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Abstract

Bisher hat sich noch kein Framework etabliert, mit dem der Vergleich zweier Clustering-

Verfahren durchgeführt werden kann. Problem hierbei ist unter anderem, dass für diese

Verfahren kein natürliches Gütekriterium existiert. Um nun aus zwei Clustermethoden

die bessere zu identifizieren, wurde in dieser Arbeit eine Benchmarkanalyse mit 50 re-

ellen Microarray-Datensätzen ausgearbeitet und durchgeführt. Dabei wird die Differenz

von externen Validierungsindizes zweier Methoden betrachtet. Diese Indizes ermöglichen

es, Clusterlösungen mit einer bekannten wahren Struktur in den Daten zu vergleichen.

Aufgrund der Vielzahl externer Indizes wird untersucht, welche sich, angewendet auf die

vorliegenden Daten, als nützlich erweisen. Das Ergebnis dieser Untersuchung ist, dass

vor allem die beiden Indizes von Baulieu (B1) und Sokal/Sneath (SS3) Unterschiede zwi-

schen den fünf angewendeten Clustering-Verfahren aufzeigen. Der Methodenvergleich mit

diesen beiden Indizes ergab daraufhin, dass die Verfahren PAM, K-Means und Ward ge-

genüber einer hierarchischen Clusterung mit Single-Linkage oder Complete-Linkage vor-

zuziehen sind. Allerdings bleibt dabei zu berücksichtigen, dass diese Ergebnisse nur für

die betrachtete Datensituation gültig sind und für andere Datensätze davon verschieden

ausfallen können.
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Kapitel 1

Einleitung

Häufig werden neue Clustermethoden vorgestellt, ohne dass sie mit bereits bekannten

Methoden verglichen werden. Das liegt vor allem daran, dass es keine geltenden Normen

für das Benchmarking im Bereich des unsupervised learning gibt.

In dieser Arbeit soll eine mögliche Herangehensweise vorgestellt werden, wie die Wahl der

besten Clustermethode getroffen werden kann. Dabei wird mit 50 Microarray-Genexpres-

sions-Daten aus klinischen Krebsstudien gearbeitet, bei welchen bekannt ist, dass sie in

zwei Klassen eingeteilt werden können. Die Klassenzugehörigkeit ist durch eine Zielvaria-

ble Y definiert, welche im Bezug zur jeweiligen Krebsdiagnose steht.

Kapitel 2.1 beschreibt folgende fünf Clusteranalyseverfahren, welche auf alle 50 Datensätze

angewendet werden: K-Means, Partitioning-Around-Medoids, hierarchische Clusterver-

fahren mit Single-Linkage bzw. Complete-Linkage und das Ward-Verfahren. Die Überein-

stimmung der gebildeten Partitionen mit der wahren Klassenzugehörigkeit wird anhand

sogenannter externer Indizes validiert. Die genaue Definition dieser findet sich in Kapi-

tel 2.2. Sie können nur angewendet werden, da die wahre Struktur in den Daten durch

die Zielvariable vorgegeben und damit bekannt ist.

Mithilfe des Benchmarking aus Kapitel 3 soll eine Aussage getroffen werden, ob Cluster-

methode 2 im Vergleich zu Clustermethode 1 eine bessere Einteilung liefert. Die Wahl der

beiden Clusterverfahren kann dabei beliebig festgelegt werden. Der Vergleich findet für

einen jeweiligen Datensatz durch die Bildung der Differenz der Validierungsindizes zweier

verschiedener Clusteranalyseverfahren statt. Um eine allgemeingültige Aussage treffen zu

können, welche Clustermethode die bessere ist, werden außerdem Konfidenzintervalle der

Differenzen über mehrere Datensätze hinweg betrachtet.

Schlussendlich folgt in Kapitel 4 die Anwendung der vorgestellten Methodik auf die vorlie-

genden reellen Datensätze und die damit einhergehenden Probleme. Zum Beispiel können

viele statistische Verfahren nicht auf Microarray-Daten angewendet werden, da die An-
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1 – Einleitung

zahl an Variablen deutlich höher ist, als die Anzahl an Beobachtungen. Auch die Wahl des

Validierungsindex ist nicht grundsätzlich festgelegt und wurde für die vorliegenden Daten

untersucht, bevor die Benchmarkanalyse mit ausgewählten Indizes durchgeführt werden

konnte.

Alle Analysen wurden dabei mit der Statistik-Software R, Versionsnummer 3.1.1, durch-

geführt.
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Kapitel 2

Methodik

2.1 Clustering-Verfahren

Werden bei einer Studie eine große Anzahl an Beobachtungen mit einer Vielzahl von

Merkmalen erhoben, entstehen sehr große Datenmengen. Um Strukturen innerhalb dieser

aufzuzeigen, werden häufig Clustering-Verfahren angewendet. Das Ziel einer Clusterana-

lyse besteht darin, eine Menge von Objekten mit bestimmten Merkmalen in kleinere Teil-

mengen einzuteilen. Diese Teilmengen werden Klassen bzw. Cluster genannt. Innerhalb

eines Clusters sollen die Objekte hinsichtlich ihrer Merkmale möglichst homogen sein.

Gleichzeitig sollen allerdings Objekte aus unterschiedlichen Clustern möglichst heterogen

sein. (Kaufmann und Pape; 1996, S. 437)

2.1.1 Ähnlichkeits- und Distanzmaße

Um die Ähnlichkeit zwischen Objekten bzw. zwischen Mengen zu messen, wurden Ähn-

lichkeits- und Distanzmaße definiert. Der Unterschied dieser beiden Maße liegt in der

Interpretation: Je ähnlicher sich zwei Objekte oder zwei Mengen sind, desto größer ist der

Wert des Ähnlichkeitsmaßes, wohingegen der Wert des Distanzmaßes umso kleiner sein

sollte. Kaufmann und Pape (1996, S. 440) definieren sie folgendermaßen:

Sei I = {I1, . . . , IN} eine Menge von N Objekten. Die Funktion s : I × I → R heißt

Ähnlichkeitsmaß, wenn

snm = smn

snm ≤ snn, (2.1)

mit n,m = 1, . . . , N . Die symmetrische N × N -Matrix S = (snm) heißt Ähnlichkeitsma-

trix.
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2 – Methodik

Sei I = {I1, . . . , IN} eine Menge von N Objekten. Die Funktion d : I × I → R heißt

Distanzmaß, wenn

dnn = 0 und dnm ≥ 0

dnm = dmn, (2.2)

mit n,m = 1, . . . , N . Die symmetrische N × N -Matrix D = (dnm) heißt Distanzmatrix.

Statt dnm kann auch d(n,m) geschrieben werden.

In der Praxis werden häufig metrische Distanzmaße verwendet. Diese erfüllen die Drei-

ecksungleichung (dnm ≤ dnl + dml mit n,m, l = 1, . . . , N) und entsprechen der räumlichen

Vorstellung (Kaufmann und Pape; 1996, S. 441).

Insbesondere für quantitative Merkmale, welche intervall- oder verhältnisskaliert sind,

werden metrische Distanzen wie zum Beispiel die Lq-Metrik betrachtet (Kaufmann und

Pape; 1996, S. 448):

dq(n,m) =

(
p∑
i=1

|xni − xmi|q
) 1

q

, q > 0. (2.3)

Dabei gibt p die Anzahl an Variablen an. Diese Distanzen sind translationsinvariant, je-

doch nicht skaleninvariant, weswegen Variablen bei ungleichen Einheiten normiert werden

müssen.

Gebräuchlich sind vor allem die L1-Metrik, auch City-Block-Metrik genannt und die L2-

Metrik, die der euklidischen Distanz entspricht:

d2(n,m) = ||xn − xm|| = ((xn − xm)′(xn − xm))
1
2 . (2.4)

2.1.2 Hierarchische Verfahren

Bei den hierarchischen Clustering-Verfahren unterscheidet man zwischen agglomerativen

und divisiven Verfahren. Ist ein Verfahren agglomerativ, werden die Daten sukzessive

in Teilklassen zusammengefasst, wobei sich die Heterogenität der Klassen schrittweise

erhöht. Im Gegensatz dazu stehen die divisiven Verfahren, bei denen bestehende Klassen

sukzessive aufgeteilt werden, was die Heterogenität der Klassen schrittweise verringert.

In Abbildung 2.1 sind beide Verfahren anschaulich in einem sogenanntem Dendrogramm

dargestellt.
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Abbildung 2.1: Dendrogramm - Darstellung einer hierarchischen Clusterung
(Kaufmann und Pape; 1996, S. 453).

Diese Form von Stammbaum wird bei agglomerativen Verfahren von unten nach oben kon-

struiert und genau entgegengesetzt bei divisiven Verfahren (Kaufmann und Pape; 1996,

S. 453). Da divisive Verfahren für eine große Anzahl an Beobachtungen einen hohen Re-

chenaufwand mit sich bringen, sind agglomerative Verfahren weiter verbreitet und werden

im Folgenden näher betrachtet.

2.1.2.1 Prinzip agglomerativer hierarchischer Verfahren

Das Prinzip der agglomerativen Verfahren lässt sich in drei Schritten darstellen (Kauf-

mann und Pape; 1996, S. 457-458):

1. Jedes Objekt der Objektmenge I = {I1, . . . , IN} entspricht einem Cluster, d.h. es

gilt die Anfangspartition C(0) = {{I1}, . . . , {IN}}.

