The List of Contents and Author Index for Volume 21, 1984, are inserted loose in this issue.

Eingegangen

0 3. JULI 1985
Univ.-Bibl. München
Klin. Großhadern

Bitte hier abzeichnen
wenn das Heft benutzt wird
IDENTIFICATION OF MURINE H-2Db HISTOCOMPATIBILITY ANTIGENS IN CELLS TRANSFECTED WITH CLONED H-2 GENES

WILHELM SCHMIDT,* JANEZ FERLUGA,† HILLIARD FESTENSTEIN‡ and ELISABETH WEISS‡

*Institut für Med. Virologie, Justus-Liebig-Universität Giessen, Frankfurter Str. 107, D-6300 Giessen, F.R.G.; †Department of Immunology, The London Hospital Medical School, Turner Street, London E1 2AD, U.K.; and ‡Institut für Immunologie der Universität, Schillerstr. 42, D-8000 München 2, F.R.G.

(First received 8 February 1984; accepted in revised form 8 May 1985)

Abstract—Clones of mouse L-cells transformed with 21 cosmids containing 15 major histocompatibility complex class I genes of C57BL10 (H-2b) sperm cell DNA were analyzed for the expression of their transfected H-2 and Qa/Tla genes. Three cosmids contained a single gene, mapping to the H-2D region. This gene encodes the H-2Db alloantigen: mouse L-cells transfected with cosmids containing this gene reacted with monoclonal antibodies and alloantisera specific for the H-2Db antigen and expressed a 46-kd H-2 heavy chain associated with \(\beta\text{-microglobulin}\) in their cell membranes. Furthermore, these transfected cells were stimulators of, and targets for, anti-H-2Db cytotoxic T-lymphocytes. Eighteen cosmids contained 14 different genes mapping to the Qa and Tla regions. L-cells transfected with these genes did not express class I genes reacting with alloantisera or monoclonal antibodies against Qa2, Qa4 or TL differentiation antigens. In particular, the Qa2,3 gene of C57BL10 was not identified.

INTRODUCTION

The MHC§ plays a central role in the regulation of immune responses in mammals. The class I antigens, the polymorphic transplantation antigens initially defined by allograft rejection, and expressed on most somatic cells, are involved in the T-cell recognition of cells altered by viral infection or neoplastic transformation (Zinkernagel and Doherty, 1980).

Both the H-2 class I antigens and the related Qa- and TL-antigens are integral membrane glycoproteins of 39,000–45,000 mol. wt and non-covalently associated with \(\beta\text{-microglobulin}\) (Nathenson et al., 1981; Vitetta et al., 1975; Michaelson et al., 1981).

Genomic DNA clones from BALB/c and C57BL10 DNA libraries containing MHC class I genes were isolated by recombinant DNA technology (Steinmetz et al., 1982; Mellor et al., 1982). Transformed cells with cloned H-2 genes which express alloantigenic H-2 molecules on their surface have been used for further immunogenetic analysis of the role of MHC antigens in the immune response (Goodenow et al., 1982; Mellor et al., 1982; Margulies et al., 1983).

In this paper we describe the expression and functional properties of a class I gene from the H-2D region of C57BL10 mice transfected into L-cells. We show that this gene encodes the H-2Db transplantation antigen.
were obtained from G. Hämerling, Heidelberg, F. R. G.; monoclonal antibodies 15-5-5, 20-8-6, 28-8-4 and 28-14-8 were from D. Sachs, Bethesda, MD; D3-262 ascites (anti-Qa2) was from L. Flaherty, New York; anti-TLm4 was from E. A. Boyse, New York; and B16-146 ascites (anti-Qa4) was obtained from Camon Ltd, Wiesbaden, F. R. G. The specificities of these reagents have been described previously (Lemke et al., 1979; Lynes et al., 1982; Ozato et al., 1982; Hämerling, unpublished; Shen et al., 1982).

