VH-RELATED IDIOTYPES DETECTED BY SITE-DIRECTED MUTAGENESIS

A Study Induced by the Failure to Find CD4 Anti-Idiotypic Antibodies Mimicking the Cellular Receptor of HIV

WINFRID WEISSENHORN, YING-HUA CHEN, GERT RIETHMÜLLER, ERNST P. RIEBER, AND ELISABETH H. WEISS

Institute for Immunology, University of Munich, 8000 Munich 2, FRG

The function of the CD4 cell surface protein as coreceptor on T helper lymphocytes and as receptor for HIV makes this glycoprotein a prime target for an immune intervention with mAb. A detailed understanding of the structural determinants on the therapeutic CD4 mAb that are involved in Ag binding or are recognized by anti-idiotypic mAb (anti-Id) may be important for designing antibodies with optimal therapeutic efficacy. Seven anti-Id raised against the CD4 mAb M-T310 were selected from a large panel with the intention to obtain CD4 mimicking structures with specificity for HIV gp120. The selected anti-Id did not react with other CD4-specific mAb cross-blocking M-T310. Among these, mAb M-T404, although having the same L chain as M-T310 and a VH region sequence differing only at 14 amino acid positions, was not recognized by the anti-Id. M-T310 H chain complexes with the J558L L chain reacted with all anti-Id, thus demonstrating that the recognized idiotopes are located within the VH region. To identify the idiotopes of M-T310 seen by the anti-Id, variants of M-T404 containing one or more of the M-T310-derived substitutions were generated by oligonucleotide-directed mutagenesis. The reactivity pattern of the mutant proteins with the anti-Id demonstrated that the idiotopes reside within the complementarity determining region (CDR) 2 and CDR3 loops of the VH region. A major idiotope was defined by a single amino acid in CDR2 that was recognized by three anti-Id, whereas the other four anti-Id reacted with determinants of CDR3. Although the performed amino acid substitutions did influence the Id recognition, Ag binding was not significantly affected, suggesting that none of the anti-Id can be considered as a mimicry of the CD4 Ag.

Different CD4-specific mAb, including M-T310, are used either as original mouse mAb or as chimeric mAb for the treatment of various autoimmune diseases. It is not yet clear what characteristics will distinguish the most efficient CD4 mAb. Furthermore, it is not known whether and which antibodies induced in the treated patients will neutralize the injected CD4 antibody. The V- or Ag-binding region of an antibody itself can act as Ag (Id). The determinants unique to an antibody or a group of antibodies referred to as idiotopes represent a three-dimensional assemblage of all residues, usually confined to the CDR. The experimental induction of Id antibody is well established (1,2) and it has been directly associated with the Fv fragment (3). Theoretically, anti-Id raised against CD4 mAb, competing with HIV/gp120 for the binding site on the CD4 molecule, should mimic the CD4 receptor site and, therefore, might be used as anti-Idiotypic vaccine. 

Substitutions did influence the Id recognition, Ag binding was not significantly affected, suggesting that none of the anti-Id can be considered as a mimicry of the CD4 Ag.

Received for publication March 23, 1992.

Accepted for publication May 27, 1992.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by a grant from the Genzentrum München and the BMFT-AIDS-Programm, Verbundprojekt München I.

2 Address correspondence and reprint requests to Dr. Gert Riethmüller, Institute for Immunology, Goethestr.31, 8000 München 2, FRG.

The structural basis of idiotypic determinants has been analyzed for a number of mAb. Id located within VH region have been described for mAb directed against arsonate (7) and 3-fucosyllactosamine (8). The CDR3 of VH that includes the D segment, contributes to the Id determinants in a number of antibodies including those to α(1-3)α(1-6)dextran (9, 10), β(1-6)galactan (11), phosphorylcholine (12), nitroiodophenyl (13, 14), and p-azophenylarsonate (15, 16), whereas in antibodies directed to α(1-6)dextran, the Id has been associated with the VH CDR2 (17). In addition, both V and C regions of mAb to phosphorylcholine were required to form a certain Id determinant. (18).

The present study shows that the VH region of the CD4 mAb M-T310 determines the Id reaction patterns of seven anti-Id. M-T404, another CD4-specific mAb possessing an identical VH region and a Vβ region differing only at 14 amino acid positions, is not recognized by these anti-Id. Several variants of M-T404 containing one or more M-T310-derived substitutions were generated by mutagenesis and expressed together with the M-T310 L chain. The binding pattern indicates that a major Id is located in CDR2, recognized by three anti-Id, whereas the remaining four anti-Id predominantly react with determinants located in CDR3. Furthermore, none of the amino...
acid substitutions abolishes Ag binding and the anti-id reaction pattern is not influenced by the C region.

