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4 H.Lit. 3330a(1876

Die schwierigeren Probleme der Zahlentheorie in systematischem
Zusammenhange, bearbeitet zur beabsichtigten Einreihung dieses
Stoffes in den Unterricht der Prima hoherer Lehranstalten.
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¢ 1.

Geschichtliches. In reuerer Zeit beschiftigte sich die Arithmetik mit der Qualitit der
Zahlen, nicht mit der Quantitit, daher trifft die von Plato gegebene Erklirung, sie sei die Wis-
senschaft des Geraden und Ungeraden jedenfalls ihr Wesen, wenn auch die heutige Wissenschaft
sich in Betrachtung und Auffassung der Eigenschaften der Zahlen andere und weitere Grenzen
stellte und stellen musste. Auch ihr Namen deutet schon dieses Ziel an, denn Arithmos heisst
die ganze Zahl; das Verhiltniss der Grosse jedoch zur Einheit wurde durch Logos bezeichnet.
Die neuere Geschichte der Mathematik kniipft sich iiberhaupt in allen ihren Punkten an die Triim-
mer des Alterthums an, indem man die Alten theils restituirte, theils commentirte. So schloss
gich die Zahlenlehre an Diophant an, namentlich durch eine von einem Franzosen besorgte grie-
chische Auflage. Wihrend nun diese Wissenschaft als solche von den Alten erfunden ist und
ihnen eine Menge Sitze bekannt waren, so scheinen ihnen doch meistens die Beweise fiir die Sitze
gefehlt zu haben und wir finden nur wenige, z. B. den Beweis des Satzes: die Anzahl der Prim-
zahlen ist unendlich gross. Der Jurist und beriithmte Mathematiker Fermat unternabm es die
Beweise herzuleiten. Leider ist von seinen Arbeiten nichts iibrig geblieben, als eine Ausgabe des
Diophant, in deren Noten er die Sitze angiebt; hier sind jedoch die Sitze, deren Beweis er zu
haben behauptet, wohl zu trennen von denen, fiir welche er diese Behauptung mnicht aufstellt;
die ersteren sind alle richtig, wihrend unter den anderen sich eine Anzahl falscher gefunden hat.
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Die Auffindung der Beweise dieser von ihm angegebenen Sitze haben den spiteren Mathematikern:
Legendre, Lagrange, Euler, Gauss, Cauchy, Jacoby, Dirichlet viel Miihe und Aufwand von Scharf-
sinn gekostet, und zu einzelnen Beweisen gehoren Disciplinen, welche den Alten wie Fermat durch-
aus unbekannt waren. Nachdem fiir einen der aufgestellten Sitze nur erst ein Beweis gefunden,
gelang es spiter auch bald den Beweis vieler Sitze auf Sitze zuriick zu fiilhren, welche auch den
minder Kingeweihten zugiinglich und handlich waren, und es ist der Zweck der vorliegenden
Arbeit, aus dem ganzen Gebiet dieser Wissenschaft einen systematisch geordneten Theil, der als
Lehrstoff fiir die Prima einer hoheren Lehranstalt fassbar ist, als abgerundetes Ganze hinzustellen

und selbstverstindlich bei der Beweisfilhrung nur Mittel zu gebrauchen, welche diesem Kreise zu
Gebote stehen.

2 2.

Erklirung: Die Zahlen werden eingetheilt in Primzahlen und abgeleitete Zahlen. Prim-
zahlen sind digjenigen, welche nur 1 und sich selbst als Factor haben; die abgeleiteten Zahlen
sind Producie aus Potenzen yon, anzahle.n ,Rela.t.we ang.ahlen zZu eulander sind zwei Zah}gn
welche kemen gpmemschaﬁhchen Factor haben
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- Entwickelt man mehrere dieser Gleichungen und multiplicirt sie alsdann mit eicander, so
erhalt man auf der rechten Seite ein Aggregat von Gliedern, in denen sdmmtliche Potenzen von
Ya, Yb ete. und die Combinationen der verschiedenen Potenzen von a, Vb ete. und deren Potenzen
enthalten smd Setzt man nun fiir a, b ete. de1 Reihe nach die Prlmzahlen, so befinden sich auf
der rechten Seite die reciproken Werthe simmtlicher naturhcher Zahlen und nur diese, wihrend
die h.nke Seite in ein Product ibergeht von Briichen, deren Zihler die anzahlen, deren Nenne1

die um 1 ver]demelten Primzahlen sind; man erhilt also die Glelchung
a b c
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in welchen Ausdruck fiir x jeder #chte Bruch bis 1 gesetzt werden kann; die Substitution von
1 fiir x giebt links den Logarithmus von Unendlich, der unendlich® gross ist, und rechts die Summe
der reciproken Werthe der natiirlichen Zahlen, welche mithin auch unendhch gross ist. Hierdurch

pIL ¢ ;
ist bewiesen, dass das Product il b Eie goull dsind unendhch gross ist. Ein Product von

mehreren Briichen kann nur in'zwei Fillen unendlicl gross sein; entweder ist einer der Nenner gleich
0, oder einer der Zéhler ist unendlich gross, von deu Nennern ist aber keiner gleich 0, folglich' muss
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einer der Ziller unendlich gross sein; die Zihler sind die Primrahlen, folglich giebt es eme un-
endlich grosse Primzahly-d. h. die Anzahl der Primzahlen ist unendlich gross.

Beweis 2. Sei a die letzte angegebene Primzahl; multipliciren wir alsdann alle Primzahlen
von 1 bis a mit einander und addiren wir 1 hinzu, so erhalten wir eine Zahl, welche keine der
vorhergehenden Primzahlén als Factor' hat, sondern duroh eine «der Primzahlen dividirt den Rest
11 giebt, folglich eine Primzahl ist.

} sinibaud) 24_
Iras Product ab 1st glexch b a; ferner,a mal b ¢ fst == a b mal 6 == ac, b
& é 5. i

Wenn ein Product durch) eine Zahl theﬂbm ist und es ist diese Zahl nicht in dem eipen
Factor enthalten, so steckt sie in dem andern  oder die Factoren der Zahl sind einzeln in den
Factoren des Products enthalten.

i & 6,

Wenn eine Primzahl ein Product‘ theilt, $0 muss sie wenigstens in einem der Factoren
enthalten sein, weil sie eben alg Prlmzahl mcht in Factoren zerlegt werden kann. Es ist also
auch keine Potenz einer Zahl durch eine anzahl thellbax, wenn dle Zahl nicht selbst theilbar
ist durch die Primzahl.

g
Jede Zahl kann nur auf elne Art als Product von Primzahlen darg estellt werden.
] 3 6. .

Lassen zwei Zahlen durch m dividirt die Reste a und b, so Tisst jhre Summe den Rest
a + b, die Differenz den Rest a—b, das Product den Rest a b

Bewus Ist X=m p+a, y=mgq-+Db, 80 st

x+y=m@P+q+a+db
xy=m{p—q+a—h,
xy = m2? pg + m (pb + aq) + ab. ‘ B

Is lanten also in den Ausdriicken rechts die Terme, welche d en Factor m nicht enthalten
der Reihe nach a 4+ b, a — b, ab; d. h. bei der Division durch m bleiben die Reste a 4 b, a—b,
ab, Hieraus folgt, dass die Differenz zweier Zahlen, welche durch p dividirt denselben Rest lassen,
den Factor p enthilt, d. h. den Rest O lisst.

. ‘ Y 79, :

Das Quadrat einer ungeraden Zahl lisst  durch 8 dividirt den Rest 1 das Quadrat einer
‘geraden hat den Factor 4,

Beweis.  Die Form fiir eine ungerade Zahl ist 2a + 1, fiir eine gerade Zahl 2a. Ist nun
x = 2a+ 1, s0 ist x> =4a® + da+1=4a (a + 1) + 1, folglich hat, weil entweder a oder
a + 1 den Factor 2 enfhilt, 4a (a + 1) den Factor 8; das Quadrat ldsst also durch 8 dividirt
den Rest 1. }

Ist x == 2a, so ist x? = 4a? hat also mindetens den Factor 4.
Hieraus folgt, dass die Summa zweier Quadrate, wenn sie ungerade ist, durch 4 dividirt
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den Rest 1 giebt, denn diese ungerade Summe ist nur zu erhalten durch die Addition eines
geraden und eines ungeraden Quadrats. Wir erhalten also 4b? + 4a% 4 4a 4 1, d. h. ein Ag-
gregat, in dem jeder Term den Factor 4 hat mit Ausschluss des letzten, der gleich 1 ist.
3 10.
Eine Zahl, welche durch 8 dividirt den Rest 7 lisst, kann nie die Summe dreier Quadrate sefn.
Beweis: Das Quadrat der geraden Zahl lisst entweder den Rest 4 oder 0, das Quadrat
der ungeraden Zahl den Rest 1. Sind alle drei Quadrate gerade, so erhalte ich als Rest
entweder 4 + 4 + 4, d. h. 4,
oder 4 + 4 4 0, d. h. O,
oder 4 + 0 4 0, d. h. 4,
oder 0 + 0 + 0, d. h. 0.
Sind zwei gerade und eins!ungerade, so erhalte ich
entweder 4 + 4 4+ 1, d. h. 1,
’ oder 4 + 0 4 1, d. h.*5,
1 oder 0 + 0 4+ 1, d. h. 0.
Sind zwei ungerade und eins gerade, so erhalte ich
entweder 4 4+ 1 + 1, d. h. 6,
oder 0 + 1 + 1, d. h. 2.
Sind endlich alle drei ungerade, so erhalte ich als Rest 1 + 1 4 1, d. h. 3; mit-
hin in keinem Falle den Rest 7.
2 11.
Dividirt man alle Zahlen durch die Primzahl p, so erhilt man als Rest die Zahlen von
1 bis p — 1; riicksichtigt man nur auf das Zeichen des Restes und nicht auf seine Grosse, so

erhilt man die absolut kleinsten Reste und deren Zahl ist P -2_ l

weil eben statt der Reste
|

p — 2, p — 3, die Reste — 2, — 3, gesetzt werden konnen.
: 3 12,
Multiplicirt man jeden der Reste in Bezug auf p, d. h. die Zahlen von 1 bis p — 1 mit
einer zu p relativen Primzahl, mit a, so erhilt man die Grossen a, 23, 3a . . . (p — 1) a;
dividirt man nun jedes dieser Producte durch p, so erhilt man wieder die Reste von 1 bis p —1.
Beweis: Wiren unter den Grossen a, 2a etc. zwei, welche durch p gleiche Reste lassen
so miisste nach § 8 deren Differenz durch p aufgehen; hiessen diese Grossen ka und la, so miisste

K o 8 aes ganze Zahl sein; iy b

ist=1a (E;;—]—), a ist relative Primzahl zu p, also geht
p nicht in & auf; k und 1 sind Reste von p, also k —1 kleiner als p, also ist p nicht in k —1
enthalten, folglich ist a (iﬁ_——l) keine ganze Zahl, mithin lassen ka und la nicht gleiche Reste.