Immunoprecipitation and SDS gel electrophoresis

Cell surface proteins were radiolabelled with 125I by the glucose oxidase–lactoperoxidase technique (Hubbard and Colin, 1972) and lysed with 0.5% NP40 in Tris–HCl buffer, pH 7.4, containing 0.15 M NaCl, 1 mM MgCl$_2$ and 1000 KIE/ml of soy bean trypsin inhibitor. Aliquots of the cell lysates were immunoprecipitated with monoclonal antibodies and alloantisera using *Staphylococcus aureus* and separated on 12.5% SDS–polyacrylamide gels as described previously (Schmidt et al., 1981).

Cell-mediated cytotoxicity

Responder mice were injected once or repeatedly at 14-day intervals with 10^8 B10.A(4R) lymphocytes or $3 	imes 10^7$ LB1.1 cells. Fourteen days after the last immunisation the spleen cells ($2 	imes 10^7$) were re-stimulated in vitro with 10^6 B10.A(4R) lymphocytes irradiated with (2000 rad) or $2 	imes 10^7$ LB1.1 cells (4000 rad) for 5 days. Cytotoxic activity was assayed in a 4-hr 51Cr-release assay using L-cell transformants and PHA-stimulated lymphocytes as targets.

RESULTS

Cell surface expression of transfected H-2Db gene

A cluster of cosmids containing a single H-2 gene was isolated from a DNA library from C57BL10 mouse spleen cells and mapped into the H-2D region of the MHC (Fig. 1) (Flavell et al., 1983). Mouse L-cells were transformed with cosmids B1.1, B1.1.1, B1.28 and B3.2G by calcium phosphate mediated DNA transfer and selected for stable transformants in HAT medium or in the presence of the G418 antibiotic (Mellor et al., 1982). Transformants LB1.1, LB1.1.1, LB1.28 and LB3.2G obtained with these cosmids respectively reacted in a radiobinding assay with monoclonal antibody against H-2Db antigens. None of the transformants reacted with monoclonal antibody against H-2Kb antigens (not shown).

The transformants were further analysed in a radiobinding assay using a panel of monoclonal antibodies, reacting with different epitopes of the H-2Db antigens and with alloantisera directed against private and public H-2b specificities. Titrations with monoclonal antibodies directed against different sites of the H-2Db molecule were performed and established that all epitopes present in H-2Db alloantigens of B10 lymphocytes (Hämmerling, unpublished results) are present in transformants LB1.1 and LB3.2G. Radiobinding data with a panel of different anti-H-2b monoclonal antibodies are summarized in Table 1. All antibodies were used at saturating amounts. Ltk$^-$ cells, LH8 cells transfected with the H-2Kb gene (not shown) and LB1.1.1 cells transfected with a Qa-region gene were negative with the anti-H-2Db reagents.

In addition, the transformants reacted with alloantisera D2 (anti-H-2Db private specificity) and D28 (anti-H-2Db public specificity) in radiobinding (Table 1) and complement-dependent cytotoxic assay (Table 2). Reactions of the antisera was specific, because pre-absorption with spleen cells from B10 (H-2b) mice blocked binding and cytotoxicity whereas absorption with B10.A (H-2a, Qa2,3-positive) did not. There was no reaction of LB1.1 cells with monoclonal antibodies specific for Qa2 and Qa4 (Table 2).

All transformants continued to express H-2Kb and H-2Db antigens.

Expression of class I genes from the Qa/Tla region

Molecular heterogeneity of the H-2D region products has been reported by Demant et al. (1981). Since the H-2D-region cosmids from C57BL10 DNA only contained a single gene, we investigated L-cells transfected with cosmids carrying genes from the Qa and Tla regions. We attempted to identify the Qa2,3 from C57BL10 DNA by radiobinding to find additional genes reacting with antisera and monoclonal antibodies directed against the H-2Db antigen.

Table 2 shows the reactivity of LB1.11 cells carrying the Q8 gene from the Qa region. The reaction of this cell line is representative of the other transformants from this cluster. The Qa-specific monoclonal antibodies D3-262 (Qa2) and B16-146 (Qa4) did not react with the transformants.

Table 3 summarizes the reactivity of L-cells transfected with 18 cosmids carrying 14 different class I genes from the Qa and Tla regions (Weiss et al., 1984). None of the cell lines reacted with monoclonal anti-Qa2 and anti-Qa4 antibodies, which were lytic.

