähler eine höhere Wahlbe-

teiligung im Vergleich zu den Übrigen aufweisen, überschätzt. Ein höherer Anteil

der ehemaligen Wähler von Grünen in der Population der Wahlbeteiligten bei der

Oberbürgermeisterwahl 2015 ist in diesem Fall zu erwarten. Dementsprechend darf die

Rolle der Nichtwähler bei der Wählerwanderungsanalyse mittels einer Befragung nicht

ignoriert werden.
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(λ1 = 30, λ2 = 1)
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Tabelle 6.1: Die Übergangstabelle zwischen der Bundestagswahl 2013 und der
Oberbürgermeisterwahl 2015 anhand des Multinomial-Dirichlet-Hybridmodells mit
Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) für die Zellen der Loyalen und
Defaultwerte für die Restlichen.
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Abbildung 6.13: Die Übergangswahrscheinlichkeiten zwischen der Bundestagswahl
2013 (links) und der Oberbürgermeisterwahl 2015 (rechts) anhand des Multinomial-
Dirichlet-Hybridmodells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) für
die Zellen der Loyalen und Defaultwerte für die Restlichen. Die Breite jedes Pfeilen-
des drückt den Anteil an Stimmen aus, den der jeweilige Kandidat von verschiedenen
Parteien gewonnen hat.
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7 Fazit

Ziel der vorliegenden Arbeit war die Schätzung der Wählerwanderung zwischen der

Bundestagswahl im Jahr 2013 und der Oberbürgermeisterwahl im Jahr 2015 in Mann-

heim. Zu diesem Zweck waren die amtlichen Ergebnisse und eine Nachwahlbefragung

verfügbar. Das individuelle Wahlverhalten konnte aus der Nachwahlbefragung einfach

und schnell herausgezogen und dargestellt werden. Ein Vergleich der Randsummen mit

den amtlichen Ergebnissen wies jedoch darauf hin, dass die Individualdaten einen Bi-

as aufweisen. Dementsprechend ist die Analyse der Übergänge zwischen zwei Wahlen

nur anhand von vorhandenen Individualdaten unzuverlässig und unsicher. Die Analyse

anhand von Aggregatdaten lässt sich mithilfe der ökologischen Inferenz durchziehen.

Die neu entwickelten Hybridmodelle kombinieren dabei die ökologische Inferenz und

die Individualdaten, um die Stärken der beiden Ansätze nutzen zu können. Demnach

wurden für die Wählerwanderungsanalyse zwei ökologische hierarchische Modelle und

deren hybriden Versionen verwendet. Das Multinomial-Dirichlet-Modell von Rosen et

al. (2001) und dessen hybride Version von Schlesinger (2013) wurden mit dem eiwild

Paket (Schlesinger, 2014) berechnet. Die Analyse anhand des ökologischen und des hy-

briden Multinomial-Log-Normal-Modells von Greiner und Quinn (2009, 2010) wurde

mit dem RxCEcolInf Paket (Greiner et al., 2013) durchgeführt.

Vor der Analyse ist die Datenaufbereitung ein relevanter Schritt. Als Erstes ist

die Anzahl der Parteien oder Kandidaten zu reduzieren, um die Anzahl der Parame-

ter zu verringern. Dabei wurden alle kleine Parteien beziehungsweise Kandidaten einer

Kategorie zugeordnet. Zweitens ändert sich die Population der Wähler mit dem Zeitab-

stand zwischen zwei Wahlen. Diese Differenz wurde zur Nichtwähler Kategorie bei der

Bundestagswahl (2013) gerechnet. Außerdem ändert sich die Aufstellung der Wahlbe-

zirke zwischen zwei Wahlen. Durch die Anpassung der Wahlbezirke entstand hier eine

Reduktion. Dieser Informationsverlust kann beim Multinomial-Dirichlet-Modell durch

Integration von Vorwissen kompensiert werden. Die Simulationsstudie von Klima et

al. (2016) zeigt eine Verbesserung der Schätzung durch die Verwendung von informa-

tiven Priori-Verteilung bei einer kleinen Anzahl an Wahlbezirken. Weiterhin werden
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die Ergebnisse der Briefwähler in spezifischen postalischen Wahlbezirken dargestellt,

die nicht identisch mit den Wahlbezirke der Urnenwählern sind. Demzufolge mussten

die Briefwähler durch zusätzliche Berechnungen den Urnenwähler zugerechnet werden.

Schließlich wurden die Datensätze der Individual- und Aggregatdaten in die notwendige

Form für die Analyse gebracht.

Bei der Schätzung anhand des Multinomial-Dirichlet-Modells können die zell-

spezifischen Hyperpriori-Parameter der Gamma-Verteilung definiert werden (Schle-

singer, 2013). Dementsprechend wurde das Vorwissen über die Wahlempfehlungen

benutzt, um die Unterschätzung der Zellen der Loyalen zu verhindern. Es wurden

Gamma(λ1 = 30, λ2 = 1) und Gamma(λ1 = 30, λ2 = 2) als alternative Hyperpriori-

Parameter für die Zellen der Loyalen überprüft. Somit wurden insgesamt sechs Versio-

nen des Modells berechnet, eine mit Defaultwerte für alle Zellen, zwei mit erwähnten

Hyperpriori-Parameter für die Zellen der Loyalen und alle drei einmal in ökologischer

Version und einmal in hybrider Version. Bei der Schätzung anhand des Multinomial-

Log-Normal-Modells wurden das ökologische Modell und das Hybridmodell einmal mit

automatisch gewählter Referenzkategorie und einmal mit der Referenzkategorie Kurz

berechnet.

