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Abstract

Classification and regression are crucial components in statistics. A feasible approach
to solve such problems is supervised machine learning. Therefore, the main goal of this
thesis is to compare those methods. We also peer into each techniques usability, that is,
their individual difficulty of parameter tuning as well as potential capabilities (i.e. limi-
tations with respect to usage). For this purpose, we apply a collection of six algorithms
on a set of regression and classification problems. That is to say two differently tuned
variations of the random forest and in particular a very recent proposed alteration, called
synthetic random forest. Furthermore we employ SAMME, which is an extension of the
AdaBoost for multiclass problems. For regression on the other hand, we utilize gradient
boosting, a further generalization of boosting. Beside these tree ensembles, we implement
support vector machines on both, classification and regression. While these are typical
machine learning methods, we want to discover if the lasso, a procedure which has its
roots in the statistics, is able to keep up with them. We also record the computational
times of each method. The outcome is that each method shows advantages and drawbacks
and strongly depend on the individual demands.

Namely, whether we are just interested in the results or do we also want to obtain an
interpretable model. Computational time, which fluctuate very heavily, might also affect

the decision-making process.






Contents

1 Introduction

2 Supervised learning methods

2.1 Introduction to random forests . . . . . . . . .. ...
2.1.1 Classic random forests . . . . . ... . ... ... ... . ... ...
2.1.2  Synthetic random forests . . . . . .. .. ..o

2.2 Boosting . . . . . ..
2.2.1 Multi-class AdaBoost . . . . . . . ...
2.2.2  Gradient boosting . . . . .. ..o

2.3 Support Vector Machine . . . . . . . . ... ... ... ...
2.3.1 Classification . . . . . . . . . . . ...
2.3.2 Regression . . . . . ...

2.4 Lasso . . ...

3 Regression problem analysis

3.1 Implementation and execution . . . . . . . ... ...
3.1.1 Airquality . . . .. ..
3.1.2 BostonHousing . . . . . .. ... ... . o
3.1.3 Crime . . . . . .
3.1.4 Highway . . . . . . . ..
3.1.5 Ozone . . . . ..
3.1.6 Peak . . . .o
3.7 Syndb0 ..o
3.1.8 Syn250 . . . ..

4 Classification problem analysis

4.1 Implementation and execution . . . . . . . . . . .. ... ... ... ...
4.1.1 Breast Cancer . . . . . . . . . . . ...
4.1.2 Colon . . . . . . e
4.1.3 Glass . . . . . .
4.1.4 Sonar . ...
4.1.5 Soybean . . . . ...
4.1.6 Spam . . . ...
4.1.7 Vehicle . . . . . . .
4.1.8 Shapes . . . . . . .

5 Summary and Outlook

Bibliography

11
13
13
16
17

19
19
21
22
23
24
25
26
28
29

31
31
33
34
36
38
40
42
44
45

48

54






1 Introduction

Throughout the past few decades and accompanying with the the steady improvements of
processing power, data science has become a crucial component in many fields. Authori-
ties and ventures from basically all branches around the world collect data. Their natural
intention is to extract information. Since the vast quantity makes it utterly impossible
to do this by hand, automating such tasks has become a fundamental goal. Consider for
example an insurance company. They would like to classify customers in high and low risk
groups. Very likewise concerns affect the day-to-day routine in the banking sector. When
it comes to the granting of loans, creditworthiness is essential and has to be determined
somehow.

This work is dedicated to analyze supervised learning methods. Those are extremely
versatile and rest upon the axiom to train algorithms with known examples (i.e. with
training data). For our banking example, the training data could be the loan defaults
of prior recipients as well as individual characteristics, such as the income or the family
status. Based on that experience, the algorithm tries to detect patterns and draws con-
clusions. Subsequently, when the so called ,training phase“ is over, one can finally use
the corresponding model to predict.

A commonly applied technique for such problems are random forests. We will elucidate
their functionality and utilize them on a set of regression and classification problems.
In particular, we are going to consider a new variation, called synthetic random forests.
Their demand is to dominate the classic algorithm in both, handling as well as its predic-
tive capability.

Following up, we introduce an extension of the famous AdaBoost, which was awarded with
the Godel Prize in 2003 (an annual prize for outstanding work in the area of theoretical
computer science). It is known that many real-time face detection technologies (for ex-
ample surveillance cameras or the facebook face recognition feature) apply modifications
of the AdaBoost. Hence we will dispose it on a set of classification tasks and look if it
lives up its good reputation.

Furthermore, we expand our selection to gradient boosting. As it facilitates the use of
different loss functions, we can regard it as a generalization of boosting. One of its real
life implementations is for web page ranking (its an open secret that all major search
engine companies such as Google or Yahoo apply it). Another interesting, yet completely
different exertion was carried out in 2014. Participants of an competition at the CERN
had to develop an algorithm to predict the behaviour of Higgs boson particles. One of
the best performing algorithms was indeed a variation of gradient boosting.

Random forests and boosting in general too, are tree based methods. A completely dif-
ferent approach to solve regression and classification issues is provided by the support
vector machine. In essence, SVMs try to solve an optimizing problem which maximizes

the distance between a separating hyperplane and the observations. Beyond that, support



vector machines allow its operator to apply the ,kernel-trick“. The idea is to map data
into a higher dimension, wherefore partitioning of data points can be greatly simplified.
In reality, their area of application appears to be endlessly large. Intrusion detection
systems, such as computer firewalls, apply support vector machines to identify malicious
activities. Also, image analysis algorithms to classify the facial expression of humans as
well as text mining techniques often use variations of the SVM.

A frequent claim of statisticians is, that most machine learning methods lead to ,black-
box“ predictions. Thus, to draw better conclusions on cause and effect of the variables,
we will also fit a classic regression variation called the lasso. Its main intention is to shrink
down unnecessary variables. A penalty term, called the L; norm, serves as a constraint
to execute the particular feature selection. Therefore, our goal is to find out how well it
can compete with the introduced machine learning methods.

All these techniques still represent just a small fraction of supervised machine learning
tasks. Nevertheless, one might already imagine how difficult the selection of a suitable
method turns out in the end. So the main scope of this thesis is to find out how all these
algorithms perform on a set of regression and classification problems. For this purpose,
we will give in a first step an in-depth explanation, regarding the definition and func-
tionality of all algorithms. Following up, we employ our methods on a set of regression
problems. Afterwards, the procedure will repeated on a collection of classification tasks
with a slightly modified set of methods. Finally, we draw conclusion and try to find out,

if any method was able to stand out.



2 Supervised learning methods

This chapter is dedicated to provide a formal approach to all algorithms. At first we
consider tree based ensemble methods whose origins lie more or less in computer science.
Following up, we eye upon support vector machines before we finally head to the lasso,

which has its roots in the classical statistics.

2.1 Introduction to random forests

Random forests are an ensemble learning method, primarily applied on classification and
regression problems. They were first introduced by Leo Breiman (2001) to improve bagged
trees. To fully understand the idea behind random forests, we have to take a step back
and acquaint ourselves with Classification and Regression Trees, which have also been
developed by Breiman et al. (1984).

The generic term CART (Classification and Regression Trees) tags a technique, which is
applicable on classification or regression problems. Each CART consists of a root node,
which represents the starting point for the problem at hand. Following up, the algorithm
searches for the variable, to split that root node into exactly two, as heterogeneous as
possible (= decision rule), child nodes. One may consider these first two child nodes
as premature groups or classes. For every newly generated node, the entire process is
repeated until a terminal node is found.

Consider the set of features V; to Vyy. Each of them represents the level of energy for
a sonar signal at different frequencies (i.e. 60 different frequencies). These energy levels
result from the collision with objects in the ocean. Our ambition is to predict, whether
the object is either a mine (M) or a rock (R) (Gorman & Sejnowski 1988)

Applying the CART algorithm in R (Therneau et al. 2014) and plotting its results with the
rpart.plot (Milborrow 2015) as well as the rattle package (Williams et al. 2015) provides
us the tree shown in figure 1.

All six terminal nodes indicate the probability for the two classes. Consider for example
the node 8 (bottom left). Then, if the energy levels (in that order) of

Vi > 0.22, V5 > 0.012 and Vo > 0.11

we obtain a probability of 96% that the observation is a mine (M) (and trivially 4% a
rock (R)). The third number (35%) illustrates the portion of observations used for that
terminal node.

CART is a very simple algorithm and its main drawback is the vulnerability to (even
minor) changes in the structure of the data. That means, the model might fit only for
this particular data. Thereby, as we apply the model on other data, we may observe very
high variance. Following up inevitably, the predictive performance will be poor (Hastie
et al. 2009a). Once again Leo Breiman (1996) delivered a feasible approach of how one

may lower the variance of statistical learning methods. Simplified, bootstrap aggregation



Figure 1: CART tree for the sonar data

(or in short bagging) means, that we only take a certain subset of our data and apply the
desired method. In terms of trees, one has to draw B bootstrap samples from the training
data (each with replacement) and fit a tree to each. To make a prediction for a regression
problem, the results of all bootstrap trees are simply averaged. For classification, a
majority vote over all B trees determines the class.