Da endlich p — 1 Grossen sind, jede Grosse einen anderen Rest lasst, so erhalte ich
p — 1 verschiedene Reste, d. h. die Reste von 1 bis p — 1; nur nicht in natiirlicher Reihenfolge.
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2 13.

Ist a relative Primzahl zu p, so lidsst a p =l durch p dividirt den Rest 1.

Beweis: Multiplicirt man jeden der Reste der Zahl p, d. h. 1, 2, 3 bis bis p — 1, mit
a, 8o erhilt man die Grossen a, 2a, 3a, bis (p — 1) a; diese lassen durch p dividirt nach 3 13
die Reste 1 bis p — 1, oder das Product a. 2a. 3a. . (p — 1) a lisst denselben Rest wie 1. 2, 3.

el oders PN, 9% L) LY, 8 g 08 tidet’ e Rsst 0.

p—1

i
a 1L2..p—1)<=1.2.38..p—1)=12 3...(p—1)(a. —1). Da nun

. 3 : p—1 =
1.2.3. . . (p—1) nicht durch p aufgeht, weil p Primzahl ist, so muss a — 1 aufgehen, d.h. aP !

lisst durch p den Rest 1.

Beweis 2. Nach dem binomischen Lehrsaty ist (1 4 b) P4 +pb +E—1-(R2_—l) b2+4..bp;
da die Binomfal-CoeFﬁcienten ganze Zahlen sind, jeder derselben aber als Factor die Prim-
zahl p enthilt, so gehen alle Terme durch p auf mit Ausnahme des ersten und des letzten, es
lasst also (1 4 b) P denselben Rest wie 1 + b p; zieht man nun von (1 4 b) Pund 1 41 P
1 + b ab, so miissen diese Differenzen wieder gleiche Reste lassen, also (1 + b)p— (L + b)

denselben Rest wie 14 b P 1—b oder bP — b, d. h., die Differenzen der pten Potenz einer
Zahl und die Zahl selbst lisst durch p denselben Rest wie die Differenz der pten Potenz der niichst
kleineren Zahl und dieser Zahl; schliesst man so fort, so ergiebt sich, dass die pte Potenz einer
Zahl weniger der Zahl selbst, durch p dividirt, denselben Rest giebt fiir alle Zahlen, also auch

. e
fir 1. Nun giebt 1 P _1 den Rest o, folglich muss auch a P —a, odera (a -—1) den Rest0

geben, d. h.,, weil a durch p nicht theilbar ist, lisst der andere Factor a Al durch p den
Rest 1. Dieser wichtige Satz ist bekannt unter dem Namen des Fermat'schen Satzes.
3 14.

Erhebt man alle Zahlen ins Quadrat und dividirt diese durch p, so erhdlt man P ; 1

verschiedenc Reste.

Beweis. Da a%denselben Rest lisst wie (p 4 2)2 4 (2 p 4 2)2%,(3p + a)2 etc., 80 braucht man
nur die Zahlen von 1 bis p — 1, d. h.,, die Reste von p zu untersuchen. Unter diesen lassen
aber die Quadrate von 1 und p — 1, 2 und p — 2, 3 und p — 3 etc. durch p denselben Rest,

es bleiben also die Grossen von 1 bis Rt iibrig. Wiren unter diesen zwei, z. B. m und q,
9 &

deren Quadrate gleiche Reste lassen, so miisste die Differenz m? — q2? durch p aufgehen,
m’_ q’

eine ganze Zahl sein; m? — q® ist = (m 4 q) (m — q). m —- q ist jedenfalls kleiner
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als p, weil m und q kleiner als p, ja kleiner als P '2_ . sind, also steckt p nicht in m - q;

ebenso ist m 4 ¢, weil m und g kleiher als 2 ; ; sind, kleiner als p, also p micht in m + q;

da nun p weder;in m — q noch in m 4 q enthalten ist, so ist (e q)b_fm —__ q)l‘mine ganze

Zahl, d. h., m* — q? ist nicht durch p theilbar, oder m? und q* lassen versthiedene Reste.

Endlich weil nur P«—;—l Grossen sind, so sind auch nur p_}{ solcher Reste; d. b, die Quadrate
der Zahlen von 1 bis p — 1 lassen auch nur B—g—l verschiedena Reste, also emcli (i G wadrate
gammtlicher Zahlen.

: ¢ 16.

- Lsst unter den Resten von 1 bis p — 1 das Quadrat eines Restes x @urch p den Rest
i, so_giebt es noch eimen zweiten, aber auch nur einen, ninmlich p — x, dessen Quadrat denselben
Rest i lasst. '

Beweis. Lasst x? den Rest i und liesse auch % den Kest i, so nriisste x* — g2 den Rest
0 lassen, also (x 4 q) (x — q) durch p aufgehen; x — q ist kleiner als p, kann also durch
nicht aufgehen; x 4 q kann hochstens = 2p — 3 sein, unter den Zahlen von 1 bis 2p — 3 giebt
os aber, weil p Pumzahl ist, ‘nlar'eine, nimlich p, welche durch x theilbar ist, also! msste X +q #=p
sein, oder q = p — X : :

4 ‘16.

Multiplicirt man 2 Zahlen x und y aus der Reihe der Reste von'l bis p — 1 mit' ein-
ander und dividirt das Product durch p, so erhilt man einen Rest z; es giebt nun zu jeder Zahl
x cine Zahl y und nur diese, mit welcher multiplicirt sic durch p den Rest z lisst. l :

Beweis. Gibe es ausser der Zahl y noch eine Zahl t, mit welcher x ‘multiplicirt den Rest
z durch p liesse, so erbielten wir fiir xy und xt denselben Rest z, d. h.x y — x't oder x (y—t)
gibe den Rest 0; das ist aber nicht moglich, denn x geht durch p nicht auf, weil es Rest von
pistundy — ¢ ebcnfalls nicht, denn y — t ist kleiner als p, also auch Rest von p.

g 11.

Unter den Zahlen grosser als p giebt es noch unendlich viele, welche mit x maultiplicirt,
durch p dividirt- den Rest z lassen; sie haben aber alle die Form mp -+ y und es giebt zwischen
je zwei Vielfachen von p, also zwischen 2p und 3p, oder 3pund4p . .. rp und (r 4+ 1) p immer nur
eitie solche.

Beweis. Giebt xy den Rest z, so glebt X (mp + y) xmp + xy ebenfalls den Rest z;
denn xmp geht durch p auf und es” bleibt nur xy ibrig; da ferner ‘zwischen 1 und p'—'1 nur
die Zahl y: dieser Bedingung Geniiga leistete, so giebt es unter den Zahlen zwischen p und 2p
welche p + 1, p + 2, p 4+ 3 ... 2p — 1, lauten, nur die Zahl p 4 y, welche d;ie,ser,B_e-
dingung Geniige leistet, denn nur diese giebt das Product xp + xy, wihrend dié anderen Producte
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lauten xp 4 x; xp 4 2x w . w. und unter x, 2x, 3x bis (p — 1), wie vorhin bewiesen, ist kein
Product, welches durch p-den Rest z lasst. |
3 18.

Multiplicire ich alle Reste ‘der Primzahl p der Reihe nach mit einem derselben, so erhalte
ich Producte, welche durch p die Reste 1 bis p — 1 lassen, wenn auch in verinderter Reihenfolge.

Beweis: Nach dem vorigen Satze gicbt nur das Product der Reste x und y den Rest z
und nie das Product der Reste x und s oder x und t; 'wenn man nun jede Zusammenstellung
einen andern Rest giebt, so miissen 'wir, da p —'1 Reste vorhanden sind, wenn wir noch x mit
x zusammenstellen, auch wieder p — 1 verschiedene Reste erhalten, d. h. die Reste von 1
bis p — L.

’ 2 19.

Simmtliche Reste der Zahl p lassen sich zu je zwei d. h. in 1)__2—___1 Paare zusammen-

stellen, deren jedes Paar denselben Rest i giebt.

Beweis: Nach dem vorigen Satz erhalte ich simmtliche Reste von 1 bis p — 1, wenn
ich den beliebigen Rest x der Reihe nach mit allen Resten wvon 1 bis p — 1 multiplicire und
durch p dividire. Es giebt also 1x, 2x, 3x . . . p — 1x, die Reste 1 bis p — 1, ebenso 1y. 2y.

o iyt )y T 80 oo nmier te e o vinl ¢ (A 24 B33 o1 (P D) B0 B W,

Hebe ich den Rest i heraus, so ist«in jeder Reihe von Producten eins, z. B. dx, fy, hz,
welches den Rest i lisst. Jedes dieser Producte kommt zweimal vor, nimlich das Product dx in
der Reihe x und xd in der Reihe d, oder fy in der Reihe y und yf in der Reihe £, alle iibrigen

sind verschieden, mithin erhalte ich, da p — 1 Reste sind, P 2— A Producte verschiedener Fac-

toren, welche alle den Rest i lassen. Die beiden Factoren eines solchen Products nennt man zu-
gehorige Zahlen,

g‘ 20 p s
Das Product der Zahlen von 1 bis p — 1 giebt durch p dividirt den Rest — m 2
P—1
odler m 2 je nachdem unter den Resten von 1 bis p — 1 sich eine Zahl befindet,

‘deren Quadrat den Rest m giebt oder nicht; fir m kann jede der Zallen 1 bis p — 1 gesetat
werden.