![Fig. 1. Physical DNA map of H-2Db gene deduced from restriction enzyme analysis of cosmids containing the gene. K = restriction site for KpnI. Orientation of the gene (5′ to 3′) is indicated by the arrow.](image-url)
Table I. Cell surface expression of H-2Db antigenic sites on L-cells (H-2k) transfected with H-2Db genes

<table>
<thead>
<tr>
<th>Antibody*</th>
<th>H-2 specificity†</th>
<th>Transfected H-2 gene</th>
<th>¹²⁵I-protein A binding (Acpm/10⁶ cells)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ltk</td>
<td>LB1.1</td>
</tr>
<tr>
<td>100-5</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-5-5</td>
<td>D</td>
<td>143,689 ± 5724</td>
<td>113,779 ± 2723</td>
</tr>
<tr>
<td>20-8-4</td>
<td>K</td>
<td>45,712 ± 220</td>
<td>46,718 ± 482</td>
</tr>
<tr>
<td>28-8-6</td>
<td>Kα, Dβ</td>
<td>237 ± 98</td>
<td>27,281 ± 1898</td>
</tr>
<tr>
<td>28-14-8</td>
<td>Dβ</td>
<td>591 ± 185</td>
<td>105,133 ± 2126</td>
</tr>
<tr>
<td>141-30</td>
<td>Dβ site I</td>
<td>1502 ± 405</td>
<td>117,080 ± 606</td>
</tr>
<tr>
<td>166-32</td>
<td>Dβ site I</td>
<td>2128 ± 781</td>
<td>103,418 ± 3858</td>
</tr>
<tr>
<td>172-93</td>
<td>Dβ site II</td>
<td>1716 ± 328</td>
<td>66,661 ± 4778</td>
</tr>
<tr>
<td>B22-249</td>
<td>Dβ site II</td>
<td>1146 ± 113</td>
<td>101,355 ± 4123</td>
</tr>
<tr>
<td>141-30</td>
<td>K</td>
<td>1584 ± 61</td>
<td>1214 ± 347</td>
</tr>
<tr>
<td>166-32</td>
<td>Dβ</td>
<td>1323 ± 441</td>
<td>45,138 ± 3753</td>
</tr>
<tr>
<td>172-93</td>
<td>Dβ site II</td>
<td>ND</td>
<td>37,865 ± 3425</td>
</tr>
<tr>
<td>B22-249</td>
<td>Dβ site II</td>
<td>ND</td>
<td>3480 ± 711</td>
</tr>
<tr>
<td>141-30</td>
<td>Public</td>
<td>430 ± 143</td>
<td>37,196 ± 3818</td>
</tr>
</tbody>
</table>

*Monoclonal antibodies from either hybridoma culture supernatants or ascites were used at saturating concns; for derivation of reagents see Materials and Methods.
†See Lemke et al. (1979), Ozato and Sachs (1981), and Hämmerling (unpublished results).
‡Normal mouse serum controls (medium: 1008, range: 995–1248) have been subtracted.
§A cpm/10⁶ cells is given for B10 binding.
for B10 lymphocytes, as expected, or with anti-TL monoclonal antibody, which was negative for B10 (Tla\(^b\)) but positive for B10.A (Tla\(^a\)) thymocytes (not shown). Antiserum D28.b and another anti-H-2.28 serum (ASA30), both of which contained additional anti-Qa2,3 antibodies (Flaherty et al., 1978; Demant and Roos, 1982), also failed to react with L-cells transfected with class I genes from the Qa region. However, all L-cells transfected with Qa-region genes showed a weak reaction with D2 antiserum, which, due to the strain combination used, should not contain anti-Qa2 antibody. This could indicate either a cross-reactivity of the anti-D\(^b\) serum with unidentified class I genes from the Qa region or the presence of additional Qa-reactive antibodies in the serum.

Demonstration of H-2D\(^b\) molecules on the cell surface

L-cells transformed with cosmids B1.1 and B3.2G were cell surface labelled with \(^{125}\)I, lysed with NP40 and the cell extracts immunoprecipitated with either alloantisera or monoclonal antibodies directed against the H-2D\(^b\) antigen. Immunoprecipitates were analysed by SDS-polyacrylamide gel electrophoresis and the results with transformant LB1.1 are shown in Fig. 2 (identical results were obtained with B3.2G-transformed L-cells).