Given this randomization in the training data for each tree, we can greatly lower the

variance (Hastie et al. 2009a) and are henceforth only one step away from random forests.

2.1.1 Classic random forests

Consider B identically distributed (but not independent) trees with positive pairwise

correlation p. We can write the variance of their average as (Hastie et al. 2009¢):
1—
po? + L2 (1)

While the right term of equation 1 shrinks away as we increase the number of trees B,
the ,correlation term“ po? remains. Consequently, at some point we cannot reduce the
variance significantly further by adding more trees into our ensemble.

In order to still obtain lower variance and thus better performance, one has to reduce
the correlation between the trees. This effect can be accessed by only picking a random
subset m < p of the p variables at each node split.

Every single tree is now forced to use different predictors for splitting at all nodes.
Thereby, we now do not only construct bootstrap trees (i.e. trees with different training
data), but also more de-correlated ones (Hastie et al. 2009¢).

Virtually analogous to the bagging approach, the predictor of a random forest for regres-

sion is shown in equation 2. Under the assumption, that the bth random forest yielded



Algorithm 1: Random Forest (RF)

1. For b =1 to B:
(a) Draw a bootstrap sample Z* of size N from the training data
(b) Grow a random forest Tree T}, to the bootstrapped data, by
recursively repeating the following steps for each terminal node

of the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two child nodes.

2. Output the ensemble of trees {T}}

i) = 5 X T) &)
C’f}(x) = majority vote {Cy(z)}? (3)

a class prediction C’b(x), the classification predictor is illustrated as a majority vote over
all trees (equation 3). Algorithm 1 and its corresponding predictors (Hastie et al. 2009¢)
not only give us a brief overview on how random forests are being implemented, but also
a first glimpse on their tuning parameters.

Number of trees B:

According to Hastie et al. (2009¢), it is not possible to overfit random forests due to the
quantity of trees grown. Therefore, as long as B is reasonably high, i.e. 500 or more,
we can likely ignore that parameter. In addition we will hardly profit from growing more
trees (see equation 1). To verify these claims graphically, we used 2/3 of the Sonar data
to train and the remaining 1/3 to test. Figure 2 shows us the resulting error rates. As the
test error and in particular the training error level off after approximately 500 trees, there
is no evidence for overfitting. Secondly, we see that adding more trees into the ensemble

hardly leads to a better result.

Node size:

The node size describes the minimum size of a terminal node (in terms of observations).
Hence, a small value will lead to very bushy trees, which is very common for random
forests. Segal (2004) claims, that tuning the node size has only little impact on perfor-
mance gains. Unlike that, Ishwaran & Malley (2014) allege that an ,optimal tuning of
node size has the greatest potential to improve prediction performance”. However, we

will scrutinize that issue in Chapter 3 ourselves.
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Variables to consider for each node split m:

For the third parameter m (i.e. the ,de-correlation parameter®), Breiman (2001) sug-
gested p/3 for regression and /p for classification problems.

Anyhow, there is a general consensus that tuning random forests is quite simple. Fur-

thermore, they appear to be very robust with regard to overfitting (Hastie et al. 2009¢).

Statisticians in general want to find the cause for an occurring effect. Unlike in linear
regression, we have no classical parameters with standard errors. So, in order to still
testify or measure the relevance of variables in random forests (i.e. for all tree based
methods), we access the ,variable importance®. Figure 3 shows the corresponding results
for the Breast Cancer data (chapter 4.1.1). In classification, we record the mean decrease
in Gini index (see Hastie et al. (2009¢)). For a regression problem, we chart the total drop
in RSS (residual sum of squares) resulting from the variable splits, averaged over all B
trees. In both cases, a large value indicates an important variable. Anyhow, while we still
cannot draw quantitative conclusions, random forests do at least not result in complete

black box prediction.

2.1.2 Synthetic random forests

A slight, yet interesting modification to random forests has been proposed recently by
Ishwaran & Malley (2014). In order to accomplish even less necessity for parameter
tuning, a synthetic random forest (SRF) computes in a pre step new synthetic features
and adds them into the original data set. That preparative procedure is followed up by

the classic random forest.

Algorithm 2: Synthetic Random Forest (SRF)

1. Choose a set of node size values N' = {ny,na,...,np}.

2. Fit a random forest with node size =n; for j =1,...,D. Use the same
B (number of trees) and m (Variables to consider for each node split)
values of each forest. Denote the resulting forests by RF}, ..., RFp.

3. Calculate the predicted value for each random forest RF},j =1, ..., D.
We call the predicted value the synthetic feature.

4. Fit a random forest for features both the newly created synthetic
features and the original p features (using the same
B and m value as before). We call this the synthetic RF.

Node size sequence N :

Supplementary to the parameters we have already come to know in Chapter 2.1.1, we
obtain an additional sequence for node size candidates (nj,ns...,np). For a regression
problem, such a synthetic feature would be the predicted value for each node size candi-

date. In classification, we obtain the predicted probability for each class. More general,



in multiclass problems with K classes, a K-dimensional feature. To avoid overfitting,

synthetic features are constructed by out-of-bag predictions.

Consider the sonar data example. Applying algorithm 2 would result in D additional
synthetic features. Thus, the new data set consists of 60 original, plus D new synthetic

features. Following up, the classic random forest based on the new data will be computed.

2.2 Boosting

The basic assumption for every boosting approach goes back on the early work of Schapire
(1990), where it was shown that combining a set of weak learners can generate a single
strong one. Weak learners are relatively poor performing machines, that do only slightly
better than random guessing (i.e. P(error) < 0.5 ). In case of boosting trees, such a weak
learner could be a primitive stump (i.e. a tree with only two terminal nodes). Simplified,
what boosting does is adding those weak learners sequentially into the ensemble. The crux
is, that boosting modifies the structure or shape of the training data, every time such a
weak learner is computed. By contrast, a random forests leaves the data untouched.

Similarly as it holds for bagging, boosting techniques can be applied on many other
statistical methods beside trees as well. A crucial and important difference between
bagging and boosting is their main ambition. Whereas bagging algorithms want to reduce

the variance, boosting mainly aims on lowering the bias (Hastie 2003).

2.2.1 Multi-class AdaBoost

The first and probably most famous boosting algorithm is called AdaBoost by Freund &
Schapire (1995). As the classic algorithm is more or less limited to binary problems (one
could compute multiple two-class problems) it would not suffice our demands properly.
Hence, as we will study some multiclass problems later, we are going to employ a newer
generalization of the AdaBoost.

First introduced by Zhu et al. (2006), stagewise additive modeling using a multi-class
exponential loss function (or in short SAMME) applies just some small, yet crucial mod-
ifications to the original algorithm. In multiclass problems, it might occur that the error
of a weak classifier T(™ is greater than 0.5. But in AdaBoost, the error of each classifier
T has to be smaller than 0.5. Elsewise, the a(™ which is defined as

1 —err(m

) _ fogt — T (4)

(
@ err(m)

and crucial for reweighting the data becomes negative. The data would then be re-
weighted into the wrong direction. An in-depth implementation and how Zhu et al.
(2009) fixed that issue is described in algorithm 3.

In order to apply SAMME, we start off by fitting a simple classifier 7)) to the data (2a)

and compute its error rate err™ (2b). Depending on that, a value a(!) arises (2c). At this



step we can see the decisive difference to equation 4. The « is now computed as

1 — err(m

(m) _
o =log err(m)

+log(K — 1) (5)
whereas the rear term solves the issue of negativity. Note that for a binary problem
(K = 2), the algorithm reduces itself to the classic AdaBoost. Henceforward, « is being
used in (2d) to compute new weights for the data (i.e. boost the data). Following up,
the whole process is repeated while the next classifier T will put more focus on ,areas®
where a bad predictive performance was observed. Finally after M iterations, we combine

all weak classifiers to a single ,strong” one.

Algorithm 3: SAMME

1. Initialize the observation weights w; = 1/n, i =1,2,...,n.
2. Form =1 to M:

(a) Fit a classifier 70™(z) to the training data using weights w;.
(b) Compute
err’™ = f}lwi]l<ci £ T(m) (mz))/ éwl
(c) Compute
o™ = log% +log(K — 1)
(d) Set
w; — w; exp(a(m) * 1(c; £ T (xz)),
fori=1,...,n
(e) Re-normalize w;

3. Output

M
C(z) = argmax, > o™ x H(T(m) (x) = k)

m=1

Number of iterations M :

This step is very related to the number of trees B of a random forest. But unlike
them, boosting can overfit because of adding to many classifiers 70" into the ensem-
ble. Biithlmann & Hothorn (2007) state that finding a good stopping iteration is the most
important tuning parameter for the classic AdaBoost. Hastie (2003) claims that for noisy
problems in particular, one has to carefully tune the stopping iteration, as overfitting is
an imminent danger. We used the ,mlbench® package (Leisch & Dimitriadou 2010) to
create such a noisy problem. As for the Sonar case, 2/3 of the data were used to train

and hence, 1/3 to test. Indeed, figure 4 exhibits suspicious signs of overfitting, as the the
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test error starts increasing at roughly 60 trees. Since this relation holds for all boosting

algorithms, they seem to be more difficult to tune than random forests.

