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Abstract

Bisher hat sich noch kein Framework etabliert, mit dem der Vergleich zweier Clustering-
Verfahren durchgefiihrt werden kann. Problem hierbei ist unter anderem, dass fiir diese
Verfahren kein natiirliches Giitekriterium existiert. Um nun aus zwei Clustermethoden
die bessere zu identifizieren, wurde in dieser Arbeit eine Benchmarkanalyse mit 50 re-
ellen Microarray-Datensétzen ausgearbeitet und durchgefiihrt. Dabei wird die Differenz
von externen Validierungsindizes zweier Methoden betrachtet. Diese Indizes ermdglichen
es, Clusterlosungen mit einer bekannten wahren Struktur in den Daten zu vergleichen.
Aufgrund der Vielzahl externer Indizes wird untersucht, welche sich, angewendet auf die
vorliegenden Daten, als niitzlich erweisen. Das Ergebnis dieser Untersuchung ist, dass
vor allem die beiden Indizes von Baulieu (B1) und Sokal/Sneath (SS3) Unterschiede zwi-
schen den fiinf angewendeten Clustering-Verfahren aufzeigen. Der Methodenvergleich mit
diesen beiden Indizes ergab daraufhin, dass die Verfahren PAM, K-Means und Ward ge-
geniiber einer hierarchischen Clusterung mit Single-Linkage oder Complete-Linkage vor-
zuziehen sind. Allerdings bleibt dabei zu beriicksichtigen, dass diese Ergebnisse nur fiir
die betrachtete Datensituation giiltig sind und fiir andere Datensétze davon verschieden

ausfallen konnen.
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Kapitel 1

Einleitung

Héufig werden neue Clustermethoden vorgestellt, ohne dass sie mit bereits bekannten
Methoden verglichen werden. Das liegt vor allem daran, dass es keine geltenden Normen
fiir das Benchmarking im Bereich des unsupervised learning gibt.

In dieser Arbeit soll eine mogliche Herangehensweise vorgestellt werden, wie die Wahl der
besten Clustermethode getroffen werden kann. Dabei wird mit 50 Microarray-Genexpres-
sions-Daten aus klinischen Krebsstudien gearbeitet, bei welchen bekannt ist, dass sie in
zwei Klassen eingeteilt werden konnen. Die Klassenzugehorigkeit ist durch eine Zielvaria-

ble Y definiert, welche im Bezug zur jeweiligen Krebsdiagnose steht.

Kapitel 2.1 beschreibt folgende fiinf Clusteranalyseverfahren, welche auf alle 50 Datensétze
angewendet werden: K-Means, Partitioning-Around-Medoids, hierarchische Clusterver-
fahren mit Single-Linkage bzw. Complete-Linkage und das Ward-Verfahren. Die Uberein-
stimmung der gebildeten Partitionen mit der wahren Klassenzugehorigkeit wird anhand
sogenannter externer Indizes validiert. Die genaue Definition dieser findet sich in Kapi-
tel 2.2. Sie kénnen nur angewendet werden, da die wahre Struktur in den Daten durch

die Zielvariable vorgegeben und damit bekannt ist.

Mithilfe des Benchmarking aus Kapitel 3 soll eine Aussage getroffen werden, ob Cluster-
methode 2 im Vergleich zu Clustermethode 1 eine bessere Einteilung liefert. Die Wahl der
beiden Clusterverfahren kann dabei beliebig festgelegt werden. Der Vergleich findet fiir
einen jeweiligen Datensatz durch die Bildung der Differenz der Validierungsindizes zweier
verschiedener Clusteranalyseverfahren statt. Um eine allgemeingiiltige Aussage treffen zu
konnen, welche Clustermethode die bessere ist, werden auflerdem Konfidenzintervalle der

Differenzen iiber mehrere Datensétze hinweg betrachtet.

Schlussendlich folgt in Kapitel 4 die Anwendung der vorgestellten Methodik auf die vorlie-
genden reellen Datensétze und die damit einhergehenden Probleme. Zum Beispiel konnen

viele statistische Verfahren nicht auf Microarray-Daten angewendet werden, da die An-
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zahl an Variablen deutlich hoher ist, als die Anzahl an Beobachtungen. Auch die Wahl des
Validierungsindex ist nicht grundsitzlich festgelegt und wurde fiir die vorliegenden Daten
untersucht, bevor die Benchmarkanalyse mit ausgewéhlten Indizes durchgefiihrt werden
konnte.

Alle Analysen wurden dabei mit der Statistik-Software R, Versionsnummer 3.1.1, durch-

gefiihrt.



Kapitel 2

Methodik

2.1 Clustering-Verfahren

Werden bei einer Studie eine grofie Anzahl an Beobachtungen mit einer Vielzahl von
Merkmalen erhoben, entstehen sehr grofle Datenmengen. Um Strukturen innerhalb dieser
aufzuzeigen, werden héufig Clustering-Verfahren angewendet. Das Ziel einer Clusterana-
lyse besteht darin, eine Menge von Objekten mit bestimmten Merkmalen in kleinere Teil-
mengen einzuteilen. Diese Teilmengen werden Klassen bzw. Cluster genannt. Innerhalb
eines Clusters sollen die Objekte hinsichtlich ihrer Merkmale mdoglichst homogen sein.
Gleichzeitig sollen allerdings Objekte aus unterschiedlichen Clustern méglichst heterogen
sein. (Kaufmann und Pape; 1996, S. 437)

2.1.1 Ahnlichkeits- und DistanzmaBe

Um die Ahnlichkeit zwischen Objekten bzw. zwischen Mengen zu messen, wurden Ahn-
lichkeits- und Distanzmafle definiert. Der Unterschied dieser beiden Mafle liegt in der
Interpretation: Je dhnlicher sich zwei Objekte oder zwei Mengen sind, desto grofler ist der
Wert des AhnlichkeitsmaBes, wohingegen der Wert des Distanzmafies umso kleiner sein

sollte. Kaufmann und Pape (1996, S. 440) definieren sie folgendermafien:

Sei I = {I,...,Iy} eine Menge von N Objekten. Die Funktion s : I x I — R heif}t

Ahnlichkeitsmaf, wenn

Snm = Smn

Snm S Snny (21)

mit n,m = 1,..., N. Die symmetrische N x N-Matrix S = (s,,,) heiit Ahnlichkeitsma-

trix.



2 — Methodik

Sei I = {I,...,Iy} eine Menge von N Objekten. Die Funktion d : [ x I — R heif}t

Distanzmaf$, wenn

dpn = 0und d,,, >0

mit n,m = 1,..., N. Die symmetrische N x N-Matrix D = (d,,) heifit Distanzmatrix.

Statt d,,m, kann auch d(n, m) geschrieben werden.

In der Praxis werden héufig metrische Distanzmafle verwendet. Diese erfiillen die Drei-
ecksungleichung (d,,,, < dp 4+ dyy mit n,m, 0 =1,..., N) und entsprechen der raumlichen
Vorstellung (Kaufmann und Pape; 1996, S. 441).

Insbesondere fiir quantitative Merkmale, welche intervall- oder verhéltnisskaliert sind,
werden metrische Distanzen wie zum Beispiel die L,-Metrik betrachtet (Kaufmann und

Pape; 1996, S. 448):

q

p
=1

Dabei gibt p die Anzahl an Variablen an. Diese Distanzen sind translationsinvariant, je-
doch nicht skaleninvariant, weswegen Variablen bei ungleichen Einheiten normiert werden
missen.

Gebréuchlich sind vor allem die L;-Metrik, auch City-Block-Metrik genannt und die Lo-
Metrik, die der euklidischen Distanz entspricht:

da(n,m) = |[v, — || = (20 — 2m) (20 — xm))% (2.4)

2.1.2 Hierarchische Verfahren

Bei den hierarchischen Clustering-Verfahren unterscheidet man zwischen agglomerativen
und divisiven Verfahren. Ist ein Verfahren agglomerativ, werden die Daten sukzessive
in Teilklassen zusammengefasst, wobei sich die Heterogenitédt der Klassen schrittweise
erhoht. Im Gegensatz dazu stehen die divisiven Verfahren, bei denen bestehende Klassen
sukzessive aufgeteilt werden, was die Heterogenitéat der Klassen schrittweise verringert.
In Abbildung 2.1 sind beide Verfahren anschaulich in einem sogenanntem Dendrogramm

dargestellt.
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-

Heterogenitét

-

1 2 3 4 5 6 7 8

Abbildung 2.1: Dendrogramm - Darstellung einer hierarchischen Clusterung
(Kaufmann und Pape; 1996, S. }53).

Diese Form von Stammbaum wird bei agglomerativen Verfahren von unten nach oben kon-
struiert und genau entgegengesetzt bei divisiven Verfahren (Kaufmann und Pape; 1996,
S. 453). Da divisive Verfahren fiir eine grole Anzahl an Beobachtungen einen hohen Re-

chenaufwand mit sich bringen, sind agglomerative Verfahren weiter verbreitet und werden
im Folgenden néher betrachtet.

2.1.2.1 Prinzip agglomerativer hierarchischer Verfahren

Das Prinzip der agglomerativen Verfahren lésst sich in drei Schritten darstellen (Kauf-
mann und Pape; 1996, S. 457-458):

1. Jedes Objekt der Objektmenge I = {I,..., Iy} entspricht einem Cluster, d.h. es
gilt die Anfangspartition C© = {{I,},...,{Ix}}.