2. Die Partition C(ν) (ν ≥ 1) wird durch Fusion zweier Klassen aus der Partition C(ν−1)

gebildet, für die das Distanzmaß D zwischen zwei Klassen minimal wird

(ν bezeichnet dabei die Anzahl der Iterationsschritte).

3. Iteration von Schritt 2, bis nur noch ein Cluster besteht, also C(ν) = {I}.

Zu den gebräuchlichsten hierarchischen Verfahren zählen unter anderem der Single-Link-

age, Complete-Linkage und das Verfahren von Ward. Durch die Wahl des Verfahrens wird

bestimmt, wie die Distanz zwischen den Clustern definiert ist.
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2 – Methodik

2.1.2.2 Single-Linkage-Verfahren

Das Distanzmaß zwischen zwei Klassen Ck und Cj entspricht beim Single-Linkage-Ver-

fahren der kleinsten Distanz zwischen einem Objekt aus Ck und einem Objekt aus Cj,

also

D(Ck, Cj) = min
n∈Ck

m∈Cj

{dnm}.

Je größer der Wert des Heterogenitätsindex h, desto unähnlicher sind sich zwei Klassen.

Zur Fusion zweier Klassen im ν-ten Iterationsschritt werden die Klassen Cv und Cw der

Partition C(ν−1) mit dem kleinsten Distanzmaß gewählt, wodurch sich der Index ergibt zu

hν = Dν = D(Cv, Cw) = min
k 6=j

min
n∈Ck

m∈Cj

{dnm} (2.5)

(Kaufmann und Pape; 1996, S. 461).

2.1.2.3 Complete-Linkage-Verfahren

Analog zum Single-Linkage-Verfahren wird das Complete-Linkage-Verfahren durchgeführt.

Mit dem einzigen Unterschied, dass nun das Distanzmaß zwischen zwei Klassen Ck und

Cj als größte Distanz zwischen jeweils einem Objekt aus beiden Klassen definiert ist:

D(Ck, Cj) = max
n∈Ck

m∈Cj

{dnm}.

Ebenso ändert sich der Heterogenitätsindex zu

hν = Dν = D(Cv, Cw) = min
k 6=j

max
n∈Ck

m∈Cj

{dnm} (2.6)

(Kaufmann und Pape; 1996, S. 462).

2.1.2.4 Verfahren von Ward

Das Verfahren von Ward beruht auf der Streuung innerhalb der einzelnen Klassen. Die

Heterogenität H der Partition C(ν−1) und der Partition C(ν) wird durch die Summe der

Streuung innerhalb der Klassen ermittelt. Mit diesen Größen kann der Heterogenitätsge-

winn bei Fusion der Cluster Cv und Cw ermittelt werden, welcher der Distanz zwischen

den beiden Clustern entspricht:

H
(
C(ν)
)
−H

(
C(ν−1)

)
=

nvnw
nv + nw

||x̄v − x̄w||2 =: D(Cv, Cw).
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2 – Methodik

Es werden die beiden Klassen aus C(ν−1) zur Fusion gewählt, die die Heterogenität nur

minimal wachsen lassen, was bedeutet

hν = D(Cv, Cw) = min
k 6=j

nknj
nk + nj

||x̄k − x̄j||2 (2.7)

(Kaufmann und Pape; 1996, S. 466).

2.1.3 Nichthierarchische Verfahren: Optimale Partitionen

Bei einer Clusterung mit optimalen Partitionen wird die Qualität der Partition durch

ein Gütekriterium gemessen. Es wird die Partition C gesucht, welche im Hinblick auf das

entsprechende Gütekriterium optimal ist (Kaufmann und Pape; 1996, S. 469).

2.1.3.1 Prinzip bei optimalen Partitionen

Ein häufig angewendetes Verfahren für optimalen Partitionen ist das Austauschverfahren,

welches von Kaufmann und Pape (1996, S. 472) folgendermaßen beschrieben wird:

1. Sei die zufällige Anfangspartition C(0) vorgegeben.

2. Nun wird für jedes Objekt geprüft, ob sich das Gütekriterium verbessert, wenn man

das Objekt in der Partition C(ν) (ν ≥ 0) einem anderen Cluster zuordnet.

3. Das Objekt, welches die größte Verbesserung liefert, wird dem entsprechendem Clus-

ter zugeordnet, wodurch sich die Partition C(ν+1) bildet.

4. Die Schritte 2 und 3 werden iteriert, bis keine Verbesserung des Gütekriteriums

mehr eintritt.

Da dieses Verfahren auch ein Suboptimum ergeben kann, sollten mehrere Startpartitionen

C(0) gewählt werden. Für jede wird das Verfahren erneut durchgeführt und die optimale

Partition ist darunter die, welche das beste Gütekriterium liefert.

Ein großer Unterschied zu den hierarchischen Verfahren ist, dass bei den optimalen Par-

titionen die Klassenanzahl anfangs bereits festgelegt werden muss.

2.1.3.2 K-Means-Verfahren

Zur Clusterbildung werden beim K-Means-Verfahren Clusterzentren konstruiert. Das Güte-

kriterium hierbei ist das Varianzkriterium. Dabei wird angenommen, dass ein Cluster mit

7



2 – Methodik

ähnlichen Objekten eine kleine Streuung innerhalb des Clusters aufweist. Die Streuungs-

quadratsumme in den Clustern soll dabei minimiert werden, was sich mithilfe der qua-

drierten euklidischen Distanz wie folgt darstellen lässt (Kaufmann und Pape (1996, S.

475), Bacher et al. (2010, S. 299)):

h(C) =

g∑
k=1

∑
n∈Ck

||xn − x̄k||2 → min. (2.8)

Daraufhin wird das in Kapitel 2.1.3.1 vorgestellte Prinzip angewendet. In Schritt 2 wer-

den die Clusterzentren der g Cluster als Mittelwertsvektoren der Merkmalsvektoren der

Individuen im Cluster berechnet. Anschließend wird für jedes Objekt geprüft, zu welchem

Clusterzentrum es die geringste Distanz besitzt und in Schritt 3 entsprechend ausge-

tauscht. Dadurch minimiert sich h(C) in jedem Iterationszyklus (Bacher et al.; 2010, S.

299).

2.1.3.3 PAM-Verfahren

Das Partitioning-Around-Medoids-Verfahren hat starke Ähnlichkeiten mit dem K-Means-

Verfahren. Das PAM-Verfahren bietet allerdings den großen Vorteil, dass es wesentlich

robuster gegenüber Ausreißern ist. Zudem können auch Daten verarbeitet werden, die

nicht intervall-skaliert sind, da die Distanzmatrix übergeben werden kann. Im Gegensatz

zum K-Means-Verfahren werden hier zur Bildung der Cluster nicht Clusterzentren ermit-

telt, sondern Clustermedoiden. Das sind Objekte innerhalb der Daten, die verschiedene

Aspekte der Datenstruktur repräsentieren. Die Anzahl an Repräsentanten entspricht der

gewünschten Clusteranzahl. Angelehnt an das Prinzip aus Kapitel 2.1.3.1 wird der ers-

te Schritt beim PAM-Verfahren
”
Build-Phase“ genannt. In dieser werden mithilfe eines

Algorithmus die Repräsentanten gewählt. (Näheres dazu von Kaufman und Rousseeuw

(2005, S.102-103).) Letztendlich sollten sie zentral in der Mitte eines Clusters liegen. An-

hand der Distanzmatrix wird in dieser Phase auch entschieden, welche Objekte zu den

ermittelten Medoiden am nächsten liegen und die Cluster entsprechend gebildet.

Schritt 2 entspricht der
”
Swap-Phase“, mit dem Unterschied, dass die Objekte nicht in

ein anderes Cluster ausgetauscht werden, sondern, dass die Repräsentanten ausgetauscht

werden. Es wird geprüft, ob das Gütekriterium optimiert wird, wenn ein Objekt seinen

Platz mit einem Repräsentanten wechselt. Dabei soll die durchschnittliche Distanz der n

Objekte zu den jeweils am nächsten liegenden Clustermedoiden minimiert werden:

h(C) =
n∑
i=1

n∑
j=1

d(i, j)zij → min. (2.9)

zij ist dabei eine Indikatorvariable, die 1 wird, wenn Objekt xj dem Cluster zugeordnet

wird, in dem xi das repräsentative Objekt ist. (Kaufman und Rousseeuw; 2005)

8
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2.2 Validierung von Clusterlösungen

Soll geprüft werden in welchem Maße sich zwei Clusterlösungen unterscheiden, bieten sich

diverse Validierungstechniken an. Grob kann dabei zwischen internen und externen Indi-

zes unterschieden werden. Externe Indizes prüfen dabei die Stabilität einer Partition, d.h.

inwieweit die Klassenlabel richtig vergeben wurden. Hierfür muss die wahre Klassenzu-

gehörigkeit bekannt sein, was in der Praxis oft nicht gegeben ist. In diesem Fall können

interne Indizes angewendet werden, welche nur aus den Daten, die der Clusteranalyse

zur Verfügung stehen, berechnet werden (Scherl; 2010). Im Folgenden werden nur externe

Indizes betrachtet, da diese im weiteren Verlauf für die Benchmarkanalyse in Kapitel 3

interessant sind.

2.2.1 Grundprinzip externer Indizes

Mit externen Indizes lässt sich entweder die Ähnlichkeit zweier Clustermethoden quantifi-

zieren oder die ermittelte Clusterlösung mit der wahren Klassenzugehörigkeit vergleichen.