Tree depth d:

Suppose we would like to boost trees. Following up, one has to find a good value d for
their maximum depth. This parameter is comparable to the node size of a random forest
and therefore controls for the size of the tree. Hastie & Tibshirani (2014) argue that
d =1 (i.e. stumps) oftentimes work very well but one might also try other values, such as
d = 2,4 or 8. Moreover, deeper trees will generally lead to a lower bias, but accompanying,

also a greater variance (i.e. variance-bias trade-off).

For the Sonar data, we boosted such stumps and obtained very good results (figure 5).
Moreover, we observe a notable characteristic of the AdaBoost. The test error decreases
even though the training error hits zero at approximately 30 trees. Schapire et al. (1998)
show, that this behaviour results from the decision boundary, which can still be improved
by further boosting iterations.

However, Breiman (1996) rated the classic AdaBoost when used on trees as the ,best
off-the-shelf classifier in the world“. We will try to find out, if that accounts as well for

the generalized version (chapter 4).
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Figure 4: SAMME starts overfitting after roughly 60 trees, as the test error begins to increase (mlbench
Smiley function with lots of noise)
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2.2.2 Gradient boosting

As in the case of AdaBoost (or SAMME), gradient boosting (Friedman 2001) is an ensem-
ble learning method, which adds many weak learners step-wisely into a prediction model.
Furthermore, gradient boosting is a generalization of boosting, as it allows the use of an

arbitrary loss function L. The goal is to minimize the expected value of that loss function:
F* = argming Ey x[L(y, f(z"))] (6)

where y is the usual response variable, 27 a vector of features and F the prediction
function. The major difference compared to AdaBoost can be understood very easily
with an regression example. Consider a continuous response y and a single variable
x. Applying gradient boosting on that problem, we could chose a stumps as our weak
learner and fit it on the data. After that first step, AdaBoost would re-weight the data
(see chapter 2.2.1) before the next learner is being computed. By contrast, in gradient
boosting we repeatedly fit a weak learner on the error of the previous one. That is to
say for regression the residuals (i.e. the negative gradients of the loss function: ,squared
residuals® (Kneib & Hothorn (2008))). Figure 6 shows the procedure for the first three
iterations. The left plot shows the original data points and tree 1 the corresponding fit.
Tree 2 does now fit the residuals of tree 1. Thus, tree 3 fits the residuals of tree 2 and so

on.
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Ground truth

tree 2 tree 3

Figure 6: Gradient boosting regression trees: tree 1 shows the fit on the original data, tree 2 the fit on
the error (residuals) on tree 1 and so on (Prettenhofer 2014)

Shrinkage parameter v:

In addition to ,number of iterations M“ and ,tree depth d“ , in gradient boosting, we
receive a third tuning parameter. Before a weak learner is added into the ensemble, we
shrink it down by a parameter v. That value is usually between 0.1 and 0.01 and slows
down the rate of overfitting (Hastie et al. 2009b). On a side note: there are versions of

the AdaBoost which also employ shrinkage.
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Figure 7: Gradient boosting: Training error and test error after 500 trees. Even though the slope is very
small, the test error is still improving (without overfitting) as a result of the shrinkage. (Boston Housing
data)

Figure 7 shows the training and test mean squared error results for one of the regression

problems, we explore in chapter 3 (Boston Housing). We experience two characteristics,
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which can be explained by the shrinkage. That is to say the smoothness of the curve and
the huge number of iterations compared to the AdaBoost (SAMME). Hofner et al. (2014)
propose algorithm 4 to implement gradient boosting in a component-wise fashion. As a
result from the additive structure in (2d) we can consider the final model as a generalized
additive model (Hastie & Tibshirani 1986).

Algorithm 4: Component-wise gradient boosting

(0

1. Initialize the function £© and propose a set of N weak learners

2. Form =1 to M:

. . oL .
(a) Compute the negative gradient —5z of the loss function and

evaluate it at F"V(27),i =1, ..n.
This yields the negative gradient vector:

ulm = (u§m))“ . = <— %L(y% F(ml)(sz))>

(b) Fit each of the N weak learners to the negative gradient vector.

i=1,...,n

(c) Select the best weak learner for u(™ according to the residual
sum squares (RSS) criterion and set @™ equal to the fitted values
(d) Update the estimation function:
Fm) = pm=1) 4 4(m) where 0 < v < 1 is a shrinkage factor.

3. Iterate step 2 until the stopping iteration 7, is reached.

2.3 Support Vector Machine

Unlike random forests or boosting, support vector machines (Cortes & Vapnik 1995) are
no ensemble learners. They act more like an optimization algorithm, solving a specific

equation to assign classes.

2.3.1 Classification

In fact, the idea of separation by so-called hyperplanes is generalized by the SVM. That
means, we can solve problems where no perfect linear partitioning is possible (i.e. over-
lapping classes). We want to illustrate the idea in figure 8. Consider a set of training
data points (z1,y1), (22,Y2), ..., (Tn, Yn), whereas the x; represent the observations and y;
the associated classes (here visualized as red and green dots). To execute a classification

between them, one has to compute a hyperplane (the blue line in the middle):
{z: f(x) =2"6+ fo =0} (7)
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Furthermore, a goal is to obtain as much safety space as possible. This is crucial, since we
assume the same distribution for the unknown data points (i.e. those we want to predict
later) as for those we do know (the training data). Therefore, the demand is to maximize

the space between the hyperplane and the margin (i.e. the dotted lines).

T8+ Fo=0 zT B+ fo =0

s ; o 1
- N - rM = T30
N R\.H\ J[i'"’-,
.. "‘MF(H-.. ) * .
- = S TRATEN
- .., *
M — L
. M = 18]

Figure 8: Support vector classifier: The left plot shows perfectly separable classes (red and green dots).
The right one exhibits the overlapping case, whereas points labeled as £; are those who are on the wrong
side of their margin by a distance M. (Hastie et al. 2009f)

Following up, as we allow observations to overlap the margins, we have to penalize them in
a certain manner. These are called slack variables and as we see later, generate the actual
trade-off for our optimization problem. Assuming that the target classes are labeled with

,—1¢ (red) and ,,+1“, (green) we can write down the optimization problem
Lo ol
min — +C i
i 51131+ 02
subject to & >0 and y(al B+ Fo) > 1—& Vi (8)

Cost parameter C':

The cost parameter C is multiplied with each slack variables distance to their correct
margin. Therefore, it controls for the size of it. Large values for C' will lead to small
margins (i.e. ,strong“ penalty for misclassification). Therefore, we might experience
overfitting. Trivially, a small cost will result in a bigger margin and sometimes even in

underfitting.

To solve equation 8 with its corresponding constraints, we have to apply the Lagrange
function and use the Karush-Kuhn-Tucker conditions (see Hastie et al. (2009f)). The

resulting solution for
N
B = Z QYT 9)
i=1
assumes non-zero coefficients «;, for all observations 7, where the constraints of equation

14



8 are exactly met. Hence, the [ does only depend on those observations lying inside
or on the edge of the margin. These observations are called the support vectors. On
a side note: « depends on the cost parameter C' and is obtained by minimizing the
Lagrangian function. Consequently, to obtain now the missing 3y, one has to simply solve
equation 7. Following up, we are finally able to classify observations according to the

linear relationship:

G(z) = sgn[f(z)] = sgn[z" B + fo] (10)

It turns out, that computing linear boundaries yields better results than nonlinear ones.
Thus, if we experience complicated structure in the data, we have to map our observations
into a higher dimension. That technique is oftentimes denoted as the ,Kernel-trick®. It
can be shown, that the hyperplane for a specific set of input feature vectors h(z;), can be

written as

hz) "8+ Bo
Zazyz )> +ﬁ0 (11)

f(z)

We see that f(z) depends on the inner product of h(z). This is mandatory to apply a
Kernel function. Latter one is able to calculate inner products for higher dimensions,
without actually mapping the data. A generalized notation of the Kernel function is

shown in equation 12.

K(z,y) = (h(x), h(y)) (12)

Consider the strongly simplified example shown in figure 9. The three dots on the left
show a one-dimensional problem. It is impossible to draw a linear decision boundary. The
Kernel-trick allows us to compute the inner product for a higher dimension and hence, to

execute a linear separation.

o0 @) —o

Figure 9: Decision boundaries for red and green class: Left side: One dimension = no linear separation
possible. Right side: mapped into two dimensions = linear separation easily attainable.

A very popular kernel function is called the radial basis kernel (RBK). It solves the inner

product in an infinite dimensional feature space.

K(2,y) = exp(—y||lv — yl*) (13)
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RBK parameter v:

Applying the RBK, a second tuning parameter for the SVM arises. Without going to deep
into the mechanics of the radial basis kernel, the v controls for the standard deviation of
the Gaussian. Thus, a large value for v means small variance around each observation
and vice versa. That adjustability henceforthly takes influence on the smoothness of the
decision boundary (Hastie et al. 2009f).

2.3.2 Regression

To apply a support vector machine on regression problems, one has to adjust a few of its
properties. Consider the linear regression model: f(x) = 278 + By. To estimate 3, we
have to minimize (Hastie et al. 2009f):

N
A
H(B, Bo) = >V (i — f (@) + FIBIP (14)
i=1
where V' acts as an so called ,error measure“. A common variant for V' is the ,e-incentive®

loss-function (equation 15).