2. Die Partition C%) (v > 1) wird durch Fusion zweier Klassen aus der Partition C*~1
gebildet, fiir die das Distanzmafl D zwischen zwei Klassen minimal wird
(v bezeichnet dabei die Anzahl der Iterationsschritte).

3. Tteration von Schritt 2, bis nur noch ein Cluster besteht, also C*) = {I}.

Zu den gebrauchlichsten hierarchischen Verfahren zéhlen unter anderem der Single-Link-
age, Complete-Linkage und das Verfahren von Ward. Durch die Wahl des Verfahrens wird

bestimmt, wie die Distanz zwischen den Clustern definiert ist.
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2.1.2.2 Single-Linkage-Verfahren

Das Distanzmafl zwischen zwei Klassen Cj und C; entspricht beim Single-Linkage-Ver-
fahren der kleinsten Distanz zwischen einem Objekt aus Cj und einem Objekt aus Cj,

also

D(Cy,C;) = min {dnm}

mGCj

Je grofler der Wert des Heterogenitétsindex h, desto unédhnlicher sind sich zwei Klassen.
Zur Fusion zweier Klassen im v-ten Iterationsschritt werden die Klassen C, und C,, der
Partition C*~Y mit dem kleinsten Distanzmaf gewihlt, wodurch sich der Index ergibt zu

h, = D, = D(C,,Cy) = min min {d.} (2.5)

ki neCy
meC;

(Kaufmann und Pape; 1996, S. 461).

2.1.2.3 Complete-Linkage-Verfahren

Analog zum Single-Linkage-Verfahren wird das Complete-Linkage-Verfahren durchgefiihrt.

Mit dem einzigen Unterschied, dass nun das Distanzmafl zwischen zwei Klassen C} und

C; als grofite Distanz zwischen jeweils einem Objekt aus beiden Klassen definiert ist:
D(Cy, C)) = maz {dpm}-

neCk
mEC]-

Ebenso dndert sich der Heterogenitatsindex zu

h, =D, = D(C,,C,) = 7’12721 Q”é%f {dnm} (2.6)
mECj

(Kaufmann und Pape; 1996, S. 462).

2.1.2.4 Verfahren von Ward

Das Verfahren von Ward beruht auf der Streuung innerhalb der einzelnen Klassen. Die
Heterogenitiat H der Partition C%“~Y und der Partition C*) wird durch die Summe der
Streuung innerhalb der Klassen ermittelt. Mit diesen Gréflien kann der Heterogenitéitsge-
winn bei Fusion der Cluster C, und C,, ermittelt werden, welcher der Distanz zwischen

den beiden Clustern entspricht:

H(CW) = H (V) = e

= |Zo — Zw||* =: D(Cy, C).
Ny + Ny
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Es werden die beiden Klassen aus C%~V) zur Fusion gewihlt, die die Heterogenitit nur

minimal wachsen lassen, was bedeutet

h, = D(C,,C\y) = min Mk

- —
o 2.7
pin P | 2.7

(Kaufmann und Pape; 1996, S. 466).

2.1.3 Nichthierarchische Verfahren: Optimale Partitionen

Bei einer Clusterung mit optimalen Partitionen wird die Qualitdt der Partition durch
ein Giitekriterium gemessen. Es wird die Partition C gesucht, welche im Hinblick auf das

entsprechende Giitekriterium optimal ist (Kaufmann und Pape; 1996, S. 469).

2.1.3.1 Prinzip bei optimalen Partitionen

Ein hiufig angewendetes Verfahren fiir optimalen Partitionen ist das Austauschverfahren,

welches von Kaufmann und Pape (1996, S. 472) folgendermafien beschrieben wird:
1. Sei die zufillige Anfangspartition C¥) vorgegeben.

2. Nun wird fiir jedes Objekt gepriift, ob sich das Giitekriterium verbessert, wenn man

das Objekt in der Partition C®) (v > 0) einem anderen Cluster zuordnet.

3. Das Objekt, welches die grofite Verbesserung liefert, wird dem entsprechendem Clus-

ter zugeordnet, wodurch sich die Partition C**+Y bildet.

4. Die Schritte 2 und 3 werden iteriert, bis keine Verbesserung des Giitekriteriums

mehr eintritt.

Da dieses Verfahren auch ein Suboptimum ergeben kann, sollten mehrere Startpartitionen
C® gewihlt werden. Fiir jede wird das Verfahren erneut durchgefiihrt und die optimale

Partition ist darunter die, welche das beste Giitekriterium liefert.

Ein grofler Unterschied zu den hierarchischen Verfahren ist, dass bei den optimalen Par-

titionen die Klassenanzahl anfangs bereits festgelegt werden muss.

2.1.3.2 K-Means-Verfahren

Zur Clusterbildung werden beim K-Means-Verfahren Clusterzentren konstruiert. Das Giite-

kriterium hierbei ist das Varianzkriterium. Dabei wird angenommen, dass ein Cluster mit
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dhnlichen Objekten eine kleine Streuung innerhalb des Clusters aufweist. Die Streuungs-
quadratsumme in den Clustern soll dabei minimiert werden, was sich mithilfe der qua-
drierten euklidischen Distanz wie folgt darstellen ldsst (Kaufmann und Pape (1996, S.
475), Bacher et al. (2010, S. 299)):

g

hC) =Y |lzn — @[> — min, (2.8)
k=1 neCy,

Daraufhin wird das in Kapitel 2.1.3.1 vorgestellte Prinzip angewendet. In Schritt 2 wer-
den die Clusterzentren der g Cluster als Mittelwertsvektoren der Merkmalsvektoren der
Individuen im Cluster berechnet. Anschliefend wird fiir jedes Objekt gepriift, zu welchem
Clusterzentrum es die geringste Distanz besitzt und in Schritt 3 entsprechend ausge-
tauscht. Dadurch minimiert sich h(C) in jedem Iterationszyklus (Bacher et al.; 2010, S.
299).

2.1.3.3 PAM-Verfahren

Das Partitioning-Around-Medoids-Verfahren hat starke Ahnlichkeiten mit dem K-Means-
Verfahren. Das PAM-Verfahren bietet allerdings den grofien Vorteil, dass es wesentlich
robuster gegeniiber Ausreiffern ist. Zudem konnen auch Daten verarbeitet werden, die
nicht intervall-skaliert sind, da die Distanzmatrix {ibergeben werden kann. Im Gegensatz
zum K-Means-Verfahren werden hier zur Bildung der Cluster nicht Clusterzentren ermit-
telt, sondern Clustermedoiden. Das sind Objekte innerhalb der Daten, die verschiedene
Aspekte der Datenstruktur représentieren. Die Anzahl an Reprisentanten entspricht der
gewiinschten Clusteranzahl. Angelehnt an das Prinzip aus Kapitel 2.1.3.1 wird der ers-
te Schritt beim PAM-Verfahren ,, Build-Phase“ genannt. In dieser werden mithilfe eines
Algorithmus die Reprasentanten gewéhlt. (Ndheres dazu von Kaufman und Rousseeuw
(2005, S.102-103).) Letztendlich sollten sie zentral in der Mitte eines Clusters liegen. An-
hand der Distanzmatrix wird in dieser Phase auch entschieden, welche Objekte zu den
ermittelten Medoiden am néchsten liegen und die Cluster entsprechend gebildet.

Schritt 2 entspricht der ,Swap-Phase®, mit dem Unterschied, dass die Objekte nicht in
ein anderes Cluster ausgetauscht werden, sondern, dass die Repréisentanten ausgetauscht
werden. Es wird gepriift, ob das Giitekriterium optimiert wird, wenn ein Objekt seinen
Platz mit einem Reprisentanten wechselt. Dabei soll die durchschnittliche Distanz der n

Objekte zu den jeweils am néchsten liegenden Clustermedoiden minimiert werden:

h(C) =" d(i,j)z; — min. (2.9)

i=1 j=1
z;; ist dabei eine Indikatorvariable, die 1 wird, wenn Objekt x; dem Cluster zugeordnet

wird, in dem z; das reprisentative Objekt ist. (Kaufman und Rousseeuw; 2005)
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2.2 Validierung von Clusterlésungen

Soll gepriift werden in welchem Mafle sich zwei Clusterlésungen unterscheiden, bieten sich
diverse Validierungstechniken an. Grob kann dabei zwischen internen und externen Indi-
zes unterschieden werden. Externe Indizes priifen dabei die Stabilitédt einer Partition, d.h.
inwieweit die Klassenlabel richtig vergeben wurden. Hierfiir muss die wahre Klassenzu-
gehorigkeit bekannt sein, was in der Praxis oft nicht gegeben ist. In diesem Fall kénnen
interne Indizes angewendet werden, welche nur aus den Daten, die der Clusteranalyse
zur Verfiigung stehen, berechnet werden (Scherl; 2010). Im Folgenden werden nur externe
Indizes betrachtet, da diese im weiteren Verlauf fiir die Benchmarkanalyse in Kapitel 3

interessant sind.