All diese Indizes beruhen auf einer Kontingenztabelle, die für alle Objektpaare eines Da-

tensatzes folgende Information enthält (Albatineh et al.; 2006):

Clustermethode 2

Anzahl an Paaren im selben Cluster in verschiedenen Cluster

Cluster- im selben Cluster a b

methode 1 in verschiedenen Cluster c d

Tabelle 2.1: Kontingenztabelle von Objektpaaren zweier Clustermethoden.

• a = Die Anzahl an Objektpaaren, die in beiden Clusterungen demselben Cluster

angehören.

• b = Die Anzahl an Objektpaaren, die mit Methode 1 demselben Cluster zugeordnet

wurden, jedoch mit Methode 2 nicht.

• c = Die Anzahl an Objektpaaren, die mit Methode 2 demselben Cluster zugeordnet

wurden, jedoch mit Methode 1 nicht.

• d = Die Anzahl an Objektpaaren, die in beiden Clusterungen unterschiedlichen

Clustern angehören.

2.2.2 Beispiele externer Indizes

Albatineh et al. (2006) liefern eine Übersicht mit 22 externen Indizes, die mithilfe von

Tabelle 2.1 und der Anzahl von Beobachtungen m im Datensatz berechnet werden können.

Dabei gilt
(
m
2

)
= a + b + c + d, was der gesamten Anzahl an Objektpaaren entspricht.

9



2 – Methodik

Wie in Tabelle 2.2 zu erkennen ist, unterscheiden sich einige der Indizes nur geringfügig

in ihrer Berechnung. Allgemein kann gesagt werden, dass je höher ihr Wert am Maximum

des jeweiligen Wertebereichs liegt, desto ähnlicher sind sich die zwei Clustermethoden

bzw. desto besser entspricht die ermittelte Clusterung der wahren Klassenzugehörigkeit.

Name Symbol Formel Wertebereich

Rand R a+d
a+b+c+d

[0,1]

Hubert H (a+d)−(b+c)
a+b+c+d

[-1,1]

Czekanowski CZ 2a
2a+b+c

[0,1]

Kulczynski K 1
2

(
a
a+b

+ a
a+c

)
[0,1]

McConnaughey MC a2−bc
(a+b)(a+c)

[-1,1]

Peirce PE ad−bc
(a+c)(b+d)

[-1,1]

Fowlkes und Mallows FM a√
(a+b)(a+c)

[0,1]

Wallace (1) W1 a
a+b

[0,1]

Wallace (2) W2 a
a+c

[0,1]

Gamma Γ ad−bc√
(a+b)(a+c)(c+d)(b+d)

[-1,1]

Sokal und Sneath (1) SS1 1
4

(
a
a+b

+ a
a+c

+ d
d+b

+ d
d+c

)
[0,1]

Baulieu (1) B1
(m

2 )
2
−(m

2 )(b+c)+(b−c)2

(m
2 )

2 [0,1]

Russel und Rao RR a
a+b+c+d

[0,1]

Fager und McGowan FMG a√
(a+b)(a+c)

− 1

2
√

(a+b)
[-1

2
, 1)

Pearson P ad−bc
(a+b)(a+c)(c+d)(b+d)

[-1,1]

Baulieu (2) B2 ad−bc
(m

2 )
2 [-1

4
, 1

4
]

Jaccard J a
a+b+c

[0,1]

Sokal und Sneath (2) SS2 a
a+2(b+c)

[0,1]

Sokal und Sneath (3) SS3 ad√
(a+b)(a+c)(d+b)(d+c)

[0,1]

Gower und Legendre GL a+d
a+ 1

2
(b+c)+d

[0,1]

Rogers und Tanimoto RT a+d
a+2(b+c)+d

[0,1]

Goodman und Kruskal GK ad−bc
ad+bc

[-1,1]

Tabelle 2.2: Auflistung verschiedener externer Indizes mit Angabe der Entwickler und
der entsprechenden Wertebereiche (Albatineh et al.; 2006).
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Kapitel 3

Benchmarking

Im Machine Learning oder der computationalen Statistik werden ständig neue Verfahren

vorgestellt, die im Vergleich zur bisher gebräuchlichen eine
”
bessere“ Performance bieten

sollen. Ob das allerdings tatsächlich der Fall ist, wird meist nicht statistisch nachgewiesen.

Im Fokus eines Benchmark Experiments liegt daher allgemein nicht nur die Beurteilung

der Performance verschiedener Algorithmen, sondern den besten unter ihnen zu identifi-

zieren (Hothorn et al.; 2005).

Ein Benchmarking kann mit simulierten Daten oder mit reellen Datensätzen durchgeführt

werden. Simulationsstudien spiegeln dabei allerdings häufig nicht die Komplexität der

Verteilung von reellen Daten wieder, weswegen die Betrachtung reeller Datensätze von

großer Bedeutung ist. Dabei liegt das Interesse jedoch nicht in der Aussage für nur einen

Datensatz, sondern ob ein Verfahren, angewendet auf diverse Datensätze aus einem The-

menbereich, im Mittel das bessere Ergebnis liefert. Die beobachtete Performance hängt

bei festem Stichprobenumfang und fester Verteilung von der jeweiligen Stichprobe ab. Das

”
no-free-lunch“-Theorem besagt außerdem, dass nicht davon ausgegangen werden kann,

dass Methode 2 für sämtliche Stichprobengrößen und Verteilungen eine bessere Perfor-

mance liefert wie Methode 1. Daher sollten vor allem bei reellen Daten immer mehrere

Datensätze in Betracht gezogen werden (Boulesteix et al.; 2015).

In dieser Arbeit soll nun im Bereich des unsupervised learning, zu welchem die Cluster-

analyse zählt, solch ein Benchmarking mit reellen Datensätzen durchgeführt werden. Das

Ziel ist also, eine Aussage darüber zu treffen, ob Clustermethode 2 im Vergleich zu Clus-

termethode 1 eine bessere Einteilung liefert.
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3 – Benchmarking

3.1 Hypothesenformulierung

Mithilfe von Hypothesentests lassen sich zwei verschiedene Methoden vergleichen. Bei

solchen Tests werden bestimmte Annahmen über einen Parameter oder eine Verteilung

in der Grundgesamtheit getroffen. Diese Annahmen müssen dann als statistisches Test-

problem formuliert werden (Fahrmeir et al.; 2011). Boulesteix et al. (2015) stellen eine

statistische Testformulierung vor, die im Kontext von Methodenvergleichen angewendet

werden kann. Diese Testformulierung beruht auf der Identifizierung der besseren Klassi-

fikationsmethode. Hierfür kann als Parameter die Fehlerrate ε gewählt werden, da diese

den Anteil falsch klassifizierter Objekte angibt und somit eine Aussage über die Güte des

Verfahrens getroffen werden kann.

Analog dazu gibt es jedoch für Clusterverfahren kein solches natürliches Gütekriterium.

Geht man allerdings davon aus, dass die wahre Klassenzugehörigkeit bekannt ist, kann

einer der in Kapitel 2.2.2 vorgestellten Validierungsindizes VI als Gütekriterium herange-

zogen werden. Bei der Untersuchung eines Datensatzes gilt dann, dass Methode 2 besser

als Methode 1 ist, wenn VI2 > VI1.

Wie bereits einleitend erwähnt, liegt das Interesse beim Benchmarking mit reellen Da-

tensätzen jedoch nicht in der Aussage für nur einen Datensatz. Daher werden die Hypo-

thesen mithilfe der Erwartungswerte der Indizes aller berücksichtigten Datensätze folgen-

dermaßen definiert:

H0 : E(VI1)− E(VI2) ≥ 0 (3.1)

vs. H1 : E(VI1)− E(VI2) < 0.

Wobei gilt, dass E(VI1) − E(VI2) = E(VI1 − VI2) = E(∆VI), womit die Bedeutung der

Differenz der Indizes hervorgehoben wird.

Eine aus theoretischer Sicht vollständige Formulierung der Nullhypothese liegt außerhalb

der Zielsetzung dieser Arbeit, wird allerdings von Boulesteix et al. (2015) ausführlich für

die Klassifikation diskutiert.

3.2 Bootstrap-Konfidenzintervalle

Um die Präzision einer Schätzung zu quantifizieren, werden häufig Intervallschätzungen

für den interessierenden Parameter θ durchgeführt. Dies ist auch für θ = ∆VI möglich.

Ein übliches 95%-Konfidenzintervall mit Irrtumswahrscheinlichkeit α = 0.05 erhält man

12



3 – Benchmarking

zum Beispiel mit

θ̂ ± z1−ασ̂. (3.2)

Dabei ist θ̂ der Punktschätzer des interessierenden Parameter, σ̂ die Schätzung der Stan-

dardabweichung von θ̂ und z1−α entspricht dem (1−α)-Quantil der Standardnormalvertei-

lung. Das Problem bei solchen Standardintervallen ist, dass sie auf einer asymptotischen

Approximation beruhen, die in der Praxis nicht immer gegeben ist. Eine Möglichkeit diese

Normalverteilungsannahme zu vermeiden, bieten Bootstrap-Konfidenzintervalle (DiCiccio

und Efron; 1996).

3.2.1 Bootstrap-Stichprobe

Für die Berechnung eines Bootstrap-Konfidenzintervall ist eine große Anzahl an Bootstrap-

Stichproben nötig. Im Folgenden wird kurz die Idee dieser Stichproben aufgezeigt.

