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Abstract
Background: Graphical Gaussian models are popular tools for the estimation of (undirected) gene association
networks from microarray data. A key issue when the number of variables greatly exceeds the number of samples
is the estimation of the matrix of partial correlations. Since the (Moore-Penrose) inverse of the sample covariance
matrix leads to poor estimates in this scenario, standard methods are inappropriate and adequate regularization
techniques are needed. Popular approaches include biased estimates of the covariance matrix and high-
dimensional regression schemes, such as the Lasso and Partial Least Squares.

Results: In this article, we investigate a general framework for combining regularized regression methods with
the estimation of Graphical Gaussian models. This framework includes various existing methods as well as two
new approaches based on ridge regression and adaptive lasso, respectively. These methods are extensively
compared both qualitatively and quantitatively within a simulation study and through an application to six diverse
real data sets. In addition, all proposed algorithms are implemented in the R package "parcor", available from the
R repository CRAN.

Conclusion: In our simulation studies, the investigated non-sparse regression methods, i.e. Ridge Regression and
Partial Least Squares, exhibit rather conservative behavior when combined with (local) false discovery rate
multiple testing in order to decide whether or not an edge is present in the network. For networks with higher
densities, the difference in performance of the methods decreases. For sparse networks, we confirm the Lasso's
well known tendency towards selecting too many edges, whereas the two-stage adaptive Lasso is an interesting
alternative that provides sparser solutions. In our simulations, both sparse and non-sparse methods are able to
reconstruct networks with cluster structures. On six real data sets, we also clearly distinguish the results obtained
using the non-sparse methods and those obtained using the sparse methods where specification of the
regularization parameter automatically means model selection. In five out of six data sets, Partial Least Squares
selects very dense networks. Furthermore, for data that violate the assumption of uncorrelated observations (due
to replications), the Lasso and the adaptive Lasso yield very complex structures, indicating that they might not be
suited under these conditions. The shrinkage approach is more stable than the regression based approaches when
using subsampling.
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Background
Besides Bayesian networks [1], auto-regressive models [2],
and state-space models [3], graphical Gaussian models
(GGMs) are a popular method for modeling genetic net-
works based on microarray transcriptome data. In the
GGM methodology [4], which is considered in the present
article, networks are represented as undirected graphs.
Each vertex represents a gene, and an edge connects two
genes if they are partially correlated. In contrast to correla-
tion, which measures both direct and indirect interactions
between pairs of variables, partial correlation measures
the strength of direct interaction only. Since investigators
are primarily interested in direct gene interactions, the
GGM framework is attractive for modeling of regulatory
networks: several recent methodological articles report
successful applications of GGMs to the estimation of
genetic networks from microarray data [5-10]. These
approaches are used in numerous applied studies, e.g., for
estimating Arabidopsis gene networks [11] or for the study
of genetically mediated cortical networks [12].

Nonetheless, reconstructing GGMs from high-dimen-
sional microarray data remains a difficult task. The stand-
ard estimation of partial correlations involves either the
inversion of the sample covariance matrix, or the estima-
tion of p least squares regression problems, where p is the
number of genes. If the number n of observations (arrays)
is much smaller than the number p of variables (genes),
these approaches are inappropriate. Suitable alternatives
are based either on regularized estimation of the (inverse)
covariance matrix, or on regularized high-dimensional
regression. The present paper focuses on the latter
approach, and presents a comparative study on the use of
various approaches to high-dimensional regression for
covariance selection. The chosen methods are extensively
compared in simulations and real data studies. Since for
real data the ground truth (i.e. the true underlying net-
work) is unknown, our performance analysis focuses on
the similarities and differences between the investigated
methods. In particular, we examine the connectivity and
size of the resulting graphs, as the differences between the
estimated networks. Moreover, we compare the stability
of the methods with respect to subsampling and with
respect to violations of i.i.d. assumptions.

In the remainder of this section, we give a brief overview
of graphical Gaussian modeling in the classical setting
with n > p. Subsequently, we discuss the case of high-
dimensional data in the "Methods" section.

Gene Regulatory Networks and Graphical Gaussian 
Models
Graphical Gaussian models (GGMs) [4] are fundamental
tools in order to represent direct covariate interactions.
Formally, a GGM is an undirected graph whose nodes rep-

resent variables, and whose edges represent conditional
dependency relations. An edge between two nodes is
missing if and only if they are conditionally independent
given all other nodes. Assuming a joint normal distribu-
tion, the conditional dependence can be quantified in
terms of partial correlations. For a random variable X and
a finite set of random variables  = {Z1,...,Zk}, the orthogo-
nal complement of X with respect to  is

where the projection P is defined with respect to the inner
product �X1, X2� = E[X1X2] between two random variables
X1 and X2. Here, we tacitly assume that all involved
moments exist. The partial correlation ρ (X1, X2) between
X1 and X2 with respect to  is the correlation of the orthog-
onal complements of X1 and X2 with respect to :

In the context of gene regulatory networks, each of the p
genes is represented by a random variable Xi (i = 1,..., p).
For each pair of genes (i, j), we are interested in their par-
tial correlation ρij with respect to all other genes, i.e. with
respect to the set of random variables \ij = {X1,...,Xp}\ {Xi,
Xj}.

Given n observations (arrays) x1,..., xn ∈ �p of the set of p
genes, the standard unbiased plug-in estimate for the par-
tial correlation coefficients ρij in the case n > p can be for-
mulated in two equivalent ways [4], as outlined below.