2.2.1 Grundprinzip externer Indizes

Mit externen Indizes lisst sich entweder die Ahnlichkeit zweier Clustermethoden quantifi-
zieren oder die ermittelte Clusterlosung mit der wahren Klassenzugehorigkeit vergleichen.
All diese Indizes beruhen auf einer Kontingenztabelle, die fiir alle Objektpaare eines Da-
tensatzes folgende Information enthélt (Albatineh et al.; 2006):

Clustermethode 2

Anzahl an Paaren im selben Cluster | in verschiedenen Cluster
Cluster- im selben Cluster a b
methode 1 in verschiedenen Cluster c d

Tabelle 2.1: Kontingenztabelle von Objektpaaren zweier Clustermethoden.

e a = Die Anzahl an Objektpaaren, die in beiden Clusterungen demselben Cluster

angehoren.

b = Die Anzahl an Objektpaaren, die mit Methode 1 demselben Cluster zugeordnet
wurden, jedoch mit Methode 2 nicht.

e ¢ = Die Anzahl an Objektpaaren, die mit Methode 2 demselben Cluster zugeordnet
wurden, jedoch mit Methode 1 nicht.

e d = Die Anzahl an Objektpaaren, die in beiden Clusterungen unterschiedlichen

Clustern angehoren.

2.2.2 Beispiele externer Indizes

Albatineh et al. (2006) liefern eine Ubersicht mit 22 externen Indizes, die mithilfe von
Tabelle 2.1 und der Anzahl von Beobachtungen m im Datensatz berechnet werden kénnen.

Dabei gilt (’;) = a+ b+ ¢+ d, was der gesamten Anzahl an Objektpaaren entspricht.

9
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Wie in Tabelle 2.2 zu erkennen ist, unterscheiden sich einige der Indizes nur geringfiigig

in ihrer Berechnung. Allgemein kann gesagt werden, dass je hoher ihr Wert am Maximum

des jeweiligen Wertebereichs liegt, desto @hnlicher sind sich die zwei Clustermethoden

bzw. desto besser entspricht die ermittelte Clusterung der wahren Klassenzugehorigkeit.

Name Symbol Formel Wertebereich
Rand R —otd [0,1]
Hubert H % [-1,1]
Czekanowski CZ S 0,1]
Kulezynski K (5 +:%) [0,1]
McConnaughey MC % [-1,1]
Peirce PE % [-1,1]
Fowlkes und Mallows FM m [0,1]
Wallace (1) W1 s [0,1]
Wallace (2) W2 o [0,1]
Gamma I \/(a—&-b)(;—i:)lzi—i—d)(b—i-d) F1,1]
Sokal und Sneath (1) SS1 | 1 (i +on t+ah k) [0,1]
Baulieu (1) B1 @)2‘@27(5)2‘3)*““’)2 0,1]
>

Russel und Rao RR P! [0,1]
Fager und McGowan FMG \/(a+Z)(a+c) -3 \/(laer) -3, 1)
Pearson P (a+b)(a$?)_(gid)(b+d) L1
Baulieu (2) B2 ﬁ -5, 5]
Jaccard J s [0,1]
Sokal und Sneath (2) SS2 PRI [0,1]
Sokal und Sneath (3) SS3 \/(Hb)(afg(wb)(dﬂ) [0,1]
Gower und Legendre GL #ﬁc)ﬂl [0,1]
Rogers und Tanimoto RT #ﬁc)m [0,1]
Goodman und Kruskal GK Zg;gg [-1,1]

Tabelle 2.2: Auflistung verschiedener externer Indizes mit Angabe der Entwickler und
der entsprechenden Wertebereiche (Albatineh et al.; 2006).

10



Kapitel 3

Benchmarking

Im Machine Learning oder der computationalen Statistik werden stéindig neue Verfahren
vorgestellt, die im Vergleich zur bisher gebréduchlichen eine ,,bessere Performance bieten
sollen. Ob das allerdings tatséchlich der Fall ist, wird meist nicht statistisch nachgewiesen.
Im Fokus eines Benchmark Experiments liegt daher allgemein nicht nur die Beurteilung
der Performance verschiedener Algorithmen, sondern den besten unter ihnen zu identifi-
zieren (Hothorn et al.; 2005).

Ein Benchmarking kann mit simulierten Daten oder mit reellen Datensétzen durchgefiihrt
werden. Simulationsstudien spiegeln dabei allerdings haufig nicht die Komplexitéit der
Verteilung von reellen Daten wieder, weswegen die Betrachtung reeller Datensétze von
grofler Bedeutung ist. Dabei liegt das Interesse jedoch nicht in der Aussage fiir nur einen
Datensatz, sondern ob ein Verfahren, angewendet auf diverse Datensétze aus einem The-
menbereich, im Mittel das bessere Ergebnis liefert. Die beobachtete Performance héingt
bei festem Stichprobenumfang und fester Verteilung von der jeweiligen Stichprobe ab. Das
,no-free-lunch“-Theorem besagt auflerdem, dass nicht davon ausgegangen werden kann,
dass Methode 2 fiir sémtliche Stichprobengroflen und Verteilungen eine bessere Perfor-
mance liefert wie Methode 1. Daher sollten vor allem bei reellen Daten immer mehrere

Datensétze in Betracht gezogen werden (Boulesteix et al.; 2015).

In dieser Arbeit soll nun im Bereich des unsupervised learning, zu welchem die Cluster-
analyse zahlt, solch ein Benchmarking mit reellen Datensitzen durchgefiihrt werden. Das
Ziel ist also, eine Aussage dariiber zu treffen, ob Clustermethode 2 im Vergleich zu Clus-

termethode 1 eine bessere Einteilung liefert.

11
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3.1 Hypothesenformulierung

Mithilfe von Hypothesentests lassen sich zwei verschiedene Methoden vergleichen. Bei
solchen Tests werden bestimmte Annahmen {iber einen Parameter oder eine Verteilung
in der Grundgesamtheit getroffen. Diese Annahmen miissen dann als statistisches Test-
problem formuliert werden (Fahrmeir et al.; 2011). Boulesteix et al. (2015) stellen eine
statistische Testformulierung vor, die im Kontext von Methodenvergleichen angewendet
werden kann. Diese Testformulierung beruht auf der Identifizierung der besseren Klassi-
fikationsmethode. Hierfiir kann als Parameter die Fehlerrate ¢ gewéhlt werden, da diese
den Anteil falsch klassifizierter Objekte angibt und somit eine Aussage iiber die Giite des

Verfahrens getroffen werden kann.

Analog dazu gibt es jedoch fiir Clusterverfahren kein solches natiirliches Giitekriterium.
Geht man allerdings davon aus, dass die wahre Klassenzugehorigkeit bekannt ist, kann
einer der in Kapitel 2.2.2 vorgestellten Validierungsindizes VI als Giitekriterium herange-
zogen werden. Bei der Untersuchung eines Datensatzes gilt dann, dass Methode 2 besser
als Methode 1 ist, wenn VI, > V1.

Wie bereits einleitend erwéahnt, liegt das Interesse beim Benchmarking mit reellen Da-
tensétzen jedoch nicht in der Aussage fiir nur einen Datensatz. Daher werden die Hypo-
thesen mithilfe der Erwartungswerte der Indizes aller beriicksichtigten Datensétze folgen-

dermaflen definiert:

vs. Hy: E(VL) — E(VL) < 0.

Wobei gilt, dass E(VI,) — E(VIy) = E(VI; — VI,) = E(AVI), womit die Bedeutung der

Differenz der Indizes hervorgehoben wird.

Eine aus theoretischer Sicht vollstdndige Formulierung der Nullhypothese liegt auflerhalb
der Zielsetzung dieser Arbeit, wird allerdings von Boulesteix et al. (2015) ausfiihrlich fiir
die Klassifikation diskutiert.

3.2 Bootstrap-Konfidenzintervalle

Um die Prézision einer Schéitzung zu quantifizieren, werden héufig Intervallschidtzungen
fiir den interessierenden Parameter 6 durchgefiihrt. Dies ist auch fiir 6 = AVI moglich.

Ein iibliches 95%-Konfidenzintervall mit Irrtumswahrscheinlichkeit o = 0.05 erhilt man
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zum Beispiel mit
0+ z_o06. (3.2)

Dabei ist 6 der Punktschétzer des interessierenden Parameter, ¢ die Schéitzung der Stan-
dardabweichung von 6 und z, _, entspricht dem (1—«)-Quantil der Standardnormalvertei-
lung. Das Problem bei solchen Standardintervallen ist, dass sie auf einer asymptotischen
Approximation beruhen, die in der Praxis nicht immer gegeben ist. Eine Moglichkeit diese

Normalverteilungsannahme zu vermeiden, bieten Bootstrap-Konfidenzintervalle (DiCiccio
und Efron; 1996).

3.2.1 Bootstrap-Stichprobe

Fiir die Berechnung eines Bootstrap-Konfidenzintervall ist eine grole Anzahl an Bootstrap-

Stichproben nétig. Im Folgenden wird kurz die Idee dieser Stichproben aufgezeigt.

Da es nicht immer méglich ist, eine gesamte Population X = (X7,..., Xy) zu erheben,
wird eine beobachtbare, zuféllige Stichprobe x = (z1, ..., z,) aus dieser Grundgesamtheit
gezogen. Dabei ist bekannt, dass x einer bestimmten Verteilung F' folgt, wobei die exakte
Verteilung unbekannt ist. Meist liegt das Interesse ohnehin keineswegs in der gesamten
Verteilung, sondern an einem konkreten Parameter 6 = T'(F'). Dieser soll auf Basis von «
mit § = s(z) geschiitzt werden, dabei gilt oft s(x) = T'(F).