MATERIALS AND METHODS

Production of antibodies. mAb M-T310 and M-T404 were raised against T lymphocytes as described (19). To induce anti-id against mAb M-T310, purified mAb was co-cultured with keyhole limpet hemocyanin and mice were immunized three times with 100 μg over a period of 2 mo. Mice were bled 2 to 3 h at room temperature, washed three times with 20-saline solution. In the next step, mice were incubated with anti-id for an additional 2 to 3 h at room temperature, were washed three times with 20-saline solution and incubated for 2 to 3 h at room temperature with concentrated cell culture supernatants, containing 1 μg/ml of recombinant chimeric IgG1, followed by three washes with Tween 20-saline solution. In the next step, mice were incubated with anti-id for an additional 2 to 3 h at room temperature, washed three times with 20-saline solution. In the next step, mice were incubated with anti-id for an additional 2 to 3 h at room temperature. The wells were washed with PBS 0.05% Tween 20 and blocked with 1% BSA in PBS for 1 h at room temperature. The wells were rinsed three times with Tween 20-saline solution. In the next step, mice were incubated with anti-id for an additional 2 to 3 h at room temperature, washed three times with Tween 20-saline solution. In the next step, mice were incubated with anti-id for an additional 2 to 3 h at room temperature. The wells were washed with PBS 0.05% Tween 20 and blocked with 1% BSA in PBS for 1 h at room temperature. The wells were rinsed three times with Tween 20-saline solution. In the next step, mice were incubated with anti-id for an additional 2 to 3 h at room temperature. The wells were washed with PBS 0.05% Tween 20 and blocked with 1% BSA in PBS for 1 h at room temperature. The wells were rinsed three times with Tween 20-saline solution. In the next step, mice were incubated with anti-id for an additional 2 to 3 h at room temperature. The wells were washed with PBS 0.05% Tween 20 and blocked with 1% BSA in PBS for 1 h at room temperature. The wells were rinsed three times with Tween 20-saline solution. In the next step, mice were incubated with anti-id for an additional 2 to 3 h at room temperature. The wells were washed with PBS 0.05% Tween 20 and blocked with 1% BSA in PBS for 1 h.
Figure 1. Capacity of anti-Id to block binding of M-T310bio (A) and M-T404bio (B) to Ag CD4 of PBL. The blocking capacity is shown as the reduction of mean channel as determined by FACScan (Coulter) analysis. The anti-Id 23-54 was raised against mAb M-T151 and serves as negative control.

Figure 2. Deduced amino acid sequences of VH regions of native and mutant mAb analyzed for anti-Id binding reactivity. The amino acid residues are numbered consecutively. The location of CDR are indicated in frames. The symbol (-) corresponds to the same amino acid as in sequence h310-1 and [.] marks a deletion.

Figure 3. Characterization of idiotopes by mutagenesis analysis

Table 1: Deduced amino acid sequences of VH regions of native and mutant mAb analyzed for anti-Id binding reactivity. The amino acid residues are numbered consecutively. The location of CDR are indicated in frames. The symbol (-) corresponds to the same amino acid as in sequence h310-1 and [.] marks a deletion.

DISCUSSION

The structural basis for the anti-Id binding ability of two closely related CD4 mAb M-T310 and M-T404 was investigated. Variants of M-T404 H chain that contain single or combined M-T310 VH substitutions were generated by oligonucleotide-directed mutagenesis followed by expression of mutant proteins containing the M-T310/M-T404 (identical L chain) L chain. The mutated M-T404 VH chains showed a normal distribution of CD4 T lymphocytes by staining PBL. As none of the introduced mutations abolished CD4 Ag binding, it seems that the exchanged amino acids are not decisive for Ag binding. Furthermore, the combination of the M-T310-specific H chain and the L chain of the J558L cell line resulted in...
whereas the single substitution in CDR2 (Asn→Ala; h2-1) followed: OD 0.6. weak binding activity (gray boxes): OD 0.4 to 0.3, no binding activity (white boxes): measured cross-reactivity of POX antiserum with any human IgG antibody); OD 0.4 to 0.6, weak binding activity (gray boxes); OD > 0.6, binding activity marked with black boxes: anti-Id 23-54 as negative control was raised against mAb M-T151 which recognizes a different epitope on the CD4 molecule.

an Ig with CD4 Ag-binding specificity. This result is consistent with earlier data demonstrating that Vᵣₙ domains alone are able to bind Ag (26). In all these cases, the Vᵣₙ region predominantly contributed to Ag-binding specificity.

The combination of the M-T310 H chain and the λ L chain J558 clearly shows that the reactivity of all seven anti-Id is associated with the H chain. M-T310-derived substitutions in the M-T404 H chain by mutagenesis analysis show that the anti-Id react with idiotopes determined by CDR2 and CDR3. The conservative exchange in CDR1 (Ile→Val; h1-1) had no effect on anti-Id binding, whereas the single substitution in CDR2 (Asn→Ala; h2-1) restores binding of three anti-Id.