Beweis: Da nach dem vorhergehenden Satze der Rest x stets mit einem solchen Rest y
aus der Reihe 1 bis p — 1 multiplicirt werden kann, dass das Product den Rest m giebt und

wir das Gleiche mit den Resten y, z u. s. w. machen konnen, d. h. da wir p__;_l Paare haben,

deren jedes den Rest m lasst, so wird das Product aller dieser Paare als Rest ein Product aus
lauter Factoren m lassen, wenn x2 nicht den Rest m lisst. Die Anzahl dieser Factoren m ist gleich

P o= 1
=P 5 , also hat das Product den Rest m 2 .

der Anzahl dex Paare;) die Anzahl dieser ist
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Die Factoren in den einzelnen Paaren waren aber alle von einander verschieden und zwar die
Reste von 1 bis p — 1, also giebt das Product der Paare auch das' Product 1. 2. 3... .p=1.
p- 1
Mithin giebt das Product 1. 2. 3. . .. p—1 durch p den Rest m 2 . Was von dem Reste
m gilt, gilt von jedem Reste nach dem vorhergehenden Satze, also giebt das Product 1 bis p — 1
Pirmd
den Rest m 2 , wo fiir m jede Zahl von 1 bis p — 1 gesetzt werden kann, wenn x? nicht
den Rest m ldsst. ~L#sst aber x* den Rest m, so lisst auch (p — x)2 den Rest m und das Product
x (p — x) den Rest — m. Da nach dem Vorstehenden jedes der anderen Producte, deren Zahl

P ; . ist, den Rest m lisst, so ldsst das Product aller Producte incl. x (p — x) den Rest

B p—1
(m ) (— m) oder den Rest — m 2 . Dieser Satz ist das erweiterte Wilson'sche
Theorem.

¢ 21.
Das Product der Zahlen 1 bis p — 1 giebt durch p dividirt den Rest — 1. Wilson'sches
Theorem.
Beweis: Das Product der Zahlen von 1 bis p — 1 giebt nach dem Vorigen den Rest
basis. priy

m 2 , wenn das Quadrat keiner Zahl den Rest m' giebt ‘und den Rest — m 20 , 'wenn
ein solcher vorhanden ist. Nun giebt das Quadrat des Restes 1, also 12 den Rest 1 fiir jedes P

p—1
also giebt 1. 2.3. . . (p — 1) fiir jedes pden Rest —1 2 , d. h. — 1.
2 22.

Eine andere Form des Wilson'schen Theorems: Theile ich die Zahlen von 1 bis p—1
in 2 Abtheilungen 1 . .. P ; . und 2 ;— - i .« p — 1 und setze ich sie folgendermassen
unter einander: (

Ragdp 1

1.:2, '3 § i J g S—ftor i
oo o pPrdp 41
®—1 (¢ —2) ek tl

und multiplicire ich je zwei unter einander stehende, so erhalte ich das Product:
i =3 3 =1 ‘ ;
LGl 08 <. 86" 8", T REEBU kB p e Lipll sig o) o) e
: : p2 Pl 1!
4

Rest — 17, 2, (p— 2) den Rest — 2% jete., forner (25) 1) den Rest

2 —
oder — 2—2-——1- oder dén Rest — 2 ip + L 4 b den Rest — (5 ) und
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e + 3 den Rest e .- e oder — p-——"t—g—oder—-—p-—G‘Ip——-—*-—3 d. h. den Rest — (2° .
: ; . P — 3 P I
giebt, so lisst das obige Product den Rest — 12, — 22, — 32, — 42 bis — ( (
Aus jedem dieser p—;——l Factoren kann ich den Factor — 1 herausheben, also aus dem ganzen
p—1
Product den Factor {(—1) 2  und wir haben dann: das Product 12, 22, 32 . (p )
— 1
{(— 1) 2 lisst denselben Rest als das Product 1. 2. 3 — p — 1. Das Product 1. 2.3 —p — 1
p—1 ey = T B
ldasst aber den Rest — 1, also ldsst (— 1) 2 1= 92.3% . . 5 (p 3) —1)
P —_1_
Rest — 1. Hieraus folgt, dass 12, 22, 32 (p ) den Rest — 1 lisst, wemn (— 1) 2
p==4 p—1
= 4 1, und den Rest + 1, wenn (— 1) 2 = — list; d. h. wenn 577 gerade oder
wenn ; A ungerade ist. R—g—} ist gerade, wenn p = 4n + 1 oder 4n — 3 und ungerade,

i 2
wenn p = 4n — 1 oder 4n 4 3 ist. Oder das Product 12, 22, 32 — (9_2_}) lisst den Rest — 1,

wenn p von der Form 4n 4 1 oder 4n — 3, den Rest 4+ 1, wenn p von der Form 4n —- 1 oder
4n + 3 ist.

1. Beispiel: 17 hat die Form 4n + 1, also muss 12,22 . . . 82den Rest — 1 lassen; es lisst
1% den Rest 1 52 den Rest 8
22, n 4 6% ” 2
3% ” 9 ? » 1D
42, 5, 16 8 5 i 13
ferner ldsst 1 X 8 den Rest 8 9 X 15 den Rest 16
4X 2,1, 8 16 X 13 , , 4
dann, Iset 8 ¢ 1644 0 9
X 4 o . 1B
und endlich 9 X 15 ,, 5, 16 oder — 1,
2. Beispiel. 19 hat die Form 4n 4 3, es lisst 12 den Rest 1 62 den Rest 17
22 5 ” 4 @, n 11
32 ” ” 9 8% ” 1
48 ” ” 16 92, ” 5
52 ” ” 6
ferner 1 X 17 den Rest 17 9 X 7 den Rest 6
4% 111, ” 6 16 X5 , n 4
und 6 W 6



ferner 17 X 6 den Rest T

6 X 4 ” ” b

{ 6: ” n 6
und endlich 7 X 5 , , 16 und 16 4+ 6 den Rest + I.

Zusatz.. Da nach dem eben Gesagten 12, 22 . ', p—;—'l)z den Rest — 1 giebt, wenn p die

Form 4n - 1 bhat, se konnen wir, wenn wir fiir 1% 22 (p 7;‘1)2 a? setzen, sagen, es giebt, wenn
p die Form 4n 4 1 hat, stets eine Zahl, deren Quadrat den Rest 1 Lisst, oder es giebt eine Zahl a

: } 4
die so beschaffen ist, dass Lp 3 eine ganze Zahl ist.

Da ferner 12 2%, .. (p 7;4)2; den Rest 4 1 giebt, wenn p von der Form 4n — 1 ist,

so wird, wenn wir wieder fiir 12, 2% ... (p ; 1)2 a? setzen, a% dnrch p den Rest 4 1 lassen,
.

wenn p die Form 4n — 1 hat; d. h. es wird eine Zahl geben, die so beschaffen ist, dass 3 ;

d 3 a.—1.a I & y y "

eine ganze Zahl ist, d. h. o Sl ist durch p theilbar; d. h. wenn p eine Primzahl von der

Form 4n — 1 ist, und a* den Rest 4 1 durch p lissst, so lasst »;f eéntweder den Rest 4 1

oder — 1.
2 23,

Befindet sich unter den Zahlen von 1 bis p — 1 eine Zahl deren Quadrat durch p den

Rest i giebt, so nennt man i einen quadratischen Rest von p, residuum quadraticum.

7 24.

Die Frage, ob i quadratischer Rest oder Nichtrest von p ist, lisst sich fmmer auf die
warh "

Frage zuriickfihren, ob i 2 den Rest 4 1 oder — 1 giebt.

Beweis. Nach § 22 giebt das Product aller Zahlen von 1 bis p — 1 durch p den Rest
p=1
i 2 , wenn das Quadrat keiner der Zahlen von 1 bis p — 1 den Rest i lisst und den
p—1 '

Rest — i 2 , wenn das Quadrat einer der Zahlen den Rest i lisst. Daaber nach dem Wilson’schen
Theorem das Product aller Zahlen von 1 bis p — 1 unter allen Bedingungen den Rest — 1 lLisst,

Sl =3
so wird i 2 den Rest — 1 lassen, wenn i quadratischer Nichtrest, und — i 2  den Rest
) Al p—1
— 1, wenn i quadratischer Rest ist. Wennaber—i 2 den Rest — 1 lisst, so lisst i 2
p—1 /

den Rest + 1, also lisst i 2 den Rest - 1, wenn i quadratischer Nichtrest und: den Rest + 1,
wenn i quadratischer Rest ist.
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s soll nun die Form derjenigen Zahlen untersucht werden, von denen eine bestimmte
Zahl quadratischer Rest ist von p.
+ 1 ist quadratischer Rest von jeder Zahl.
$ 25,
— 1 ist quadratischer Rest der Zahlen von der Form 4n 4 1, aber niemals der Zahlen
von der Form 4n -+ 3 oder was dasselbe ist von der Form 4n — 1.
: il
Beweis. Nach § 24 ist i quadratischer Rest vonp, wenni 2  durch p den Rest + 1
p—1
giebt; demnach ist — 1 quadratischer Rest von p, wenn (— 1) 2  denRest + 1 lasst, oder
p—1
1

was dasselbe ist, wenn (— 1) 2  gleich 4 1 ist, d. h. wenn ——-—;—1 = 9n ist. Ist P ;

= 2n, 80 ist p — 1 = 4n, p = 4n + 1, aber niemals = 4n + 3 oder 4n — 1.

Nach % 25 soll — 1 quadratischer Rest scin der Zahlen von der Form 4n -+ 1, nicht
aber der Zahlen von der Form 4n — 1. 13 hat die Form 4n 4 1, also muss — 1 quadratischer
Rest sein von 13 und dics ist der Fall, denn 52 und 82 geben beide den Rest — 1. 19 hat die
Form 4n — 1 oder 4n — 3 und keines der Quadrate der Zahlen von 1 bis 18 giebt den Rest — 1.

7 26.

2 ist quadratischer Rest der Zahlen von der Form 8n +4 1, aber niemals von der Form
8n + 3 2

Die Frage, ob 2 quadratischer Rest ist oder nicht, ist beantwortet durch die Frage, ob
p—1

2 2 den Rest 4 1 oder — 1 lisst. Bezeichnen wir zuerst den Rest des Products von 1 . . .