The H-2D\(^b\)-specific alloantisera and the monoclonal antibodies precipitated cell surface polypeptides of mol. wts 11,000 and 46,000, \(\beta_2\)m and H-2 heavy chain respectively. The latter comigrated with the H-2D\(^b\) heavy chain precipitated from EL4 lysates (H-2\(^b\)) which were run in parallel on the same gel (not shown). Preabsorption of the anti-H-2D\(^b\) alloantisera with B10 prevented precipitation of the H-2D\(^b\) heavy chain and the \(\beta_2\)m molecule from LB1.1. Absorption of the anti-H-2D\(^b\) sera with AKR lymphocytes, to remove antiviral antibodies, or with B10.A lymphocytes, to remove Qa2,3-reactive antibodies, did not inhibit the precipitation (not shown). No polypeptides were precipitated from LB1.1 cells by anti-H-2K\(^b\)-specific monoclonal antibodies or antisera. Anti-H-2D\(^b\) antibodies and antisera failed to precipitate any polypeptides from untransformed Ltk cells or from L-cells transformed with cosmids containing H-2K\(^b\) (LH8) or Qa genes (LB1.11) (not shown).

Cytotoxic T-cell killing

To test whether the product of the transfected H-2D\(^b\) gene in LB1.1 cells is recognized as a target for CTL, Table 3 shows the reactivity of L-cell transfected with cosmids containing Qa/Tla genes. The table indicates that the anti-H-2D\(^b\)-specific alloantisera and the monoclonal antibodies precipitated cell surface polypeptides of mol. wts 11,000 and 46,000, \(\beta_2\)m and H-2 heavy chain respectively. The latter comigrated with the H-2D\(^b\) heavy chain precipitated from EL4 lysates (H-2\(^b\)) which were run in parallel on the same gel (not shown). Preabsorption of the anti-H-2D\(^b\) alloantisera with B10 prevented precipitation of the H-2D\(^b\) heavy chain and the \(\beta_2\)m molecule from LB1.1. Absorption of the anti-H-2D\(^b\) sera with AKR lymphocytes, to remove antiviral antibodies, or with B10.A lymphocytes, to remove Qa2,3-reactive antibodies, did not inhibit the precipitation (not shown). No polypeptides were precipitated from LB1.1 cells by anti-H-2K\(^b\)-specific monoclonal antibodies or antisera. Anti-H-2D\(^b\) antibodies and antisera failed to precipitate any polypeptides from untransformed Ltk cells or from L-cells transformed with cosmids containing H-2K\(^b\) (LH8) or Qa genes (LB1.11) (not shown).
Identification of murine H-2D^b histocompatibility antigens

Fig. 2. Immunoprecipitation of radiolabelled cell surface antigens. NP40 extracts of cell surface iodinated LB1.1 and control Ltk⁻ cells were immunoprecipitated with normal mouse serum (1), anti-H-2K^k monoclonal antibodies (m) (100-5) (2), anti-H-2K^b m (20-8-4) (3), anti-H-2D^b m (28-14-8) (4), anti-H-2K^b serum (5), anti-H-2D^b serum, either unabsorbed (6) or absorbed with B10 lymphocytes (7). Both anti-H-2D^b monoclonal antibodies and antiserum precipitated a 46,000 mol. wt heavy chain and the 11,000 mol. wt β, m from LB1.1 cells.

structure by cytotoxic T-cells, we generated CTL directed against H-2K^b and H-2D^b antigens and tested their ability to kill various target cells (Table 4). Whereas the anti-H-2K^b CTL did not lyse LB1.1 cells, but lysed LH8 cells (containing the H-2K^b gene) (not shown), the anti-H-2D^b CTL specifically lysed LB1.1 cells, but not LH8, LB3.5 (transformed by a Qa gene) or untransformed L-cells. All L-cell lines were lysed by anti-H-2K^k CTL (not shown). These data suggest that the H-2D-region gene transfected into