Es wird angenommen, dass F die empirische Verteilungsfunktion ist, die jedem Wert x;,

1 =1,...,n, die Wahrscheinlichkeit % zuweist, womit sich F auch schreiben lisst als

Fla) = %Z I < 2), (3.3)

mit /() als Indikatorfunktion.

Somit kann die Bootstrap-Stichprobe z* = (27, ..., x}) ermittelt werden. Dafiir wird n-
mal zufillig mit Zuriicklegen aus der Stichprobe x = (x1,...,x,) gezogen, womit jedes
xf, 1 =1,...,n, unabhingig und identisch F-verteilt ist.

Beide Stichproben haben also den gleichen Umfang n, wobei die Werte aus x einmal,

mehrfach oder gar nicht in z* vorkommen koénnen.

Einer Bootstrap-Stichprobe x* kann eine Bootstrap-Replikation von 0 zugewiesen werden:
0* = s(x). (3.4)

Dabei wird die Schatzfunktion s(-) auf die Bootstrap-Stichprobe angewendet.
Dieses Verfahren kann nun wiederholt durchgefiihrt werden, sodass B Bootstrap-Replika-
tionen entstehen (Efron und Tibshirani; 1993).

13
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3.2.2 BC,-Bootstrap-Intervall

Es gibt verschiedene Ansétze ein Bootstrap Konfidenzintervall zu schiatzen. Eine Moglich-
keit bietet die von Efron und Tibshirani (1993) vorgestellte BC,-Methode (engl. , bias-
corrected and accelerated”). Diese liefert mithilfe der Perzentile des Bootstrap-Histo-

gramms approximative Konfidenzintervalle fiir 6.

Mit den beschriebenen Grofien aus Kapitel 3.2.1 lédsst sich die kumulierte Verteilungsfunk-

tion G(c) von B Bootstrap-Replikationen 6*(b) aufstellen zu

Gle) = " {9*(;) - C}. (3.5)

Nach Definition gilt G~ (a) = 0*(®) was dem a-100ten Perzentil der Bootstrap-Verteilung
entspricht. Liegen B Bootstrap-Replikationen vor, so ist é*B(a) das empirische Perzentil.
Bei 2000 Replikationen und o = 0.05 gleicht é;ég'(?‘r’) also dem hundertsten (= B - o) Wert
aus der geordneten Liste aller Replikationen.

Die Grenzen des BC,-Intervalls werden nun auch von den Perzentilen der Bootstrap-

Verteilung bestimmt, allerdings abhéngig von zwei numerischen Parametern Z; und a:

Opc, (@) = G (augy) (3.6)

20 + Z(a)
1—a(% +2@) )

mit Ugdj = P (20 +

Dabei bezeichnet ® die Verteilungsfunktion der Standardnormalverteilung mit den Quan-
tilen 2(®) = &~ 1(a).
Das 90%- BC,-Konfidenzintervall ergibt sich dann zum Beispiel zu [éBCa (0.05), O, (0.95)}

sowie jedes andere (1—2«)-BC,-Konfidenzintervall entsprechend zu [éBCa (), 0pc, (1 — a)] :

Die Formel 3.6 fiir die Intervallgrenzen kann durch folgende Annahmen motiviert werden:
Es existiert eine monoton steigende Transformation ¢ = m(#) mit ¢ = m(6), so dass fiir

jegliches 6 gilt

& ~ N(¢ — 204,0%)
mit oy = 1+ a¢.

(3.7)

Da die Transformation m in Formel 3.6 keine Beriicksichtigung findet, konnen die Inter-
vallgrenzen also auch ohne Wissen iiber m berechnet werden.
Mithilfe der Wahrscheinlichkeit P(¢ < ¢) = ®(z) lisst sich der Bias-Korrektor z, gut

interpretieren, womit aufgrund der Monotonie auch gilt P( < 6) = ®(z,).
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Die einfachste Form des BC,-Algorithmus schétzt zg daraufhin durch

2 = & ’ {é*(;) - é} — ! (é(é)) . (3.8)

Die Beschleunigung a in Formel 3.7 gibt an, wie schnell sich der Standardfehler auf Basis
der Standardnormalverteilung éndert. Auch fiir sie gibt es verschiedene Methoden zur
Schéatzung. Zum Beispiel konnen die Jackknife Werte einer Statistik 6 = s(z) herangezo-

gen werden. Dabei wird die Stichprobe x(;) verwendet, die aus der urspriinglichen Stich-

probe x besteht allerdings ohne den Wert x;. Es gilt é(‘) => é(i)/n, wobel é(i) = s(x()).
i=1

Damit ergibt sich fiir den Schétzer von a:

n ~ ~ 3
O, — 0
. ;( 8 <)> ;.

’ {zil (é(-) - é(i))2}3/2

(DiCiccio und Efron; 1996; Efron und Tibshirani; 1993).

Weitere Schétzer fiir zp und a werden zum Beispiel von DiCiccio und Efron (1996) disku-

tiert.
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Kapitel 4

Anwendung auf 50 Microarray-Datensétze

Ziel der vorgestellten Benchmarkanalyse ist es, beim Vergleich zweier Clusterverfahren
das bessere der beiden zu identifizieren. Die in Kapitel 2 und 3 vorgestellten Verfahren
sollen nun auf 50 verschiedene Microarray-Datensétze angewendet werden. Hierfiir wird
zunéchst auf die Datenstruktur eingegangen, bevor eine Clusteranalyse mit verschiedenen
Verfahren durchgefiihrt wird. Diese Clusterlosungen werden dann mithilfe der Indizes aus
Kapitel 2.2.2 validiert und verglichen. Fiir alle Analysen wird die Statistik-Software R,

Versionsnummer 3.1.1, genutzt.

4.1 Microarray-Daten

Mithilfe der Microarray-Technologie ist es seit Ende der 1990er Jahre moglich, die DNA-
Sequenzen eines Organismus zu analysieren. Die DNA transkribiert mRNA. Wird diese
sogenannte Messenger-RNA in ein Protein iibersetzt, heifit dieser Vorgang Genexpres-
sion. Mit einem Microarray kann das Expressionsniveau aller Gene in einem einzigen
Experiment festgestellt werden, da die Menge verschiedener mRNA-Molekiile zu einem

bestimmten Zeitpunkt in einer Zelle gemessen wird.

Abbildung 4.1: Auszug aus einem Microarray.

Ein Microarray ist ein Objekttrager aus Glas, auf dem Millionen von einzelnen DNA-
Molekiilen auf sogenannten ,,Spots“ fixiert werden. In Genexpressions-Studien soll mit

jedem einzelnen dieser DN A-Molekiile ein mRNA-Molekiil im Genom untersucht werden.
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Eine weit verbreitete Methode ist das Vergleichen von Expressionsniveaus in zwei ver-
schiedenen Proben (zum Beispiel zwei verschiedene Entwicklungsstadien). Dabei wird die
isolierte mRNA in beiden Proben farblich unterschiedlich markiert, z. B. in Probe 1 griin
und in Probe 2 rot. Werden die beiden Proben vereinigt und mit einem Laser angeregt,
findet eine Hybridisierung statt. Anhand der Fluoreszenzintensitat und Farbe der einzel-
nen Spots (vgl. Abbildung 4.1) kann das relative Expressionsniveau der Gene in beiden
Proben geschétzt werden.

Mit Microarrays kann also erforscht werden, welche Gene in welchen Zelltypen aktiv sind
bzw. an welchen Zellvorgéingen sie teilnehmen und wie sich das Expressionsniveau ein-
zelner Gene z. B. in verschiedenen Krankheitsstadien verhélt. Besonders im Bereich der
Onkologie erweisen sich Microarrays als informativ, denn ihre Analyse kann dazu bei-
tragen, Tumorarten zu klassifizieren und neue Unterarten zu definieren. Unter anderem
konnen diesen Daten auch genutzt werden, um Vorhersagen zur Prognose und Diagnose

fiir Krebspatienten zu treffen (Causton et al.; 2003).

Die Herausforderung bei der Analyse von Microarray-Daten ist, dass die Anzahl an Va-
riablen deutlich hoher ist, als die Anzahl an Beobachtungen, wodurch enorm grofle Da-
tenmengen entstehen. Werden n Patienten betrachtet, sind diese als Beobachtungen zu
verstehen. Von jeder Beobachtung werden bestimmte Gene untersucht, diese kdnnen sta-
tistisch als p Variablen angesehen werden. Typischerweise werden 20 bis 300 Beobachtun-
gen untersucht, wohingegen p dabei zwischen 5.000 und 50.000 liegen kann. Dadurch sind

viele statistische Standardverfahren nicht anwendbar (Boulesteix et al.; 2008).

4.2 Verwendete Datensitze

Im Folgenden sollen Clusteranalyseverfahren auf 50 verschiedene Microarray-Datenséitze
angewendet werden. Diese Datensétze wurden bereits von Boulesteix et al. (2015) zum
Vergleich von Klassifikationsverfahren verwendet. Dabei handelt es sich um 50 reelle Da-
tensétzen aus klinischen Krebsstudien, bei welchen bekannt ist, dass die Beobachtungen
in zwei Klassen eingeteilt werden konnen. Die Klassenzugehorigkeit ist durch eine Ziel-
variable Y definiert, welche im Bezug zur jeweiligen Krebsdiagnose steht. Dabei kann es
sich beispielsweise um den aktuellen Gesundheitszustand handeln (z.B. Tumor ja/nein)
oder um eine langerfristige Prognose (z.B. gute/schlechte Prognose).