B_;‘_l mit r; denselben Rest r erhalte ich auf anderem Wege. Multiplicire ich alle Zahlen von

1 bis p/y mit 2, so erhalte ich die geraden Zahlen zwischen o bis p/,; multiplicire ich die Zahlen
zwischen p/y und p/y mit 2, so erhalte ich die geraden Zahlen zwischen p/, und p; ziche ich diese
von p ab, suche die absolut kleinsten Reste von p und multiplicire jeden derselben mit — 1, so
erhalte ich die ungeraden Zahlen zwischen O und p/,. Im Ganzen erhalte ich also die Reste von

—1 -_ —
1 — p—, wenn ich jede der Zahlen von | — Pa=1 mit 2 und ausserdem noch alle Zahlen

2 2
zwischen p/y — pa mit — {1 multiplicire. Ist nun die Anzahl der Zahlen zwischen p/; und ply

= q, 80 habe ich im Ganzen multiplicirt mit (— 1) % Wir sind also zu dem Resultat gekom-
-~ 1

e 4 i P
men, dass das Product (1 L9001, p»—-2»——1) denselben Rest giebt wie (1 R p__2_1) 2 122

(=1 q; ihre Differenz muss also den Rest o geben. Statt dieser Differenz kann ich schreiben

Pk q —1 )
‘ 9 2 g e 1} (1. igdya, @ P——Q——) und wenn dieses Productden Rest o geben soll, so muss
p—1

q
2 2 (= 1) den Rest 1 geben. (— 1) 1 giebt den Rest + 1 oder den Rest — 1, je nachdem
2*



—_

P il p—1

q gerade oder ungerade ist; da 2 2 (— 1) % den Rest 1 geben soll, so muss also 2 uih
den Rest + 1 geben, wenn q gerade ist, und den Rest — 1, wenn q uug.e.rade ist. Demnach ist die Frage,
ob 2 quadratischer Rest ist, zuriickgefiihrt auf die Frage, ob q eine gerade oder ungerade Zahl
ist, d. h., ob die Anzahl der Zahlen zwischen p/; und p/, einc gerade oder ungerade ist. Ist nun
p von der Form 8n <+ 1, so haben wir nach dem eben Gesagten nur zu beriicksichtigen die
Zahlen zwischen o uund p/,, d. h. die Zahlen ven 1, 2, 3 . . . 4n, und von diesen wurden nur die
Zahlen von 2n 4 1 bis 4n gezihlt, diese Anzahl ist aber gerade, folglich ist q gerade, folglich

p—1
giebt 2 2 den Rest + 1, folglich ist 2 quadratischer Rest der Zahlen von der Form 8n 4 1.
Ist p von der Form 8n 4 3, so haben wir die Anzahl der Zahlen zu bestimmen zuniichst von
o bis p, d- h. von 1 bis 4n 4 1 und dann die Anzahl der Zahlen von p/y bis plh, d. h. von

p—1

2n 4 1 bis 4u 4 1, diese Anzahl ist stets ungerade, also q ungerade, also giebt 2 2 den
Rest — 1, also ist 2 quadratischer Nichtrest dieser Zahlen.

Ist p von der Form 8n 4 5 oder, was dasselbe ist, 8n — 3, so haben wir bis p/,
4n 4 2 Zahlen und von p/s — /g, d. h. von 2n 4 1 bis 4n 4 2 eine ungerade Anzahl Zahlen;

p—1

d. h. q ist ungerade, 2 2 giebt den Rest — 1, also ist 2 quadratischer Nichtrest dieser
Zahlen.

Ist p endlich von der Form 8n 4 7 oder, was dasselbe ist von der Form 8n — 1, so
haben wir bis ps 4n 4 3 Zahlen und von p/s bis ph, d. h. von 2n + 2 bis 4n 4 3 eine ge-

p—1

rade Anzahl Zahlen; d. h. q ist gerade, 2 2 lssst den Rest + 1, oder 2 ist quadratischer Rest.

Es ist also 2 quadratischer Rest der Zahlen an der Form 8n +4 1 und 8n + 7, oder von'

der Form 8n + 1, und quadratischer Nichtrest von den Zahlen von der Form 8n 4 3 und
8n 4 5 oder Sn + 3.
2 27.

— 2 ist quadratischer Rest der Primzahlen von der Form 8n + 1 und 8n <4 3, quadra-
tischer Nichtrest der Primzahlen von der 8n 4 5 und 8n — 7 oder 8n — 3 und 8u — 1.

Beweis. Wir wollen den Rest, welchen das Produet — 1. — 2. — 3... — (pT—l)

lagst, mit T bezeichnen; denselben Rest erhalte ich auf folgende Weise: Multiplicire ich jede der
Zahlen von o bis p/4 mit -— 2, so erhalte ich die negativen geraden Zahlen von o bis p/,, malti-
plicire ich die Zahlen von p/s —— p/ mit — 2, so erhalte ich die negative geraden Zahlen zwischen
p/a und p, suche ich zu diesem die absolut kleinsten Reste, so erhalte ich als solche die positiven
ungeraden Zahlen zwischen o und p/y, will ich diese negativ haben, so muss ich jede derselben

noch mit (— 1) d. h. im Ganzen mit (— 1)q multipliciren, wo q gleich 'der Amnzahl (dieser Reste
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d. h. gleich der Anzahl der Zahlen zwischen py und p;, ist. Es lassen also die beiden Producte

, . i R==4

foo Bl (o B 5 » == ?’-2-3; und (1) @) . .. EP 27-13 (—2) T (= 1) oder die
p—1 p—1 1 -3 q
Producte (1. 2. 8. .. 2 (=1) 2 und((l. 5 B B ;(~ 2) B T W
L p—1 1 pP.— 1 '

selben Rest r, folglich lisst die Differenz E 1.28 . .~ ; { =1} 7 e d (=T }
den Rest o. Diese Differenz lisst aber nur den Rest o, wenn

p—1 R d q q it p=1
=H. 2 =22 ) oda =1 ln 2 "t-(-9 ?

L Tornd Y
den Rest o lisst, und dieses Product wieder nur den Rest o, wenn (— 1) 2 . denselben
p—1 =t
Rest lidsst wie (— 2) 2 (~=1)y"2 lasst aber nur den Rest 4 1 oder — 1, je
- ' —1

nachdem p~—2—1 — q eine gerade oder ungerade Zahl ist, also wird auch (— 2) p“r den
Rest 4+ 1 oder — 1 lassen, d. h. — 2 wird quadratischer Rest oder Nichtrest sein, je nachdem
P—;——l- — q gerade oder ungerade ist.

Geben wir der Zahl p die Form 8n + 1, so ist die Anzahl der Zahlen von 1 bis p/, . . 4n
und die Anzahl der Zablen von p/; bis p/p, d. h. von 2n 4 1 bis 4n = 2n, also heisst der Ex-

8n 41 —1 P_—_l_q

ponent ¥ b 2n = 2n, d. h. er ist gerade; (— 1) 2 ist also = <+ 1,

ek
d h. (— 2 2 lusst den Rest + 1, also ist — 2 quadratischer Rest der Zahlen von der
Form 8n + 1. Hat p die Form 8n + 3, so sind von o bis p/, 4n 4 1 Zahlen und von p/y bis

p/. oder von 2n' 4 1 bis 4n 4 1 2n 4 1 Zahlen, d. h. q ist = 2n 4 1 und E-;—l —q =

8n + ;:_1 ~ @ 4+ 1) =40 4+ 1 — 20 — 1 = 20 d h gerade, folglich ist
ool N -

(— 1) 2 zoiry + 1, also lisst (— 2) 2 den Rest 4+ 1, und — 2 ist quadratischer Rest

der Zahlen von der Form 8n + 3. Ist p = 8n 4 5 oder = 8n — 3, so sind von o bis p4

4n 4 2, und von p/y — p oder von 211 + 2'bis 4n 4 2 2n 4 1 Zahlen, d. h. q ist = 2n + 1,

folglichistp;—l-—qz 2—?——(2 +1)=4+4+2—% —1=4n+1dh

p—d p—1
ungerade, dann ist (— 1) 2 = — 1, also lisst (— 2) 2 den Rest — 1, also
ist — 2 quadratischer Nichtrest der Zahlen von der Form 8n 4 5 oder 8n — 3. Setzen wir
fir p die Form 8n 4 7 oder 8n — 1, so sind von 0 bis p/s 4n + 3 und von p/y bis pl, oder



wie BK =

von 2n + 2bis 4n + 3 2n + 2 Zahlen, d. h. q ist = 2n + 2, oder pb;’ml — qist =
8p o T = ‘ Rt
_,,2#__ —(u+2)=4n+3 - 20 — 2=2n + 1 d. h. ungerade, also (— 1) 2
P =i 5

= —1d h (-2 2 |lisst den Reat — 1, oder — 2 ist quadratischer Nichtrest der
Zahlen von der Form 8n + 7 oder 8n — 1. KEs ist also — 2 quadratischer Rest der Zahlen
von der Form 8n 4 1 und 8Sn + 3 und quadratischer Nichtrest der Zahlen von der Form
Sn 4+ 5 und Sn 4+ 7 oder 8n — 3 und 8n — 1.

Zusatz: + 2 ist quadratischer Rest der Zahlen von der Form 8n + 1,

—q

+ 2 ist quadratischer Nichtrest der Zahlen von der Form 8n - 5 oder 8n — 3,

-+ 2 ist quadratischer Nichtrest, — 2 quadratischer Rest der Zahl von der Form
8n 4+ 3,
<+ 2 ist quadratischer Rest, — 2 quadratischer Nichtrest ‘der Zahlen von der Form

8n + 7 oder 8n — 1.
¢ 28.

3 ist quadratischer Rest der Zahlen von der Form 12n + 1und 12n -4 11 oder 12n a1
und quadratischer Nichtrest der Zahlen von der Form 12n + 5 und 12n + 7 oder 12n + 5.