Da sich die Güte der Modelle nicht testen lässt, wurde für die Modellwahl die

Konvergenzdiagnose der erzeugten Ketten sowie die absoluten Distanzen (AD) zwi-

schen den Ketten und Modellen als Kriterium verwendet. Von den zwei Hauptmodel-

len konnte zuerst das Multinomial-Log-Normal ausgeschlossen werden, da keine dessen

Versionen konvergiert. Hierbei verringerte das Verwenden der Individualdaten die AD

Werte zwischen den Ketten bei beiden Hauptmodellen. Demzufolge wurde als nächstes

das ökologische Multinomial-Dirichlet-Modell ausgeschlossen. Die geringsten AD Werte

zeigen sich bei den zwei Hybridmodellen mit Vorwissen. Da sich die beiden Versionen

anhand der verwendeten Kriterien kaum unterschieden, wurde letztendlich das Hy-

bridmodell mit dem Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) zufällig in R

gezogen.

Die Ergebnisse des gewählten Modells zeigen eine sehr hohe Wanderung von allen

Parteien zu den Nichtwähler mit der Ausnahme der Wähler der Grünen und der FDP.

Da gerade diese Kategorien bei der Nachwahlbefragung überschätzt wurden, stellt sich

die Frage, ob das der Grund für den Bias darstellt. Wenn ja, sollte überlegt werden,

ob die Nachwahlbefragung am Ausgang der Wahllokale eine zuverlässige Methode für
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die Wählerwanderungsanalyse ist. Allerdings berichten viele Autoren, dass so erhobene

Daten hilfreich sind, um die ökologische Inferenz zu verbessern (Greiner und Quinn,

2010; Wakefield, 2004), auch wenn ein Bias in den Daten vorliegt (Klima et al., 2016).

Als eine eigenständige Methode oder als die Unterstützung im Hybridmodell ist die te-

lefonische Befragung zusehen (Klima et al., 2016), denn somit können die Nichtwähler

sowie die Briefwähler in der Analyse betrachtet werden. Welche Aussagen liefern diese

Ergebnissen für die Politiker? Vor allem kann empfohlen werden, erforderliche Maß-

nahmen zu ergreifen, um die Bürgerinnen und Bürger zu animieren, ihr Wahlrecht zu

nutzen. Da die Analyse der politischen Situation nicht Teil dieser Arbeit ist, können

keine weiteren Hinweise über die Art und Weise der Maßnahmen gegeben werden.

Zielsetzung dieser Arbeit war es nicht zu beurteilen, welche der betrachteten Mo-

delle im Allgemeinen besser ist. Vor allem deswegen, weil anhand von den hier durch-

geführten Analysen dies nicht möglich wäre. Dennoch lassen sich einige Vor- und Nach-

teile nennen, die durch die Anwendung bemerkt wurden. Das Multinomial-Log-Normal-

Modell ist in der praktischen Anwendung mithilfe des RxCEcolInf Paketes (Greiner

et al., 2013) komplizierter. Diese Kritik umfasst zuerst die erforderliche Formatierung

der Individualdaten (Unterabschnitt 4.2.5, S. 45 und 46) und die etwas komplizierte

Angabe von Sample, Thinning und Burn-In (Unterabschnitt 5.2.2, S. 55). Zusätzlich

wird die Angabe von dem Verhältnis zwischen den Kategorien der ersten und der zwei-

ten Wahl durch einen String Character umständlich (Unterabschnitt 5.2.1, S, 54 und

55). Hierbei könnte die Bestimmung der Referenzkategorie besser gelöst werden als

durch das aktuell notwendige Umschichten der Reihenfolge der eingegebenen Katego-

rien. Letztendlich erwähnen die Autoren selbst, dass das Modell-Fitting langsamer ist.

Dazukommend lässt sich im eiwild Paket (Schlesinger, 2013) Vorwissen durch zellspe-

zifische Hyperpriori-Parameter ins Modell integrieren (Unterabschnitt 5.1.4 ab Seite

50). Aus den erwähnten Gründen wird die Analyse schließlich mit dem eiwild Paket

anhand des Multinomial-Dirichlet-Modells empfohlen, falls die Analyse auf ein Modell

begrenzt werden muss. Insbesondere wenn Vorwissen vorhanden ist und die Anzahl der

Wahlbezirke klein ausfällt. Ansonsten bietet sich an, die beiden Modelle durchzuführen,

zu vergleichen und die Ergebnisse aus dem Modell mit stabilsten Ketten zu berechnen.
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Gschwend, T. (2006). Ökologische Inferenz. In J. Benke, T. Gschwend, D. Schindler
und K.-U. Schnapp (Hrsg.), Methoden der Politikwissenschaft: neuere qualitative und
quantitative Analyseverfahren (S. 227-237). Nomos Verl.-Ges. Zugriff auf http://
www.ssoar.info/ssoar/handle/document/25840

Gu, Z. (2015). Visualize Relations by Chord Diagram [Software-Handbuch].
Zugriff auf https://cran.r-project.org/web/packages/circlize/vignettes/
visualize relations by chord diagram.pdf