Notations
In the rest of this article,

denotes the n × p column-centered data matrix with rows
corresponding to observations (arrays) and columns cor-
responding to variables (genes). The standard unbiased
estimate of the p × p covariance matrix Σ is then given as

Formulation 1: Inversion of the Covariance Matrix

If the estimate  is invertible, an unbiased estimate of the
partial correlation between genes i and j is obtained as

with  denoting the inverse of the estimated covariance
matrix:

X X X,\Z ZP= −
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Formulation 2: Least Squares Regression
Let us consider the p linear regression models

where ε stands for i.i.d. noise. Note that we do not include
an intercept in the model because the variables are cen-
tered. For i = 1,..., p, the least squares estimate

 of the vector of regres-

sion coefficients is the solution of the optimization prob-
lem

where X(i) ∈ �n is the ith column of X and X(\i) ∈ �n × (p - 1)

is the matrix obtained from X by deleting the ith column.
The partial correlation between genes i and j is then esti-
mated as

In the n > p setting, the two regression coefficients 

and  always have the same sign. Hence,  is

well-defined. Moreover, it can be shown that both formu-
lations 1 and 2 are equivalent [4] in the sense that they

always yield the same estimate. In the n ≥ p setting, a test

of the null hypothesis ρij = 0 is available using results on

the distribution of .

In microarray data, the number n of samples is typically
very small as compared to the number p of considered
genes. Hence, the above framework is inappropriate for
two reasons. Firstly, the standard estimate of the partial
correlation matrix given by Eqs. (3) and (7) is not appro-
priate when n <p: in formulation 1, the estimated covari-

ance matrix  is typically ill-conditioned or even
singular, and its generalized (Moore-Penrose) inverse has
large mean squared error [6]. In formulation 2, the least
squares criterion (5) is ill-posed and leads to overfitting.
Hence, an alternative regularized estimate of the partial

correlation matrix has to be used in the context of GGMs
with high-dimensional data. The two formulations 1 and
2 lead to two different strategies for the regularized esti-
mation of the partial correlations in the p Ŭ n setting,
which are reviewed in the Methods section.

Secondly, the testing approach mentioned above breaks
down in the p Ŭ n setting, since the sampling distribution

of estimates  under the null hypothesis of zero partial

correlation is unknown. Two alternatives have been pro-
posed in order to assess statistical significance: (i) meth-
ods based on sparse estimates of the partial correlation
matrix that do not require separate testing, and (ii) meth-
ods based on empirical null modeling and (local) false
discovery rate multiple testing [7,13,14].

Methods
This section reviews the available strategies for estimating
GGMs in the p Ŭ n setting: biased large-scale covariance
estimation and regularized regression including our two
novel variants (Ridge Regression and Adaptive Lasso).

Regularized Estimation of the (Inverse) Covariance Matrix

This approach is derived from formulation 1. The general
approach is to plug a regularized estimate of the inverse of
the sample covariance matrix into Eq. (3). Schäfer &
Strimmer [6] adopt this approach and propose a shrink-
age estimator of the covariance matrix. This shrinkage esti-
mator is constructed as a convex combination of the

unrestricted sample covariance matrix  and an estima-

tor  of a specified low-dimensional sub-model T:

where the factor λ ∈ [0, 1] controls the shrinkage inten-
sity. Let us assume a parametrization of covariances in
terms of correlations and variances, whereas shrinkage is
applied to the correlations and diagonal entries are left
intact, i.e. the estimator does not shrink the variances. For
correlation shrinkage, we consider the identity matrix as
the most commonly employed shrinkage target. Notice
that the optimal shrinkage intensity λ can be determined
analytically and be estimated from the data. Thus, the
resulting correlation shrinkage estimator is positive defi-
nite, and favorable properties carry over to derived quan-
tities, such as sample partial correlations. Subsequently,
model selection of the gene association network can be
achieved using empirical null modeling and (local) false
discovery rate multiple testing [7,13,14].

Estimates of the inverse covariance matrix can also be
obtained using bootstrap aggregating (bagging) as a tech-

ˆ ( ˆ ) ˆ .ΩΩ ΣΣ= = −ωij
1

X X fori j
i

j

j i

i p= + =
≠

∑ β ε( ) , , ..., ,1 (4)

ˆ ( ,..., , , ..., )( ) ( ) ( ) ( ) ( )ββ i i
i
i

i
i

p
i= − +β β β β1 1 1
F

ˆ arg min( ) ( ) (\ )ββ ββ
ββ

i i i
p

= −
∈ −R 1

2
X X (5)

= ( )−
X X X X(\ ) (\ ) (\ ) ( ),i i i iF F1 (6)

ˆ ˆ ˆ ˆ .( ) ( ) ( )ρ β β βij j
i

j
i

i
j= ( )sign (7)

ˆ ( )β j
i

ˆ ( )β i
j ˆ ˆ( ) ( )β βj

i
i

j

ρ̂ ij

Σ̂Σ

ρ̂ ij

Σ̂Σ

T̂

ˆ ˆ ( ) ˆ ,ΣΣ ΣΣλ λ λ= + −T 1
Page 3 of 24
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:384 http://www.biomedcentral.com/1471-2105/10/384
nique for variance reduction [15]. In some implicit way,
the bootstrap procedure presumably helps to regularize
the problem. However, bagging schemes are inferior to
the shrinkage estimator [6], and computationally much
more expensive. A recent extension using the augmented
bootstrap [16] is in fact closely related to the shrinkage
estimator [17,18] and is expected to perform similarly.

In this paper, we use the correlation shrinkage based
approach as a reference method in comparison with the
regression based approaches to covariance selection.

Finally, recent novel approaches are to be noted that are
based on, �1 regularized maximum likelihood estimation
in graphical Gaussian models [9,19-21]. Corresponding
inverse covariance estimates exploit the sparsity in the
graphical structure and conduct parameter estimation and
model selection simultaneously. However, despite recent
advances in semidefinite programming computation
remains challenging in practice due to the high-dimen-
sionality and positive definiteness constraint [22].

Regularized Regression
Here, the strategy is to replace the least squares estimator
in (6) by some regularized estimator of the regression
coefficients that can be used in formula (7) to obtain esti-
mators of the partial correlations. More formally, we
define the following class of estimates of the partial corre-
lations.

Definition 1. For any regression method regthat yields (reg-

ularized) estimates of the linear regression model (4), we

define the corresponding estimate of the partial correlations as

and 0 otherwise.