Da es nicht immer möglich ist, eine gesamte Population X = (X1, . . . , XN) zu erheben,

wird eine beobachtbare, zufällige Stichprobe x = (x1, . . . , xn) aus dieser Grundgesamtheit

gezogen. Dabei ist bekannt, dass x einer bestimmten Verteilung F folgt, wobei die exakte

Verteilung unbekannt ist. Meist liegt das Interesse ohnehin keineswegs in der gesamten

Verteilung, sondern an einem konkreten Parameter θ = T (F ). Dieser soll auf Basis von x

mit θ̂ = s(x) geschätzt werden, dabei gilt oft s(x) = T (F̂ ).

Es wird angenommen, dass F̂ die empirische Verteilungsfunktion ist, die jedem Wert xi,

i = 1, . . . , n, die Wahrscheinlichkeit 1
n

zuweist, womit sich F̂ auch schreiben lässt als

F̂ (x) =
1

n

n∑
i

I(xi ≤ x), (3.3)

mit I(·) als Indikatorfunktion.

Somit kann die Bootstrap-Stichprobe x∗ = (x∗1, . . . , x
∗
n) ermittelt werden. Dafür wird n-

mal zufällig mit Zurücklegen aus der Stichprobe x = (x1, . . . , xn) gezogen, womit jedes

x∗i , i = 1, . . . , n, unabhängig und identisch F̂ -verteilt ist.

Beide Stichproben haben also den gleichen Umfang n, wobei die Werte aus x einmal,

mehrfach oder gar nicht in x∗ vorkommen können.

Einer Bootstrap-Stichprobe x∗ kann eine Bootstrap-Replikation von θ̂ zugewiesen werden:

θ̂∗ = s(x∗). (3.4)

Dabei wird die Schätzfunktion s(·) auf die Bootstrap-Stichprobe angewendet.

Dieses Verfahren kann nun wiederholt durchgeführt werden, sodass B Bootstrap-Replika-

tionen entstehen (Efron und Tibshirani; 1993).
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3.2.2 BCa-Bootstrap-Intervall

Es gibt verschiedene Ansätze ein Bootstrap Konfidenzintervall zu schätzen. Eine Möglich-

keit bietet die von Efron und Tibshirani (1993) vorgestellte BCa-Methode (engl.
”
bias-

corrected and accelerated“). Diese liefert mithilfe der Perzentile des Bootstrap-Histo-

gramms approximative Konfidenzintervalle für θ.

Mit den beschriebenen Größen aus Kapitel 3.2.1 lässt sich die kumulierte Verteilungsfunk-

tion Ĝ(c) von B Bootstrap-Replikationen θ̂∗(b) aufstellen zu

Ĝ(c) =
#
{
θ̂∗(b) < c

}
B

. (3.5)

Nach Definition gilt Ĝ−1(α) = θ̂∗(α), was dem α·100ten Perzentil der Bootstrap-Verteilung

entspricht. Liegen B Bootstrap-Replikationen vor, so ist θ̂
∗(α)
B das empirische Perzentil.

Bei 2000 Replikationen und α = 0.05 gleicht θ̂
∗(0.05)
2000 also dem hundertsten (=̂ B ·α) Wert

aus der geordneten Liste aller Replikationen.

Die Grenzen des BCa-Intervalls werden nun auch von den Perzentilen der Bootstrap-

Verteilung bestimmt, allerdings abhängig von zwei numerischen Parametern ẑ0 und â:

θ̂BCa(α) = Ĝ−1 (αadj) (3.6)

mit αadj = Φ

(
ẑ0 +

ẑ0 + z(α)

1− â(ẑ0 + z(α))

)
.

Dabei bezeichnet Φ die Verteilungsfunktion der Standardnormalverteilung mit den Quan-

tilen z(α) = Φ−1(α).

Das 90%-BCa-Konfidenzintervall ergibt sich dann zum Beispiel zu
[
θ̂BCa(0.05), θ̂BCa(0.95)

]
sowie jedes andere (1−2α)-BCa-Konfidenzintervall entsprechend zu

[
θ̂BCa(α), θ̂BCa(1− α)

]
.

Die Formel 3.6 für die Intervallgrenzen kann durch folgende Annahmen motiviert werden:

Es existiert eine monoton steigende Transformation φ = m(θ) mit φ̂ = m(θ̂), so dass für

jegliches θ gilt

φ̂ ∼ N(φ− z0σφ, σ2
φ)

mit σφ = 1 + aφ.
(3.7)

Da die Transformation m in Formel 3.6 keine Berücksichtigung findet, können die Inter-

vallgrenzen also auch ohne Wissen über m berechnet werden.

Mithilfe der Wahrscheinlichkeit P (φ̂ < φ) = Φ(z0) lässt sich der Bias-Korrektor z0 gut

interpretieren, womit aufgrund der Monotonie auch gilt P (θ̂ < θ) = Φ(z0).
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Die einfachste Form des BCa-Algorithmus schätzt z0 daraufhin durch

ẑ0 = Φ−1

#
{
θ̂∗(b) < θ̂

}
B

 = Φ−1
(
Ĝ(θ̂)

)
. (3.8)

Die Beschleunigung a in Formel 3.7 gibt an, wie schnell sich der Standardfehler auf Basis

der Standardnormalverteilung ändert. Auch für sie gibt es verschiedene Methoden zur

Schätzung. Zum Beispiel können die Jackknife Werte einer Statistik θ̂ = s(x) herangezo-

gen werden. Dabei wird die Stichprobe x(i) verwendet, die aus der ursprünglichen Stich-

probe x besteht allerdings ohne den Wert xi. Es gilt θ̂(.) =
n∑
i=1

θ̂(i)/n, wobei θ̂(i) = s(x(i)).

Damit ergibt sich für den Schätzer von a:

â =

n∑
i=1

(
θ̂(.) − θ̂(i)

)3
6

{
n∑
i=1

(
θ̂(.) − θ̂(i)

)2}3/2
(3.9)

(DiCiccio und Efron; 1996; Efron und Tibshirani; 1993).

Weitere Schätzer für z0 und a werden zum Beispiel von DiCiccio und Efron (1996) disku-

tiert.
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Kapitel 4

Anwendung auf 50 Microarray-Datensätze

Ziel der vorgestellten Benchmarkanalyse ist es, beim Vergleich zweier Clusterverfahren

das bessere der beiden zu identifizieren. Die in Kapitel 2 und 3 vorgestellten Verfahren

sollen nun auf 50 verschiedene Microarray-Datensätze angewendet werden. Hierfür wird

zunächst auf die Datenstruktur eingegangen, bevor eine Clusteranalyse mit verschiedenen

Verfahren durchgeführt wird. Diese Clusterlösungen werden dann mithilfe der Indizes aus

Kapitel 2.2.2 validiert und verglichen. Für alle Analysen wird die Statistik-Software R,

Versionsnummer 3.1.1, genutzt.

4.1 Microarray-Daten

Mithilfe der Microarray-Technologie ist es seit Ende der 1990er Jahre möglich, die DNA-

Sequenzen eines Organismus zu analysieren. Die DNA transkribiert mRNA. Wird diese

sogenannte Messenger-RNA in ein Protein übersetzt, heißt dieser Vorgang Genexpres-

sion. Mit einem Microarray kann das Expressionsniveau aller Gene in einem einzigen

Experiment festgestellt werden, da die Menge verschiedener mRNA-Moleküle zu einem

bestimmten Zeitpunkt in einer Zelle gemessen wird.

Abbildung 4.1: Auszug aus einem Microarray.

Ein Microarray ist ein Objektträger aus Glas, auf dem Millionen von einzelnen DNA-

Molekülen auf sogenannten
”
Spots“ fixiert werden. In Genexpressions-Studien soll mit

jedem einzelnen dieser DNA-Moleküle ein mRNA-Molekül im Genom untersucht werden.

16



4 – Anwendung auf 50 Microarray-Datensätze

Eine weit verbreitete Methode ist das Vergleichen von Expressionsniveaus in zwei ver-

schiedenen Proben (zum Beispiel zwei verschiedene Entwicklungsstadien). Dabei wird die

isolierte mRNA in beiden Proben farblich unterschiedlich markiert, z. B. in Probe 1 grün

und in Probe 2 rot. Werden die beiden Proben vereinigt und mit einem Laser angeregt,

findet eine Hybridisierung statt. Anhand der Fluoreszenzintensität und Farbe der einzel-

nen Spots (vgl. Abbildung 4.1) kann das relative Expressionsniveau der Gene in beiden

Proben geschätzt werden.

Mit Microarrays kann also erforscht werden, welche Gene in welchen Zelltypen aktiv sind

bzw. an welchen Zellvorgängen sie teilnehmen und wie sich das Expressionsniveau ein-

zelner Gene z. B. in verschiedenen Krankheitsstadien verhält. Besonders im Bereich der

Onkologie erweisen sich Microarrays als informativ, denn ihre Analyse kann dazu bei-

tragen, Tumorarten zu klassifizieren und neue Unterarten zu definieren. Unter anderem

können diesen Daten auch genutzt werden, um Vorhersagen zur Prognose und Diagnose

für Krebspatienten zu treffen (Causton et al.; 2003).