Gu, Z., Gu, L., Eils, R., Schlesner, M. und Brors, B. (2014). circlize implements
and enhances circular visualization in R. Bioinformatics, 30 , 2811-2812. (R package
version 0.3.5 (2016-03-28))
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A Anhang

A.1 Die Datenbasis

A.1.1 Parteien der Bundestagswahl 2013

BUNDESTAGSWAHL 2013
Partei Partei

01 CDU 11 ÖDP

02 SPD 12 PBC

03 FDP 13 VOLKSABSTIMMUNG

04 GRÜNE 14 MLPD

05 DIE LINKE 15 BüSo

06 AfD 16 BIG

07 PIRATEN 17 PRO-DEUTSCHLAND

08 NPD 18 FREIE-WÄHLER

09 REP 19 PARTEI DER VERNUNFT

10 TIER-SCHUTZ-PARTEI 20 RENTNER

Tabelle A.1: Die Liste aller Parteien aus dem Datensatz der amtlichen Endergebnisse
der Bundestagswahl im Jahr 2013 (Stadt Mannheim, 2013).
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A.1.2 Stadtbezirke Mannheim
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02 Neckarstadt-West
03 Neckarstadt-Ost
04 Schwetzingerstadt/Oststadt
05 Lindenhof
06 Sandhofen
07 Schönau
08 Waldhof
09 Neuostheim/Neuhermsheim
10 Seckenheim
11 Friedrichsfeld
12 Käfertal
13 Vogelstang
14 Wallstadt
15 Feudenheim
16 Neckarau
17 Rheinau

Legende

Abbildung A.1: Mannheim: Aufteilung der Stadtbezirke, übernommen von Stadt
Mannheim (2015a).
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A.1.3 Die Ergebnisse beider Wahlen nach Wahlbezirke
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Abbildung A.2: Amtliches Ergebnis der Bundestagswahl 2013 in Abhängigkeit der
Wahlbezirke und die Ergebnisse der Nachwahlbefragung für fünf betrachtete Wahl-
bezirke. Die dargestellten Wahlbezirke werden so aggregiert, dass alle Ebenen gleich
sind wie bei der Oberbürgermeisterwahl 2015.
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Oberbürgermeisterwahl 2015 
Stimmenanteil in Abhängigkeit der Wahlbezirke

Abbildung A.3: Amtliches Ergebnis der Oberbürgermeisterwahl 2015 in
Abhängigkeit der Wahlbezirke und die Ergebnisse der Nachwahlbefragung für fünf
betrachtete Wahlbezirke. Die dargestellten Wahlbezirke werden so aggregiert, dass
alle Ebenen gleich sind wie bei der Bundestagswahl 2013.
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A.1.4 Die Ergebnisse der Wählerwanderung anhand von Individualdaten

ohne Nichtwähler bei der Oberbürgermeisterwahl

Nachwahlbefragung 2015
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Tabelle A.2: Die Übergangstabelle zwischen der Bundestagswahl 2013 und
der Oberbürgermeisterwahl 2015 anhand der Nachwahlbefragung, ohne

”Nichtwähler“ bei der Oberbürgermeisterwahl 2015.
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Abbildung A.4: Die Übergangswahrscheinlichkeiten zwischen der Bundestagswahl
2013 (links) und der Oberbürgermeisterwahl 2015 (rechts) anhand der Nachwahlbe-
fragung, ohne ”Nichtwähler“ bei der Oberbürgermeisterwahl 2015. Die Breite jedes
Pfeilendes drückt den Anteil an Stimmen aus, den der jeweilige Kandidat von ver-
schiedenen Parteien gewonnen hat.
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A.1.5 Aggregatdaten - amtliches Ergebnis mit Nichtwähler
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Abbildung A.5: Wahlbezirkspezifische amtliche Endergebnisse der Bundestagswahl
2013 inklusive ”Nichtwähler“. Unten: Der durchschnittliche Stimmenanteil über alle
Wahlbezirke in Prozent. Quelle: Stadt Mannheim (2013).
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Abbildung A.6: Wahlbezirkspezifische amtliche Endergebnisse der
Oberbürgermeisterwahl 2015 inklusive ”Nichtwähler“. Unten: Der durchschnittliche
Stimmenanteil über alle Wahlbezirke in Prozent. Quelle: Stadt Mannheim (2015b).
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A.1.6 Vereinigung der Wahlbezirke
Nr. BTW OBW