Fiir alle Studien steht eine Datenmatrix X zur Verfiigung, in der jede Beobachtung v,
bis v,, eine Zeile (x4, ..., x,) darstellt. Die Spalten entsprechen den p Variablen, also den
gemessenen Genexpressionsniveaus. Je nach Datensatz liegt n zwischen 23 und 286 und
p zwischen 1.098 und 54.675.

17



4 — Anwendung auf 50 Microarray-Datensatze

4.3 Clusteranalyse der Datensatze

Die in Kapitel 2.1 vorgestellten Clustering-Verfahren wurden nun fiir alle 50 Datensétze
durchgefiihrt. Die gewiinschte Clusteranzahl betrug dabei aufgrund der binédren Zielvaria-
ble jeweils zwei. Weitere Spezifikationen und die jeweiligen R-Funktionen die zum Einsatz

kamen, werden im Folgenden aufgefiihrt:

e Single-Linkage- / Complete-Linkage- / Ward-Verfahren: Funktion hclust. Es wurde

als Distanzmaf} zwischen zwei Objekten die euklidische Distanz gebildet.

e K-Means: Funktion kmeans. Um die Rechenzeit zu begrenzen, sollten maximal 20
Iterationen durchgefiihrt werden. Aulerdem wurde das beste Ergebnis aus 10 Start-

partitionen gewahlt.

e Partitioning-Around-Medoids: Funktion pam aus dem Package , cluster. Hier wurde

ebenfalls die euklidische Distanz als Distanzmafl verwendet.

Beispielhaft soll anhand eines Datensatzes gezeigt werden, wie die Klasseneinteilungen der
unterschiedlichen Verfahren ausgefallen sind. Hierfiir wird der Datensatz leukemia_yag:
verwendet. Bei dieser Studie wurde das Genexpressionsprofil von 53 Patienten mit akuter
myeloischer Leukdmie in 7241 Variablen gemessen. Die Variable Y beschreibt in diesem
Fall das Ansprechen auf die Chemotherapie mit den Auspragungen ,0 = vollstindige

Remission® und ,,1 = Riickfall“.

Verfahren Single-Linkage | Complete-Linkage | Ward | K-Means | PAM
Cluster
1 4 29 36 26

Tabelle 4.1: Clusterzuordnung verschiedener Clusterverfahren fiir den Datensatz
leukemia_yagu.

Tabelle 4.1 zeigt die Anzahl der Beobachtungen je Cluster fiir alle fiinf Verfahren. Es
ist zu erkennen, dass bei einer hierarchischen Clusterung mit Single-Linkage eine Klasse
aus nur einem einzelnen Objekt besteht, was selten bei einer Clusteranalyse gewiinscht
ist. Der Grund hierfiir liegt im Nachteil dieses Verfahrens: Der Single-Linkage hat eine
sehr , schwache* Voraussetzung an die Homogenitéat in den Clustern. Deutlich getrenn-
te Klassen kénnen daher vermischt werden, wenn sie, wie in Abbildung 4.2, durch eine
Briicke verbunden sind. Diese sogenannte Verkettungseigenschaft ldsst sich jedoch fiir die
Analyse von Ausreiflern nutzen, da diese Objekte weit von den anderen Objekten ent-

fernt liegen und erst in den letzten Iterationsschritten einem Cluster hinzugefiigt werden
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Abbildung 4.2: Durch eine Briicke verbundene Klassen (Kaufmann und Pape; 1996, S.
462).

(Kaufmann und Pape; 1996; Bacher et al.; 2010). Es kann also davon ausgegangen wer-
den, dass es sich bei dieser einen Beobachtung in Cluster 2 beim Single-Linkage-Verfahren
um einen Ausreifler im Datensatz leukemia_yagi handelt. Der Complete-Linkage hingegen
weist diese Verkettungseigenschaft nicht auf. Laut Bacher et al. (2010, S. 152) fiihrt er
,dagegen oft dazu, dass sehr viele Cluster gebildet werden, da er von einer sehr ’strengen’
Vorstellung hinsichtlich der Homogenitét in den Clustern ausgeht. Dieser Effekt wird als
Dilatationseffekt bezeichnet*. Die Cluster sind auflerdem meist sehr kompakt mit geringen
Durchmessern (Kaufman und Rousseeuw; 2005, S. 41). Diese Eigenschaft ist mit diesem
Beispieldatensatz, bei nur zwei gebildeten Klassen, nicht zu erkennen.

Auch wenn das Single-Linkage-Verfahren fiir die vorliegenden Microarray-Daten oftmals
keine brauchbaren Clusterungen liefert, wurde es fiir die nachfolgenden Analysen beibehal-
ten. Grund hierfiir ist die Vermutung, dass sich durch die schlechte Anpassung signifikante

Unterschiede in den Validierungsindizes der Verfahren ergeben.

4.4 Wahl des Validierungsindex

Zur Validierung einer Clusterlésung kann eine Kontingenztabelle der wahren Klassenzu-

gehorigkeit, die durch Y bestimmt wird, und der Clusterzuordnung einen ersten Uberblick

liefern.

Y Y Y
0|1 0|1 PAM 0|1
Cluster 1 |§I 10 Cluster 11938 Cluster 1§ 10

2114 |15 2119 | 17 21111 15

Tabelle 4.2: Kontingenztabellen der Clusterzuordnungen und 'Y wvon leukemia_yagi. Die

grau hinterlegten Zellen stellen in Summe jeweils die mazimale Uberein-
stimmung der Cluster- mit der wahren Klassenzuordnung dar.

Die Kontingenztabellen, die sich beispielsweise fiir den Datensatz leukemia_yagi fiir das
Ward-, K-Means- und PAM-Verfahren ergeben, sind in Tabelle 4.2 zusammengefasst. An-

hand der Diagonalen dieser Tabellen kann die Ubereinstimmung der Clusterzuordnung
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und der wahren Klassenzugehorigkeit abgeschétzt werden. Beim Verfahren von Ward wur-
den maximal 29 Beobachtungen in die wahren Klassen zugeordnet, bei K-Means 27 und
bei PAM 32. Um diese Ubereinstimmung nun aber in einer konkreten, interpretierbaren
Mafzahl auszudriicken, kénnen externe Indizes aus Kapitel 2.2.2 in Betracht gezogen wer-

den.

Wie bereits erwahnt, gibt es eine Vielzahl dieser Indizes. Da einige sich sehr stark &hneln,
soll nun beurteilt werden, welcher Index fiir eine Benchmarkanalyse der vorliegenden
Mircoarray-Daten am besten geeignet ist. Hierfiir wurden 19 der von Albatineh et al.
(2006) zusammengetragenen Indizes (vgl. Tabelle 2.2) fiir alle 50 Datensétze ermittelt.
Ausgeschlossen wurden lediglich Russel und Rao (RR), Fager und McGowan (FMG) und
Pearson (P), da eine Benchmarkanalyse der Clusterindizes von Scherl (2010) ergab, dass
diese drei einige Schwéichen aufweisen und deshalb unzureichende Resultate liefern.

Zur Berechnung der Indizes wird die Kontingenztabelle von Objektpaaren aus Kapi-
tel 2.2.1 benotigt. Fiir den Datensatz leukemia_yagi und die fiinf Verfahren resultieren

dann folgende Tabellen:

Y Y Y
Single s v Complete s v s v
2
Cluster — 054 | 672 Cluster — 580 | 602 Cluster — 532 | 550
v| 24 | 28 v| 98 | 98 v | 346 | 350
Y Y
s v PAM s v
Cluster > 371 | 395 Cluster _° 341 | 335
v | 307 | 305 v | 337 | 365

Tabelle 4.3: Kontingenztabellen der Objektpaare von leukemia_yagi. Dabei beschreibt s
die Anzahl an Paare, die im selben Cluster zugeordnet wurden und v die
Anzahl an Paare, die verschiedenen Cluster zugeordnet wurden.

Tabelle 4.4 zeigt die Ergebnisse, der aus den Kontingenztabellen resultierenden Indizes,
mit welchen dann die Differenzen der Indizes fiir jede Verfahrenskombination ermittelt
werden konnen (dargestellt in Tabelle 4.5). Dieses Vorgehen wird nicht nur fiir den Da-
tensatz leukemia_yagi durchgefiihrt, sondern auch fiir die restlichen 49 Datensétze. Ziel
ist es, herauszufinden welcher Index die gréfiten Differenzen liefert.