This definition ensures that the estimated partial correla-
tion coefficients are always well-defined and that they lie
in the interval [-1, 1]. Again, we can roughly distinguish
between regression methods that require testing to con-
struct the undirected graphs, and sparse regression meth-
ods.

In the rest of this subsection, we discuss two regularized
regression methods (PLS and the Lasso) that have been
proposed for the estimation of large-scale GGMs in the lit-
erature. Furthermore, we propose two additional attrac-
tive methods (ridge regression and the adaptive Lasso).

Partial Least Squares
Tenenhaus et. al. [23] suggest Partial Least Squares (PLS)
regression [24,25] as a plug-in for Def. 1. PLS is a method
for supervised dimensionality reduction. It has its seed in
the chemometrics community, but its success has lead to
applications in various other scientific fields, e.g. in
chemo- and bioinformatics [26,27].

The main idea of PLS is to build a few orthogonal compo-
nents from the original data X(\i) and to use them as pre-
dictors in a least squares fit. A PLS component t = X(\i) w is
a linear combination of the original predictors that have
maximal covariance with the response vector X(i), under
the additional assumption that the components are mutu-
ally orthogonal. Formally, the k-th PLS component is
defined by

Hence, PLS regularizes the regression problem by com-
pressing the p variables into a small number m of orthog-
onal components T = (t1,..., tm) and regressing the
response variable onto these components. After rescaling
the weight vectors wk (k = 1,..., m) such that tk has length
1, this leads to the regression coefficients

While the original formulation of PLS scales with the
number p of variables, it is also possible to represent the
algorithm in a way that it only scales with the number n
of observations [28,29]. This leads to a dramatic decrease
in computation time for p Ŭ n. Note that the number of
PLS components is a model parameter that has to be opti-
mized for each of the p regression models (4). The stand-
ard model selection techniques are cross-validation or
information criteria based on degrees of freedom [30]. In
the context of gene regulatory networks, Tenenhaus et.al.
[23] propose to use the same number of components m
for all p regression models. They observe empirically that
the partial correlation coefficients (Def. 1) obtained from
PLS regression reach a plateau when the number of PLS
components m increases, and suggest a heuristic proce-
dure to choose the smallest m for which the plateau is
reached. However, in our experiments, we use the theoret-
ically well-funded and popular cross-validation technique
with k folds.

As the PLS coefficients are not sparse, the obtained partial
correlations are in general non-zero. Thus, a statistical
testing procedure has to be used to determine which edges
are significant. (Alternatively, one might also use a sparsi-
fication of PLS as proposed by Chun & Keles [31].) In the
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present article, we use large-scale simultaneous hypothe-
sis testing with local false discovery rate (fdr) level 0.2, in
order to identify unusual outliers among the estimated
partial correlations.

For the sake of completeness, let us mention in this sec-
tion a variant of the PLS approach described above, which
was recently suggested by Pihur et al. [10]. Instead of esti-
mating the partial correlation using Eq. (7), they propose
an alternative measure of correlation strength which is
very similar to the PLS-based partial correlation coeffi-
cient except that, roughly speaking, the square root of the

product of  and  is replaced by their sum. We

remark that Pihur et. al. do not optimize the number of

PLS components m and recommend to use m ≈ 3.

Ridge Regression
Ridge regression (see e.g. [32]) is probably the most pop-
ular and most straightforward regularized regression tech-
nique. Regularization is performed by adding a penalty
term P(β) to the least squares criterion (5). Ridge regres-
sion is based on an, �2 penalty term of the form

where λ > 0 denotes the penalty parameter. This leads to a
reduction of variance and thus avoids overfitting. The
solution obtained by ridge regression depends on the pen-
alty parameter λ. In our paper, we use standard k-fold
cross-validation to select the optimal amount of penaliza-
tion λ. As ridge regression does not lead to sparse solu-
tions, we use large-scale false discovery rate multiple
testing [14] to test for significant edges, as described above
in the subsection on PLS. Again, we adopt a level of 0.2.

The Lasso
Meinshausen and Bühlmann [33] propose to estimate the
regression coefficients in Def. 1 with the Lasso [34] and
study under which conditions model selection consist-
ency applies, hinging on the choice of the penalty. Simi-
larly to Ridge Regression, the estimated regression
coefficients are chosen to minimize a penalized least
squares criterion. Lasso regression is based on a �1-penalty
of the form

where λ > 0 is the regularization parameter. With the �1-

penalty, many estimated regression coefficients will be
equal to 0. As a result, with variable selection in mind, the
Lasso has a major advantage: a sparse estimator of the

matrix of partial correlations is yielded and a graph can be
obtained by assigning an edge between two genes if and

only if  ≠ 0. The choice of the penalty λ has to be

determined for each of the p high-dimensional regressions
successively. Again, this can be done using some cross-val-
idation scheme or information criteria. Meinshausen &
Bühlmann [33] motivate a choice of the penalty parame-
ter that aims at controlling the probability of falsely con-
necting two nodes in the graph, i.e. that is a choice
tailored to the graph structure. However, experiments [6]
indicate that this approach leads to graphs that are too
dense, i.e. too many edges are selected. Therefore, in this
paper, we use the oracle penalty for optimal prediction
that is determined using k-fold cross-validation.

The two-stage adaptive Lasso
The Lasso is only asymptotically consistent for covariance
selection when requiring certain necessary conditions
among the variables in the GGM. Zhou et al. [35] show
that the two-stage adaptive Lasso procedure [36] is con-
sistent for high-dimensional model selection in graphical
Gaussian models under rather general and less restrictive
conditions. The adaptive Lasso [36] considers the Lasso
with penalty weights as

where the weights  are chosen in a data-dependent

manner. Specifically, the adaptive Lasso is defined as fol-

lows. Suppose  is a  consistent initial estimator of β.

For example, we can use the least squares estimator .