1
01111
01112

}
01111

01121
01122

}
01121

2
01122
01123

}
01122

3 01131→ 01131

4 01132→ 01132

5
01251
01252

}
01251

02111
02112

}
02111

6
02112
02113

}
02112

02121
02122

}
02121

7
02122
02123

}
02122

03111
03112

}
03111

03112
03113

}
031128

03113
03114

}
03113

9
03121
03122

}
03121

10 03131→ 03131
03141
03142

}
03141

11 03142
03143

}
03142

12 03151→ 03151

13
03261
03262

}
03261

14 04111→ 04111

15 04112→ 04112

16 04121→ 04121

17 04122→ 04122
04131
04132

}
04131

18
04132
04133

}
04132

19
04241
04242

}
04241

04251
04252

}
04251

20
04252
04253

}
04252

Nr. BTW OBW
05111
05112

}
05111

21
05112
05113

}
05112

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙
05114
05115

}
05113

22
05115
05116

}
05114

23 05121→ 05121

24
06111
06112

}
06111

25 06221→ 06221

26 06222→ 06222

27
07111
07112

}
07111

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙

28
07113
07114

}
07112

29
07121
07122

}
07121

30 07231→ 07231

31 07341→ 07341
08111
08112

}
08111

32
08112
08113

}
08112

33
08121
08122
08123

 08121

34 09111→ 09111

35 09231→ 09231

36
09341
09342

}
09341

37
09351
09352

}
09351

38
09361
09362

}
09361

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙

39
09363
09364

}
09362

09471
09472

}
09471

40
09472
09473

}
09472

41
10111
10112

}
10111

Nr. BTW OBW
10121
10122

}
10121

42
10122
10123

}
10122

43
10231
10232

}
10231

44
10261
10262

}
10261

45
10341
10342

}
10341

46
10451
10452

}
10451

11111
11112

}
11111

47
11112
11113

}
11112

48
11121
11122

}
11121

49
11131
11132

}
11131

12111
12112

}
12111

12112
12113
12114

 1211250

12114
12115

}
12113

13111
13112

}
13111

51
13112
13113

}
13112

13121
13122

}
13121

13122
13123
13124

 1312252

13124
13125

}
13123

14111
14112

}
14111

14112
14113
14114

 14112

14114
14115

}
14113

53

14115
14116

}
14114

54 14221→ 14221

55 14331→ 14331

Nr. BTW → OBW
15111
15112

}
15111

56
15112
15113

}
15112

16111
16112

}
16111

16112
16113
16114

 1611257

16114
16115

}
16113

58
16121
16122

}
16121

59
16251
16252

}
16251

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙

60
16253
16254

}
16252

16361
16362

}
16361

61 16362
16363
16364

 16362

17111
17112

}
17111

62
17112
17113

}
17112

63
17121
17122

}
17121

17231
17232

}
17231

64
17232
17233

}
17232

65 17241→ 17241

66 17351→ 17351
17461
17462

}
17461

67
17462
17463

}
17462

Tabelle A.3: Vereinigung der Wahlbezirke zwischen der Bundestagswahl 2013 und
der Oberbürgermeisterwahl 2015, wodurch 67 konstante Ebenen resultieren. Quelle:
Wahlbüro der Stadt Mannheim (2016).
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A.1.7 Differenz des Stimmenanteils zwischen den Brief- und Urnenwählern

Aggregatdaten -- amtliches Endergebnis 
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Abbildung A.7: Differenz der Stimmenanteile zwischen den Brief- und den Ur-
nenwählern bei der Bundestagswahl 2013 (links) und bei der Oberbürgermeisterwahl
2015 (rechts). Quelle: Stadt Mannheim (2013, 2015b).

Aggregatdaten -- amtliches Endergebnis 

Differenz zwischen den Brief- und den Urnenwählern mit Nichtwählern

11.65% 5.39% 5.23% 0.1% 0.44% 3.45% 1.64%

-27.89%

-100%

-50%

0%

50%

CDU SPD Grüne Die Linke AfD FDP Sonstige Nichtwähler

 

Bundestagswahl 2013

29.51% 23.45%
10.86%

1.73%

-65.57%Dr. Peter 

Kurz

Peter 

Rosenberger

Christopher 

Probst
-100%

-50%

0%

50%

SPD CDU Mannheimer 
Liste

Sonstige Nichtwähler

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  D
iff

er
en

z 
in

 P
ro

ze
nt

Oberbürgermeisterwahl 2015

Abbildung A.8: Differenz der Stimmenanteile zwischen den Brief- und den Ur-
nenwählern bei der Bundestagswahl 2013 (oben) und bei der Oberbürgermeisterwahl
2015 (unten) inklusive ”Nichtwähler“. Quelle: Stadt Mannheim (2013, 2015b).
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A.2 Konvergenzdiagnose, Ketten- und Modellvergleich

A.2.1 Multinomial-Dirichlet-Modell: Trace- und Density of Counts

Multinomial-Dirichlet-Modell mit Vorwissen Gamma(λ1 = 30, λ2 = 1)
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Abbildung A.9: Die Ketten (links) und die Dichten (rechts) der gezogenen abso-
luten Häufigkeiten (Counts) von fünf gewählten inneren Zellen des ökologischen
Multinomial-Dirichlet-Modells mit Hyperpriori-ParameterGamma(λ1 = 30, λ2 = 1)
für die Zellen der Loyalen. Links: Von zehn Millionen Iterationen wird jede tausends-
te dargestellt. Die senkrechten roten Linien kennzeichnen die 100 000-ste von zehn
Millionen Iterationen. Die waagerechten weißen Linien zeigen die Mittelwerte al-
ler gezogenen Werte. Rechts: Die Dichten der zweiten und der letzten Million aller
Iterationen und die dazugehörigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Modell mit Vorwissen Gamma(λ1 = 30, λ2 = 2)
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Abbildung A.10: Die Ketten (links) und die Dichten (rechts) der gezogenen ab-
soluten Häufigkeiten (Counts) von fünf gewählten inneren Zellen des ökologischen
Multinomial-Dirichlet-Modells mit Hyperpriori-ParameterGamma(λ1 = 30, λ2 = 2)
für die Zellen der Loyalen. Links: Von zehn Millionen Iterationen wird jede tausends-
te dargestellt. Die senkrechten roten Linien kennzeichnen die 100 000-ste von zehn
Millionen Iterationen. Die waagerechten weißen Linien zeigen die Mittelwerte al-
ler gezogenen Werte. Rechts: Die Dichten der zweiten und der letzten Million aller
Iterationen und die dazugehörigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Hybridmodell ohne Vorwissen