V) = 0 if |r] <e (15)

|r| —€, else

Only data points lying in between the borders of the margin are being taken into con-
sideration (see figure 10). This idea is almost identical to the support vectors in chapter
2.3.1 For regression, such points are those with small residuals. To solve equation 15,
we apply almost the same procedure as in chapter 2.3.1. Thereby we can show, that the

resulting solution has the form:

fz) = Z(@? — &;)(x, 7;) + Bo (16)

Similarly as for the classification case: for the input values x, the solution depends only on
their inner product (equation 16). Hence, we can apply kernel functions to access higher

dimensions as well for regression problems.
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Figure 10: e-incentive error function: Errors of size |r| < € will be ignored (Hastie et al. 2009f)

2.4 Lasso

The last method we would like to acquaint ourselves is called least absolute shrinkage
and selection operator (lasso). First introduced by Tibshirani (1994), the intention is to
penalize the absolute size of regression coefficients by the use of an L; norm. For linear

regression, its estimator is defined by (Hastie et al. 2009b):

i=1

R N P 2
ﬁlasso = arg mjnﬂ Z (yl — ﬁO — Z xijﬁj)
j=1

Residual Sum of Squares

p
subject to A [8;] <t (17)
=1
o
Ly norm

What happens when we compute equation 17 is that coefficients which are not important
enough, will be shrunken down towards zero (or even to zero). Thus, one can regard the
lasso as a feature selection algorithm. To better understand its strength and functionality,
we consider a fictitious data set. Suppose a regression problem, with n = 100 observations
and in relation, a relatively huge set of p = 50 features. Five of them are strongly
correlated with the response, while the remaining 45 hardly matter.

Since A controls the the L; norm, it is crucial to find a good value. Figure 11 displays
cross validated values for a sequence of lambda values to minimize the mean squared error.
On the other hand, figure 12 shows a curve for each variable. We see the path for their
corresponding coefficients against the log lambda value. Those who are above the axis,
indicate non-zero coefficients. Obviously, the five prominent upper curves are those from
the strongly correlated variables. Furthermore, the vertical line was drawn to indicate the
optimal log lambda value from the cross validation done in figure 11 and thus, represents
the final model.
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Mean-Squared Error

Log Lambda

Figure 11: Cross validated sequence of values for A to the MSE. The left dotted line represents the best
value for A, where the MSE will be being minimized.

a0 49 38 29 18 2 4

1.0
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Coefficients

0.0

-0.2

Log Lambda

Figure 12: Coefficient path against . Curves upon the x-axis indicate positive coefficients. The five
prominent ones display the stronly correlated variables. The line was drawn to show the optimal \ from
figure 11 and thus, the best fit. (for all variables)

18



3 Regression problem analysis

This section is dedicated to study the performance of our methods on eight regression
problems. Five of them origin to real data sets from former research projects. Hence,
the remaining three ones arise from simulated data (we say synthetic). For better un-
derstanding, we will describe each data set and its purpose thoroughly. Afterwards, we
examine boxplots with the results of 100 independent replications for all six algorithms
that we used.

The performance measure shown there is the standardized mean squared error. It is

defined as the classic MSE, divided by the variance of the response and multiplied by 100:

E((y; — f(x:))?)

Standardized M SE =
var(y)

- 100

This adjustment allows better comparison of results across data sets.

To compute the MSE for real data, a 10-fold cross-validation was realized. This can be
done by randomly splitting the data into 10 virtually equally sized folds (i.e. subsets).
Following up, we use 9 folds to learn the algorithm and the spare one to test. We iterate
the process until every fold was used for testing, i.e. 10 time (figure 13). While we
apply that technique mainly to qualify the algorithms, it does also slow down the rate of
overfitting (Hastie et al. 20094d).

Figure 13: 10 fold cross validation. Blue folds show the training data and red ones the test data

Finally, the corresponding (standardized) MSE values for each of the 100 replications
emerge as the average over all ten folds. For synthetic data on the other hand, MSE
values were computed by using an independent test set of size n = 5000.

In addition, we present a table with averaged MSE values over the 100 replications. The
table does also contain mean values for the computational time of each algorithm. All

computations were carried out non-parallelized on a 3.7 GHz CPU unit.

3.1 Implementation and execution

Before we finally eye upon the results, we will give an in-depth explanation on how the

methods were implemented.

Synthetic random forest:

We used the ,randomForestSRC* package (Ishwaran & Kogalur 2015) to implement the
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algorithm. The function was ran with default values for mtry (p/3) and node size (5).
For ntree (the number of trees), a quantity of 500 were chosen (as well for all subsequent
random forests). Moreover, the key-parameter node size candidates was defined as
the sequence of N = {1,2,3,4,5,6,7,8,9,10, 20, 30,50, 100}. Thus, 14 synthetic features
were added to each data set before the actual random forest computation was executed.
Random forest, tuned for the node size:

Here we applied the classic random forest function of the ,randomForestSRC*“ package
with default values for mtry. In contrast, the value for node size was derived directly
from the results of the synthetic random forest. The optimal value is defined as the
node size of the sequence N, that delivered the smallest out of bag error (Ishwaran &
Malley 2014). As already described in chapter 2.1, bagging trees means that each tree is
grown from bootstrap samples (& 2/3 of the training data). The trees are then internally
tested on the unused (out of bag) data. Correspondingly, we obtain the out of bag error
rate. Note that there is no function available to tune a random forest directly for its
optimal node size value. Hence, one has to either compute a synthetic random forest first
or multiple random forests and extract the belonging OOB error rates. Consequentially,
the CPU time shown for this method are SRF computational time plus the classic random

forest with optimal node size.

Random forest, tuned for the mitry:
Since ,randomForestSRC® itself features no ability for tuning the mtry parameter, we
used a function of the ,randomForest* package (Liaw & Wiener 2014). Nevertheless,

final computations were conducted with ,randomForestSRC*.

Support vector machine:

To compute the SVM, we utilized the package ,,e1071“ (Meyer et al. 2015). We applied
the radial basis kernel and the e-incentive loss function. For tuning the parameters, a grid
search was used. Candidates for the cost parameter C were set to {2, 4, 8, 16}. The kernel
specific gamma value was optimized over a sequence reaching from its suggested value ,one
divided by the number of features“ (a) to a maximum of 2 (b) with length.out = 10
(i.e. 10 iterations between (a) and (b) of equal length).

Gradient boosting:

Implementation of gradient boosting was accessed by the ,mboost* package (Hothorn
et al. 2015). To obtain a generalized additive model, we applied the gamboost function.
Furthermore we used stumps as weak learners and the default value for the shrinkage
parameter (= 0.1). The optimal stopping iteration mstop was obtained by the cvrisk
feature which minimizes the loss function. Note that we tuned one preparative iteration
(i.e. 10 folds) with very high input for mtry. This was done to decrease CPU time for the

upcoming 100 replications (we picked the maximum value).

Lasso:
Finally, the lasso computations were realized with the , glmnet“ package from Friedman

et al. (2015). As we explore regression problems, the family was set to gaussian. To find
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the best value for lambda, we employed the cv.glmnet function. The elastic-net penalty

alpha was set to 1 (i.e. the lasso).

3.1.1 Airquality

Our first regression data set ,airquality was taken directly from the ,datasets* package
(R Core Team 2014). Its contents were gathered in 1973 by the New York State Depart-
ment of Conservation and the National Weather Service. The purpose was to evaluate
the air quality of New York from May to September 1973.

We will try to predict the mean of ,,0zone* (inorganic molecule) in parts per billion. Our
set of features consists of five variables, such as the average wind speed in miles per hour
or the maximum daily temperature for 111 observations.

In figure 14 we see boxplots for each method with their corresponding MSE values.
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Figure 14: Standardized and cross validated MSE wvalues (x 100) over 100 independent replications on
the z-axis (Airquality data)

While RF (opt node) and the SRF perform quite similar, the latter one shows greater
fluctuations. That property is surprising, since the idea of random forests is to reduce the
variance. Furthermore it seems that optimizing for node size leads to better results than
mtry. That finding might be justified by the small amount of features (5). Thus, it is very
likely that RF (opt node) uses the same mtry value. Gradient boosting (mboost) does
perform very well, whereas the support vector machine is slightly chipped. The worst

performance was accomplished by the lasso.
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We may examine the mean MSE values as well as the mean CPU time in table 1. Appar-
ently, the good performance of mboost comes along with the expense of notable greater
computational time (74 seconds on average for one replication). By contrast, if we opti-

mize the mtry value of a random forest we do need 2 seconds on average for one replication.

Table 1: mean MSE and mean CPU time in seconds (rounded) for the
Airquality data, n =111, p=5

Method: SRF RF (node size) RF (mtry) SVM mboost Lasso
MSE 31.15 30.26 34.37 38.26  30.19  53.03
CPU time 13 15 2 31 74 1

3.1.2 BostonHousing

Now we want to predict the median value (in US$) of owner occupied homes in suburbs
of Boston. The associated real data were obtained in a census in 1970. It is available
in the ,mlbench* package (Leisch & Dimitriadou 2010) which allocated a couple of data
sets from the Machine Learning Repository (Lichman 2013).