Pick a γ > 0, and define the weights . The

most common choice is γ = 1. Here, we use the Lasso esti-

mator  as initial estimator, and define the weights

Note that the amount of penalization in both the initial
stage Lasso and the second stage Lasso with penalty
weights is determined via k-fold cross-validation. The
adaptive Lasso will be at least as sparse as the Lasso. For
graphical Gaussian modeling, the adaptive Lasso esti-
mates are used in Def. 1, and two genes are connected if
and only if the partial correlation coefficient

 ≠ 0. We remark that for model selection,

the optimal weights have to be determined in each of the
k cross-validation splits. As the optimal weights them-
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selves are determined via k-fold cross-validation, this
implies that a lasso fit has to be computed k2 times! This
leads to high computational costs.

Results
In this section, we perform extensive experiments to com-
pare regression-based methods for reconstructing gene
regulatory networks. We consider the recently proposed
techniques PLS regression and Lasso regression, and the
two additional methods, ridge regression and adaptive
Lasso regression, that have not been applied in practice for
this purpose before.

As a reference method, we use the shrinkage approach to
covariance estimation, followed by matrix inversion. An
overview of the five considered methods and their respec-
tive parameters and characteristic features is given in Table
1. All methods are implemented in the R package "parcor"
[37], available from the R repository CRAN.

Simulations
The performance of the proposed methods is assessed in
a simulation study with a set-up similar to [6]. The
number of variables is fixed at p = 100, and various sample
sizes ranging from 25 to 200 in steps of 25 are investi-
gated. We consider two different scenarios. First, we simu-
late networks with varying degree of density and no
network topology, and second, we investigate sparse net-
works with different network topologies (see additional
file 1 for an illustration and below for a detailed explana-
tion). These scenarios correspond to particular choices of
the partial correlation matrix P (see below). For all exper-
iments, a total of 20 replications are performed for each
sample size to average out variability due to random sam-
pling. For each replication, the data are drawn randomly
from a multivariate normal distribution with correlation
structure derived from P.

Varying degree of density
Partial correlation matrices P of size p × p with a propor-
tion of

non-zero entries are constructed by first drawing the non-
zero entries from a uniform distribution on [-1, 1] and
then rescaling the non-diagonal entries to ensure that we
obtain a feasible partial correlation matrix (for more
details, see the R-package GeneNet[38]). Hence, the
range of the non-zero partial correlations depend on the
density of the network. If the network is rather dense, the
absolute values of the non-zero partial correlation coeffi-
cients are very small compared to a sparse network. This is
illustrated in the additional file 2. Here, we plot the histo-
gram of the non-zero partial correlations for a random
matrix P of density d. It is important to note that due to
the small values, the reconstruction of the network
becomes more delicate for a higher degree of density: it is
more difficult to select the correct non-zero entries if their
true vales are close to zero. We remark that this effect can-
not be entirely eliminated by a more clever simulation
design, and that the simulation of partial correlation
matrices is far from trivial [39].

For each generated data set, P is then estimated based on
PLS regression, ridge regression, the Lasso, the adaptive
Lasso and the shrinkage covariance estimator, succes-
sively. For all regression-based methods, k = 5-fold cross-
validation is used to optimize the model parameters, i.e.
the number of components m for PLS and the penalty λ
for ridge regression, the Lasso and the two-stage adaptive
Lasso, respectively. For the Lasso and the adaptive Lasso,
we follow the parametrization implemented in the lars
package [40], based on the ratio of the �1-norm of the
Lasso and the �1-norm of the least squares estimates. Spe-
cifically, the regularization parameter is chosen from an
equidistant sequence between 0 and 1 of length 1000.

Furthermore, we normalize this parameter to avoid the
peaking phenomenon at n = p (see [41] for details). For
ridge regression, we consider a logarithmically spaced
sequence l1,..., l1000 ranging from 10-10 to 10-1. The candi-
date penalty parameters are then defined as λs = ls n p (with
s = 1,..., 1000). Finally, the range of the number of PLS
components is from 1 to 15.

d = 5 10 15 20 25%; %; %; %; %

Table 1: Overview of the methods

Method Type parameter(s) choice edge if

shrink regularized estimation of the covariance shrinkage intensity λ analytic fdr< 0.2
pls regression number of components m CV fdr< 0.2
ridge regression penalty λ CV fdr< 0.2
lasso regression penalty λ CV  ≠ 0

adalasso regression penalty λ (×2) nested CV (×2)  ≠ 0

ρ̂ ij

ρ̂ ij
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We evaluate the accuracy of the resulting estimators in two
respects: (i) the estimation error of the partial correlation
matrix itself, and (ii) the recovery of the underlying net-
worked topology. The difference between the estimated
and true matrix of partial correlations is measured in
terms of the mean squared error (MSE). In the upper left
panel of Figures 1, 2, 3, 4 and 5, the MSE is displayed as a
function of the sample size n.

For sparse networks, the two sparse estimates based on the
Lasso and the adaptive Lasso, respectively, yield a lower
MSE compared to the three other methods that are not
sparse and are likely to contain many non-zero but non-
significant (small) entries, which ultimately lead to a
higher MSE. This effect vanishes for higher degrees of den-
sity. A notable exception is PLS. For denser networks, the
MSE becomes larger. These networks correspond to small
absolute values of the entries in P. Therefore, we conjec-
ture that PLS is not able to shrink the regression coeffi-
cients enough, as the regularization parameter m (number

of components) is discrete. This is in contrast to the four
other methods. Note however that for the reconstruction
of the underlying networked topology the MSE is only of
secondary interest.

For each investigated sample size, the resulting number of
selected edges is displayed in the upper right panel of Fig-
ures 1, 2, 3, 4 and 5, while the horizontal line is the
number of true edges. For sparse networks, the Lasso with
its regularization parameter chosen to be prediction opti-
mal tends to select too many edges. PLS, ridge regression
and the approach based on shrinkage covariance estima-
tion are in contrast far more conservative and rather select
too few edges, even in the n > p case. The adaptive Lasso is
less conservative and appears to be a promising alterna-
tive. Again, these differences vanish for higher degrees of
densities. As remarked above, the reconstruction task
becomes more difficult for higher degrees of density. This
explains the low number of selected edges for higher
degrees of density.