Die Herausforderung bei der Analyse von Microarray-Daten ist, dass die Anzahl an Va-

riablen deutlich höher ist, als die Anzahl an Beobachtungen, wodurch enorm große Da-

tenmengen entstehen. Werden n Patienten betrachtet, sind diese als Beobachtungen zu

verstehen. Von jeder Beobachtung werden bestimmte Gene untersucht, diese können sta-

tistisch als p Variablen angesehen werden. Typischerweise werden 20 bis 300 Beobachtun-

gen untersucht, wohingegen p dabei zwischen 5.000 und 50.000 liegen kann. Dadurch sind

viele statistische Standardverfahren nicht anwendbar (Boulesteix et al.; 2008).

4.2 Verwendete Datensätze

Im Folgenden sollen Clusteranalyseverfahren auf 50 verschiedene Microarray-Datensätze

angewendet werden. Diese Datensätze wurden bereits von Boulesteix et al. (2015) zum

Vergleich von Klassifikationsverfahren verwendet. Dabei handelt es sich um 50 reelle Da-

tensätzen aus klinischen Krebsstudien, bei welchen bekannt ist, dass die Beobachtungen

in zwei Klassen eingeteilt werden können. Die Klassenzugehörigkeit ist durch eine Ziel-

variable Y definiert, welche im Bezug zur jeweiligen Krebsdiagnose steht. Dabei kann es

sich beispielsweise um den aktuellen Gesundheitszustand handeln (z.B. Tumor ja/nein)

oder um eine längerfristige Prognose (z.B. gute/schlechte Prognose).

Für alle Studien steht eine Datenmatrix X zur Verfügung, in der jede Beobachtung v1

bis vn eine Zeile (x1, . . . , xp) darstellt. Die Spalten entsprechen den p Variablen, also den

gemessenen Genexpressionsniveaus. Je nach Datensatz liegt n zwischen 23 und 286 und

p zwischen 1.098 und 54.675.
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4.3 Clusteranalyse der Datensätze

Die in Kapitel 2.1 vorgestellten Clustering-Verfahren wurden nun für alle 50 Datensätze

durchgeführt. Die gewünschte Clusteranzahl betrug dabei aufgrund der binären Zielvaria-

ble jeweils zwei. Weitere Spezifikationen und die jeweiligen R-Funktionen die zum Einsatz

kamen, werden im Folgenden aufgeführt:

• Single-Linkage- / Complete-Linkage- / Ward-Verfahren: Funktion hclust. Es wurde

als Distanzmaß zwischen zwei Objekten die euklidische Distanz gebildet.

• K-Means: Funktion kmeans. Um die Rechenzeit zu begrenzen, sollten maximal 20

Iterationen durchgeführt werden. Außerdem wurde das beste Ergebnis aus 10 Start-

partitionen gewählt.

• Partitioning-Around-Medoids: Funktion pam aus dem Package
”

cluster“. Hier wurde

ebenfalls die euklidische Distanz als Distanzmaß verwendet.

Beispielhaft soll anhand eines Datensatzes gezeigt werden, wie die Klasseneinteilungen der

unterschiedlichen Verfahren ausgefallen sind. Hierfür wird der Datensatz leukemia yagi

verwendet. Bei dieser Studie wurde das Genexpressionsprofil von 53 Patienten mit akuter

myeloischer Leukämie in 7241 Variablen gemessen. Die Variable Y beschreibt in diesem

Fall das Ansprechen auf die Chemotherapie mit den Ausprägungen
”
0 = vollständige

Remission“ und
”
1 = Rückfall“.

Cluster

Verfahren
Single-Linkage Complete-Linkage Ward K-Means PAM

1 52 49 24 17 27

2 1 4 29 36 26

Tabelle 4.1: Clusterzuordnung verschiedener Clusterverfahren für den Datensatz
leukemia yagi.

Tabelle 4.1 zeigt die Anzahl der Beobachtungen je Cluster für alle fünf Verfahren. Es

ist zu erkennen, dass bei einer hierarchischen Clusterung mit Single-Linkage eine Klasse

aus nur einem einzelnen Objekt besteht, was selten bei einer Clusteranalyse gewünscht

ist. Der Grund hierfür liegt im Nachteil dieses Verfahrens: Der Single-Linkage hat eine

sehr
”
schwache“ Voraussetzung an die Homogenität in den Clustern. Deutlich getrenn-

te Klassen können daher vermischt werden, wenn sie, wie in Abbildung 4.2, durch eine

Brücke verbunden sind. Diese sogenannte Verkettungseigenschaft lässt sich jedoch für die

Analyse von Ausreißern nutzen, da diese Objekte weit von den anderen Objekten ent-

fernt liegen und erst in den letzten Iterationsschritten einem Cluster hinzugefügt werden
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* **
* **

* *

**

* *
*

Abbildung 4.2: Durch eine Brücke verbundene Klassen (Kaufmann und Pape; 1996, S.
462).

(Kaufmann und Pape; 1996; Bacher et al.; 2010). Es kann also davon ausgegangen wer-

den, dass es sich bei dieser einen Beobachtung in Cluster 2 beim Single-Linkage-Verfahren

um einen Ausreißer im Datensatz leukemia yagi handelt. Der Complete-Linkage hingegen

weist diese Verkettungseigenschaft nicht auf. Laut Bacher et al. (2010, S. 152) führt er

”
dagegen oft dazu, dass sehr viele Cluster gebildet werden, da er von einer sehr ’strengen’

Vorstellung hinsichtlich der Homogenität in den Clustern ausgeht. Dieser Effekt wird als

Dilatationseffekt bezeichnet“. Die Cluster sind außerdem meist sehr kompakt mit geringen

Durchmessern (Kaufman und Rousseeuw; 2005, S. 41). Diese Eigenschaft ist mit diesem

Beispieldatensatz, bei nur zwei gebildeten Klassen, nicht zu erkennen.

Auch wenn das Single-Linkage-Verfahren für die vorliegenden Microarray-Daten oftmals

keine brauchbaren Clusterungen liefert, wurde es für die nachfolgenden Analysen beibehal-

ten. Grund hierfür ist die Vermutung, dass sich durch die schlechte Anpassung signifikante

Unterschiede in den Validierungsindizes der Verfahren ergeben.

4.4 Wahl des Validierungsindex

Zur Validierung einer Clusterlösung kann eine Kontingenztabelle der wahren Klassenzu-

gehörigkeit, die durch Y bestimmt wird, und der Clusterzuordnung einen ersten Überblick

liefern.

Y

Ward 0 1

Cluster
1 14 10

2 14 15

Y

K-Means 0 1

Cluster
1 9 8

2 19 17

Y

PAM 0 1

Cluster
1 17 10

2 11 15

Tabelle 4.2: Kontingenztabellen der Clusterzuordnungen und Y von leukemia yagi. Die
grau hinterlegten Zellen stellen in Summe jeweils die maximale Überein-
stimmung der Cluster- mit der wahren Klassenzuordnung dar.

Die Kontingenztabellen, die sich beispielsweise für den Datensatz leukemia yagi für das

Ward-, K-Means- und PAM-Verfahren ergeben, sind in Tabelle 4.2 zusammengefasst. An-

hand der Diagonalen dieser Tabellen kann die Übereinstimmung der Clusterzuordnung
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und der wahren Klassenzugehörigkeit abgeschätzt werden. Beim Verfahren von Ward wur-

den maximal 29 Beobachtungen in die wahren Klassen zugeordnet, bei K-Means 27 und

bei PAM 32. Um diese Übereinstimmung nun aber in einer konkreten, interpretierbaren

Maßzahl auszudrücken, können externe Indizes aus Kapitel 2.2.2 in Betracht gezogen wer-

den.

Wie bereits erwähnt, gibt es eine Vielzahl dieser Indizes. Da einige sich sehr stark ähneln,

soll nun beurteilt werden, welcher Index für eine Benchmarkanalyse der vorliegenden

Mircoarray-Daten am besten geeignet ist. Hierfür wurden 19 der von Albatineh et al.

(2006) zusammengetragenen Indizes (vgl. Tabelle 2.2) für alle 50 Datensätze ermittelt.

Ausgeschlossen wurden lediglich Russel und Rao (RR), Fager und McGowan (FMG) und

Pearson (P), da eine Benchmarkanalyse der Clusterindizes von Scherl (2010) ergab, dass

diese drei einige Schwächen aufweisen und deshalb unzureichende Resultate liefern.

Zur Berechnung der Indizes wird die Kontingenztabelle von Objektpaaren aus Kapi-

tel 2.2.1 benötigt. Für den Datensatz leukemia yagi und die fünf Verfahren resultieren

dann folgende Tabellen:

Y

Single s v

Cluster
s 654 672

v 24 28

Y

Complete s v

Cluster
s 580 602

v 98 98

Y

Ward s v

Cluster
s 332 350

v 346 350

Y

K-Means s v

Cluster
s 371 395

v 307 305

Y

PAM s v

Cluster
s 341 335

v 337 365

Tabelle 4.3: Kontingenztabellen der Objektpaare von leukemia yagi. Dabei beschreibt s
die Anzahl an Paare, die im selben Cluster zugeordnet wurden und v die
Anzahl an Paare, die verschiedenen Cluster zugeordnet wurden.

Tabelle 4.4 zeigt die Ergebnisse, der aus den Kontingenztabellen resultierenden Indizes,

mit welchen dann die Differenzen der Indizes für jede Verfahrenskombination ermittelt

werden können (dargestellt in Tabelle 4.5). Dieses Vorgehen wird nicht nur für den Da-

tensatz leukemia yagi durchgeführt, sondern auch für die restlichen 49 Datensätze. Ziel

ist es, herauszufinden welcher Index die größten Differenzen liefert.