Beweis: Wir bezeichnen wieder den Rest des Products 1. 2. — p_g_l_ in Bezug auf

p durch r. Denselben Rest erhalten wir auf folgende Weise: theilen wir die Zahlen von o bis pl,

in 3 Abtheilungen von o bis p/s in p’s bis p/s und von pj bis p/, und multipliciren wir dann
p el

jede dieser Zahlen mit 3, d. h. das ganze Product mit 3 2 , 80 erhalten wir Zahlen zwischen

o und pla, pp und p, p und %, p. Zichen wir die Zahlen zwischen p/, und p von p ab und

multipliciren jede derselben mit (— 1), im Ganzen also mit (-— 1) q, wo q die Anzahl der Zahlen

zwischen p/s und p/s ist, so erhalten wir ein zweites Drittel der Zahlen zwischen o und p/y und
an Stelle des dritten Drittels dieser Zahlen treten die Reste der erhaltenen Zahlen zwischen
p und 3/, p.
Auf diese Weise haben wir ein Product mit demselben Rest und dleses Product lautet :
p—.d q
st g W g

Die Differenz
p==1

p =k S T L p—4
1,2.8..5— 3 ( 1) L 2.8 5

.._1 .
p'—'1 P_Tia: q
3 {3 Y My




" o BB o
p—1 . 4 |
muss also den Rest o geben, d. h. 3 2 (— 1) muss den Rest 1 geben.
q g
(-~ 1) ist = 4 1, wenn q gerade und = — 1, wenn q ungerade; folglich wird 3, 2
den Rest -4- 1 lassen, wenn q gerade, und — 1 wenn q ungerade, oder 3 ist quadratischer Rest,
wenn ¢ gerade und quadratischer Nichtrest, wenn ¢ ungerade.

Geben wir p die Form 12n + 1, so haben wir zwischen o und p/, 6n Zahlen, also in
jeder der 3 Abtheilungen 2n Zahlen, d. hi q ist gerade und 3 ist quadratischer Rest der Zahlen
von der Form 12n 4 1.

Ist p = 12n + 5, so haben wir von o bis p;, 6n -4 2 Zahlen und diese vertheilen sich
auf die 3 Abtheilungen zu 2n, 2n 4+ 1 und 2n 4 1; folglich ist q ungerade und 3 quadratischer
Nichtrest.

Ist p = 12n 4+ 7 oder 12n — 5, so ist die Anzahl der Zahlen zwischen o und p/,
6n 4+ 3, und es befinden sich in jeder der 3 Abtheilungen 2n 4 1 Zahlen, also ist q wieder
ungerade und 3 quadratischer Nichtrest.

Hat endlich p die Form 12n + 11 oder 12n -- 1, so ist die Anzahl der Zahlen zwischen
o und p/, 6n 4 5 und wir haben in den 3 Abtheilungen resp. 2n 4 1, 2n' 4+ 2 und 2n + 2
Zahlen, folglich ist q gerade also 3 quadratischer Rest.

: Mithin ist 3 quadratischer Rest der Zahlen von der Form 12n +4 1 und 12n 4 11 oder
12n 4+ 1 und quadratischer Nichtrest der Zahlen von der Form 12n 4+ 5 und 12 4 7 oder

12n 4+ 5

3 29.

— 3 ist quadratischer Rest der Zablen von der Form 12n + 1 und 12n 4 7 oder
12n + 1 und 12n — 5 und quadratischer Nichtrest der Zahlen von der Form 12n -+ 5 und
12n -+ 11 oder 12n + 5 und 12n — 1.

Beweis: Um wieder 2 Producte zu erhalten, welche denselben Rest o lassen, multiplicire

e — 1
ich jede der Zahlen von 1 bis p_2__1 mit (— 1), d. h. das ganze Product mit (— 1) . 9

&

=1
Dann multiplicire ich jede der Zahlen von o bis Pﬂ2_1 mit (— 3) also im Ganzen mit (— 3) N T

theile die Zahlen wieder in 3 Abtheilungen, deren erste Zahlen zwischen o und p/, enthilt, deren
zweite Zahlen zwischen p/p und p, welche ich, um Zahlen zwischen o und pf; zu erhalten, von

p abziehen oder mit (— 1) multipliciren muss, also mit (— 'l)q, Wo q die Anzahl der Zahlen

zwischen p/, und p/, ist, und deren dritte endlich Zahlen zwischen p und %, p enthilt, welche
Reste lassen zwischen o und ps,. Es lassen also folgende 2 Producte gleiche Reste
1

A ety |
(— 1) P—2—— fo.8. .8 R__2_. und (— 1)q (— 3) p_2_ L. 2. 3 ——2~—1 oder die Differenz
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—1 — —1 —
(= 1) Yyt ST S 0D YT oL i Lo e
— — -1
$1. 2. 3 — 2_.2_% {(—- 1) p_2___1 — (- l)q (— 3) - 2“‘} lisst den Rest o, oder
Ll g
(— 1 P__2._ und (— 1)q (— 3) p—g lassen denselben Rest oder
pr q Jonty q Riz L p~—1
(=D -l Di(—=8) =5 dh (=D (—1)_ 2 9 —(—38) o ¢den Rest o,
P_—_l - i P s
d h (—1) 2 und {— 3) —5— denselben Rest.
) —
(=1 p"g‘— — ¢ ldsst den Rest 4 1 oder — 1, je nachdem B 2—1— — q gerade oder ungerade
— 1 —
ist, folglich lisst auch (— 3) p—r den Rest 4+ 1 oder — 1, je nachdem 1)__2_1_ — q gerade
e | -
oder ungerade ist, folglich ldsst auch (— 3) p_g_ den Rest 4 1 oder — 1, je nachdem 12-2——1 —

gerade oder ungerade ist, d. h. — 3 ist quadratischer Rest oder Nichtrest, je nachdem s RO

2
gerade oder ungerade ist.

Ist mun p = 12n <4 1, so ist KL gleich 6n und in jeder der 3 Abtheilungen sind 2n

3
Zahlen, also ist  gerade 1’—'2"—1 — ) B @121::_1

Rest der Zahlen von der Form 12n + 1.

— 2n = 4n und mithin 3 quadratischer

Ist p = 12n + 5, so ist p——g—l = 6n 4+ 2 und die Zahlen vertheilen sich auf die

prleiy ! 98 + Bt

- S — @ +1)
=6n + 2 - 2n — 1 = 4n + 1, d. h. ungerade und (— 3) quadratischer Nichtrest.
Ist p = 120 4 7, so ist die Anzahl der Zahlen zwischen o und p, 6n 4 3; es sind

3 Abtheilungen zu 2n, 2n + 1, 2n + 1, folglich ist

also in jeder Abtheilung 2n 4 1 Zahlen, mithin ¢ = 2n 4+ 1 und p__—z—__l e

BrtT—=1_ o —1=6a43—2 —1=4 + 2 & h gorade, folglich (— 3)

quadratischer Rest.
Ist p endlich 12n 4 11, so haben wir zwischen o und p; 6n 4 5 Zahlen, also in den

3 Abtheilungen resp. 2n 4 1, 2¢ + 2, 2n 4 2 Zahlen und es ist E—;‘_—l - g
@_ni;_l:_{ — 91—~ 2=6n+4+ 5~ 2n —2=14n+4 3, d. h. ungerade und (— 3) ist

quadratischer Nichtrest.
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— 3 ist demnach quadratischer Rest der Zahlen von der Form 12n 4 1 und 12n + 7
und quadratischer Nichtrest der Zahlen von der Form 12n 4 5 und 12n 4 11, oder vesp. der
Zahlen von der Form 12n 4+ 1 und 12n — 5, und 12n 4+ 5 und 12n — 1.

Zusatz. <+ 3 sind quadratische Reste der Zahlen von der Form . . . . . .12n + 1,

+ 3 sind quadratische Nichtreste der Zahlen von der Form . . . . 12n 4+ 5,

+ 3 ist quadr. Rest und (—3) quadr. Nichtrest der Zahlen von der Form 12n + 11,
4 3 ist quadr. Nichtrest und (-— 3 )quadr. Rest der Zahlen von der Form 12n + 7.

¢ 30.

Um die Form der Zahlen zu bestimmen, zu denen b quadratischer Rest ist, miisste man
die Zahlen von O bis p/, in fiinf Abtheilungen theilen; alsdann simmtliche Zahlen aller Abthei-
lungen mit 5 multipliciren und ausserdem noch die Zahlen der zweiten und vierten Abtheilung
mit — 1, d. h. wenn wir die Anzahl der Zahlen dieser beiden Abtheilungen resp. mit q und s

bezeichnen, mit (— 1)q und (— 1)8; auf diese Weise wiire festgestellt, dass denselben Rest lassen

p—1

- - p—1 q 8
19, foh R g 4.0 RS s ITL (L1) (- 0,

_ el q 8
Es miisste demnach 1. 2. . . . P__2_1 1—5 2 . (= 1) (= 1) ¢ den Rest 0, oder

p—1
5 2 |, (—

B q
auch 5 2 den Rest 4 1, also ist 5 in diesem Falle quadratischer Rest, und ist (— 1)

e

= — 1, so ldsst anch 5 2 den Rest — 1, und 5 ist quadratischer Nichtrest.

q 8 q+ s
1) . (— 1) den Rest 4 1 lassen, d. h. wenn (— 1) = 4 1 ist, so Lisst

8

Wir hiitten alsdann zu untersuchen die Zahlen von der Form
20n 4 1, 20n 4 3, 20n 4 7, 20n + 9, 20n + 11, 20n 4 13, 20n 4 17 und 20n + 19.

Im ersten Falle befinden sich in jeder Abtheilung 2n Zahlen, also sind q und s gerade.

Im zweiten Falle sind 10n 4 1 Zahlen, und zwar befinden sich in der ersten, zweiten,
dritten und fiinften Abtheilung je 2n, in der vierten 2n 4 1 Zahlen, mithin ist p 4+ q ungerade.

Im dritten Falle sind 10n 4 3 Zahlen; es befinden sich in der ersten und vierten Ab-
theilung je 2n, in der zweiten, dritten und fiinften Abtheilung je 2n 4 1, mithin ist q + s
ungerade.

Im vierten Falle sind 10n 4 4 Zahlen, und es befinden sich in der ersten Abtheilung
2n, in jeder der vier iibrigen Abtheilungen 2n 4 1 Zahlen; mithin ist q 4 s gerade.

Im fiinften Falle sind 10n 4 5 Zahlen; in jeder Klasse befinden sich 2n 4 1 Zahlen,
also ist q + s gerade.