SPD.Kurz

Grüne.Kurz

Linke.Kurz

CDU.Rosenberger

Sonstige_13.Sonstige_15

Nichtwähler_13.Nichtwähler_15

7500
10000
12500
15000

3000

6000

9000

12000

1000

2000

3000

4000

10000

12500

15000

0

500

1000

1500

2000

20000

40000

60000

80000

0 2500000 5000000 7500000 10000000
Iteration

C
ou

nt
s

Trace of Counts
(jede tausendste Iteration)

SPD.Kurz

Grüne.Kurz

Linke.Kurz

CDU.Rosenberger

Sonstige_13.Sonstige_15

Nichtwähler_13.Nichtwähler_15

0.0000

0.0001

0.0002

0.0003

0.0000
0.0001
0.0002
0.0003
0.0004
0.0005

0.0000

0.0002

0.0004

0.0006

0.0008

0.0000

0.0001

0.0002

0.0003

0.000

0.001

0.002

0.003

0.0000

0.0002

0.0004

0.0006

5000 7500 10000 12500 15000 17500

5000 7500 10000 12500

1000 2000 3000 4000 5000

10000 12000 14000 16000 18000

300 600 900

91000 93000 95000
Counts

D
en

si
ty

zweite Million letzte Million

Density of Counts
(zweite und letzte Million)

Abbildung A.11: Die Ketten (links) und die Dichten (rechts) der gezogenen absoluten
Häufigkeiten (Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells ohne Vorwissen. Links: Von zehn Millionen Iterationen wird jede
tausendste dargestellt. Die senkrechten roten Linien kennzeichnen die 100 000-ste
von zehn Millionen Iterationen. Die waagerechten weißen Linien zeigen die Mittel-
werte aller gezogenen Werte. Rechts: Die Dichten der zweiten und der letzten Million
aller Iterationen und die dazugehörigen Mittelwerte (senkrechte Linien).

95



Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(λ1 = 30, λ2 = 1)
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Abbildung A.12: Die Ketten (links) und die Dichten (rechts) der gezogenen absoluten
Häufigkeiten (Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) für die Zellen
der Loyalen. Links: Von zehn Millionen Iterationen wird jede tausendste dargestellt.
Die senkrechten roten Linien kennzeichnen die 100 000-ste von zehn Millionen Ite-
rationen. Die waagerechten weißen Linien zeigen die Mittelwerte aller gezogenen
Werte. Rechts: Die Dichten der zweiten und der letzten Million aller Iterationen
und die dazugehörigen Mittelwerte (senkrechte Linien).
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(λ1 = 30, λ2 = 2)
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Abbildung A.13: Die Ketten (links) und die Dichten (rechts) der gezogenen absoluten
Häufigkeiten (Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 2) für die Zellen
der Loyalen. Links: Von zehn Millionen Iterationen wird jede tausendste dargestellt.
Die senkrechten roten Linien kennzeichnen die 100 000-ste von zehn Millionen Ite-
rationen. Die waagerechten weißen Linien zeigen die Mittelwerte aller gezogenen
Werte. Rechts: Die Dichten der zweiten und der letzten Million aller Iterationen
und die dazugehörigen Mittelwerte (senkrechte Linien).
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A.2.2 Multinomial-Dirichlet-Modell: Autokorrelationen

Multinomial-Dirichlet-Modell mit Vorwissen Gamma(λ1 = 30, λ2 = 1)
Autokorrelation

Sample: 1000, Burnin: 100000
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Abbildung A.14: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Dirichlet-
Modells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) für die Zellen der
Loyalen, anhand einer Stichprobe mit 1 000 Ziehungen nach dem Burn-In von
100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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Multinomial-Dirichlet-Modell mit Vorwissen Gamma(λ1 = 30, λ2 = 2)
Autokorrelation

Sample: 1000, Burnin: 100000
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Thinning: 2000

Abbildung A.15: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Dirichlet-
Modells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 2) für die Zellen der
Loyalen, anhand einer Stichprobe mit 1 000 Ziehungen nach dem Burn-In von
100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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Multinomial-Dirichlet-Hybridmodell ohne Vorwissen
Autokorrelation

Sample: 1000, Burnin: 100000
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Abbildung A.16: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells ohne Vorwissen, anhand einer Stichprobe mit 1 000 Ziehungen
nach dem Burn-In von 100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(λ1 = 30, λ2 = 1)
Autokorrelation

Sample: 1000, Burnin: 100000
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Thinning: 2000

Abbildung A.17: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) für die
Zellen der Loyalen, anhand einer Stichprobe mit 1 000 Ziehungen nach dem Burn-In
von 100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(λ1 = 30, λ2 = 2)
Autokorrelation

Sample: 1000, Burnin: 100000
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Thinning: 2000

Abbildung A.18: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 2) für die
Zellen der Loyalen, anhand einer Stichprobe mit 1 000 Ziehungen nach dem Burn-In
von 100 000. Links: Ohne Thinning. Rechts: Thinning von 2 000.
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A.2.3 Multinomial-Dirichlet-Modell:

Trace of Counts nach Burn-In und Thinning

Multinomial-Dirichlet-Modell mit Vorwissen Gamma(λ1 = 30, λ2 = 1)
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Abbildung A.19: Drei verdünnte Ketten der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Dirichlet-
Modells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) für die Zellen der
Loyalen. Sample: 1 000, Burn-In: 100 000 und Thinning: 2 000. Links: Trace of Counts
der drei Ketten und die dazugehörigen Mittelwerte (waagerechte Linien). Rechts:
Dichten der verdünnten Ketten und die gleichen Mittelwerte senkrecht dargestellt.
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Multinomial-Dirichlet-Modell mit Vorwissen Gamma(λ1 = 30, λ2 = 2)
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Abbildung A.20: Drei verdünnte Ketten der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Dirichlet-
Modells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 2) für die Zellen der
Loyalen. Sample: 1 000, Burn-In: 100 000 und Thinning: 2 000. Links: Trace of Counts
der drei Ketten und die dazugehörigen Mittelwerte (waagerechte Linien). Rechts:
Dichten der verdünnten Ketten und die gleichen Mittelwerte senkrecht dargestellt.
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Multinomial-Dirichlet-Hybridmodell ohne Vorwissen
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Abbildung A.21: Drei verdünnte Ketten der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells ohne Vorwissen. Sample: 1 000, Burn-In: 100 000 und Thinning:
2 000. Links: Trace of Counts der drei Ketten und die dazugehörigen Mittelwerte
(waagerechte Linien). Rechts: Dichten der verdünnten Ketten und die gleichen
Mittelwerte senkrecht dargestellt.
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(λ1 = 30, λ2 = 1)
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Abbildung A.22: Drei verdünnte Ketten der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 1) für die
Zellen der Loyalen. Sample: 1 000, Burn-In: 100 000 und Thinning: 2 000. Links:
Trace of Counts der drei Ketten und die dazugehörigen Mittelwerte (waagerechte
Linien). Rechts: Dichten der verdünnten Ketten und die gleichen Mittelwerte
senkrecht dargestellt.
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Multinomial-Dirichlet-Hybridmodell mit Vorwissen Gamma(λ1 = 30, λ2 = 2)
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Abbildung A.23: Drei verdünnte Ketten der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Dirichlet-
Hybridmodells mit Hyperpriori-Parameter Gamma(λ1 = 30, λ2 = 2) für die
Zellen der Loyalen. Sample: 1 000, Burn-In: 100 000 und Thinning: 2 000. Links:
Trace of Counts der drei Ketten und die dazugehörigen Mittelwerte (waagerechte
Linien). Rechts: Dichten der verdünnten Ketten und die gleichen Mittelwerte
senkrecht dargestellt.
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A.2.4 Multinomial-Dirichlet-Modell:

Ketten- und Modellvergleich mittels MAE

Mean Absolute Error (MAE): Kettenvergleich
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Abbildung A.24: Mean Absolut Error (MAE) in Prozentpunkten zwischen den Er-
gebnissen von drei verdünnten Ketten für jede Version des ökologischen Multinomial-
Dirichlet-Modells (oben) und des Multinomial-Dirichlet-Hybridmodells (unten). Die
Werte sind je nach Modell symmetrisch über die Diagonale.

Mean Absolute Error (MAE): Modellvergleich

Aggregatdaten
Aggregatdaten
 mit Vorwissen 

(30, 1)

Aggregatdaten
 mit Vorwissen 

(30, 2)

8.28 %

6.34 %

8.28 %

2.26 %

6.34 %

2.26 %

Aggregatdaten

Aggregatdaten
 mit Vorwissen 

(30, 1)

Aggregatdaten
 mit Vorwissen 

(30, 2)

Hybrid
Hybrid

 mit Vorwissen 
(30, 1)

Hybrid
 mit Vorwissen 

(30, 2)

5.82 %

5.96 %

4.71 %

7.44 %

4.27 %

3.68 %

6.97 %

4.56 %

3.73 %

5.82 %

7.44 %

6.97 %

5.96 %

4.27 %

4.56 %

4.71 %

3.68 %

3.73 %

Hybrid

Hybrid
 mit Vorwissen 

(30, 1)

Hybrid
 mit Vorwissen 

(30, 2)

2.57 %

2.03 %

2.57 %

0.6 %

2.03 %

0.6 %

Abbildung A.25: Mean Absolut Error (MAE) in Prozentpunkten zwischen den Er-
gebnissen von verschiedenen Versionen des Multinomial-Dirichlet-Modells (symme-
trisch über die Diagonale). Zum Vergleich wurde die erste der drei verdünnten Ketten
für jede Version des Modells verwendet.
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A.2.5 Multinomial-Log-Normal-Modell: Trace- und Density of Counts