Dabei fällt auf, dass für einige Datensätze alle Differenzen gleich Null sind. Das liegt daran,

dass bei diesen Daten jedes der fünf Clustering-Verfahren die exakt gleiche Clusterzuord-

nung ergeben hat. In diesem Fall lassen sich folglich keine Unterschiede in den Indizes er-

kennen, weswegen die sechs Datensätze breast veer, colon watanabe, leukemia bullinger 2,
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Index Single Complete Ward K-Means PAM
R 0.49 0.49 0.49 0.49 0.51
H -0.01 -0.02 -0.01 -0.02 0.02

CZ 0.65 0.62 0.49 0.51 0.50
K 0.73 0.67 0.49 0.52 0.50

MC 0.46 0.35 -0.02 0.03 0.01
PE 0.00 -0.00 -0.01 -0.02 0.02
FM 0.69 0.65 0.49 0.51 0.50
W1 0.49 0.49 0.49 0.48 0.50
W2 0.96 0.86 0.49 0.55 0.50

gamma 0.01 -0.01 -0.01 -0.02 0.02
SS1 0.51 0.50 0.49 0.49 0.51
B1 0.72 0.63 0.49 0.49 0.51
B2 0.00 -0.00 -0.00 -0.00 0.01

J 0.48 0.45 0.32 0.35 0.34
SS2 0.32 0.29 0.19 0.21 0.20
SS3 0.10 0.17 0.24 0.24 0.26
GL 0.66 0.66 0.66 0.66 0.68
RT 0.33 0.33 0.33 0.32 0.34
GK 0.06 -0.02 -0.02 -0.03 0.05

Tabelle 4.4: Externe Indizes der einzelnen Clusteranalysen von leukemia yagi.

Index S-C S-W S-K S-P C-W C-K C-P W-K W-P K-P
R 0.003 0.000 0.004 -0.017 -0.003 0.001 -0.020 0.004 -0.017 -0.022
H 0.006 0.000 0.009 -0.035 -0.006 0.003 -0.041 0.009 -0.035 -0.044

CZ 0.029 0.164 0.139 0.149 0.135 0.110 0.120 -0.026 -0.015 0.010
K 0.056 0.241 0.213 0.225 0.185 0.157 0.169 -0.028 -0.015 0.012

MC 0.112 0.481 0.426 0.450 0.370 0.315 0.339 -0.055 -0.031 0.024
PE 0.009 0.015 0.022 -0.020 0.006 0.013 -0.029 0.007 -0.035 -0.041
FM 0.042 0.202 0.175 0.186 0.160 0.133 0.144 -0.027 -0.015 0.011
W1 0.003 0.006 0.009 -0.011 0.004 0.006 -0.014 0.002 -0.018 -0.020
W2 0.109 0.475 0.417 0.462 0.366 0.308 0.353 -0.058 -0.013 0.044

gamma 0.019 0.022 0.029 -0.012 0.004 0.011 -0.031 0.007 -0.035 -0.042
SS1 0.013 0.014 0.018 -0.003 0.002 0.005 -0.016 0.003 -0.017 -0.021
B1 0.090 0.221 0.221 0.204 0.131 0.131 0.113 0.000 -0.017 -0.018
B2 0.002 0.004 0.005 -0.005 0.001 0.003 -0.007 0.002 -0.009 -0.010

J 0.031 0.161 0.139 0.148 0.130 0.107 0.117 -0.023 -0.014 0.009
SS2 0.027 0.127 0.111 0.117 0.100 0.084 0.091 -0.016 -0.010 0.007
SS3 -0.070 -0.144 -0.139 -0.161 -0.073 -0.068 -0.091 0.005 -0.017 -0.022
GL 0.003 0.000 0.004 -0.015 -0.003 0.001 -0.018 0.004 -0.015 -0.019
RT 0.003 0.000 0.004 -0.016 -0.003 0.001 -0.018 0.004 -0.016 -0.019
GK 0.082 0.084 0.098 0.015 0.002 0.016 -0.067 0.014 -0.069 -0.083

Tabelle 4.5: Differenzen der externen Indizes der einzelnen Clusteranalysen von leu-
kemia yagi. In den Spalten werden die Verfahren mit ihren Anfangsbuch-
staben abgekürzt, z.B. S-C: Differenz der Indizes aus Single-Linkage- und
Complete-Linkage-Verfahren.
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4 – Anwendung auf 50 Microarray-Datensätze

lung wigle, mixed chowdary und ovarian li and campbell für die Wahl des Index nicht

berücksichtigt wurden. Es stehen somit 44 Datensätze zur Verfügung mit jeweils 10 ver-

schiedenen Differenzen je Index.

Für jeden Index wird nun ein Boxplot betrachtet, um im ersten Schritt zu sehen, in wel-

chem Bereich die Differenzen der 44 Datensätze streuen. Abbildung 4.3 zeigt beispielhaft

den Boxplot für den Rand-Index (R). Der mögliche Wertebereich der Differenz liegt hier

zwischen -1 und 1. Es ist zu erkennen, dass der Median der Differenzen immer nahe Null

liegt. Ein ähnliches Bild ergeben auch die Boxplots der folgenden acht Indizes: Hubert

(H), Peirce (PE), Wallace (1) (W1), Gamma (Γ), Sokal und Sneath (1) (SS1), Baulieu (2)

(B2), Gower und Legendre (GL) und Rogers und Tanimoto (RT)1. Nicht nur der Median,

sondern einige der Differenzen liegen nahe bei Null. Unterschiede in den Verfahren lassen

sich also nicht ausreichend deutlich mit diesen neun Indizes erkennen, weshalb sie für die

Benchmarkanalyse der Clustering-Verfahren nur begrenzt geeignet sind.
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Abbildung 4.3: Darstellung der Rand-Index-Differenzen zwischen den fünf Clustering-
Verfahren. Einbezogen wurden hier 44 der 50 Datensätze, deren Clus-
terlösungen nicht für alle Verfahren die exakt gleiche Zuordnung erga-
ben. Die gestrichelte, blaue Linie grenzt den möglichen Wertebereich
ab.

Somit können nun im zweiten Schritt die restlichen 10 Indizes in Abbildung 4.4 genauer

betrachtet werden:

Bis auf zwei Indizes von McConnaughey (MC) und Goodman und Kruskal (GK), besitzen

alle eine Differenz mit einem möglichem Wertebereich zwischen -1 und 1. Da sich die Ten-

denz der Boxplots der Indizes Czekanowski (CZ), Kulczynski (K), Fowlkes und Mallows

(FM), Baulieu (1) (B1), Jaccard (J) und Sokal und Sneath (2) (SS2) sehr stark ähnelt,

wird in Abbildung 4.4 der Boxplot des FM-Index stellvertretend für all diese dargestellt2.

1 Die Boxplots hierzu finden sich im Anhang in Abbildung A.1.
2 Die Boxplots der Indizes, auf deren Darstellung verzichtet wurde, finden sich im Anhang in Abbil-

dung A.2.
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4 – Anwendung auf 50 Microarray-Datensätze

Die Differenzen der Indizes MC und GK besitzen einen möglichen Wertebereich zwischen

-2 und 2 und werden ebenfalls in Abbildung 4.4 dargestellt.
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Abbildung 4.4: Darstellung verschiedener Index-Differenzen zwischen den fünf
Clustering-Verfahren. Einbezogen wurden hier 44 der 50 Datensätze,
deren Clusterlösungen nicht für alle Verfahren die exakt gleiche
Zuordnung ergaben. Die gestrichelte, blaue Linie grenzt den möglichen
Wertebereich ab.
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4 – Anwendung auf 50 Microarray-Datensätze

Alle Plots in Abbildung 4.4 haben eine Gemeinsamkeit: die Differenzen zwischen den Ver-

fahren Ward, K-Means und PAM (W-K, W-P, K-P) liegen alle sehr nahe bei Null. Das

bedeutet, dass die Validierungsindizes für diese Verfahren jeweils ähnliche Werte ergeben

und sich diese drei Verfahren, angewendet auf die 44 Microarry-Datensätze, in ihren Clus-

terlösungen kaum bis überhaupt nicht unterscheiden. Da die größte Differenz gesucht ist

und aus Gründen der Übersichtlichkeit, können also im Weiteren auch nur die restlichen

sieben Differenzen betrachtet werden.

Wird der GK-Index mit dem Rand-Index aus Abbildung 4.3 verglichen, treten bei bei-

den ähnliche Probleme auf. Einige der Mediane liegen sehr nahe bei Null, jedoch nicht

alle. Die Streuung der Differenzen wirkt beim GK-Index größer, beachtet man jedoch den

möglichen Wertebereich von GK relativiert sich dieser Eindruck. Da alle Boxen der ein-

zelnen Boxplots von GK die Null beinhalten, kann letztendlich dieser Index die möglichen

Unterschiede in den Verfahren nicht ausreichend gut verdeutlichen.

Des Weiteren kann allgemein in Abbildung 4.4 erkannt werden, dass die Methodenverglei-

che für manche Indizes auch Differenzen liefern, die zwar klein sind, aber nicht ganz Null.