MSE, number of edges, power and true discovery rate for a density of 0.05Figure 1
MSE, number of edges, power and true discovery rate for a density of 0.05.
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The two lower panels in Figures 1, 2, 3, 4 and 5 corre-
spond to the power (left) and the true discovery rate (tdr,
right) which are defined as

respectively. The panels illustrate that for sparse networks,
the Lasso's comparatively high power comes at the prize
of rather low true discovery rate. Again, the power
decreases with the increase in density of the network. In
many practical applications, we argue that it might be
more valuable to report more stable results with fewer
false positives.

However, it is to be noted that the non-sparse methods
using fdr-based procedures for edge selection involve an
arbitrary parameter: the fdr threshold (here 0.2). These

methods can thus be made more or less sparse by chang-
ing the threshold value. To investigate the relative accu-
racy of the non-sparse methods independently of the
particular fdr threshold, the same simulations are subse-
quently performed with other thresholds. In order to eval-
uate the ability of the three methods to detect non-zero
partial correlations, their sensitivity and specificity are
computed for these different fdr thresholds and displayed
graphically in form of ROC curves (see additional files 3,
4, 5, 6, 7, 8, 9, 10, 11, 12). PLS and ridge regression yield
very similar results. They slightly outperform the
approach based on shrinkage covariance estimation. The
sensitivity and specificity of the Lasso and the adaptive
Lasso, which do not depend on a particular threshold, are
depicted as single points. They are above the ROC curves
of the three non-sparse methods, indicating good per-
formance - especially for the adaptive Lasso.

Finally, we compare the runtime of the respective meth-
ods in Figure 6. Note that we do not display the runtime

power
true edges that are selected

true edges
and

tdr

=

=

#{ }
#{ }

#{{ }
#{ }

,
true edges that are selected

selected edges

MSE, number of edges, power and true discovery rate for a density of 0.10Figure 2
MSE, number of edges, power and true discovery rate for a density of 0.10.
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of the Lasso, as it was computed as an intermediate step in
the R-function for the adaptive Lasso. The left part of Fig-
ure 6 clearly shows that the computational load for the
adaptive Lasso is very high. This is due to the fact that we
have to run the lasso algorithm k2 times in k-fold cross-val-
idation, and that the (adaptive) lasso algorithm scales
unfavorably in the number of variables - in contrast to
PLS, Ridge Regression or shrinkage. The right part of Fig-
ure 6 only displays the runtime of the three latter meth-
ods. Shrinkage is faster than the regression based
approaches as it circumvents both time-consuming cross-
validation and the computation of p different regression
models. The discrepancy with respect to the runtime
becomes even more apparent in the real data study (see
below).

Different network topologies
Next, we consider different network topologies. We simu-
late two different types of topologies (see additional file
1) The left part of the figure shows three clusters of genes.

In each cluster, all genes are partially correlated, and genes
from different clusters are not partially correlated. In the
simulation, we consider networks with 1,2 and 3 clusters.
The right part of the figure in clusters.pdf shows
three star-shaped clusters. In each star, all genes are par-
tially correlated to one gene, the center of the star. In the
simulation, we consider a network with 3 stars. The MSE,
the number of selected edges, the power and the true dis-
covery rate are displayed in Figures 7, 8, 9 and 10. Again,
we observe a high MSE for PLS in most scenarios. As
explained above, this is probably due to the insufficient
shrinkage of PLS towards 0. Overall, the Lasso and Ridge
Regression perform best in these scenarios. So, in contrast
to what is often conjectured/reported in the literature, we
do find in our simulations that sparse methods are able to
reconstruct networks in the presence of cluster structures.

Real Data Study
We compare the five different methods on diverse real
world data sets: the ecoli1[42] and ecoli2[43],

MSE, number of edges, power and true discovery rate for a density of 0.15Figure 3
MSE, number of edges, power and true discovery rate for a density of 0.15.
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Ara[44], t.cell10 and t.cell34[3], and west[45]
data sets. All data sets are freely available. An overview of
the size, characteristics and availability of the data sets is
given in Table 2. The five considered methods (shrinkage
covariance estimation, ridge regression, PLS, Lasso, adap-
tive Lasso) including the model selection procedures for
the regression-based approaches are exactly as in the sim-
ulation setting. For ecoli2, we use leave-one-out-cross-
validation for model selection, and for west, we use k =
5-fold cross-validation. For the remaining 4 data sets, we
use k = 10.

In real world scenarios, the ground truth, i.e. the true
underlying network, is hardly ever known, and the per-
formance of different methods cannot be determined in
terms of MSE, power and tdr as in the simulation study.
Nevertheless, it is possible to compare the performance of
the different methods quantitatively. In particular, we
investigate the size and the connectivity of the estimated

graphs, their overlap the type of interaction between genes
and their stability.

Figures 11 and 12 display the percentage of selected edges
for each data set. As in the simulation study, the propor-
tion of selected edges strongly depends on the chosen esti-
mation method. More surprisingly, the relative levels of
sparsity of the obtained graphs show very different pat-
terns for the six investigated data sets. The Lasso and adap-
tive Lasso seem to behave very differently from the other
methods. This can at least partly be explained by the fact
that they rely on a completely different edge selection
scheme which essentially depends on the sparsity of the
regression method and not on the testing scheme.