Im sechsten Falle sind 10n 4 6 Zahlen; es befinden sich in der vierten Abtheilung
2n 4 2, in den iibrigen Abtheilungen je 2n <4 1 Zahlen, mithin ist q 4 s ungerade.
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Im siebenten Falle sind 10n 4 8 Zahlen; es befinden sich in der ersten und vierten Ab-
theilung je 2n + 1, in der zweiten, -dritten und finften Abtheilung je 2n + 2 Zahlen; mithin
ist ¢ + s ungerade.

Im achten Falle sind 2n 4 9 Zahlen; in der ersten Abtheilung befinden sich 2n + 1,
in jeder der iibrigen Abtheilungen 2n 4 2 Zahlen; mithin ist q 4 s gerade.

Es ist also q + s gerade fir den [all, dass die Zahl die Form hat: 20n + 1, 20n + 9,
20n 4 11, 20n 4+ 19, und ungerade bei den Zahlen von der Form 20n + 3, 20n + 7, 20n + 13
und 20n 4 17.

q+s Bl
Folglich ist in den Fillen 1, 4, 5 und 8, (— 1) = 4 1, mithin muss 5 2 in
diesen Fillen den Rest 4 1 lassen, also b quadratischer Rest sein; in den Filleh 2, 3, 6, 7 ist
q + s Bk
(— 1) = — 1, also lasst auch 5 2 den Rest — 1, d. h. b ist quadratischer Nichtrest.

Also 5 ist quadratischer Rest der Zahlen von der Form
20n 4+ 1. 20n 4+ 9. 20n + 11. 20n 4 19, oder 20n + 1. 20n + 9,
und 5 ist quadratischer Nichtrest der Zahlen von der Form
20n 4+ 3. 20n 4+ 7. 20n — 13. 20n 4 17, oder 20n o 3. 20n -_i-_ 1.

Auf diesem Wege ist leicht eine Verallgemeinerung des Vorgehens zu erzielen.

2 31.

Die Anzahl der Factoren einer Zahl

o s P A D gleith (e k1) @D D) @ D)
oder gleich dem Product der um 1 vergrésserten Exponenten der Primfactoren der Zahl
Beweis: Entwickeln wir das Product

( 2 a) ( 2 B ( 2 7) ( 2 9)
l+a+a +...2)(1+b+b +...b)(L+c+c +...c)(Q+d+d +...4d),
so erhalten wir in den einzelnen Termen die Combinationen von a, b, ¢, d zu je 1, je 2 . . bis
zuje e + B8 + y + 0, in denen a, b, ¢, d resp. mit «, g, y, d maliger Wiederholung vorkommen.
Jeder dieser Termen ist ein Factor der Zahl m, und das Aggregat dieser Terme enthilt anderer-
seits wieder simmtliche mogliche Combinationen, also simmtliche Factoren und nur Factoren
der Zahl m. Die Anzahl dieser wird also gleich sein der Anzahl der Terme. Das Product

51- P aa; él b s 2 bﬂ; hat aber (1 4+ @) (1 4 ) Terme; inultipliciren wir

dieses mit ((1 Al 02 e iy 07;’ so erhalten wir (1 4+ ) (1 + 8) (1 + y) Terme, und

endlich durch Multiplication dieses Products mit 1 + d erhalten wir (1 4 a) (14 8) (1 4 y) (1 + 9)

Terme. Die Anzahl der Factoren ist mithin = (@ + 1) (8 + 1) ( + 1) (d + 1) w. 5. w.
Da jede Zahl ein Product von Potenzen der Primzahlen ist, so braucht man zur Be-

schaffung ciner Tabelle 'der Factoren-Anzahl in diese nur aufzunehmen die Potenzen der Prim-



zahlen nebst ihrer Factoren-Anzahl; um nun die Factoren-Anzahl einer beliebigen Zahl zu erhalten,
multiplicirt man mit einander die aus jenen Tabelle entnommenen Factoren-Anzahlen der zu der
Zahl gehorigen Potenzen von Primzahlen.

Tabelle.
Z. bedeutet Zahl, F.-A. Factoren-Anzahl.

Z. F.-A. Z. F.-A.
1¥.ae = 5 & o 25 3
2 2 21 . 4
& = 2 29 v 2
4 3 31 2
5 2 32 . 6
7! 2 37 o
8 4 41 -
9 3 43 . 2

11 2 47 2

13 2 49 o i)

16 b 53 2

s 17 2 59 2

19 2 6L +« 2 » 3 » 2

23 2 64 7

Demnach wire die Factoren-Anzahl von 34400, da diese Zahl gleich 25. 5% 43 ist,
= 2. 3. 6, welche Zahlen neben 32, 25 und 43 stehen.

¢ 32.
Die Summe der Factoren einer Zahl
a Br e + 1 A o § %40

m=4a be¢ ist::g)._____——_vl,!)___»:l_c —1

8 — 1 Pty Sy
y ( 2 iny a) ( 2 )
Beweis. Da das Product Uk b bt Boheenastinde hiltodh & B b a wsts B)
é TR 02 + 67; (....) in seinen Termen simmtliche Factoren und nur Factoren

der Zahl m giebt, so wird die Summe aller dieser Terme gleich der Summe simmtlicher Factoren
sein. Die Summe dieser erhalte ich aber, wenn ich vor der Multiplication erst die Glieder jedes

' 2
Factors 21 piiae o 32 2 ua; und El il g 5 bﬂ; . . . . summire; jeder dieser

Factoren ist aber eine geometrische Reihe mit resp. @« 4+ 1, # 4+ 1. ... Gledern und den

n
Quotienten a, b . ... Das Summenglied s einer solchen Reihe ist = a ¢ — 1, wo a erstes

e— 1
{ilied, n die Anzahl der Glieder und e der Quotient der Reihe ist. Also erhalte ich
3*




== 1 =
a 4+ 1 br?+1 e o

a =l w2 b 18 ek a4
a— 1 b—1 c— 1
Ist die Zahl eine Primzahl, so ist ihre Factoren-Summe = der Primzahl 4 1; hat man
die Zahl dargestellt als ein Product von Primzahl-Potenzen, so wird die Factoren-Summe gleich
sein dem Product der Factoren-Summe dieser Primzahlpotenzen. Man hat also bei Aufstellung
eincr Tabelle in diese nur hineinzunehmen die Potenzen der Primzahlen.

a Tabelle.
Z. bedeutet Zahl, F.-S. Factoren-Summe.

Z. F.-S. Z. F.-S.
1 1 95 & &« & 3,351
2 o 207 & w e 40
3 4 29 O A J 2 80
4 7 SlF 20V & 32
5 6 82w W & 4863
1 8 S - Gorg W 288
SN et S AL o ol e 2
0 O | 48 ¢ ¢ & = & 44

B 3 ¥ & 8 AP 4t , ¢ & o 948

189 & o~ & wos 14 49 . o & 4.+ B

Lo R Tl ¢ | '3 b - St i

1 ove'sw & 08 5 Al sl e

S e plugt 20 oL o' w¥s & 62

230w Yy e 24 64 "Nlp pIERTY2R

Hiernach wire die Factoren-Summe von 34400, welche Zahl — 235. 52 43 ist, gleich dem
Product der bei 32, 25 und 43 stehenden Zahlen, d. h. = 63. 31. 44. = 85932.

Die Factoren-Anzahl sowohl als auch die Factoren-Summe befolgt ein héchst unregel-
missiges Gesetz; es ist daher merkwiirdig, dass diese Zahlen in der Analysis als Coefficienten
vorkommen. Beide waren den Alten nicht fremd.

3 38.

Eine vollkommene Zahl oder numerus perfectus ist eine solche, deren Factoren-Summe
gleich dem Zweifachen der Zahl selbst ist. Die Formel fiir eine solche Zahl m wiirde lauten:

m (e B8 9) a4 1 i y+ 1
2(@ b c)=a =T b =q.% " "= 1V,
a—1 b—1 c—1
Hs wire nun zu untersushen, welche Werthe a, b, ¢, @, §, 7 . . . annehmen miissen, um
dieser Gleichung zu geniigen. Nehmen wir den einfachsten Fall, und setzen b, ¢ ... = 1, so




g T

« a + 1 -
wirden wir den numerus perfectus 2a = a — 1 haben, und es fragt sich, fiir welch

Werthe von a und e diese Gleichung gilt. Untersuchen wir zuerst die Gleichung fiir a = 2 d. h.

@ a4+ 1 ; ‘
die Gleichung 2. 2 = 2 — 1, so finden wir, dass 2 nicht fiir a gelten kann, denn wir

a + 1 &, 1 o
haben 2 =252 — 1 oder 0 = — 1. Setzen wir fiir a. 3 ein, so heisst die Gleichung

@ a4+ 1 @ o g
A I — — l oder 4 3 =33 — loder3 = — 1, welche Gleichung auch un-
2
~moglich ist, denn die Potenz einer positiven Grosse kann nie negativ werden. Und allgemein

of 80l BBIN veri v . w8 BB EE — 1

oder 2 (a — /1) & =& — 1

(¢4
a (2a —a —2) = — 1

a «
a (a— 2 = — 1;

eine Gleichung, welche fiir positive Weérthe von a'unméglich ist. Hieraus folgt, dass keind

Potenz einer-Primzahl ein numerus perfectus sein kann.