Zwei Beispiele hierfür sind die Indizes MC und W2. Vergleicht man diese beiden Indizes,

scheinen die Differenzen des W2-Index im Bezug auf den möglichen Wertebereich größer

zu sein. Laut Wallace (1983) können allerdings die Werte von W1 und W2 nur gemeinsam

zur Interpretation der Ähnlichkeit zweier Clusterpartitionen herangezogen werden, zum

Beispiel über den Index von Fowlkes und Mallows (FM), der das geometrische Mittel über

W1 und W2 darstellt. W1 wurde bereits im ersten Schritt ausgeschlossen und da der Wert

von W2 alleine ebenfalls nicht ausreicht, ist dieser trotz größerer Differenzen nicht für die

Benchmarkanalyse der Clustering-Verfahren geeignet.

Zwei Clusterlösungen können theoretisch auch durch Zufall übereinstimmen. Albatineh

et al. (2006) stellten fest, dass die Indizes MC und K identisch sind, wenn eine Korrek-

tur dieser zufälligen Übereinstimmung von Partitionen durchgeführt wird (Näheres zur

Durchführung und dem theoretischen Hintergrund der Korrektur von Albatineh et al.

(2006)). Somit kann einer der beiden im Weiteren vernachlässigt werden. Um die Ver-

gleichbarkeit der Indizes zu verbessern, wird nur noch der K-Index in Betracht gezogen,

da er Werte zwischen -1 und 1 annehmen kann. Die Gleichheit nach Korrektur gilt eben-

falls für die Indizes R, H und CZ. Da sich Rand- und Hamann-Index bereits in Schritt 1

als ungeeignet herausgestellt haben, kann auch der Czekanowski-Index (CZ) außer Acht

gelassen werden.

Daraufhin verbleiben nun sechs Indizes, die zur Validierung der Clusterlösungen der vor-

liegenden Microarray-Daten geeignet sind.

Sokal und Sneath (1963) stellen eine mögliche Klassifikation verschiedener Validierungs-

indizes vor. Danach besteht die fundamentale Formel aller Indizes aus der Anzahl an
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4 – Anwendung auf 50 Microarray-Datensätze

Übereinstimmungen dividiert durch einen Term, der die mögliche Anzahl an Vergleichen

unterschiedlich einbezieht. Die Einteilung basiert auf der Zusammensetzung von Zähler

und Nenner der Indizes. Dabei wird im Zähler nur berücksichtigt, ob die Anzahl an Ob-

jektpaaren, die in beiden Clusterlösungen unterschiedlich zugeordnet wurden (=̂ d), ein-

bezogen wurde oder nicht. Fünf der sechs verbleibenden Indizes wurden demnach wie in

Tabelle 4.6 zusammengefasst, dabei ist Baulieu (B1) entsprechend ergänzt worden. Die-

ser Index stellt auch eine Besonderheit dar, da er im Vergleich zu allen anderen, bereits

im Zähler eine umfangreichere Berechnung vornimmt. Außerdem misst dieser Index die

Unähnlichkeit zweier Clusterlösungen (Baulieu; 1989), weswegen sich die Interpretation

von allen anderen unterscheidet: Je niedriger der Wert des Index, desto ähnlicher sind

sich zwei Partitionen.

Zähler: Anzahl an Objektpaaren, die in beiden
Clusterlösungen unterschiedlichen Clustern zugeordnet

wurden (=̂ d)

Nenner ausgeschlossen einbezogen

gleiche Gewichte auf den
Objektpaaren, egal ob sie in
gleiche oder verschiedenen
Clustern zugeordnet wur-
den

Jaccard,
J = a

a+b+c

Objektpaare, die verschie-
denen Clustern zugeordnet
wurden, werden doppelt ge-
wichtet

Sokal und Sneath (2),
SS2 = a

a+2(b+c)

Randverteilungen
Kulczynski,
K = 1

2

(
a
a+b

+ a
a+c

)
(arithmetisches Mittel) als arithmetisches Mittel

von W1 und W2

Randverteilungen
Fowlkes und Mallows,
FM = a√

(a+b)(a+c)

Sokal und Sneath (3),
SS3 = ad√

(a+b)(a+c)(d+b)(d+c)

(geometrisches Mittel) als geometrisches Mittel von
W1 und W2

Anzahl an Objektpaaren
Baulieu (1),

B1 =
(m

2 )
2
−(m

2 )(b+c)+(b−c)2

(m
2 )

2

Tabelle 4.6: Einteilung der verschiedenen Indizes zur Validierung von Clusterlösungen
nach Sokal und Sneath (1963), um B1 ergänzt.
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4 – Anwendung auf 50 Microarray-Datensätze

4.5 Bootstrap-Konfidenzintervalle

Nun wurden für alle sechs Index-Differenzen Bootstrap-Konfidenzintervalle mithilfe der

R-Funktionen boot und boot.ci aus dem Package
”

boot“ aufgestellt.

Aus der Nullhypothese in Kapitel 3.1 folgt, dass der interessierende Parameter der Bench-

markanalyse von Clustering-Verfahren der Erwartungswert der Differenz zweier Indizes

VI1 und VI2 ist, somit gilt

θ = E(VI1 − VI2) = E(∆VI). (4.1)

Dabei stellen VI1 und VI2 Vektoren dar, die jeweils die Validierungsindizes für alle 50

Datensätze beinhalten. Ebenso ist auch ∆VI ein Vektor mit Länge 50, dieser enthält also

die Differenzen ∆VIi für jeden der 50 Datensätze.

Als Schätzfunktion für den Parameter in 4.1 wird das arithmetische Mittel über alle 50

Datensätze gebildet, also

θ̂ = s(∆VI) =
1

50

50∑
i=1

∆VIi. (4.2)

Es wurden, wie von DiCiccio und Efron (1996) empfohlen, 2000 Bootstrap-Replikationen

θ̂∗ gebildet und mit diesen ein BCa-95%-Konfidenzintervall aufgestellt.

Für ein BCa-Intervall werden Schätzungen der Parameter a und z0 benötigt. Diese Schätz-

funktionen wurden entsprechend Kapitel 3.2.2 aufgestellt und daraufhin αadj berech-

net. Damit konnten dann die jeweiligen Perzentile der geordneten Liste aller Bootstrap-

Replikationen als Intervallgrenzen bestimmt werden.

Da B · αadj meist keiner ganzen Zahl entspricht, werden die Werte in diesen Fällen durch

eine lineare Interpolation auf Basis der Standardnormalverteilungsquantile ermittelt. Da-

vison und Hinkley (1997, S. 195) wählen hierfür k = b(B + 1)αadjc, was der größten ganzen

Zahl kleiner als (B + 1)αadj entspricht und definieren die Intervallgrenze folgendermaßen:

θ̂BCa(α) = θ̂∗(Bαadj)
= θ̂∗(k) +

Φ−1(αadj)− Φ−1( k
B+1

)

Φ−1( k+1
B+1

)− Φ−1( k
B+1

)

(
θ̂∗(k+1) − θ̂∗(k)

)
. (4.3)

Dabei sind θ̂∗(k) und θ̂∗(k+1) die k- bzw. (k + 1)-ten Werte aus der geordneten Liste aller

Bootstrap-Replikationen.

Abbildung 4.5 zeigt die Konfidenzintervalle, die sich daraufhin für alle sechs Validierungs-

indizes ergeben. Zur besseren Lesbarkeit wurde auf der x-Achse ein Bereich von -0.5 bis

0.5 gewählt, es sei allerdings darauf hingewiesen, dass alle Differenzen einen möglich Wer-

tebereich von -1 bis 1 besitzen. Auf der y-Achse ist abzulesen, welche Differenz jeweils in
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4 – Anwendung auf 50 Microarray-Datensätze

der entsprechenden Zeile aufgetragen ist. Hier sind die Verfahren mit ihren Anfangsbuch-

staben abgekürzt, C−P stellt also zum Beispiel die Differenz der Validierungsindizes aus

Complete-Linkage- und PAM-Verfahren dar.
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Abbildung 4.5: Darstellung der BCa-Konfidenzintervalle der Differenz für sechs Vali-
dierungsindizes. Es wurden 2000 Bootstrap-Replikationen gebildet. Der
grüne Punkt kennzeichnet jeweils den geschätzten Wert der Differenz
aus der ursprünglichen Stichprobe.

Mit diesen Intervallen soll nun die Nullhypothese aus Kapitel 3.1 überprüft werden. Das

heißt, ist die 0 im Konfidenzintervall enthalten, kann kein signifikanter Unterschied zwi-
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schen den Erwartungswerten zweier Validierungsindizes festgestellt werden. Beinhaltet es

Werte < 0, bedeutet dies einen signifikanten Unterschied zwischen zwei Clustermethoden

und Methode 2 liefert bessere Ergebnisse als Methode 1. Im Umkehrschluss bedeuten

Werte > 0, dass Clustermethode 1 gegenüber Clustermethode 2 zu bevorzugen ist.

Eine Ausnahme in der Auswertung stellt der Index B1 dar. Da er im Gegensatz zu allen

anderen nicht die Ähnlichkeit, sondern die Unähnlichkeit misst, ändert sich die Interpre-

tation des Konfidenzintervalls. Werte > 0 sprechen dabei für Clustermethode 2 und Werte

< 0 für Clustermethode 1.