Dabei fallt auf, dass fiir einige Datensétze alle Differenzen gleich Null sind. Das liegt daran,
dass bei diesen Daten jedes der fiinf Clustering-Verfahren die exakt gleiche Clusterzuord-
nung ergeben hat. In diesem Fall lassen sich folglich keine Unterschiede in den Indizes er-

kennen, weswegen die sechs Datensétze breast_veer, colon_watanabe, leukemia_bullinger_2,
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Index Single Complete Ward K-Means PAM

R 0.49 049 049 0.49 0.51
H -0.01 -0.02  -0.01 -0.02  0.02
CZ 0.65 0.62 0.49 0.51  0.50
K 0.73 0.67  0.49 0.52  0.50
MC 0.46 0.35 -0.02 0.03 0.01
PE 0.00 -0.00 -0.01 -0.02  0.02
FM 0.69 0.65 0.49 0.51  0.50
W1 0.49 0.49 0.49 0.48  0.50
W2 0.96 0.86 0.49 0.55  0.50
gamma 0.01 -0.01  -0.01 -0.02  0.02
SS1 0.51 0.50  0.49 0.49 0.51
Bl 0.72 0.63 0.49 0.49 0.51
B2 0.00 -0.00  -0.00 -0.00  0.01
J 0.48 0.45 0.32 0.35 0.34
SS52 0.32 0.29 0.19 0.21  0.20
SS3 0.10 0.17 0.24 0.24  0.26
GL 0.66 0.66  0.66 0.66  0.68
RT 0.33 0.33 0.33 0.32 0.34
GK 0.06 -0.02  -0.02 -0.03  0.05

Tabelle 4.4: Externe Indizes der einzelnen Clusteranalysen von leukemia_yagi.

Index S-C S-W S-K S-p C-W C-K C-Pp W-K W-P K-P
R 0.003 0.000 0.004 -0.017 -0.003 0.001 -0.020 0.004 -0.017 -0.022
H 0.006 0.000 0.009 -0.035 -0.006 0.003 -0.041 0.009 -0.035 -0.044
CczZ 0.029 0.164 0.139 0.149 0.135 0.110 0.120 -0.026 -0.015 0.010
K 0.056 0.241 0.213 0.225 0.18 0.157 0.169 -0.028 -0.015 0.012
MC 0.112 0481 0.426 0450 0.370 0.315 0.339 -0.055 -0.031 0.024
PE 0.009 0.015 0.022 -0.020 0.006 0.013 -0.029 0.007 -0.035 -0.041
FM 0.042 0.202 0.175 0.186 0.160 0.133 0.144 -0.027 -0.015 0.011
W1 0.003 0.006 0.009 -0.011 0.004 0.006 -0.014 0.002 -0.018 -0.020
W2 0.109 0475 0.417 0462 0.366 0.308 0.353 -0.058 -0.013 0.044
gamma 0.019 0.022 0.029 -0.012 0.004 0.011 -0.031 0.007 -0.035 -0.042
SS1 - 0.013  0.014 0.018 -0.003 0.002 0.005 -0.016 0.003 -0.017 -0.021
B1 0.090 0.221 0.221 0.204 0.131 0.131 0.113 0.000 -0.017 -0.018
B2 0.002 0.004 0.005 -0.005 0.001 0.003 -0.007 0.002 -0.009 -0.010
J 0.031 0.161 0.139 0.148 0.130 0.107 0.117 -0.023 -0.014 0.009
SS2 - 0.027  0.127  0.111  0.117 0.100 0.084 0.091 -0.016 -0.010 0.007
SS3 -0.070 -0.144 -0.139 -0.161 -0.073 -0.068 -0.091 0.005 -0.017 -0.022
GL 0.003 0.000 0.004 -0.015 -0.003 0.001 -0.018 0.004 -0.015 -0.019
RT 0.003 0.000 0.004 -0.016 -0.003 0.001 -0.018 0.004 -0.016 -0.019
GK 0.082 0.084 0.098 0.015 0.002 0.016 -0.067 0.014 -0.069 -0.083
Tabelle 4.5: Dzﬁer@nzen der externen Indizes der einzelnen Clusteranalysen von leu-

kemia_yagi. In den Spalten werden die Verfahren mit ihren Anfangsbuch-

staben abgekiirzt, z.B. S-C: Differenz der Indizes aus Single-Linkage-
Complete-Linkage- Verfahren.

und
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lung_wigle, mized_chowdary und ovarian_li_and_campbell fiir die Wahl des Index nicht
beriicksichtigt wurden. Es stehen somit 44 Datensétze zur Verfiigung mit jeweils 10 ver-
schiedenen Differenzen je Index.

Fiir jeden Index wird nun ein Boxplot betrachtet, um im ersten Schritt zu sehen, in wel-
chem Bereich die Differenzen der 44 Datensétze streuen. Abbildung 4.3 zeigt beispielhaft
den Boxplot fiir den Rand-Index (R). Der mogliche Wertebereich der Differenz liegt hier
zwischen -1 und 1. Es ist zu erkennen, dass der Median der Differenzen immer nahe Null
liegt. Ein dhnliches Bild ergeben auch die Boxplots der folgenden acht Indizes: Hubert
(H), Peirce (PE), Wallace (1) (W1), Gamma (I"), Sokal und Sneath (1) (SS1), Baulieu (2)
(B2), Gower und Legendre (GL) und Rogers und Tanimoto (RT)!. Nicht nur der Median,
sondern einige der Differenzen liegen nahe bei Null. Unterschiede in den Verfahren lassen
sich also nicht ausreichend deutlich mit diesen neun Indizes erkennen, weshalb sie fiir die

Benchmarkanalyse der Clustering-Verfahren nur begrenzt geeignet sind.
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Abbildung 4.3: Darstellung der Rand-Index-Differenzen zwischen den fiinf Clustering-
Verfahren. Einbezogen wurden hier 44 der 50 Datensdtze, deren Clus-
terlosungen nicht fir alle Verfahren die exakt gleiche Zuordnung erga-
ben. Die gestrichelte, blaue Linie grenzt denm mdoglichen Wertebereich

ab.

Somit konnen nun im zweiten Schritt die restlichen 10 Indizes in Abbildung 4.4 genauer
betrachtet werden:

Bis auf zwei Indizes von McConnaughey (MC) und Goodman und Kruskal (GK), besitzen
alle eine Differenz mit einem moglichem Wertebereich zwischen -1 und 1. Da sich die Ten-
denz der Boxplots der Indizes Czekanowski (CZ), Kulezynski (K), Fowlkes und Mallows
(FM), Baulieu (1) (B1), Jaccard (J) und Sokal und Sneath (2) (SS2) sehr stark dhnelt,
wird in Abbildung 4.4 der Boxplot des FM-Index stellvertretend fiir all diese dargestellt®.

I Die Boxplots hierzu finden sich im Anhang in Abbildung A.1.

2 Die Boxplots der Indizes, auf deren Darstellung verzichtet wurde, finden sich im Anhang in Abbil-
dung A.2.
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4 — Anwendung auf 50 Microarray-Datensatze

Die Differenzen der Indizes MC und GK besitzen einen méglichen Wertebereich zwischen
-2 und 2 und werden ebenfalls in Abbildung 4.4 dargestellt.
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Abbildung 4.4: Darstellung verschiedener Index-Differenzen  zwischen den  finf
Clustering- Verfahren. Einbezogen wurden hier 44 der 50 Datensdtze,
deren Clusterlosungen mnicht fir alle Verfahren die exakt gleiche
Zuordnung ergaben. Die gestrichelte, blaue Linie grenzt den madglichen
Wertebereich ab.
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Alle Plots in Abbildung 4.4 haben eine Gemeinsamkeit: die Differenzen zwischen den Ver-
fahren Ward, K-Means und PAM (W-K, W-P, K-P) liegen alle sehr nahe bei Null. Das
bedeutet, dass die Validierungsindizes fiir diese Verfahren jeweils dhnliche Werte ergeben
und sich diese drei Verfahren, angewendet auf die 44 Microarry-Datensétze, in ihren Clus-
terlosungen kaum bis {iberhaupt nicht unterscheiden. Da die groite Differenz gesucht ist
und aus Griinden der Ubersichtlichkeit, kénnen also im Weiteren auch nur die restlichen
sieben Differenzen betrachtet werden.

Wird der GK-Index mit dem Rand-Index aus Abbildung 4.3 verglichen, treten bei bei-
den dhnliche Probleme auf. Einige der Mediane liegen sehr nahe bei Null, jedoch nicht
alle. Die Streuung der Differenzen wirkt beim GK-Index grofier, beachtet man jedoch den
moglichen Wertebereich von GK relativiert sich dieser Eindruck. Da alle Boxen der ein-
zelnen Boxplots von GK die Null beinhalten, kann letztendlich dieser Index die moglichen
Unterschiede in den Verfahren nicht ausreichend gut verdeutlichen.

Des Weiteren kann allgemein in Abbildung 4.4 erkannt werden, dass die Methodenverglei-
che fiir manche Indizes auch Differenzen liefern, die zwar klein sind, aber nicht ganz Null.
Zwei Beispiele hierfiir sind die Indizes MC und W2. Vergleicht man diese beiden Indizes,
scheinen die Differenzen des W2-Index im Bezug auf den moglichen Wertebereich grofier
zu sein. Laut Wallace (1983) konnen allerdings die Werte von W1 und W2 nur gemeinsam
zur Interpretation der Ahnlichkeit zweier Clusterpartitionen herangezogen werden, zum
Beispiel iiber den Index von Fowlkes und Mallows (FM), der das geometrische Mittel iiber
W1 und W2 darstellt. W1 wurde bereits im ersten Schritt ausgeschlossen und da der Wert
von W2 alleine ebenfalls nicht ausreicht, ist dieser trotz groBerer Differenzen nicht fiir die
Benchmarkanalyse der Clustering-Verfahren geeignet.