To execute, we have a total of 506 observations and 13 features. For example, we account
for the crime rate per capita, the pupil-teacher ratio or the nitric oxide concentration in

parts per 10 million. The results of the computations can be observed in figure 15.

Figure 15: Standardized and cross validated MSE wvalues (x 100) over 100 independent replications on
the z-axis (Boston Housing data)
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Again, the worst output was attained be the lasso. The synthetic random forest as well as
the node size tuned forest are both showing good results. Best performance was yielded
by the support vector machine, whereas gradient boosting and the random forest (mtry)
are not really far behind. To review the mean MSE values and the mean CPU time, we
take a look at table 2.
Table 2: mean MSE and mean CPU time in seconds (rounded) for the
Boston Housing data, n = 506, p = 13

Method: SRF  RF (node size) RF (mtry) SVM mboost Lasso

MSE 13.04 12.87 15.12 10.70  16.26  31.83

CPU time 112 130 14 230 348 1

It is not very surprising that the good performance of the SVM comes along with a
greater computational time. The best time to performance ratio is accessed by the mtry
optimized random forest. As for the airquality data, mboost CPU time appear to be

disproportionate.

3.1.3 Crime

The Crime data was gathered between 1981 and 1987 in North Carolina. We access it
by the use of the ,Ecdat* package (Croissant 2015). Our goal is to predict the crimes

committed per person. Therefor, we employ a set of 23 features and 630 observations.

===

Figure 16: Standardized and cross validated MSE wvalues (x 100) over 100 independent replications on
the z-azis (Crime data)
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Those are for example a county identifier, the police rate per capita, the population
density, several income variables but also the proportion of various age groups.

Figure 16 represents the appropriate MSE values. The synthetic random forest shows the
best performance. Only slightly behind, all remaining methods except the lasso. Latter

one seems to struggle with the problem, as it shows huge variation plus bad performance.

Table 3: mean MSE and mean CPU time in seconds (rounded) for the
Crime data, n = 630, p = 23

Method: SRF RF (node size) RF (mtry) SVM mboost Lasso
MSE 16.70 21.94 21.18 20.25  26.24  47.03
CPU time 229 276 42 467 1230 1

Anyhow, the Lasso scores with extremely fast CPU time (see table 3). On the other hand,

gradient boosting needs almost 21 minutes for one replication.

3.1.4 Highway

Accessible in the ,car“ package (Fox et al. 2015) and collected by of Carl Hoffstedt in

Minnesota in 1973, our next data set is called ,,highway*.

Lasso -

SWVM -

Figure 17: Standardized and cross validated MSE values (x 100) over 100 independent replications on
the x-azis (Highway data)

The goal is to predict the accident rate per million vehicle miles. We have a total of
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39 observations (sections of large highways) and 11 variables, like the speed limits, the
average daily traffic count in thousands or the lane width in feet.

Applying all six methods to the data, yields the results shown in figure 17. What stands
out immediately is the robustness of the node size optimized random forest. A feasible
approach for explaining this characteristic, is according to Ishwaran & Malley (2014) that
,node size acts as a type of bandwidth parameter that controls the level of smoothness
of the RF predictor”. Second best performance was scored by SRF and mboost. In the
middlefield we see the random forest optimized for the mtry value, persecuted by the

SVM. Not so far behind this time but still the poorest outcome was achieved by the lasso.

Table 4: mean MSE and mean CPU time in seconds (rounded) for the
Highway data, n =39, p =11

Method: SRF RF (node size) RF (mtry) SVM mboost Lasso
MSE 34.30 30.56 46.99 49.58  33.50 55.91
CPU time ) 6 1 31 82 1

Mean MSE values can be compared in table 4 where they back the findings from the

boxplots. As usual, the gradient boosted model needs most time to compute.

3.1.5 Ozone

The last real data set we want to scrutinize was taken from the ,mlbench* package (Leisch
& Dimitriadou 2010). Coming from a study on the atmospheric ozone concentration in
Los Angeles, it has been made public domain by Breiman & Friedman (1985).

Our aim is to forecast the daily maximum one-hour-average ozone concentration.

To perform, we have a total of 203 observations plus 11 features. These might be for
example the day of the week, the humidity or the pressure gradient in millimeter of
mercury (mmHg).

Referring to our findings shown in figure 18 the SVM outperforms tree based methods as
well as the lasso. As in the case before, the RF (node size) shows least scattering, whereas
the SVM, mboost and RF (mtry) produce some outliers.

For another perspective one may examine table 5.

Table 5: mean MSE and mean CPU time in seconds (rounded) for the
Ozone data, n =211, p =11

Method: SRF  RF (node size) RF (mtry) SVM mboost Lasso
MSE 26.96 26.92 27.38 23.17 2755 33.40
CPU time 126 138 8 92 110 1

Thus, it can be seen more explicitly, that the lasso is actually not that far away from
random forests or the mboost. Furthermore, as for all data sets so far, its CPU time is
by far the best. Another interesting point is the fact that mboost for the first time did

not have the worst computational time.
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Figure 18: Standardized and cross validated MSE wvalues (x 100) over 100 independent replications on
the x-axis (Ozone data)

3.1.6 Peak

A nice facet of the ,mlbench® package (Leisch & Dimitriadou 2010) is the ability to create
artificial data sets with arbitrary combinations of features and responses.
We use the peak function to create a regression problem 3. Our z7 is uniformly distributed

on a d-dimensional sphere with radius r for r = 3u and w € [0, 1].
y = 25exp(0.5r%) (18)

For n = 250 and d = 20 (number of features) we obtain some kind of left-tailed bimodal
density function that can be seen in figure 19.

As we apply the algorithms to the data, we obtain remarkable results from the SVM (figure
20). It is very likely that this results from the radial basis function kernel, which might fit
very good on that problem (see chapter 2.3.1, equation 13). Second best performance was
achieved by the SRF and right behind the mboost. A little further appear both random
forest computations and then very chipped the lasso. On a side note one may discern
that all algorithms seem to be very robust in this synthetic case and exhibit very little

scattering.
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Figure 20: Standardized test set MSE values (x 100) over 100 independent replications on the x-axis
(Peak data)

27



Furthermore, table 6 demonstrates, that the good performance from the SVM and the
SRF does not come along with major CPU time. In particular, the SVM needs only one
second for each replication. Again, it is very likely that this results from the radial basis
kernel. The remaining random forests experience unusually high CPU time. Eclipsing
the rest, mboost needs 379 seconds on average for one replication. Very fast CPU time,

but unfortunately very bad performance too, was accomplished by the lasso.

Table 6: mean MSE and mean CPU time in seconds (rounded) for the Peak
data, n = 250, p = 20

Method: ~ SRF RF (node size) RF (mtry) SVM mboost Lasso

MSE 6.80 18.40 1958 084 845  100.63
CPU time 16 89 69 1 379 0
3.1.7 Syn50

This section is dedicated to a regression problem with redundant variables (i.e. variables
that have no influence on the response).

Therefore we created a Gaussian distributed data set with 50 features and 100 observa-
tions. We chose 5 of our predictors to be correlated with the response and hence, 45

pointless ones. The resulting prediction performance can be seen in figure 21.

Figure 21: Standardized and test set validated MSE values (x 100) over 100 independent replications
on the z-axis (Syn50 data)
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For the first time, the synthetic random forest shows a really bad outcome. The reason for
this phenomenon is pretty obvious. As described in chapter 2.1.2, the SRF computes new
synthetic features using the underlying data. Employing the uncorrelated variables too, a
bias will inevitably emerge. A second reason is caused by the feature selection procedure.
At each node, p/3 variables are being considered for the next split. Given the proportion
of 5 important to 45 redundant ones, the RF will very likely only pick redundant features.
Hence, the prediction will be corrupted. That problem accounts too for the RF (mtry)
and in particular for the RF (opt node).

Finally the lasso shows off, as its main intention to shrink down pointless variables and
detect those who really matter, can be utilized. Second best performance yields gradient
boosting which works in a likewise way as the lasso does. Slightly better performance

than both RFs is accessed by the support vector machine.

Table 7: mean MSE and mean CPU time in seconds (rounded) for the
Synb0 data, n = 100, psotar = 50, Preat = 5

Method: SRF  RF (node size) RF (mtry) SVM mboost Lasso
MSE 157.15 64.34 59.61 01.85 3723 19.74
CPU time 12 13 1 16 73 0

Scrutinizing table 7, we see in numbers how good the lasso actually performed. Beyond

that, its CPU time is much better than any other algorithms.

3.1.8 Syn250

Now we would like to investigate, how our algorithms react, as we increase the number
of pointless variables. While we hold n = 100 and py,... = 5 fix, we increase piora; to 250
(i.e. 245 redundant variables).

figure 22 shows the corresponding MSE values for 100 replications. Taking a first glimpse
on the plot, one could assume that increasing p;.:; from 50 to 250 had no significant effect.
In fact, the lasso as well as the mboost algorithm appear to be very robust. Moreover,
the SVM and RFs (not the SRF) results became slightly worse.