4.6 Interpretation der Ergebnisse

Betrachtet man die Ergebnisse der sechs Indizes in Abbildung 4.5, fallen keine große Un-

terschiede zwischen den einzelnen Indizes auf. Die einzige Ausnahme bildet hier der Index

SS3, welcher für die Differenzen Konfidenzintervalle besitzt, die Werte deutlich kleiner als

0 beinhalten. In diesem Fall werden die Verfahren PAM, K-Means und Ward gegenüber

einer hierarchischen Clusterung mit Single- oder Complete-Linkage bevorzugt. Ebenso

wird ein Complete-Linkage gegenüber einem Single-Linkage bevorzugt.

Eine zusätzliche, nicht offensichtliche Ausnahme bildet der Index B1. Wie bereits erwähnt,

ändert sich hier die Interpretation und Werte > 0 sprechen für Clustermethode 2. Womit

sich für jeden Vergleich die gleiche Entscheidung wie bei dem Index SS3 ergibt.

Die Indizes K, FM und J liefern alle Konfidenzintervalle > 0, weshalb man sich ent-

sprechend anders wie bei B1 und SS3 entscheidet: Die hierarchischen Clusterungen mit

Single- und Complete-Linkage werden gegenüber den Verfahren PAM, K-Means und Ward

bevorzugt. Und der Single-Linkage liefert
”
bessere“ Partitionen als der Complete-Linkage.

Fast gleiches gilt bei der Analyse mit dem Index SS2, allerdings kann beim Vergleich von

Complete-Linkage und Ward-Verfahren kein signifikanter Unterschied festgestellt werden,

da dieses Konfidenzintervall die 0 beinhaltet.

Anders als erwartet, wird also eine Clusteranalyse mit dem Single-Linkage-Verfahren mit

den Indizes K, FM, J und SS2 als bessere Methode identifiziert, obwohl aufgrund der

Verkettungseigenschaft oft keine sinnvollen Cluster gebildet wurden (siehe Kapitel 4.3).

Eine Erklärung hierfür liefert beispielsweise Tabelle 4.3: Wenn eins der beiden gebildeten

Cluster nur sehr wenige Objekte beinhaltet, ist dementsprechend die Anzahl an Objekt-

paaren in verschiedenen Clustern für dieses Verfahren sehr gering. Dadurch fallen die
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Werte für c und d in den Formeln der Indizes (vgl. Kapitel 2.2) im Vergleich zu a und

b ebenfalls klein aus. Da die angesprochenen vier Indizes allerdings nur die Anzahl der

mit beiden Methoden gleich zugeordneten Objektpaare (=̂ a) im Zähler berücksichtigen,

fallen die Indizes für Partitionen mit sehr ungleichen Clustergrößen auch entsprechend

größer aus. Dass diese Indizes für den Single-Linkage die größten Werte liefern, ist auch

für den Beispieldatensatz leukemia yagi in Tabelle 4.4 zu erkennen. Ob wirklich eine gute

Übereinstimmung mit der wahren Klassenzugehörigkeit Y gegeben ist, ist dabei fraglich.

Daher scheint die Anwendung des B1- oder SS3-Index für diese Datensituation angemesse-

ner. Beide Indizes berücksichtigen dabei nicht nur a im Zähler, sondern auch die Anzahl

an Objektpaaren, die in beiden Clusterlösungen unterschiedlichen Clustern zugeordnet

wurden (=̂ d).
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Kapitel 5

Zusammenfassung und Ausblick

Das Ziel der Arbeit war es, ein Framework auszuarbeiten, mit dem aus zwei Clustermetho-

den die bessere identifiziert werden kann. Allgemein ist bei solchen Benchmarkanalysen

darauf zu achten, auch reelle Datensätze zu berücksichtigen, da diese meist nicht einer

einfachen gemeinsamen Verteilung folgen, wie es bei Simulationsstudien der Fall ist (Bou-

lesteix et al.; 2015). Daher wurde die hier vorliegende Benchmarkanalyse an 50 reellen

Datensätzen aus klinischen Krebsstudien durchgeführt.

Der jeweilige Validierungsindex VI einer Clusterlösung bildete dabei das Hauptgütekri-

terium, anhand dessen eine Entscheidung für oder gegen eine Methode getroffen werden

kann. Da das Interesse dabei nicht nur bei einem Datensatz liegt, wurde auf Grundlage

von diesen Validierungsindizes zweier Clusteranalyseverfahren ein Hypothesentest für alle

betrachteten Datensätze formuliert.

Nachdem fünf verschiedene Clusteranalyseverfahren auf die Datensätze Anwendung fan-

den, wurden die Validierungsindizes genauer untersucht. Das war nötig, da eine große

Anzahl an verschiedenen Validierungsindizes existiert, die alle auf dem selben Grund-

prinzip beruhen, allerdings unterschiedlich berechnet werden und daraufhin verschiedene

Ergebnisse liefern. Es ergab sich, dass von den 22 in Betracht gezogenen Indizes nur

sechs überhaupt Unterschiede zwischen zwei Verfahren erkennen ließen. Der Großteil der

anderen Indizes ergab Index-Differenzen nahe Null. Das bedeutet für die Benchmarkana-

lyse, dass mit diesen Indizes für kein Clusterverfahren Vorteile gegenüber einem anderen

identifiziert werden konnten. Allerdings besteht auch die Möglichkeit, dass sich die Clus-

terlösungen der Verfahren zu stark ähnelten und daher tatsächlich keine Unterschiede vor-

handen waren. Deshalb wird auch darauf hingewiesen, dass durch die Wahl des größten

Validierungsindex der Unterschied zwischen zwei Verfahren möglicherweise überschätzt

wird und die Anwendung auf eine andere Datensituation auch andere Ergebnisse liefern

kann.

Um den interessierenden Parameter E(∆VI) und dessen Streuung zu schätzen wurden

anschließend BCa-Bootstrap-Intervalle berechnet. Diese kamen zum Einsatz, da die Diffe-

renzen der Indizes nicht normalverteilt sind und daher keine Standard-Konfidenzintervalle
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verwendet werden konnten.

Für die vorliegenden Datensätze lieferten daraufhin die Indizes von Baulieu (B1) und

Sokal und Sneath (SS3) angemessene Validierungen und die Clusterverfahren PAM, K-

Means und Ward wurden gegenüber einer hierarchischen Clusterung mit Single- oder

Complete-Linkage als
”
besser“ identifiziert.

Als mögliche Erweiterung der bisherigen Analysen kann eine Korrektur der zufälligen

Übereinstimmung von Partitionen in Betracht gezogen werden. Laut Albatineh et al.

(2006) erhält dadurch die Wahl des Validierungsindex weniger Gewicht, da sich die Indi-

zes daraufhin einander angleichen oder sogar identische Werte annehmen.

In dieser Arbeit wurden nur fünf verschiedene Clusterverfahren angewendet, weshalb eine

Erweiterung der zu betrachtenden Clusteranalyseverfahren dabei natürlich auch denkbar

ist.

Da die Struktur der Daten auch oftmals mehr als zwei Klassen beinhaltet, könnten auch

Clusteranalysen mit mehr als zwei gesuchten Cluster durchgeführt werden und mit der

Klassenzuordnung durch die Zielvariable verglichen werden. Im Gegensatz dazu könnte

aber auch der reine Vergleich zweier erhaltenen Clusterlösungen mit Hilfe eines Validie-

rungsindex sehr interessante Ergebnisse liefern. Denn laut Bacher et al. (2010) können

Clusterlösungen bei solch einem Vergleich erst als brauchbar erachtet werden, wenn zum

Beispiel der Rand-Index einen Wert über 0.7 annimmt. Möglicherweise sollten für andere

Indizes ebenfalls bestimmte Grenzwerte Berücksichtigung finden.
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Abbildung A.1: Darstellung verschiedener Index-Differenzen zwischen den fünf
Clustering-Verfahren die stark nahe 0 streuen. Einbezogen wurden hier
44 der 50 Datensätze, deren Clusterlösungen nicht für alle Verfah-
ren die exakt gleiche Zuordnung ergaben. Die gestrichelte, blaue Linie
grenzt den möglichen Wertebereich ab.
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Abbildung A.2: Darstellung verschiedener Index-Differenzen zwischen den fünf
Clustering-Verfahren die tendenziell dem Index FM ähneln. Einbezo-
gen wurden hier 44 der 50 Datensätze, deren Clusterlösungen nicht für
alle Verfahren die exakt gleiche Zuordnung ergaben. Die gestrichelte,
blaue Linie grenzt den möglichen Wertebereich ab.
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Elektronischer Anhang

Der elektronische Anhang umfasst die folgenden Ordner:

• Daten: Beinhaltet zwei Unterordner

– datasets: Enthält 65 Microarray-Datensätze im txt-Format.

– data R: Enthält noch keine Daten. Er wird beim Importieren der 65 Da-

tensätzen benötigt, um diese im RData-Format dort abzuspeichern.

• Ergebnisse: Beinhaltet zwei Unterordner

– Clusteranalyse: Enthält für jedes der fünf Clustering-Verfahren eine RData-

Datei, die für jeden Datensatz die berechneten 19 Validierungsindizes auflistet.

– Grafiken: Enthält die Abbildungen, die in dieser Arbeit verwendet wurden als

pdf-Datei.

• Programme: Beinhaltet die Syntax-Dateien der Statistiksoftware R, mit denen die

Ergebnisse dieser Arbeit reproduziert werden können.
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der 50 Datensätze, deren Clusterlösungen nicht für alle Verfahren die exakt

gleiche Zuordnung ergaben. Die gestrichelte, blaue Linie grenzt den möglichen
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