Multinomial-Log-Normal-Modell mit Referenzkategorie `Kurz`
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Abbildung A.26: Die Ketten (links) und die Dichten (rechts) der gezogenen ab-
soluten Häufigkeiten (Counts) von fünf gewählten inneren Zellen des ökologischen
Multinomial-Log-Normal-Modells mit Referenzkategorie Kurz. Von zehn Millionen
durchgeführten Iterationen konnte jede hundertste gespeichert werden. Links wird
von zehn Millionen Iterationen jede tausendste dargestellt. Die senkrechten roten
Linien kennzeichnen die 2 000 000-ste von zehn Millionen Iterationen. Die waage-
rechten schwarzen Linien zeigen die Mittelwerte von 100 000 gespeicherten Werten.
Rechts: Die Dichten der zweiten und der letzten Million (jede hundertste Iteration
betrachtet) und die dazugehörigen Mittelwerte (senkrechte Linien).
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Multinomial-Log-Normal-Hybridmodell
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Abbildung A.27: Die Ketten (links) und die Dichten (rechts) der gezoge-
nen absoluten Häufigkeiten (Counts) von fünf gewählten inneren Zellen des
Multinomial-Log-Normal-Hybridmodells mit automatisch gewählter Referenzkate-
gorie Nichtwähler_15. Von zehn Millionen durchgeführten Iterationen konnte jede
hundertste gespeichert werden. Links wird von zehn Millionen Iterationen jede tau-
sendste dargestellt. Die senkrechten roten Linien kennzeichnen die 2 000 000-ste von
zehn Millionen Iterationen. Die waagerechten schwarzen Linien zeigen die Mittel-
werte von 100 000 gespeicherten Werten. Rechts: Die Dichten der zweiten und der
letzten Million (jede hundertste Iteration betrachtet) und die dazugehörigen Mittel-
werte (senkrechte Linien).
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Multinomial-Log-Normal-Hybridmodell mit Referenzkategorie `Kurz`
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Abbildung A.28: Die Ketten (links) und die Dichten (rechts) der gezogenen abso-
luten Häufigkeiten (Counts) von fünf gewählten inneren Zellen des Multinomial-
Log-Normal-Hybridmodells mit Referenzkategorie Kurz. Von zehn Millionen durch-
geführten Iterationen konnte jede hundertste gespeichert werden. Links wird von
zehn Millionen Iterationen jede tausendste dargestellt. Die senkrechten roten Lini-
en kennzeichnen die 2 000 000-ste von zehn Millionen Iterationen. Die waagerechten
schwarzen Linien zeigen die Mittelwerte von 100 000 gespeicherten Werten. Rechts:
Die Dichten der zweiten und der letzten Million (jede hundertste Iteration betrach-
tet) und die dazugehörigen Mittelwerte (senkrechte Linien).
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A.2.6 Multinomial-Log-Normal-Modell: Autokorrelationen

Multinomial-Log-Normal-Modell mit Referenzkategorie `Kurz`
Autokorrelation
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Abbildung A.29: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des ökologischen Multinomial-Log-
Normal-Modells mit Referenzkategorie Kurz anhand einer Stichprobe mit 1 000 Zie-
hungen nach dem Burn-In von 2 000 000. Links: Thinning von 100. Rechts: Thinning
von 2 000.
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Multinomial-Log-Normal-Hybridmodell
Autokorrelation

Sample: 1000, Burnin: 2000000
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Abbildung A.30: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Log-Normal-
Hybridmodells mit automatisch gewählter Referenzkategorie Nichtwähler_15 an-
hand einer Stichprobe mit 1 000 Ziehungen nach dem Burn-In von 2 000 000. Thin-
ning von 100. Rechts: Thinning von 2 000.
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Multinomial-Log-Normal-Hybridmodell mit Referenzkategorie `Kurz`
Autokorrelation

Sample: 1000, Burnin: 2000000
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Abbildung A.31: Die Autokorrelationen der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Log-Normal-
Hybridmodells mit Referenzkategorie Kurz anhand einer Stichprobe mit 1 000 Zie-
hungen nach dem Burn-In von 2 000 000. Thinning von 100. Rechts: Thinning von
2 000.
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A.2.7 Multinomial-Log-Normal-Modell:

Trace of Counts nach Burn-In und Thinning
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Abbildung A.32: Drei verdünnte Ketten der gezogenen absoluten Häufigkeiten
(Counts) von fünf gewählten inneren Zellen des Multinomial-Log-Normal-
Hybridmodells mit automatisch gewählter Referenzkategorie Nichtwähler_15 und
eine verdünnte Kette mit Referenzkategorie Kurz. Sample: 1 000, Burn-In: 2 000 000
und Thinning: 2 000. Links: Trace of Counts der vier Ketten und die dazugehörigen
Mittelwerte (waagerechte Linien). Rechts: Dichten der Ketten und die gleichen Mit-
telwerte senkrecht dargestellt.
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A.2.8 Multinomial-Log-Normal-Modell: Ketten- und Modellvergleich mit-

tels MAE

Mean Absolute Error (MAE): Kettenvergleich
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Abbildung A.33: Mean Absolut Error (MAE) in Prozentpunkten zwischen den
Ergebnissen von drei verdünnten Ketten mit automatisch gewählter Referenzka-
tegorie Nichtwähler_15 und einer Kette mit Referenzkategorie Kurz bei dem
ökologischen Multinomial-Log-Normal-Modell (links) und bei dem Multinomial-Log-
Normal-Hybridmodell (rechts). Die Werte sind je nach Modell symmetrisch über die
Diagonale.
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Abbildung A.34: Mean Absolut Error (MAE) in Prozentpunkten zwischen den Er-
gebnissen von verschiedenen Versionen des Multinomial-Log-Normal-Modells (sym-
metrisch über die Diagonale). Zum Vergleich wurde die erste der drei verdünnten
Ketten mit Referenzkategorie Nichtwähler_15 und die Kette mit Referenzkategorie
Kurz, jeweils für die Version mit und ohne Individualdaten, verwendet.
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E Elektronischer Anhang

Der Inhalt der beigelegten CD ist in der Abbildung E.1 aufgelistet. Auf der CD

ist ebenfalls diese Arbeit in digitaler Version unter dem Name "MA_Kopecki.pdf"

vorhanden.