<table>
<thead>
<tr>
<th>Responder<sup>a</sup></th>
<th>Stimulator</th>
<th>Target<sup>b</sup></th>
<th>30:1</th>
<th>10:1</th>
<th>3:1</th>
<th>1:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10.BR</td>
<td>B10.A(4R)</td>
<td>B10 (D<sup>b</sup>)</td>
<td>40.1</td>
<td>26.6</td>
<td>8.6</td>
<td>4.4</td>
</tr>
<tr>
<td>K<sup>1</sup> D<sup>4</sup></td>
<td>K<sup>1</sup> D<sup>b</sup></td>
<td>B10.A(4R) (D<sup>b</sup>)</td>
<td>43.4</td>
<td>25.7</td>
<td>12.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LH8 (K<sup>b</sup>)</td>
<td>4.8</td>
<td>1.7</td>
<td>-1.1</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LB1.1 (D<sup>b</sup>)</td>
<td>36.5</td>
<td>20.1</td>
<td>9.4</td>
<td>4.3</td>
</tr>
<tr>
<td>(B10.BR x C3H)F<sub>1</sub></td>
<td>B10.A(4R)</td>
<td>LB1.1.1 (D<sup>b</sup>)</td>
<td>81.1</td>
<td>76.0</td>
<td>64.8</td>
<td>37.3</td>
</tr>
<tr>
<td>K<sup>1</sup> D<sup>4</sup></td>
<td>K<sup>1</sup> D<sup>b</sup></td>
<td>K<sup>1</sup> (D<sup>b</sup>)</td>
<td>1.5</td>
<td>2.3</td>
<td>2.2</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LB3.5 (Qa)</td>
<td>6.1</td>
<td>0.8</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ltk <sup>+</sup></td>
<td>5.0</td>
<td>2.6</td>
<td>2.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B10.A(4R) (D<sup>b</sup>)</td>
<td>72.7</td>
<td>68.2</td>
<td>53.8</td>
<td>30.1</td>
</tr>
</tbody>
</table>

^aB10.BR mice injected intraperitoneally once, and (B10.BR x C3H)F₁ mice, injected twice with 10⁶ spleen cells from B10.A(4R) mice 14 days apart. After a further 14 days, their spleen cells (2 x 10⁷) were cultured for 5 days with 10⁷ B10.A(4R) lymphocytes irradiated with 2000 R.

^bTarget cells from the indicated mouse strains were transfected with PHA for 3 days. LB1.1 and LB1.1.1 cells transfected with D^b, LH8 cells with K^b, and LB3.5 with Qa2, 3 gene, and Ltk ⁺ control fibroblasts with thymidine-kinase gene only.

^cSpontaneous ³Cr release in the 4-hr ³Cr-release assays ranged from 13 to 30%.
and expressed by the LBl.l cells is recognized as target antigen by H.2Db-specific CTL.

We then tested whether the H-2Db gene product on LBl.l cells could stimulate anti-H-2Db CTL precursors. We immunized female C3H mice 4 times by i.p. injection of LBl.l cells and spleen cells were restimulated in vitro with irradiated LBl.l cells. The resultant effector cells lysed B10, and B10.A(4R) target cells (both H-2Db), but not B10.A(5R) targets (H-2K\textalpha) (Table 5). These data show that the H-2Db gene transfected into LBl.l cells induced H-2Db-specific CTL.

DISCUSSION

A series of cosmids containing 15 MHC class I genes mapping to the D-, Qa and Tla regions of the H-2a genotype have been isolated and transfected into L-cells (Weiss et al., 1984). Only a single gene mapped to the H-2D region. The identity of this gene product with the H-2Db gene product on B10 cells was shown by several criteria. (1) L-cells transformed with cosmids containing the gene express a cell surface antigen which carries all antigenic determinants characteristic of the H-2Db molecule. All epitopes defined by a set of monoclonal antibodies and alloantisera are encoded by the cloned H-2Db gene. (2) The antigenic determinants are represented on a glycopeptide of 46,000 mol. wt, which can be precipitated with monoclonal antibodies in association with \beta\textsubscript{2}m, the invariant polypeptide of all known MHC class I antigens. (3) The H-2Db molecules expressed in transformed L-cells can serve as targets for complement-dependent lysis by alloantisera and for allogeneic H-2Db-specific CTL. (4) Transformed L-cells can specifically induce proliferation of H-2Db-specific CTL.