In a nutshell, the Lasso and adaptive Lasso select less
edges than the other methods for all data sets except for
the two data sets t.cell10 and t.cell34 with
repeated measurements. With these two data sets, Lasso

MSE, number of edges, power and true discovery rate for a density of 0.20Figure 4
MSE, number of edges, power and true discovery rate for a density of 0.20.
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and adaptive Lasso yield complex graphs with as much as
over 50% non-zero edges (t.cell34 data). This behav-
ior is likely to be due to the longitudinal structure of the
data that is not explicitly considered, since the standard
Lasso regression method assumes independent observa-
tions. In contrast, longitudinal structures may be handled
in an implicit way by methods using an fdr-based assess-
ment, where the distribution under the null hypothesis is
estimated from the data. To gather further evidence for
our hypothesis, we average over the 10 replications in the
two respective data sets. This leads to 10 observations for
t.cell10 and 34 observations for t.cell34. On the
averaged data, both Lasso and adaptive Lasso indeed
select far less edges: For the averaged t.cell10, we
obtain: 4.2% (Lasso), 2.0% (adaptive Lasso), 12.2%
(PLS), 0.2% (Ridge), 0.2% (shrinkage). For the averaged
t.cell34, we obtain 12.3% (Lasso), 4.8% (adaptive
Lasso), 11.9% (PLS), 2.7% (Ridge), 0.1% (shrinkage).

PLS reconstructs very dense networks for five out of the six
data sets (ecoli1, ara, t.cell10, t.cell34 and
west). In combination with the high MSE that we
observed in the simulations, we conjecture that PLS in
combination with cross-validation is not the most reliable
method for the reconstruction of networks. We believe
that other model selection strategies or the incorporation
of sparse PLS [31] are necessary in order to improve the
performance of PLS.

Among the three methods with fdr-based assessment of
the edges, i.e PLS, ridge regression and shrinkage covari-
ance estimation, the latter procedure seems to be most
conservative, whereas PLS identifies the highest number
of edges. This result is consistent for all six real data sets
and yields a refinement of the results presented in the sim-
ulation study, where these three methods performed sim-
ilarly.

MSE, number of edges, power and true discovery rate for a density of 0.25Figure 5
MSE, number of edges, power and true discovery rate for a density of 0.25.
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Runtime of the respective methodsFigure 6
Runtime of the respective methods.
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Network topology: 1 clusterFigure 7
Network topology: 1 cluster.
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Table 3 displays the overlap of the estimated graphs.
(Example: On the ecoli1 data set, 68; 6% of the edges
found by Ridge Regression are also found by PLS. For
baseline comparison, the numbers in italics show the per-
centage of selected edges for the respective methods.) The
estimated graphs show a moderate overlap between the
methods. While considering these results, one should
keep in mind that the proportions of selected edges vary a
lot across the five methods, which of course decreases the
overlap considerably: a very sparse graph can obviously
include only a very small proportion of the edges of a
more complex graph. Interestingly, the overlap seems to
be higher on average for the west data set including the
highest number of genes than for the other five data sets.
We remark that the Lasso and adaptive Lasso solutions are
computed based on different, random cross-validation
splits. This explains that, in general, the graph found by
adaptive Lasso is not exactly a subgraph of the solution
found by Lasso.

Figures 13 and 14 display the connectivity of the esti-
mated graphs for each of the six data sets. For each gene,
we derive the proportion of genes that are connected to it
through an edge, with each of the six data sets and each of
the five methods. Each boxplot depicts the distribution of
the proportion of connected genes for the considered
method and the considered data set. As explained above,
the assumption of i.i.d. observations is violated for the
data sets t.cell10 and t.cell34. This leads to a high
number of selected edges for the Lasso and adaptive Lasso
(see figures 13 and 14), and consequently to a high
number of connected genes for these methods.

Table 4 displays the percentage of positive (> 0) correla-
tions among the edges identified by the five methods for
the six data sets. This proportion varies between 0.5 and
0.8. The results obtained using the five investigated meth-
ods seem much more consistent than the results on the
number of identified edges. We also compare the meth-
ods with respect to their stability. This is an important
issue in order to assess the reliability of competing meth-

Network topology: 2 clustersFigure 8
Network topology: 2 clusters.
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ods. Recent research efforts have e.g. concentrated on the
stability of ranked gene lists, variable selection methods
and Bayesian networks [46-48]. In our context, a good
method is expected to yield a stable network in the sense
that a slightly modified data set (for instance a subsam-
ple) does not lead to a completely different result. For data
sets ecoli1, ecoli2, t.cell10 and t.cell34, we
draw subsamples by excluding ≈ 10% of the observations
and compute the network based on each subsample using
the five methods successively. The number of considered
subsamples is fixed to R = 10 (only R = 9 for the data set
ecoli2 that includes 9 observations). We do not analyze
the data sets ara and west, because repeated experi-
ments would be computationally too expensive.

For each candidate edge i,  counts how often this edge

is selected across the R subsamples. Similarly,

 denotes the number of times the ith edge

is not selected. These frequencies are summarized using

Fleiss' κ-score [49] which measures the degree of agree-

ment among the R subsamples of the data. The measure is
defined as follows. We first compute the average propor-
tion of assignments

Further, the degree of agreement of the R subsamples for
the ith edge is measured as

Finally, with  denoting the average of the Pi's and with

 denoting the agreement expected

by chance, Fleiss κ is defined as

ni
( )1

n R ni i
( ) ( )0 1= −

p
R

n ll
i
l

i

( ) ( )
#

#
, , .=

×
=

=
∑1

0 1
1

edges

edges

P
R R

n Ri i
l

l

=
+ ( ) −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑1
1

2

0

1

( )
( )

P

P p pc = ( ) + ( )( ) ( )0 2 1 2

Network topology: 3 clustersFigure 9
Network topology: 3 clusters.
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The score is always ≤ 1, and the higher the value of κ, the
more stable the methods are with respect to subsampling.

The κ-score of the methods is given in Table 5. As the
absolute values are hard to compare between data sets, we
also display the ranking on each data set. The shrinkage
approach is the most stable, probably because it does not
rely on additional subsampling in form of cross-valida-

tion splits. The regression based approaches are less sta-
ble, but among them, the degree of stability is
comparable. In particular, in this experiment, we cannot
see any difference between sparse and non-sparse
approaches.