Im Ordner Briefwaehler_Gewichtung_Bs befindet sich der Beispielcode zur Addi-

tion der Briefwähler und die Erstellung des gewichteten Datensatzes in R, welcher mit-

tels der amtlichen Ergebnisse der ersten zwei Wahlbezirke der Oberbürgermeisterwahl

2015 simuliert wird. Die benötigten Daten werden dem Ordner beigelegt.

Der Ordner Grafiken_Ketten_Matrix umfasst die Grafiken, welche die drei

verdünnten Ketten aller Zellen in einer Matrixform für alle betrachteten Modelle dar-

stellen und eine README.txt Datei mit der Beschreibung der Grafiken.

Im Ordner R_Code sind alle Programmcodes vorhanden, welche für die Datenauf-

bereitung, die Erstellung der Grafiken und für die Analyse verwendet wurden. Die

erzeugten Dateien werden automatisch in den vier dazugehörigen Ordnern gespei-

chert und im weiteren Verlauf geladen. Das heißt, dieser Ordner und alle R Datei-

en müssen dem ”Working Directory“ beigelegt werden. Im Ordner Daten liegen die

nötigen rohen Datensätze vor. Aus Datenschutzgründen dürfen die Daten für das Er-

stellen der Grafiken zum Alter und zur Bildung der Befragten nicht beiliegen. Die

Grafiken, die mithilfe des Codes nicht hergestellt werden können, befinden sich im

Ordner Grafiken/Deskriptive_Analyse. Die R Dateien wurden für die Berechnun-

gen auf dem Server vorbereitet. Die Nummern der Dateien geben die Reihenfolge der

Durchführung an. Das heißt, die Datei unter der Nummer 02 kann erst dann durch-

geführt werden, wenn der Durchlauf der Datei unter der Nummer 01 fertig ist. Die

Dateien, die die gleichen Nummern besitzen (beispielsweise 03a bis 03j), können auf

dem Server parallel berechnet werden. Eine Auflistung aller Pakete, die vor der Analyse

installiert werden müssen, befindet sich in der Datei 00_Pakete.R. Falls die Berechnun-

gen auf einem privaten Rechner durchgeführt werden möchten, sind die Beschreibungen

am Anfang des Codes zu beachten.

Die Datei README.txt enthält die vorliegende Beschreibung des CD Inhaltes.
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CD Inhalt

Briefwaehler_Gewichtung_Bs

Gewichtung_Bs.R

OBW2015.Rda

Grafiken_Ketten_Matrix

E.6.14_DirAgg_matixCounts.pdf

E.6.15_DirAggP1_matixCounts.pdf

E.6.16_DirAggP2_matixCounts.pdf

E.6.17_DirHyb_matixCounts.pdf

E.6.18_DirHybP1_matixCounts.pdf

E.6.19_DirHybP2_matixCounts.pdf

E.6.20_LNagg_matixCounts.pdf

E.6.21_LNhyb_matixCounts.pdf

README.txt

R_Code

Daten

btw-wahlbezirke_neu.xls

exitpoll2015.xls

obw2015_auswertungen_amtliches
_endergebnis_fur_internet.xls

Grafiken

Deskriptive_Analyse

Abb.4.6_Alter.pdf

Tab.4.2_Bildung.pdf

Konvergenzdiagnose

Modell-Kettenvergleich

Modelle_1Tsd

Modelle_10Mill

00_Pakete.R

01_Datenaufbereitung.R

02_Deskriptive_Analyse_Grafiken.R
...

...

03a_Analyse_Dir_agg_10Mill.R

03b_Analyse_Dir_agg_priori1_10Mill.R

03c_Analyse_Dir_agg_priori2_10Mill.R

03d_Analyse_Dir_hyb_10Mill.R

03e_Analyse_Dir_hyb_priori1_10Mill.R

03f_Analyse_Dir_hyb_priori2_10Mill.R

03g_Analyse_LN_agg_10Mill.R

03h_Analyse_LN_agg_ref_10Mill.R

03i_Analyse_LN_hyb_10Mill.R

03j_Analyse_LN_hyb_ref_10Mill.R

04_Konvergenzdiagnose_Grafiken

05a_Analyse_Dir_agg_1Tsd.R

05b_Analyse_Dir_agg_priori1_1Tsd.R

05c_Analyse_Dir_agg_priori2_1Tsd.R

05d_Analyse_Dir_hyb_1Tsd.R

05e_Analyse_Dir_hyb_priori1_1Tsd.R

05f_Analyse_Dir_hyb_priori2_1Tsd.R

05g_Analyse_LN_agg_1Tsd.R

05h_Analyse_LN_hyb_1Tsd.R

06_Modell-Kettenvergleich_Grafiken.R

Konvergenzdiagnose_Funktionen.R

Modell-Kettenvergleich_Funktionen.R

Strasseneinteilung

Strasseneinteilung_BTW2013.xls

strassenverzeichnis_obw_2015.xls

MA_Kopecki.pdf

README.txt

Abbildung E.1: Inhalt der beigelegten CD

118
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