@ e 4 1 g 41
Betrachten wir den Fall 2a b = a it — 1 und setzen wir, um den ein-
a-—1 b—1
fachsten Fall zu erhalten, fir @ und g .. . 1 ein, 8o heisst die Gleichung
gf 1 P 1 o
28b = —‘a"—‘:_—l. ‘17“"_—1‘ = (8.- + 1) (b +1)

oder 2ab = ab 4+ a 4+ b 4 1
oder ab =a 4+ b 4+ 1

oder b (a — 1) = a 4+ 1, d. h
a4+ 1

a—1

b =

Der Bruch : i i ist nur gleich einer ganzen Zahl, wenn a = 2 ist, und dann erhalten

wir b = 8. Es ist also 2. 3 oder 6 eine vollkommene Zahl, und in der That ist auch

14 24 3+ 6=26=12. Setzen wir ¢ == 2 und # = 1, so heisst die Gleichung



W

2a’b=8;::11. b::ll—.:(a’+a+1) b+ 1)
2a2 b = a?b 4+ a2 4+ ab 4+ a 4+ b + 1
a?b —ab — b =2a%?+4 a 4+ 1
potitetl
a2 — a— 1°

2
%—g kann nur fiir a =— 2 eine ganze Zahl sein, weil dieselbe Zahl a 4 1 im

Zshler zu a? addirt und im Nenner abgezogen ist, und dann ist b = 7 und der numerus per-
fectus heisst 22. 7 oder 28. Esistauch 1 4+ 2 + 4 + 7 4+ 14 4 28 = 2. 28

Euclid stellt fir vollkommene Zahlen eine Regel auf, deren Richtigkeit schon in der
Mitte des vorigen Jahrhunderts von Tobias Meier in Géttingen bewiesen und von dessen Schiiler
Kraft in den Petersburger Commentarien niedergelegt wurde. Sie lautet folgendermassen: Ist a
eine Potenz von 2 und ist 2a — 1 eine Primzahl, so ist a (2a — 1) eine vollkommene Zahl.
Dies lisst sich leicht nachweisen, denn wenn 2a — 1 eine Primzahl ist, so ist deren Factoren-

Summe 2a, und ist a eine Potenz von 2, so ist die Factoren-Summe von a . .. (2a + __1 1))_
Die Gleichung fiir die Zahl wiirde also lauten:
@ « ) (¢4 1) o
2.2 2.2 —=1)=(2 — 12 2 A
« a + 1
oder 2. 2 —1 =2 — 1

d. h 0.== 0,

Um eine Reihe von vollkommenen Zahlen zu erhalten, darf man also nur die Potenzen
von 2 hinschreiben und unter jeder derselben diese Potenzen — 1; ist diese ecine Primzahl, so
ist das Product der beiden iiber einanderstehenden Zahlen ein numerus perfectus

1. 2. 4. 8. 16. 32. 64. 128. 256.
3. 7, 15. 31. 63.1217. 256, Bll.
Es sind also 6. 28. 496, 8128.
vollkommene Zahlen.

¢ 34.
Es soll die Gleichung gelost werden ax — by = c unter der Bedingung, dass x und y
ganze Zahlen und a und b relative Primzahlen zu einander sind. Setze ich fiir x . . . ¢ x, und
fir y ... cy, ein, so erhalte ich die Gleichung acx, — bey, = ¢ oder ax, — by, = 1, und es

wird die Aufgabe gelost sein, weun die Werthe fiir x, und y, bestimmt sind.

Dividire ich die Gleichung ax — by = 1 durch bx, so erhalte ich B Y 1

b x bx
d. h. die Differenz zweier Briiche, die gleich ist einem Bruche, dessen Zihler = 1 und dessen
Nenner = dem Product der Nenner der beiden Briiche ist. Diese Gleichung findet aber statt

I



— 93 —

zwischen zwei auf einander folgenden Niherungswerthen eines und desselben Kettenbruchs. Die
Differenz zweier solcher Niherurgswerthe ist gleich 4 oder — 1, dividirt durch das Product der

Nenner der beiden Niherungswerthe. Ich habe also einen Kettenbruch zu suchen, in welchem

g‘ vorkommt, oder iiberhaupt -:— in einen Kettenbruch zu verwandeln,
a

b

der Niherungswerth -
dann wird der vor - - liegende Niherungswerth der Werth von —-5— sein. Sollte das Zeichen

nicht stimmen, so gebe ich durch Zerlegung des letzten Nenners nin n — 1 4 —}— dem Ketten-

bruch einen N#berungswerth mehr.

Beispiel 1. 17x — 28y = — 1
¢ st 17 - il  §i
durch 23x dividirt 1 e ety
Nun ist s leich dem Kettenbruch AL
h\ st 5~ gleic ette oy
2l ooy
141
5
S ) . i@ -8 Y SN y _ 3 &
und die Niherungswerthe heissen i p R within ist T g oder y = 3
und x = 4.
Beispiel 2. 99x — 301 y = 3.
Fiir x und y gesetzt 3x, und 3y, giebt die Gleichung
99x, — 301y, = 1 oder
99x — 301y = 1
S el .1 99 Wl W ol
Dividire ich durch 301x, so erhalte ich WL = B0
Der Kettenbruch fiir B%QT heisst 1
AL ne
2441
141

3

; 1 24 25 99 " '
und dessen Niherungswerthe sind: 37 737 g und gop 7 8 Wire also der Werth fiir

-

~—y—, —gg—. Nun giebt aber 76. 99 — 25. 301 nicht + 1, sondern — 1, und ich muss dadurch,
X

dass ich statt des letzteren Nenners 3 setze 2 + —}— dem Kettenbruch einen Niherungswerth



e BB nos

mehr geben, dann heisst der Kettenbruch 1
341
2441
141
5T
¥ -

1 24 25 4 99 y 74
gy G5 gt g “gor e el Werth "RIFLS LY 596 -
Und in der That ist 225, 99 — 74. 301 — 1. Die der urspriinglichen Gleichung geniigenden
‘Werthe werden sein 8. 225 und 3. 74 oder 675 und 222.

Seine Niherungswerthe sind

3 36.

Hat man aus der Gleichung ax — by = 1 erst einen Werth fir x und y bestimmt z. B.
x == z und y = v, so erhilt man fiir sie eine ganze Reéihe von Werthen, wenn man fiir x setzt
u 4 bm und fiir y: v 4+ am, wo wieder fiir m jede ganze Zahl gilt, denn wenn au — bo =1
ist, so ist auch a (u 4+ bm) — b (v 4 am) == 1. Die so erhaltenen Werthe fiir x und y sind
die Glieder von arithmetischen Reihen, deren erste Glieder u und z, deren Differenz b und a sind.

¢ 36.

Wir gehen jetzt zur sogenannten Pell'schen Aufgabe, von welcher sich schon Spuren im
Diophant und bei den indischen Mathematikern finden und mit welcher die Mathematiker neuerer
Zeit sich viel beschiftigt haben. Den indischen Mathematikern war die Theorie der unendlichen
Reihen schon bekannt und sie haben sich tberhaupt mit Aufgaben beschiftigt, welche in die
Zahlentheorie fallen; z. B. Dreiecke zu construiren, deren Hohen und Seiten rational sind, oder
ein Viereck in einen Kreis zu zeichnen, dessen Seiten ganze Zahlen sind. Unter den englischen
Mathematikern muss hier zuerst Pell genannt werden, dann Ougthread und Harriot, nach dem
der Satz von den Gleichungen genannt ist. Sie lebten zur Zeit der Elisabeth. Von spiteren
Englindern, namentlich von Wallis, die sich mit dieser Aufgabe beschiiftigt haben, befindet sich
vieles in Euler’s Algebra; es sind dies jedoch alles nur Vorarbeiten, welche durch Lagrange ihren
Abschluss gefunden haben. Der zur Losung einzuschlagende Weg stiitzt sich auf die Periodicitit
der Kettenbriiche bei Benutzung derselben zum Ausziehen von Quadratwurzeln. Der Beweis der
Periodicitit dieser Kettenbriiche gehort zu den glorreichsten Arbeiten Lagrange’s, Stifters der
Turiner Akademie, spiater in Berlin, zuletzt in Paris. Ihm und Euler verdanken wir, dass die
Zahlentheorie eine Wissenschaft geworden,

g il

Aufgabe: Zu einer gegebenen Zahl a, welche kein Quadrat ist, sollen zwei Quadrate
x? und y2 gesucht werden, welche der Gleichung geniigen x? — ay? —= 1. x und y sind ganze
Zahlen.

\
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Wenn x2 und y? missig gross sind, so wird man ohne Fehler sagen konnen: x? — ay? = o,
5 g p.d 3 ” -y =L, " y
oder x* = ay? oder .7 = Va ; und es kiime dann darauf an, J/a in Form eines gemecinen

Bruchs zu geben. Wir wollen hier erst einzelne Fille untersuchen, in denen die Gleichung
moglich oder unméglich ist.

Ist a == 4n 4 1 und sind x und y ungerade, so liesse x* sowohl wie y? durch 4 den
Rest 1, und dann auch x? und ay* den Rest 1, oder deren Differenz den Rest 0, oder cin Viel-
faches von 4; aber niemals 1. :

Sind x und y gerade, so haben x2 und ay? den Factor 4, ihre Differenz kann also nie
den Rest 1 lassen, sondern lisst stets den Rest 0 oder das Vielfache von 4.

Ist x gerade und y ungerade, so lisst x* durch 4 den Rest 0, y% den Rest 1, ay? den
Rest 1, und die Gleichung wiirde dann lauten 4q — 4z — 1 = 1; eine Gleichung, welche fiir
ganze Zahlen von q und z unméglich ist.

Ist x ungerade und y gerade, so lisst x* durch 4 dividirt den Rest 1, y* den Rest 0,
also ay? den Rest O, und die Gleichung lautet 4q 4+ 1 — 4z = 1, welche Gleichung unter der
gestellten Bedingung moglich ist.

Demnach ist also die Gleichung x* — ay*? = 1, wenn x ungerade und y gerade ist, fiir
cin a von der Form 4n 4 1 moglich.

Wir wollen dieses noch in einem Béispiel nachweisen; es sei a = 13 d. h. x2 — 13y2 = 1.

Die V13 soll auf folgende Weise in Form eines gemeinen Bruchs bestimmt werden:

V13 = 3 + V13 — 3. Der reciproke Werth von V13 — 3 ist V1'3_1*7ﬁ‘7 und aus ihm er-

halten wir durch Multiplication des Zihlers und Nenners mit 113 4 3, um den letzteren rational

Vi3 + 3

zu machen, Ty ziehen wir aus diesem Bruch die grosstmoglichste Anzahl von Ganzen, so
wird er gleich 1 + ‘—/—Ii‘f_——l— Nun nehmen wir wieder von V134—'———1 den reciprokep Werth,

machen wieder den Nenner rational und ziehen wieder die grosstméglichste Zahl von Ganzen
heraus, so erhalten wir folgende Rechnung:

Yz =8+ Vi3 —3

el#:lf_liﬁ_l.*.v_lg_—;l
Vi3 — 3 4 v 4
. R S O B LR
Vis —1 3 o 3
e —KBJ_? 1+m:’.1
Vi — 2 3 = 3



o B

J og®s il AP iBaspb g Vis —3
= B et =] o T
Vi3 — 1 4 - 4
4 Vi3 + 3 yVia — 3
VA mloB-1l SURY siloxin Qed 1T 10
1

V13 — 3° Hier beginnt, da dieser Bruch gleich dem ersten ist, die
oben erwihnte Periodicitit. Ks ist demnach:

Vid=8+41
1+1

Die Naherungswerthe dieses Kettenbruchs sind der Reihe nach:

4 7 11 18 119 137 256 393 649
L1%= @ the =@ horfolingBivi882 1AL 10901807

Der Werth —i‘% geniigt, denn 649% — 13. 1802, -oder 421201 — 421200 ist — 1 und

in der That ist hier x ungerade, y gerade.