Zwei Clusterlosungen kénnen theoretisch auch durch Zufall iibereinstimmen. Albatineh
et al. (2006) stellten fest, dass die Indizes MC und K identisch sind, wenn eine Korrek-
tur dieser zufilligen Ubereinstimmung von Partitionen durchgefiihrt wird (Niheres zur
Durchfithrung und dem theoretischen Hintergrund der Korrektur von Albatineh et al.
(2006)). Somit kann einer der beiden im Weiteren vernachldssigt werden. Um die Ver-
gleichbarkeit der Indizes zu verbessern, wird nur noch der K-Index in Betracht gezogen,
da er Werte zwischen -1 und 1 annehmen kann. Die Gleichheit nach Korrektur gilt eben-
falls fiir die Indizes R, H und CZ. Da sich Rand- und Hamann-Index bereits in Schritt 1
als ungeeignet herausgestellt haben, kann auch der Czekanowski-Index (CZ) auBer Acht

gelassen werden.

Daraufhin verbleiben nun sechs Indizes, die zur Validierung der Clusterlésungen der vor-
liegenden Microarray-Daten geeignet sind.
Sokal und Sneath (1963) stellen eine mogliche Klassifikation verschiedener Validierungs-

indizes vor. Danach besteht die fundamentale Formel aller Indizes aus der Anzahl an
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Ubereinstimmungen dividiert durch einen Term, der die mégliche Anzahl an Vergleichen
unterschiedlich einbezieht. Die Einteilung basiert auf der Zusammensetzung von Zahler
und Nenner der Indizes. Dabei wird im Zahler nur beriicksichtigt, ob die Anzahl an Ob-
jektpaaren, die in beiden Clusterlosungen unterschiedlich zugeordnet wurden (= d), ein-
bezogen wurde oder nicht. Fiinf der sechs verbleibenden Indizes wurden demnach wie in
Tabelle 4.6 zusammengefasst, dabei ist Baulieu (B1) entsprechend ergénzt worden. Die-
ser Index stellt auch eine Besonderheit dar, da er im Vergleich zu allen anderen, bereits
im Zéahler eine umfangreichere Berechnung vornimmt. Auflerdem misst dieser Index die
Unéhnlichkeit zweier Clusterlosungen (Baulieu; 1989), weswegen sich die Interpretation
von allen anderen unterscheidet: Je niedriger der Wert des Index, desto dhnlicher sind

sich zwel Partitionen.

Zahler: Anzahl an Objektpaaren, die in beiden
Clusterlosungen unterschiedlichen Clustern zugeordnet
wurden (= d)

Nenner ausgeschlossen einbezogen

gleiche Gewichte auf den
Objektpaaren, egal ob sie in
gleiche oder verschiedenen
Clustern zugeordnet wur-
den

Jaccard,
_ a

a+b+c

Objektpaare, die verschie-
denen Clustern zugeordnet | Sokal und Sneath (2),

wurden, werden doppelt ge- | SS2 = m

wichtet

Randverteilungen Il((ukzzly HSEI’ a
=5 (GH+ )

als arithmetisches Mittel

(arithmetisches Mittel) von W1 und W2

Fowlkes und Mallows,

Randverteilungen FM — a Sokal und Sneath (3),

(a+b)(a+c) SS3 = N ad —
(geometrisches Mittel) als geometrisches Mittel von (a+b)(a+e)(d+b)(d+e)
& W1 und W2

Baulieu (1),

Bl — (’;)2—(’;)(b—&-2c)+(b—c)2
(3)

Tabelle 4.6: Einteilung der verschiedenen Indizes zur Validierung von Clusterlosungen
nach Sokal und Sneath (1963), um Bl erginzt.

Anzahl an Objektpaaren
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4.5 Bootstrap-Konfidenzintervalle

Nun wurden fiir alle sechs Index-Differenzen Bootstrap-Konfidenzintervalle mithilfe der
R-Funktionen boot und boot.ci aus dem Package ,boot“ aufgestellt.

Aus der Nullhypothese in Kapitel 3.1 folgt, dass der interessierende Parameter der Bench-
markanalyse von Clustering-Verfahren der Erwartungswert der Differenz zweier Indizes
VI, und VI ist, somit gilt

0 = E(VI, — VI,) = E(AVI). (4.1)

Dabei stellen VI; und VI, Vektoren dar, die jeweils die Validierungsindizes fiir alle 50
Datensétze beinhalten. Ebenso ist auch AVI ein Vektor mit Lénge 50, dieser enthélt also
die Differenzen AVI; fiir jeden der 50 Datensétze.

Als Schéitzfunktion fiir den Parameter in 4.1 wird das arithmetische Mittel iiber alle 50

Datensitze gebildet, also
R L
0 =s(AVI) = — AVI,;. 4.2
(A0 = 53 (42)

Es wurden, wie von DiCiccio und Efron (1996) empfohlen, 2000 Bootstrap-Replikationen

~

0* gebildet und mit diesen ein BC,-95%-Konfidenzintervall aufgestellt.

Fiir ein BC,-Intervall werden Schétzungen der Parameter a und zy benétigt. Diese Schétz-
funktionen wurden entsprechend Kapitel 3.2.2 aufgestellt und daraufhin a4 berech-
net. Damit konnten dann die jeweiligen Perzentile der geordneten Liste aller Bootstrap-
Replikationen als Intervallgrenzen bestimmt werden.

Da B - aqq; meist keiner ganzen Zahl entspricht, werden die Werte in diesen Fillen durch
eine lineare Interpolation auf Basis der Standardnormalverteilungsquantile ermittelt. Da-
vison und Hinkley (1997, S. 195) wéhlen hierfiir k = [ (B + 1)aq; |, was der grofiten ganzen

Zahl kleiner als (B + 1)agq; entspricht und definieren die Intervallgrenze folgendermafen:

: e Naw -G
HBCQ(Q) = e(Bocadj) = 9(/6) + @_1(%) _ (I)_l(%) (9(k+1) o 0(16)) : (43)
¥ ¥

Dabei sind é?k) und éfk +1) die k- bzw. (k + 1)-ten Werte aus der geordneten Liste aller
Bootstrap-Replikationen.

Abbildung 4.5 zeigt die Konfidenzintervalle, die sich darauthin fiir alle sechs Validierungs-
indizes ergeben. Zur besseren Lesbarkeit wurde auf der x-Achse ein Bereich von -0.5 bis
0.5 gewéhlt, es sei allerdings darauf hingewiesen, dass alle Differenzen einen méglich Wer-

tebereich von -1 bis 1 besitzen. Auf der y-Achse ist abzulesen, welche Differenz jeweils in
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der entsprechenden Zeile aufgetragen ist. Hier sind die Verfahren mit ihren Anfangsbuch-
staben abgekiirzt, C—P stellt also zum Beispiel die Differenz der Validierungsindizes aus
Complete-Linkage- und PAM-Verfahren dar.

K FM
C-P e c-p f
Cc—K L C-K '
c-W e c-w e
S-P D S-p v
S-K R S-K CH
S-W e . S-w b
s-C Lo s-C L
I I I I I I I I I I
-04 -0.2 0.0 02 04 -04 -0.2 0.0 02 04
J SS2
C-P i c-p —
Cc—K ' C-K '~
c-W o c-w ,
S-P i S-p s
S-K R aa S-K "
S-W L S-w '
s-C L s-C '
I I I I I I I I I I
-04 -0.2 0.0 02 04 -04 -0.2 0.0 02 04
Bl SS3
c-p — c-P —y
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c-W e c-w !
S-pP P S-p oo
S-K R S-K oo
S-W N S-w o
s-C Lo s-C o
I I I I I I I I I I
-04 -0.2 0.0 02 04 -04 -0.2 0.0 02 04

Abbildung 4.5: Darstellung der BC,-Konfidenzintervalle der Differenz fiir sechs Vali-
dierungsindizes. Es wurden 2000 Bootstrap-Replikationen gebildet. Der
grine Punkt kennzeichnet jeweils den geschdtzten Wert der Differenz
aus der urspringlichen Stichprobe.

Mit diesen Intervallen soll nun die Nullhypothese aus Kapitel 3.1 iiberpriift werden. Das

heif3t, ist die 0 im Konfidenzintervall enthalten, kann kein signifikanter Unterschied zwi-
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schen den Erwartungswerten zweier Validierungsindizes festgestellt werden. Beinhaltet es
Werte < 0, bedeutet dies einen signifikanten Unterschied zwischen zwei Clustermethoden
und Methode 2 liefert bessere Ergebnisse als Methode 1. Im Umkehrschluss bedeuten

Werte > 0, dass Clustermethode 1 gegeniiber Clustermethode 2 zu bevorzugen ist.

Eine Ausnahme in der Auswertung stellt der Index B1 dar. Da er im Gegensatz zu allen
anderen nicht die Ahnlichkeit, sondern die Unéhnlichkeit misst, #ndert sich die Interpre-
tation des Konfidenzintervalls. Werte > 0 sprechen dabei fiir Clustermethode 2 und Werte
< 0 fiir Clustermethode 1.

4.6 Interpretation der Ergebnisse

Betrachtet man die Ergebnisse der sechs Indizes in Abbildung 4.5, fallen keine grofie Un-
terschiede zwischen den einzelnen Indizes auf. Die einzige Ausnahme bildet hier der Index
SS3, welcher fiir die Differenzen Konfidenzintervalle besitzt, die Werte deutlich kleiner als
0 beinhalten. In diesem Fall werden die Verfahren PAM, K-Means und Ward gegeniiber
einer hierarchischen Clusterung mit Single- oder Complete-Linkage bevorzugt. Ebenso

wird ein Complete-Linkage gegeniiber einem Single-Linkage bevorzugt.