But what happens to be particularly striking, is that the CPU time of the lasso hardly
changed (table 8). A completely different outcome accounts for the mboost. If we quin-
tuple the number of non-relevant variables, the computational time of mboost increases

by a factor of roughly 33 from 73 seconds on average to 2431 for a single iteration.

Table 8: mean MSE and mean CPU time in seconds (rounded) for the
Syn250 dat347 n = 1007 Ptotal = 2507 Preal = 5

Method: SRF  RF (node size) RF (mtry) SVM mboost Lasso
MSE 123.58 84.57 79.36 76.26  38.31 18.81
CPU time 29 33 2 69 2431 0
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Figure 22: Standardized and test validated set MSE values (x 100) over 100 independent replications
on the x-azis (Syn250 data)
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4 Classification problem analysis

In the same manner as we did for chapter 3, we start off by specifying our procedure. We
are going to analyze seven real and one synthetic classification problem. Four of them
have a binary response, while the others range from four to fifteen classes. To evaluate
the performance of our algorithms, we apply the Brier score as our main measurement.
While we also look at the misclassification rate (i.e. the error), the Brier score is superior
for data sets with unbalanced class sizes as it includes the probabilistic accuracy of the
method at hand.

Brier score = izn:(fn —0,)? (19)

i=1

Where o,, displays the actual outcome (i.e. true/false). Consider a simple example.
We have a data set with n = 10.000 observations, whereof 9.900 belong to class A and
the remaining 100 to class B. Assume our algorithm classifies all 10.000 observations
to class A. The corresponding error rate would be only 1% and thus, one might judge
the algorithm erroneously as good. By contrast, the Brier score involves the probability
for both classes of each observation. Suppose the estimated probability for class B of

observation n; is 80%. Then, the resulting Brier score is either

(0.8 —1)2=0.04 ifn; € {class B}
(0.8—0)*=0.64 if n; € {class A}

Brier score(n;) =

Derived from the example, the best accessible Brier score is 0 and the worst 1. Note that
for a binary problem, a Brier score of 0.25 means the algorithm estimated a probability of
50% for class A and 50% for class B. The result can be interpreted as ,random guessing*
and is, although it seems to be far away from 1, already very bad.

All Brier score values shown in the upcoming boxplots were obtained from 50 independent
replications, each time multiplied with 100.

As we did in the regression case for the MSE, we computed Brier score values by applying
a 10-fold cross-validation for all real data sets. Analogously, an independent test set of
size n = 5000 is used for the synthetic data.

In conclusion we inspect a table with mean values for the Brier score values as well as
the misclassification rate of all 50 replications. Beyond that, computational time for all
algorithms were recorded and attached to that table. As before, all computations were

executed non-parallelized on a 3.7 GHz CPU unit.

4.1 Implementation and execution

This section is dedicated to the implementation and parameter selection of our methods.

While some of them could be utilized in the same nature as for regression, we had to
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slightly alter a few of them. Only one algorithm has been replaced completely.

Synthetic random forest:

The very same values for all parameters such as described in chapter 3.1 were applied.
Since the algorithm itself distinguishes between regression and classification, no major
modifications were necessary. This means in particular for classification, a K-dimensional
(K classes) feature has been computed for every node size candidate (i.e. the probability

of each class label).

Random forest, tuned for the node size:
Similarly to SRF, no fundamental modifications were required in order to carry out the

algorithm.

Random forest, tuned for the mtry:
Unsurprisingly, the random forest tuned for the mtry value did not need adjustments

either.

Support vector machine:

To compute the SVM, we only changed the length.out step size for the tuning sequence
of the radial basis functions gamma value from 10 to 5. This was due to the extremely
high CPU time.

SAMME:

To employ the multi-class AdaBoost, specifically SAMME, we used the ,,adabag“ package
from Alfaro et al. (2014). Unfortunately , ,adabag® itself features no function for param-
eter tuning. Therefore, to automatically obtain values for mfinal (number of trees added
into the ensemble) and tree depth, we tuned in a stage-wise fashion.

In the first instance, we set mfinal = 500 and boosted stumps for one replication (i.e. 10
times, once for each fold). Emerging from these computations, we analyzed the training
errors. The conclusive value for mfinal was then subjected to the iteration where the the
minimum training error was observed. That value appeared to be very small for nearly all
data sets (i.e. between 20 and 50). Thus, to avoid underfitting, we established a minimum
value for mfinal = 100.

After that, in consideration of the new mfinal, we tried all values € {1,2,3,4,5,6,7,8}
for the tree depth. Analogously, we evaluated training error results for each tree depth
candidate. Obviously, we opted that value, whose exhibited the smallest training error
for one replication (i.e. the mean over 10 folds).

Finally we started the SAMME computations with the previously selected values of
mfinal and tree depth.

Lasso:
In order to apply the lasso on classification problems, we had to change the family to
multinomial. Furthermore, some minor but crucial modifications in order to facilitate

the computation of the Brier score were mandatory.
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4.1.1 Breast Cancer

Our first classification problem originates from a clinical study. The goal was to gather
characteristics of patients with tumors and subsequently predict their appropriate class.
While one group had the hazard-free benignant mutation (n, = 444), the others were
affected by the harmful and cancerous malignant class (n,, = 239).

Such characteristics are several stampings of the patients cells (i.e. thickness, size and
shape) or the bare nucleus on a scale from one to ten. The latter variable describes the
degree of devoid of cytoplasm, which is commonly observed in cell degeneration. The
study was carried out by Dr. Wolberg in Wisconsin (USA) between the years of 1989 and
1992. We took the data from the machine learning repository (Lichman 2013) and want
to predict the target class label. For that, we have a total of 683 observations and 10
features available.

Figure 23 displays the resulting outcomes for our methods. Brier score values appear
to be very low for all methods. Note that even SAMME which might look chipped on
the first glimpse, does still deliver good results. However, it seems to be prone for the
structure of the data as its values vary the most. A similar picture becomes apparent as

we inspect the misclassification rate in figure 24.

1
+
. |

ﬂ

SA

=

= 1

opt

[Ny ]

Figure 23: Cross validated Brier Score values (x 100) over 50 independent replications on the xz-axis
(Breast Cancer data)
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SAMME -

Figure 24: Cross validated misclassification error rate (x 100) over 50 independent replications on the
z-azis (Breast Cancer data)

Yet, we can hardly elect a winner since some methods appear to perform equally well.
Thus, we consider computational time as exhibited in table 9. The synthetic random
forest (and thus the RF (node size)) requires an elusively high CPU time. By contrast,
tuning a RF for the mtry value needs only a small fraction therefrom. Additionally, a
slighty better result was obtained. Particularly striking, the lasso outperforms everything

as it a lot faster while it still yields very good results.

Table 9: mean Brier Score, mean misclassification and mean CPU time in
seconds (rounded) for the Breast Cancer data, n = 683, p = 10, K = 2

Method SRF RF (node size) RF (mtry) SVM SAMME Lasso

Brier Score 2.49 2.59 2.57 2.39 4.32 2.53

Misclassification 2.83 2.81 2.71 2.95 4.46 3.31

CPU time: 4784 4922 197 552 118 30
4.1.2 Colon

The next data set was used by Alon et al. (1999) to discover a potential relationship
between the gene expression of people (in a broader sense: the genetic information of a

gene) and colorectal cancer. In a microarray experiment (molecular biology), 62 tissue
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Figure 26: Cross validated misclassification error rate (x 100) over 50 independent replications on the
z-azis (Colon data)
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samples with 2000 gene characteristics each, were collected. 40 of the patients were
diagnosed with cancerous tumors whereas the remaining 22 had healthy samples. Our
goal is to predict the class label for the respective patient.

As we take a first look at figure 25, the pattern seems to be quite familiar. The Breast
Cancer data showed a similar arrangement, with 5 methods performing in a likewise
fashion, and slightly behind the SAMME. But unlike previously, SAMME together with
RF (opt mtry) exhibit smallest variation. Overall, no algorithm seems to achieve an
outstanding effort here. As we inspect the misclassification rate (figure 26), we see an
interesting contrast between random forests and the remaining methods. The idea of
lowering the variance becomes apparent as all three RF computations present only very
little variability. Secondly, SAMME shows a better performance than we could have
expected.

Table 10 reveals some really fascinating properties. It seem that the SVM had to struggle
with the observation to feature ratio, as its mean CPU time for one replication almost
exceeded one hour. Untouched from that proportion, the lasso does only need 13.41

seconds on average. Second best speed was accessed by the RF (mtry).

Table 10: mean Brier Score, mean misclassification and mean CPU time in
seconds (rounded) for the Colon data, n = 62, p = 2000, K = 2

Method SRF  RF (node size) RF (mtry) SVM SAMME Lasso

Brier Score 13.60 13.20 13.44 13.85 16.89 14.02

Misclassification 15.35 14.90 15.10 15.32 15.81 16.41

CPU time: 1508 1582 86 3184 1593 14
4.1.3 Glass

We will now analyze a data set called ,Glass* (Lichman 2013). Based on forensic in-
vestigations for evidence in criminal cases, we aim to identify the type of glass splinters
according to their chemical composition.