Finally, the considered methods differ quite dramatically
with respect to their run-time. As an illustration, we com-
pared the run-time on the west data set, which contains
3883 genes. The approach based on shrinkage covariance
estimation is by far the most efficient one (≈ 2 min), and
all other methods scale within several hours: PLS ≈ 7.5

κ = −
−

P Pc
Pc1

.

Network topology: 3 starsFigure 10
Network topology: 3 stars.
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Table 2: Size of the data sets

data set arrays genes time series repeated measurements size of full graph Availability

ecoli1 23 100 yes no 4 950 R package plsgenomics[55]
ecoli2 9 102 yes no 5 151 R package GeneNet[38]
ara 22 800 yes no 319 600 R package GeneNet
t.cell10 100 58 yes yes 1 653 R package longitudinal[56]
t.cell34 340 58 yes yes 1 653 R package longitudinal
west 49 3883 no no 7 536 903 http://strimmerlab.org/data.html
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hours, ridge regression ≈ 10 hours, the Lasso ≈ 17 hours,
and the adaptive Lasso ≈ 3.5 days. This can be seen as a
major drawback of the methods relying on cross-valida-
tion schemes, especially the Lasso-based methods. While
Ridge Regression and PLS allow a representation that only
scales in the number of observations, Lasso and adaptive
Lasso scale in the number of variables. Furthermore, adap-
tive Lasso requires nested cross-validation. Partial relief
can be found in a parallel implementation. Alternatively,
for high-dimensional data, one might consider to approx-
imate the Lasso-based networks by first constructing a
mildly sparse network without cross-validation (for exam-
ple using the method described in [33]), and then to
refine this network by running the (adaptive) Lasso with
cross-validation.

Discussion
In this paper, we proposed and compared different meth-
ods to estimate partial correlation coefficients based on
regularized regression techniques with applications to
genetic networks. It is remarkable that while we focus on
the framework of graphical Gaussian models (and do not
consider alternative frameworks as e.g. Bayesian net-
works), the investigated methods nevertheless show clear
differences. Hence, the employed regularization tech-
nique for graphical Gaussian models has a considerable
effect.

In a simulation study, we assessed the performance of the
considered methods in terms of estimation accuracy
(MSE) and in terms of reverse engineering of the true
underlying networked topology. As a result, the investi-
gated non-sparse methods (PLS, ridge regression, and the
approach based on shrinkage covariance estimation that

Proportion of selected edgesFigure 11
Proportion of selected edges.
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served as a reference method) were found to perform sim-
ilarly. It is to be noted that these methods have fdr-based
significance testing in common. They are rather conserva-
tive with respect to the inclusion of edges when used with
the standard fdr threshold 0.2. The Lasso tends to produce
too "dense" structures, while the adaptive Lasso compen-
sates for that by selecting edges in a two-step approach,
therefore leading to sparser graphs. The latter two-stage
approach is able to select relevant edges, even for small
samples, while at the same time preventing to be too
dense. For denser networks, the performances of the five
methods are very similar. On real world data, the behavior
of the non-sparse methods is again similar, except that
PLS is less conservative than ridge regression and the
approach using a shrinkage covariance estimator. A
remarkable difference with respect to the different data
sets is the behavior of the Lasso and the adaptive Lasso on
the t.cell data sets. In contrast to the four other data sets,

the t.cell data include replications, thus violating the
assumption of independent samples. Consequently, the
(adaptive) Lasso does not handle the underlying data
structure correctly, while empirical null modeling seems
to account for the decreased "effective" sample size in an
implicit way.

Note that all investigated methods require the specifica-
tion of tuning parameters that need to be optimized based
on the available data. The choice of the model selection
criterion itself strongly influences the results of the meth-
ods [50], especially for small n. As an example, the model
selection procedure introduces a substantial amount of
variation for the Lasso and the adaptive Lasso. In the real
world study, we estimate the two graphs on two different
random cross-validation splits, which leads to an overlap
of only 88.4% on the west data, although the adaptive
Lasso graph is defined as a subgraph of the Lasso graph.

Proportion of selected edges without PLSFigure 12
Proportion of selected edges without PLS.
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Hence, tuning parameters should be given much attention
in future research when new methods are developed.
Moreover, setting the parameters to fixed values without
proper selection procedure (such as cross-validation) and
just because they "yield nice results" is an incorrect and
biased strategy which may favor the proposed novel
method. Furthermore, from a computational point of
view, a major strength of the shrinkage approach is that
the optimal amount of regularization can be estimated
from the data using an analytic formula, thus making
time-consuming cross-validation procedures unnecessary.

We want to emphasize that there are interesting alterna-
tives for the detection of significant edges that do not
depend on sparsity penalties or testing based on local false
discovery rates. For instance, Reverter & Chan [51] pro-
pose information theoretic measures for the reconstruc-
tion of gene co-expression networks. The comparative
performance of these methods and their connections to
the approaches investigated above may be explored in
future research.

Finally, the methods discussed in this paper can poten-
tially be used for detecting causal interactions [52,53]. For
instance, in the presence of longitudinal data, Arnold.

Table 3: Overlap of the estimated graphs

data set pls ridge lasso adalasso shrink

ecoli1 pls 1.000 0.096 0.156 0.127 0.045
ridge 0.686 1.000 0.600 0.457 0.390
lasso 0.496 0.267 1.000 0.581 0.165
adalasso 0.597 0.302 0.862 1.000 0.189
shrink 0.405 0.488 0.464 0.357 1.000
% selected 0.162 0.018 0.052 0.036 0.017

ecoli2 pls 1.000 0.593 0.263 0.156 0.305
ridge 0.651 1.000 0.309 0.197 0.388
lasso 0.297 0.318 1.000 0.520 0.311
adalasso 0.310 0.357 0.917 1.000 0.381
shrink 0.408 0.472 0.368 0.256 1.000
% selected 0.032 0.030 0.029 0.020 0.024