Eine zusétzliche, nicht offensichtliche Ausnahme bildet der Index B1. Wie bereits erwahnt,
andert sich hier die Interpretation und Werte > 0 sprechen fiir Clustermethode 2. Womit
sich fiir jeden Vergleich die gleiche Entscheidung wie bei dem Index SS3 ergibt.

Die Indizes K, FM und J liefern alle Konfidenzintervalle > 0, weshalb man sich ent-
sprechend anders wie bei B1 und SS3 entscheidet: Die hierarchischen Clusterungen mit
Single- und Complete-Linkage werden gegeniiber den Verfahren PAM, K-Means und Ward

bevorzugt. Und der Single-Linkage liefert ,,bessere” Partitionen als der Complete-Linkage.

Fast gleiches gilt bei der Analyse mit dem Index SS2, allerdings kann beim Vergleich von
Complete-Linkage und Ward-Verfahren kein signifikanter Unterschied festgestellt werden,
da dieses Konfidenzintervall die 0 beinhaltet.

Anders als erwartet, wird also eine Clusteranalyse mit dem Single-Linkage-Verfahren mit
den Indizes K, FM, J und SS2 als bessere Methode identifiziert, obwohl aufgrund der
Verkettungseigenschaft oft keine sinnvollen Cluster gebildet wurden (siche Kapitel 4.3).
Eine Erklérung hierfiir liefert beispielsweise Tabelle 4.3: Wenn eins der beiden gebildeten
Cluster nur sehr wenige Objekte beinhaltet, ist dementsprechend die Anzahl an Objekt-

paaren in verschiedenen Clustern fiir dieses Verfahren sehr gering. Dadurch fallen die
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Werte fiir ¢ und d in den Formeln der Indizes (vgl. Kapitel 2.2) im Vergleich zu a und
b ebenfalls klein aus. Da die angesprochenen vier Indizes allerdings nur die Anzahl der
mit beiden Methoden gleich zugeordneten Objektpaare (= a) im Z#hler beriicksichtigen,
fallen die Indizes fiir Partitionen mit sehr ungleichen Clustergréfien auch entsprechend
grofer aus. Dass diese Indizes fiir den Single-Linkage die grofiten Werte liefern, ist auch
fiir den Beispieldatensatz leukemia_yagi in Tabelle 4.4 zu erkennen. Ob wirklich eine gute
Ubereinstimmung mit der wahren Klassenzugehorigkeit Y gegeben ist, ist dabei fraglich.
Daher scheint die Anwendung des B1- oder SS3-Index fiir diese Datensituation angemesse-
ner. Beide Indizes beriicksichtigen dabei nicht nur a im Zahler, sondern auch die Anzahl

an Objektpaaren, die in beiden Clusterlosungen unterschiedlichen Clustern zugeordnet

wurden (= d).
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Kapitel 5

Zusammenfassung und Ausblick

Das Ziel der Arbeit war es, ein Framework auszuarbeiten, mit dem aus zwei Clustermetho-
den die bessere identifiziert werden kann. Allgemein ist bei solchen Benchmarkanalysen
darauf zu achten, auch reelle Datensétze zu beriicksichtigen, da diese meist nicht einer
einfachen gemeinsamen Verteilung folgen, wie es bei Simulationsstudien der Fall ist (Bou-
lesteix et al.; 2015). Daher wurde die hier vorliegende Benchmarkanalyse an 50 reellen
Datensétzen aus klinischen Krebsstudien durchgefiihrt.

Der jeweilige Validierungsindex VI einer Clusterlosung bildete dabei das Hauptgiitekri-
terium, anhand dessen eine Entscheidung fiir oder gegen eine Methode getroffen werden
kann. Da das Interesse dabei nicht nur bei einem Datensatz liegt, wurde auf Grundlage
von diesen Validierungsindizes zweier Clusteranalyseverfahren ein Hypothesentest fiir alle
betrachteten Datensétze formuliert.

Nachdem fiinf verschiedene Clusteranalyseverfahren auf die Datensétze Anwendung fan-
den, wurden die Validierungsindizes genauer untersucht. Das war notig, da eine grofie
Anzahl an verschiedenen Validierungsindizes existiert, die alle auf dem selben Grund-
prinzip beruhen, allerdings unterschiedlich berechnet werden und daraufhin verschiedene
Ergebnisse liefern. Es ergab sich, dass von den 22 in Betracht gezogenen Indizes nur
sechs iiberhaupt Unterschiede zwischen zwei Verfahren erkennen liefen. Der Grofiteil der
anderen Indizes ergab Index-Differenzen nahe Null. Das bedeutet fiir die Benchmarkana-
lyse, dass mit diesen Indizes fiir kein Clusterverfahren Vorteile gegeniiber einem anderen
identifiziert werden konnten. Allerdings besteht auch die Méglichkeit, dass sich die Clus-
terlosungen der Verfahren zu stark d&hnelten und daher tatséchlich keine Unterschiede vor-
handen waren. Deshalb wird auch darauf hingewiesen, dass durch die Wahl des gréfiten
Validierungsindex der Unterschied zwischen zwei Verfahren moglicherweise {iberschétzt
wird und die Anwendung auf eine andere Datensituation auch andere Ergebnisse liefern
kann.

Um den interessierenden Parameter E(AVI) und dessen Streuung zu schétzen wurden
anschliefend BC,-Bootstrap-Intervalle berechnet. Diese kamen zum Einsatz, da die Diffe-

renzen der Indizes nicht normalverteilt sind und daher keine Standard-Konfidenzintervalle
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verwendet werden konnten.

Fiir die vorliegenden Datensétze lieferten daraufhin die Indizes von Baulieu (B1) und
Sokal und Sneath (SS3) angemessene Validierungen und die Clusterverfahren PAM, K-
Means und Ward wurden gegeniiber einer hierarchischen Clusterung mit Single- oder

Complete-Linkage als ,,besser” identifiziert.

Als mogliche Erweiterung der bisherigen Analysen kann eine Korrektur der zufélligen
Ubereinstimmung von Partitionen in Betracht gezogen werden. Laut Albatineh et al.
(2006) erhélt dadurch die Wahl des Validierungsindex weniger Gewicht, da sich die Indi-
zes daraufthin einander angleichen oder sogar identische Werte annehmen.

In dieser Arbeit wurden nur fiinf verschiedene Clusterverfahren angewendet, weshalb eine
Erweiterung der zu betrachtenden Clusteranalyseverfahren dabei natiirlich auch denkbar
ist.

Da die Struktur der Daten auch oftmals mehr als zwei Klassen beinhaltet, konnten auch
Clusteranalysen mit mehr als zwei gesuchten Cluster durchgefithrt werden und mit der
Klassenzuordnung durch die Zielvariable verglichen werden. Im Gegensatz dazu kénnte
aber auch der reine Vergleich zweier erhaltenen Clusterlosungen mit Hilfe eines Validie-
rungsindex sehr interessante Ergebnisse liefern. Denn laut Bacher et al. (2010) kénnen
Clusterlosungen bei solch einem Vergleich erst als brauchbar erachtet werden, wenn zum
Beispiel der Rand-Index einen Wert iiber 0.7 annimmt. Moglicherweise sollten fiir andere

Indizes ebenfalls bestimmte Grenzwerte Beriicksichtigung finden.
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Abbildung A.1: Darstellung wverschiedener Index-Differenzen zwischen den  fiinf
Clustering- Verfahren die stark nahe 0 streuen. Finbezogen wurden hier
44 der 50 Datensdtze, deren Clusterlosungen nicht fir alle Verfah-
ren die exakt gleiche Zuordnung ergaben. Die gestrichelte, blaue Linie
grenzt den maglichen Wertebereich ab.
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Abbildung A.2: Darstellung wverschiedener Index-Differenzen zwischen den  finf

Clustering-Verfahren die tendenziell dem Index FM dhneln. Finbezo-
gen wurden hier 44 der 50 Datensdtze, deren Clusterlésungen nicht fiir
alle Verfahren die exakt gleiche Zuordnung ergaben. Die gestrichelte,
blave Linie grenzt den méglichen Wertebereich ab.
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Elektronischer Anhang

Der elektronische Anhang umfasst die folgenden Ordner:

e Daten: Beinhaltet zwei Unterordner

— datasets: Enthélt 65 Microarray-Datensétze im txt-Format.
— data_R: Enthélt noch keine Daten. Er wird beim Importieren der 65 Da-

tensétzen bendtigt, um diese im RData-Format dort abzuspeichern.
e Ergebnisse: Beinhaltet zwei Unterordner

— Clusteranalyse: Enthélt fiir jedes der fiinf Clustering-Verfahren eine RData-
Datei, die fiir jeden Datensatz die berechneten 19 Validierungsindizes auflistet.

— Grafiken: Enthélt die Abbildungen, die in dieser Arbeit verwendet wurden als
pdf-Datei.

e Programme: Beinhaltet die Syntax-Dateien der Statistiksoftware R, mit denen die

Ergebnisse dieser Arbeit reproduziert werden konnen.
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