That might be the proportion of Sodium, Magnesium or Aluminium. In total, nine fea-
tures and 214 observations were collected by the Forensic Science Service of the United
Kingdom. Our response variable divides into six groups, for example headlamps, vehicle
or building windows.

Figure 27 portrays the observed Brier Score values and its corresponding ranges. Our
findings suggest that best probabilistic results were obtained from all three random forest
computations. Note that all six methods here deliver viable performance. Even though
the lasso looks far behind, a Brier Score of 9 indicates a forecasting probability of 70%
for the correct class (bearing in mind that there are six alternative classes).

To observe how classification ended up, we examine the equivalent error rates shown
in figure 28. Interestingly SAMME catches up here and rarely even outperforms other

methods. Responsible for that might be the extreme distribution within the classes.
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Figure 27: Cross validated Brier Score values (x 100) over 50 independent replications on the z-axis
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Figure 28: Cross validated misclassification error rate (x 100) over 50 independent replications on the
z-axis (Glass data)
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As we can see in table 11, the first two groups already utilize 70% of all observations.

Thus, the misclassification rate has to be reviewed with caution.

Table 11: Total number of observations and cumulative
proportion for all six classes (Glass)

Class 1 2 3 4 5) 6
observations 70 76 17 13 9 29
cum. proportion 0.33 0.70 0.78 0.84 0.88 1

Generally, it seems that no method was able to manage the problem very well.

Finally to gain an insight of how the trade-off between mean performance and mean CPU
time went off we eye on table 12. The unusual high computational time and moderate
results of the lasso might be attributed to its lack of convergence for A\. Even after
the algorithms internal maximum iteration (i = 100.000) no good solution was found.
Parental might be the 10-fold cross-validation and respectively, the high number of classes
conditioned on rather few observations. As we split the data into ten folds, it might have
occurred that the training data did not have access to one of the rarely occurring classes
(or insufficient access to draw good conclusion). Nevertheless, the fastest algorithm with

second best performance was the RF optimized for the mtry value.

Table 12: mean Brier Score, mean misclassification and mean CPU time in
seconds (rounded) for the Glass data, n =214, p=9, K =6

Method SRF RF (node size) RF (mtry) SVM SAMME Lasso

Brier Score 5.88 5.73 5.79 7.38 8.51 8.93

Misclassification 24.26 22.23 22.12 32.39 23.97 37.53

CPU time: 34 38 4 35 112 69
4.1.4 Sonar

As already briefly presented in chapter 2, we are now going to exercise the Sonar data
(Lichman 2013). The underlying contents were generated by Terry Sejnowski from the
University of San Diego in collaboration with Paul Gorman from the Allied-Signal Aero-
space Technology Center. They wanted to develop a system, that detects hazardous mines
from world war II with sonar signals. In total, we have access to 208 observations. 111
of them are mines and the remaining 97 are rocks (i.e. pretty even groups). Moreover,
we employ a huge set of 60 variables. Those are the sonar signals, differing from low to
high frequency and their corresponding energy level from the collision with the objects.
According to figure 29, the best Brier score was accomplished by the SVM. Leading ran-
dom forest computation and second best overall, is the synthetic variant. The remaining
two RFs deliver only moderate performance. Almost unusable results were yielded by
SAMME and in particular the lasso.
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Figure 29: Cross validated Brier Score values (x 100) over 50 independent replications on the z-axis
(Sonar data)
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Figure 30: Cross validated misclassification error rate (x 100) over 50 independent replications on the
z-axis (Sonar data)
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Somehow, SAMME managed again to classify much better than we would have expected.
In fact, it is second best and almost as good as the SVM (see figure 30). This is curious,
because as mentioned before, the two classes are quite even. For each of the 50 replications,
the algorithm yields zero error in 1-3 folds, but still high Brier score. Thus, there must

be something else to explain SAMMESs special behaviour.

Table 13: mean Brier Score, mean misclassification and mean CPU time in
seconds (rounded) for the Sonar data, n =208, p =60, K =2

Method SRF RF (node size) RF (mtry) SVM SAMME Lasso
Brier Score 10.75 12.82 13.18 8.26 15.65 17.18
Misclassification 17.15 18.57 17.59 11.59 12.08 25.95
CPU time: 89 97 10 113 164 236

For the very first time, the lasso had the highest CPU time (see table 13). As in the Glass
data before, the algorithm had troubles relating the convergence of lambda. It is very
likely that there is a relation between the bad performance. Aside from that, we see that
the SVM as it yields best results for Brier score and missclassification rate, does not need

disproportionately high CPU time.

4.1.5 Soybean

With a quantity of 15, the Soybean data represents the problem with highest count of
potential classes. While we took the data from the machine learning repository (Lichman
2013), it originates from a study in 1980.

The purpose was to develop an expert system, to automatically diagnose diseases of soy-
beans. Many of the associated predictors are binary and provide information about the
intactness of leaves or the growing behaviour (i.e. good/bad). In total, we utilize for
our computations 35 features and 562 observations. Class labels are very widespread
and technical. Some are for example ,herbicide injury” or ,bacterial-blight“. The class-
distribution is very unbalanced and ranges from a maximum of 92 down to a minimum
value of 20 observations.

Anyhow, contemplating figure 31, we observe an excellent performance done by all meth-
ods. Four of them even managed to achieve a Brier score smaller than 1 for every single
replication. On a side note, while the SAMME result looks far behind, its Brier score is
still very good.

A similar phenomenon as in the Sonar data right before illustrates itself as we inspect the
classification error in figure 32. Once again, SAMME was able to perform a lot better
than one might have expected by judging its Brier score. Nevertheless, best performance
was scored by the lasso. Its low error rate (i.e. only 6.53% on average) comes along with
unfamiliar high computational times. The RF (mtry) needs less than one-tenth of the

lasso and yields almost same results (see Table 14).
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Figure 32: Cross validated misclassification error rate (x 100) over 50 independent replications on the
z-axis (Soybean data)
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Table 14: mean Brier Score, mean misclassification and mean CPU time in
seconds (rounded) for the Soybean data, n = 562, p = 35, K = 15

Method SRF RF (node size) RF (mtry) SVM SAMME Lasso

Brier Score 0.74 0.70 0.74 0.99 2.48 0.63

Misclassification  7.98 7.23 7.17 7.65 7.41 6.53

CPU time: 250 278 30 291 2312 376
4.1.6 Spam

The famous ,,Spam* data was gathered in 1998 by the Hewlett-Packard Labs. We utilized
the ,kernlab“ package (Karatzoglou et al. 2015), as it directly provides us with the data.
Like the name already suggests, the task is to classify emails subjected to its contents
either as spam or no spam. Overall, we have access to 57 features and respectable 4601
observations. 2788 of them are classified as spam and the remaining 1813 as no spam (i.e.
a slightly patchy proportion).

Therefore, in case of its observations, ,Spam* is the largest data set we analyze. The
first 48 variables represent words and their associated occurrence. These are for example
,business®, | credit”, ,money“ or , you“. Furthermore, variables that record the frequency
of special characters such as ,,!“ or ,,$“ are part of the data.

Applying all six methods leads to the results shown in figure 33.

Figure 33: Cross validated Brier Score values (x 100) over 50 independent replications on the z-axis
(Spam data)
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Except for the SAMME, all algorithms produce very feasible Brier scores. Very notable
are the small ranges for all techniques. Only SAMME experiences some small, but yet
hardly worth mentioning, outliers.

The corresponding error rates show a very surprising finding (figure 34). SAMME does

actually yield the best classification performance (even though its lead is very scarce).

Figure 34: Cross validated misclassification error rate (x 100) over 50 independent replications on the
z-azis (Spam data)

As we examine table 15, we see an tight contest between the random forests and the
SAMME. Taking the computational times into account, the RF (mtry) performed best.
Note that the SVM needed almost two hours for one replication. Second slowest perfor-
mance was utilized by the lasso, which again had trouble finding convergence and hence

iterated to its maximum value (¢ = 100.000).

Table 15: mean Brier Score, mean misclassification and mean CPU time in
seconds (rounded) for the Spam data, n = 4601, p =57, K =2

Method SRF RF (node size) RF (mtry) SVM SAMME Lasso
Brier Score 3.73 4.03 3.92 4.92 13.95 6.99
Misclassification  4.82 4.83 4.54 6.46 4.50 8.66
CPU time: 2775 3195 554 7166 2666 4969
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4.1.7 Vehicle

The last classification problem with real underlying data is called ,Vehicle®. While the
original data was generated at the Turing Institute (Glasgow) in 1986, it is also part of the
~mlbench* package (Leisch & Dimitriadou 2010). Its original purpose was to distinguish 3
dimensional objects within a 2 dimensional image. Four classes of detailed model cars, i.e.
a double decker bus, a Cheverolet van, a Saab 9000 and an Opel Manta 400, were used for
the experiment. Then, for each model car and a different camera angles, 120 images were
taken, covering a full 360 degree rotation. All appending features were extracted by the
HIPS (Hierarchical Image Processing System). Those are very subject-specific variables,
like the circularity, the compactness, a hollow ratio or a skewness/kurtosis ratio about
the major axis.

As we eye upon figure 35, the support vector machine demonstrates the best Brier score.
Right behind the lasso and then very close the three random forest variations. Worst
effort was yielded by the SAMME.