ara pls 1.000 0.064 0.025 0.017 0.035
ridge 0.590 1.000 0.151 0.108 0.377
lasso 0.535 0.352 1.000 0.579 0.361
adalasso 0.556 0.386 0.887 1.000 0.409
shrink 0.335 0.392 0.161 0.119 1.000
% selected 0.126 0.018 0.006 0.004 0.014

t.cell10 pls 1.000 0.314 0.993 0.985 0.131
ridge 0.956 1.000 1.000 1.000 0.422
lasso 0.141 0.047 1.000 0.795 0.020
adalasso 0.170 0.057 0.965 1.000 0.024
shrink 0.947 1.000 1.000 1.000 1.000
% selected 0.109 0.027 0.575 0.417 0.011

t.cell34 pls 1.000 0.053 0.762 0.670 0.031
ridge 1.000 1.000 1.000 1.000 0.583
lasso 0.345 0.024 1.000 0.643 0.014
adalasso 0.433 0.034 0.917 1.000 0.020
shrink 1.000 1.000 1.000 1.000 1.000
% selected 0.134 0.005 0.284 0.221 0.004

west pls 1.000 0.089 0.017 0.008 0.041
ridge 0.667 1.000 0.118 0.062 0.236
lasso 0.643 0.611 1.000 0.407 0.404
adalasso 0.673 0.694 0.884 1.000 0.458
shrink 0.632 0.488 0.161 0.084 1.000
% selected 0.086 0.011 0.002 0.001 0.006
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et.al. [53] propose to identify the direction of interactions
between variables by investigating partial correlations
between time-shifted copies of the variables. Amongst
others, they propose to estimate these partial correlations
using Lasso regression, but other regression methods
might be promising alternatives.

Conclusion
We briefly summarize our findings. A summary of our
findings can be found in Table 6.

Performance
In the simulation, the investigated non-sparse regression
methods, i.e. Ridge Regression and Partial Least Squares,
exhibit rather conservative behavior when combined with
(local) false discovery rate multiple testing in order to
decide whether or not an edge is present in the network.
For networks with higher densities, the difference in per-

formance of the methods decreases. Both sparse and non-
sparse methods can deal with cluster topologies in the net-
work.

For PLS, we observe both a high MSE in the simulations
and a high percentage of selected edges in some of the real
data. In our opinion, this is an indication that PLS itself
might not be too well-suited for the reconstruction of net-
works. The reasons are that PLS is not sparse by design,
and that it does not shrink arbitrarily close to zero. There-
fore, we suggest to incorporate sparse versions of PLS
instead in future research.

On six real data sets, we also clearly distinguish the results
obtained using the non-sparse methods and those
obtained using the sparse methods where specification of
the regularization parameter automatically means model
selection. For data that violate the assumption of uncorre-

Connectivity: Proportion of connected genesFigure 13
Connectivity: Proportion of connected genes.
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lated observations (due to replications), the Lasso and the
adaptive Lasso yield very complex structures, indicating
that they might not be suited under these conditions.

Stability
We compared the stability of the methods under two
aspects. All regression-based methods are less stable than
the shrinkage approach over different subsamples of the

data, and within the regression-based approaches, there is
no clear difference between sparse and non-sparse meth-
ods. However, the two sparse regression methods seem to
be unstable with respect to violations of the i.i.d assump-
tion of the samples.

Connectivity: Proportion of connected genes without PLSFigure 14
Connectivity: Proportion of connected genes without PLS.
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Table 4: Percentage of positive correlations

ecoli1 ecoli2 ara t.cell10 t.cell34 west

lasso 61.2% 79.6% 63.6% 59.0% 65.7% 77.2%
adalasso 61.9% 81.9% 65.3% 61.0% 67.2% 78.2%
pls 57.5% 77.8% 54.7% 60.0% 66.1% 56.1%
ridge 58.9% 75.0% 55.6% 62.2% 77.8% 71.1%
shrinkage 50.0% 70.4% 55.3% 73.7% 71.4% 72.0%
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Runtime
The computational load for the Lasso and in particular for
the adaptive Lasso is considerable. For very high-dimen-
sional data, this can constitute a severe limitation. The
runtime might be decreased by applying parallel compu-
tation techniques or by preselecting a coarse network
topology that does not rely on cross-validation. While PLS
and Ridge Regression are slower than shrinkage, both of
them are fairly fast to compute, as they allow a kernel rep-
resentation, i.e. most of the computation scales in the
number of samples and not in the number of variables.

Available Software
The regularized estimation of partial correlations and the
construction of gene association networks with (adaptive)
Lasso, ridge regression and PLS are implemented in the R
package parcor[37] which is available from the CRAN

repository http://cran.r-project.org/. The package relies
heavily on the lars package [40]. For assigning statistical
significane to the edges in the network, we use the fdr
tool package [54]. We also provide an executable sheet
for the simulations (additional file 13) and the real-world
data (additional file 14).

Authors' contributions
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Table 5: Stability of the Methods

data set measure pls ridge lasso adalasso shrink

ecoli1 κ 0.630 0.510 0.550 0.550 0.593
ranking of κ 1 5 3.5 3.5 2

ecoli2 κ 0.242 0.280 0.469 0.450 0.486
ranking of κ 5 4 2 3 1

t.cell10 κ 0.656 0.797 0.670 0.674 0.742
ranking of κ 5 1 4 3 2

t.cell34 κ 0.655 0.555 0.625 0.619 0.702
ranking of κ 2 5 3 4 1

mean ranking of κ 3.25 3.75 3.125 3.375 1.5

Table 6: Comparison of the investigated methods

lasso adaptive lasso PLS Ridge Regression shrinkage

properties
testing needed no no yes yes yes
run-time high very high medium medium low

simulation results
density very dense between lasso & non-sparse methods very sparse very sparse very sparse
mean-squared-error low low high medium medium

real-world-study
density too dense on t.cell too dense on t.cell very dense - -
repeated measurements too dense too dense dense - -
stability under resampling medium medium medium medium good
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