The observations that single substitutions in CDR2 and CDR3 can profoundly affect idiotypic specificity has been observed in several systems (13, 16, 17). As has also been described in these studies, the exchange of amino acids involved in recognition by anti-Id did not affect Ag binding. Thus, major idiotopes appear not to be involved in Ag binding or play no important role. As CDR3 of M-T310 and M-T404 H chains do not only differ in sequence but also in length, the substitution of Ser to Arg (position 99) and Gln to Asp (position 101) in the construct h3-1 does not restore anti-Id binding. Only the additional lengthening of CDR3 by insertion of Gly and Ser (position 102, 103) in the h3-2 construct reconstituted the idiotope recognized by four anti-Id. The involvement of all four exchanged residues does not necessarily mean direct binding between these residues and the anti-Id, but could, alternatively, mean that some of these residues indirectly affect binding by changing the conformation of the CDR3 loop. The differences in the length most certainly lead to different three-dimensional structures in the CDR3 loop regions of mAb M-T310 and M-T404.

The network theory of idiotope-anti-idiotope interactions (4, 27, 28) includes anti-Id that are the internal image of Ag. The binding of such anti-Id to their idiotopes is inhibited by Ag. A subdivision into two groups of Ag-inhibitable anti-Id has been proposed (29, 30): those that mimic an antigenic structure and those that do not. Although the binding of all anti-Id is Ag-inhibitable, we conclude from the presented data that the analyzed anti-Id do not react with the paratope of M-T310 and fail to mimic the internal image of the Ag CD4. They fall into the second group of anti-Id according to the above classification and do not bear conformational resemblance to the Ag CD4. This may be because of the fact that M-T310 and also M-T404 do not bind CD4 in the same way as gp120, although they efficiently block the HIV1/CD4-interaction. Our results are also confirmed by failure of these anti-Id to bind HIV/gp120. Although we did not analyze possible changes in affinity caused by the substitutions, staining of PBL by the mutated proteins indicates that residues involved in anti-Id binding and Ag binding differ from each other.

It has been suggested that receptors that share the Ig fold, may provide more favorable targets for anti-Id mimicry (31). M-T310 and M-T404 recognize the CDR2-like region in domain 1 of CD4 which resembles very closely the V domain of Ig (32, 33). The conformation of CDR2 analog of CD4 differs from that of Ig as it is extended by three amino acids in comparison to the Bence-Jones protein REI Vᵣ domain. Particularly, the CDR2-like loop juts out at the tip of the D1 domain, creating a prominent ridge. This structure might hinder anti-Id antibody to provide exact images of the external CD4 Ag. A previously published study (34) described the detection of a cross-reactive idiotope on CD4 mAb Leu 3a and ascribed this reactivity to the L chain. As in our CD4 system, the anti-Id induced against mAb Leu 3a failed to bind gp120. But in contrast to the presented data, these anti-Id showed...
cross-reactivity with different other CD4 mAb with a similar reactivity pattern. We could not find cross-reactivity of the analyzed anti-Id with other CD4 mAb that are supposed to recognize the same or an overlapping epitope on the CD4 molecule, although the used V regions of these antibodies are closely related (see footnote 4). The presence of L chain-associated idiotypes in our system is not excluded, but we selected for anti-Id that are able to inhibit binding of CD4 mAb to CD4. In our system, the CD4 Ag binding of M-T310, as well as of M-T404, is exclusively determined by the H chain. The Ag specificity of CD4 mAb Leu 3a and related mAb might be determined mainly by the L chain V region, thus leading to a selection of L chain-specific anti-Id. The failure to detect cross-reactive anti-Id upon immunization with mAb M-T310 cannot be explained by the presented data.

By using mouse/human chimeric Ig, we demonstrate that, at least in the presented system, anti-Id binding reactivity is independent of the isotype and not influenced by the C region as stated to be required to form a correct Idiotype determinant on phosphorylcholine-specific antibody (18). Furthermore, the finding that a single amino acid substitution renders an antibody essentially invisible for a variety of anti-Id might be of importance for the regulation of the antibody response, because an exchange induced by somatic mutation would easily allow escape from Id control (4). A practical application of this work has arisen from the current use of CD4 mAb as therapeutic agents in chronic autoimmune diseases, where repeated administrations are necessary, with the consequence that the treated patients produce neutralizing anti-Id (35). To circumvent this effect, the possibility of selecting non-cross-reactive idiotopes would be of great advantage.

Acknowledgments. We thank Dr. U. Weidler for providing expression vectors and Dr. Georg Arnold, Genzentrum, München, for synthesizing the oligonucleotides for mutagenesis. Christine Federle is kindly acknowledged for her excellent technical assistance.

REFERENCES