2. Beispiel: x2 —-BTy2 = 1.

Yol =1 &4 V61 —.1

RN iy KX S N
V57 g 8 i e
_ B YET g VBT~ g
V5T ~ 1 7 i yeT
S —Vei+e6 _ L VBT~
VeT — 8 3 s 3— &
3 g VBT 4 6 iy VB <1
VEr o8 ki . s, ]
o ang. VHT 4 o B I Vst — 1
VBT et 8 g & ¢

8 i - V51 W N
Vit =1 3 Tt



Is ist demnach:

e
14

und die Niherungswerthe des Kettenbruchs heissen:
SpiiL, 6 &6t VAN 160
AT 4 Y117 20 291
-8 /15 68 83 151 2197
1 2

oder

b

)
» 9T Tg 11 720 9oL
- 151 . i g 3
Im Naherungswerthe 9o 1St X ungerade und y gerade, und in der That ist:

1512 — 57. 20% oder
22801 — 22800 = 1.

3. Beispiel: x? — 17’y2 o
V1T = 4% VI — 4
Yl — 4 1 e ' 1

Die Niherungswerthe sind 4 und 4 + - é— oder 4 und 39233— Auch hier ist x ungerade

und y gerade, und wieder ist:
332 — 17, 82 oder

11089 — 1088 = 1. z

Hat a die Form 4n 4 3 und sind x und y ungerade, so lassen x? und y2 den Rest 1,
also ay? den Rest -+ 3, und die Gleichung hiesse: 4q 4+ 1 — 4z —/3 = 1; sie ist fiir ganze
Zahlenwerthe von q und z, also auch von x und y, unmoglich.

Sind x und y gerade, so lassen x* und y* den Rest 0, also ay® auch den Rest 0, und
unsere Gleichung hiesse 4q — 4z = 1, welche Gleichung wiederum unmoglich.

Ist x gerade und y ungerade, so lisst x* durch 4 den Rest 0, y2 den Rest 1, also ay2
den Rest 3. Die alsdann erhaltene Gleichung 4q — 4z — 3 == 1 ist moglich, denn 4q — 4z
ist ein Vielfaches von 4, kann also tiberhaupt auch einmal = 4 sein.

Ist x ungerade, y gerade, so lisst x* den Rest 1, y% den Rest 0, also ay?* ebenfalls den
Rest 0, die nun erhaltene Gleichung 4q 4 1 — 4z = 1 ist ebenfalls moglich.

Die Gleichung x2 — ay? = 1 ist also zwiefach moglich fiir a = 4n + 3, nimlich wenn
x ungerade und y gerade, und wenn x gerade und y ungerade, aber nie, wenn beide gerade oder
ungerade sind. B
4*



1. Beispiel: X2~ 19y = 1.

V1o = 4 + V19 — 4

1 V19 4+ 4 . Vie — 2
Vii A~ 8 L} b d s S
3 VW 4+ 2 Vi0 3
Vi =3, 8 & =i%==g—
b _ V19 + 3 Vio — 3
Vi 3 = 3 fnd g
2 _ V19 + 3 Vigi — 2
Vig i aec " e BIL ot e B
5 IME WD 52 =, V19— 4
V19 — o v CET IR e
3 _ V19 + 4
VI§_4—“"""1 = —8+.--o

Die Néherungswerthe sind: '
B SR Ll it T i o AP
27 37 11 14 39 326 %%

L A5 & O I0yla
2°.37 11’ 14’ 39’ 326°
Fir x gilt hier der Werth 170, fiir y 39, denn es ist in der That 28900 — 19 1521 oder
28900 — 28899 = 1 und x ist gerade, y ungerade.

2. Beispiel: x2 — 23y = 1.
V23 =4 4 V28 — 4
. ]{23 ok 1+ }5_21?1 =3
V28 -4 oL = 7
Sl MR -, o Py W vl 4. it s
V25 —3 o 3
Va3 —3 7 T 7
Al s liallh 'S - 3 0
VBB &1 Trai B Gl ot + Debidd
Die Naherungswerthe dieses Kettenbruchs 4 4+ 1
14+ 1 i i
3+ 1
1+ 1“__
8

sind: h?—, —{19, -25‘-1», f’;j_ und von diesen geniigt %4~ unserer Gleichung, denn 24* — 23. 5%

oder: 576 — 575 ist wirklich = 1 und x ist hier gerade, y ungerade.



3. Beispiel: x¥ = 0by? = L
V9% =94+ V9%H —9
; ‘,1,,_.-. = »]/ng')j.-g‘_ =1 + _Vif’.—_f’_
Vs —9 §47 1% 14
14 - V%B+5 _, + V95 —5
Vo —5 5 i3 5
. = @+i =1+ _K@T,g
V%~p 14 = 14
14 V95 + 9
el — — =1 5
V95— 9 1 s ¥
Der Kettenbruch heisst 9 4+ 1
141
24 I i
141
18
und seine Naherungswerthe sind: —?‘10-, —-22?—, -35—

Aus dem Néherungswerth -—34?— ergiebt sich x = 39 d. h. ungerade und y — 4 d. h.

gerade, und diese Werthe von x und y geniigen auch, denn 392 — 95. 42 oder 1521 — 1520 ist = 1.
4. Beispiel: 572 — 203. 42 = 1.
V203 = 14 + V303 — 14

U _yms 4 _, L Vis—u
V203 — 14 7 T 7
T V203 + 14
T Y R Bt S AL,
Der Kettenbruch lautet: 14 4 1
4+

.1 —
28

: . " 57
und seine Niherungswerthe sind: — AL

Der Niherungswerth ——il giebt fiir x einen ungeraden Werth = 57, fiir y einen geraden

= 4 und es ist wieder: 572 — 203. 4 oder 3249 — 3248 = 1.

Die Losung der Pell'schen Aufgabe besteht also in der Bestimmung der }a auf dem
vorhin mehrfach beschrittenen Wege durch einen Kettenbruch. Dann bestimmt man die Niherungs-
werthe dieses Kettenbruchs und sucht aus diesen unter Zugrundelegung der Regeln fiir die beiden
nur moglichen Formen fiir a, nimlich 4n 4 1 und 4n + 3 den passenden Niherungswerth.



Beispiel:

2 — 391y2 = 1.
V391 = 19 + V391 — 19
b V8L +19
V391 — 19 30
30 V31 +__11
Vil — 1
. S V391_M__1§
V391 — 16 15
1 V39 + 14
V391 — 14 13
1B V391 + 12
V391 — 12 1
19 _ Ve 4.7
V391 — 1 18
18 _ V391 + 1
V3 — 11 15
B V9 + 19
V391 — 19 2
2 _ VL4 19
V391 — 19 15
B _ysi+ 1
V391 - 11— 18
18 _ V3L + 1
V3 — 1 19
19 V391 4+ 12
V3ol — 12 13
13 _ V391 + 14
V301 — 14 15
1 _ V3 + 16
V391 — 16 9
i@l ob o V391 + 11
V391 — 11 30 ol
0800 v Y391 4 19
V391 — 19 1

= 2 +

I

I

i

I+

3 +

2 +

V3oL —+ 11
30

V391 — 16

9
V301 — 14

15
V391 — 12
13

V391 — 19

19 + 255

2 +

i+

14

2+

2 +

3+

1+

&

V391 — 11
1B

Ve — 1
18

V391 — 12
BTy

V391 — 14
13

}/391 — 16
15

V391 — 11
: — 9
V391 — 19
7 130

5y N i



Der Kettenbruch lautet also:
1941
141
341
24+ 1
241

141

I+

TET
ES
2

| |

"

lr—tt
|

-

+"
9| -

o

1
1T+1
38"

und seine Naherungswerthe sind: ‘
1 3 7 17, 24 41 106 2050 4216 6271 10487 27245 64977 222176
T 7479 227 31’ 537 137’ 2606’ 5449’ 8105’ 13554’ 35213’ 83980’ 287153 '
ikl 8 oder:
31188 ~ 7" : .
20 79 178 435 613 1048 2709 52519 107747 160266 268013 696292 1660597
1’74779 22" 31 537 137',2656' 5449 ' 8105 ' 13564’ 35213’ 83980
5678083 7338630
287153 ° 371133 °

Der Niherungswerth 73%9’%3;1 giebt die erfiillenden Werthe von x und y, denn

73386802 — 391. 371133% oder: 53856224142400 — 53856224142399 ist wirklich — 1.
a hat die Form 4n 4+ 3 und nach der friheren Aufstellung ist auwch x gerade und y
ungerade.



Seite 3 Zeile 14 von unten lies: m?pq statt m2pg
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10

11

1
12

12
13

21
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n

n

1 von
15 von
4 von

Berichtigungen:

4

unten lies: Summe statt Summa
oben lies: d. h. 1. statt d. h. 0.
oben lies: ¢ 12 statt § 13

P
9 von oben lies: 4 ... b ; statt + ... bp;

5 von
6 von

12 von

7 von

8 von
14 von

8 von

2 von

oben lies beide Male: 1. 2.3... (p — 1) statt 1. 2. 3 — p — 1
oben und im Folgg. lies stets: 12 22 32 .. statt 1%, 2%, 3% ...

sy B o H@e+1) statt B Ll o 1

p

unten lies beide Male: 1 bis P —2— D statt 1 — p__:_i

unten
oben und 4 von unten

unten lies: von der Form 8n 4 5 statt von der 8n + 5

} lies: pyy bis p/y statt pa — pl

oben und im Folgg. lies stets: 1. 2. 8 ....PF "211 statt der fehler-

haften Schreibweisen dieses Productes.

4 von

oben lies: 3 fiir a statt fiir a. 3