Our findings in figure 36 show a slightly altered circumstance. The SVM, the lasso and
the synthetic random forest perform all three corresponding to their Brier score. For some
reason, the remaining random forests (i.e. RF (opt mtry) and RF (opt node)) fell off.
They do in fact perform even worse than the SAMME, whose Brier score was almost 50%

higher.

|

Figure 35: Cross validated Brier Score values (x 100) over 50 independent replications on the z-axis
(Vehicle data)

44



4y ]

Figure 36: Cross validated misclassification error rate (x 100) over 50 independent replications on the
z-azis (Vehicle data)

On average, or the support vector machine, more than five minutes were necessary to
compute one replication. Slightly more time was required the lasso. Anyhow, it seems

that no algorithm is able to deliver very good performance.

Table 16: mean Brier Score, mean misclassification and mean CPU time in
seconds (rounded) for the Vehicle data, n = 846, p =18, K =4

Method SRF RF (node size) RF (mtry) SVM SAMME Lasso
Brier Score 7.05 7.38 7.52 5.39 10.77 6.44
Misclassification 21.07 25.04 25.19 16.88 23.88 19.63
CPU time: 206 239 29 306 199 311

4.1.8 Shapes

Our final classification problem is synthetic and can be freely generated within the ,,ml-
bench® (Leisch & Dimitriadou 2010) package.

Applying ,,Shape*, four structures (i.e. four classes) are projected into a two dimensional
coordinate plane. In fact, those are a normally distributed object, a triangle, a square
and a wave. Therefore, we have two features (abscissa and the ordinate). Furthermore,
we decided to use 250 observations.

Plotting the corresponding outcome, we receive figure 37. Apparently, we observe no over-

lapping classes. Thus, a perfect allocation into the four groups seems to be achievable.
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Figure 37: Shapes: A a normally distributed object, a triangle, a square and a wave.
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Figure 38: Cross validated Brier Score values (x 100) over 50 independent replications on the z-axis
(Shape data)
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Figure 38 demonstrates excellent performance for all six methods. Random forests show
very little struggle, but in this case we can consider it as complaining at a very high level,
since no Brier score exceeds 0.3. For the lasso, the SAMME and the SVM, over all 50
replications, zero classification error rates were reported (see figure 39). SRF does slighty
better than RF (opt node) and RF (opt mtry). SAMME requires most CPU time, while
the RF (mtry) finishes one replication in only four seconds (see table 17).

Anyhow, for this problem, all algorithms deliver very convincing results.

Table 17: mean Brier Score, mean misclassification and mean CPU time in
seconds (rounded) for the Shapes data, n =250, p=2, K =4

Method SRF RF (node size) RF (mtry) SVM SAMME Lasso
Brier Score 0.16 0.21 0.20 0.07 0 0
Misclassification  0.81 1.43 1.39 0 0 0
CPU time: 34 38 4 35 112 69
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5 Summary and Outlook

We have seen the results for eight regression and eight classification problems. From there
on, an obvious advantage of random forests is their universal applicability. Our findings
suggest, that optimizing the node size leads to slightly smoother estimates than the
mtry value. The Highway data (chapter 3.1.4), a small set of only 39 observations, em-
phasises this claim very nicely. Thus, a further research interest might be to discover, if
that behaviour holds especially for small data sets. On the hand, optimizing the mtry
yields better results for problems with uncorrelated variables (see chapter 3.1.7 and 3.1.8).
Admittedly, tuning the node size proved itself to be more difficult, as no R-package fea-
tures a function for it. Therefore, as both tuning parameters show advantages concerning
the structure of the data, we cannot elect an explicit winner. Synthetic forests could
easily compete with primordial random forests. However, they were not superior to them.
We found that data with uncorrelated variables completely corrupt their performance.
Furthermore, in general they require much more computational time than the mtry opti-
mized forest. Another drawback of synthetic forests is that they more or less disable the
variable importance. Interpreting ,predicted features“ is hardly possible (i.e. black box
predictions). As a corollary of this, the question arises, if synthetic features can be applied
on other methods. For instance, suppose a SVMs with different kernels or parameters.
Each prediction could be used as such a synthetic feature. Summing up, the predictive
performance of random forests was very convincing. Besides, tuning a random forest is
not difficult, as one of their great benefits is their robustness against overfitting.

By contrast, SAMME was much more difficult to tune. Since its current R-implementation
features no tuning ability itself, one has to carefully observe the process. The computa-
tion time varied from very low to extremely high. For the Breast Cancer problem (see
Chapter 4.1.1), the algorithm needed on average only 118 seconds, compared to an SRF
with 4784 seconds. However, in chapter 4.1.5 (Soybean), SAMME needed 2312 seconds on
average, while the SRF finished one replication after only 250 seconds. While the actual
classification showed persuasive results, the brier score was generally bad. Parental for
this phenomenon might lie in the multiclass-functionality, which allows weak learners to
exhibit error rates greater than 50%.

Gradient boosting, which was utilized only on regression problems, revealed itself to be
nicely realisable. The tuning function of ,mboost“ (Hofner et al. 2014) automatically de-
termines the optimal stopping iteration, to avoid overfitting. While our implementation
approach kept things simple, one could probably improve the performance by defining a
greater set of weak learners (see algorithm 4 step 1). Those could be Markov random
fields or radial basis functions, which require an in-depth knowledge. In addition, smaller
values for the shrinkage parameter mu might also improve the results. Consequentially,
that would greatly increase the CPU time, which brings us to the drawback of gradient

boosting. For seven of the eight problems, the method required an extraordinary huge
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computational time. For example, to handle the Syn250 problem (Chapter 3.1.8), one
replication required on average 2431 seconds. In contrast, the even better performing
lasso needed less than 1 second. Anyhow, unlike the random forests, the performance of
gradient boosting for that problem was not negatively affected by the redundant variables.
Beside the impairment of very high CPU time, one great advantage of the algorithm is,
that we obtain prediction rules, that have similar interpretation potential like classic sta-
tistical models (i.e. no black box predictions).

Next, we would like to review the support vector machine. With respect to the the-
ory behind it, tuning appears to be very difficult. In particular, when it comes to the
choice of the right kernel, a lot of knowledge is necessary. Nevertheless, we were able to
achieve predominantly good performance by applying the radial basis kernel. Tuning can
then be accessed by utilizing a grid search over a sequence of values for the cost and
corresponding gamma parameter. Unfortunately, that results in major computing time.
Strikingly high values were observed for the Spam data (Chapter 4.1.6). On average, to
complete one replication, 7166 seconds were mandatory. In comparison the RF (mtry)
needed only 554 seconds, while it also yielded a better outcome (for both, Brier score and
misclassification). Still notably four time in regression, and two times in classification, the
SVM accomplished the best performance. Maybe the greatest disadvantage of a support
vector machine, is the fact that predictions are completely black box and hence lack of
any explanatory characteristic.

For our remaining method, the lasso, implementation revealed itself to be very easy.
Functions of the ,glmnet“ package (Friedman et al. 2015) automatically accessed the
best value for the tuning parameter lambda. Eye-catching, we observed extremely fast
computational time for regression (i.e. <2 seconds on average for one replication on all
eight problems). However, for all five real data sets as well as the synthetic peak function,
the lasso showed the worst performance. It seems that the lasso needs a special kind of
data before it is able to reveal its potential. For that reason, we introduced the artificial
data sets with redundant variables. Finally the lasso was able to show its strength, as it
produced the best performance.

A much more varying outcome was exhibited in classification. For the Soybean problem
(Chapter 4.1.5), the lasso yielded the best Brier score as well as the lowest classification
error rate. These variations in the performance came along with changes in the compu-
tational time. It seems that, the higher the number of features in relation to the number
of observations, the faster lasso will execute its computations. Consider for instance the
Colon data (Chapter 4.1.2). While we have 2000 features for 62 observations, the lasso
needed only 14 seconds for one replication. By contrast, the SVM with similar Brier score
and classification error, required 3184 seconds on average for one replication. The oppo-
site was observed for the Spam data, with many observations and low features, where one
replication needed 4969 seconds on average.

Altogether, it might not be surprising that all techniques have their right to exist. They
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all have their individual advantages as well as drawbacks. Deciding which method fits
best on the problem at hand strongly depends on its composition and the corresponding
intention. If someone wants to execute image mining, for example classifying faces to
people, it obviously does not matter which variables accounts for the decision. But if the
purpose is to find the cause of an effect, we obviously do not want to employ a support
vector machine. While the accuracy of the prediction is in most cases fundamental, when
dealing with high dimensional data, the computational time can become a serious issue.
Thus, the lasso can be applied to detect important variables and shrink the redundant
ones down towards zero. Another prospective approach is the combination of methods
in a post-processing way. Sometimes, random forests and boosting compute very large
ensembles of trees (i.e. thousands of trees). Many of them are very similar and hardly
improve the predictor. So the lasso can be utilized to select a smaller subset of them
before the final ensemble is constituted. Hastie et al. (2009¢) show that this procedure
can help oftentimes to improve the classifier.

In order to reproduce our results, we attached an USB-Stick with the applied code.
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