Finally, Townsend et al. (1983) have shown that the gene products of one of the H-2Db transfectants (LBl.1) acted efficiently as a restriction element for cloned influenza virus specific H-2Dp-restricted CTL lines after influenza virus infection of the transformed cells. We have analyzed 14 class I H-2a genes which mapped to the Qa or the Tla region (Weiss et al., 1984). Although B10 mice are Qa2,3-positive, we failed to identify the gene(s) coding for the Qa2,3 molecules. These molecules have a limited tissue distribution, and although fibroblasts do not normally express them, the Qa2,3-gene product from BALB/c mice was identified after transfer of this gene into L-cells (Goodenow et al., 1982). We were nevertheless able to identify a functional gene in the Qa2,3 region. L-cells transfected with this gene did not react with anti-Qa2 or anti-Qa4 monoclonal antibodies, but could be used to raise antisera which specifically reacted with the transfected cells and with lymphocytes from certain B10 congenic mice (Alonzo et al., in preparation).

Restriction mapping of the D-end cosmids failed to reveal an H-2L gene (Weiss et al., 1984), nor could we find an M-molecule on L-cells transfected with D-, Qa or Tla cosmids. This is in agreement with immunogenetic studies (Demant et al., 1981) and in contrast to the findings in BALB/c mice, in which 2 additional MHC class I genes have been identified in the H-2D region, 1 of which is the H-2Ld gene (Goodenow et al., 1982; Winoto et al., 1983). In addition, the genetic basis for M and R molecules has not yet been established. Although positive reactions of H-2Db transfectants were obtained with anti-M and anti-R antibody (Demant, personal communication), it is not known whether the reactions are directed against the H-2Db or the H-2Db molecule. In addition, unexpected reactivities with Qa-region genes were obtained with anti-H-2Db antisera (Tables 2 and 3).

Furthermore, it is not known whether, due to alternative splicing of the 5'-moiety of certain H-2D transcripts (Transy et al., 1984), there are different-size mRNA transcribed which could generate distinct but antigenically related polypeptides. Further experiments to clarify this point are in progress. In contrast to the D-region, the genetic organisation of the H-2K region of C57BL10 and BALB/c as well as AKR/J mice is similar (Mellor et al., 1983; Townsend et al., 1984a).

The transected H-2Db gene is biologically active and may thus be used to further elucidate the biological role and the structure-function relationship of this molecule (Zinkernagel et al., 1983). Already several cloned MHC class I genes have been shown to act as restriction elements for specific CTL after transfection into appropriate recipient cells (Örn et al., 1982; Mellor et al., 1982; Levy et al., 1983; Margulies et al., 1983; Townsend et al., 1983).

Table 5. Stimulation of anti-H-2Db cytotoxic lymphocytes by LBl.1 cells

<table>
<thead>
<tr>
<th>Target cells</th>
<th>H-2 specificity</th>
<th>50:1</th>
<th>16:1</th>
<th>5:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3H</td>
<td>Ka Da</td>
<td>13 ± 1</td>
<td>7 ± 2</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>B10</td>
<td>Kb Db</td>
<td>50 ± 2</td>
<td>43 ± 4</td>
<td>28 ± 3</td>
</tr>
<tr>
<td>B10.A(3R)</td>
<td>Kb Db</td>
<td>21 ± 1</td>
<td>29 ± 11</td>
<td>6 ± 5</td>
</tr>
<tr>
<td>B10.A(4R)</td>
<td>Kb Db</td>
<td>62 ± 5</td>
<td>50 ± 6</td>
<td>34 ± 6</td>
</tr>
</tbody>
</table>

C3H mice were immunized with 3 × 105 LBl.1 cells 4 times. Spleen cells were restimulated in vitro cultures with 4000-R irradiated LBl.1 cells at a ratio of 10:1. Four-hour 51Cr-release assay. Spontaneous release: 14-33%.
Furthermore, the construction of hybrid H-2 genes should help not only to map serological determinants (Evans et al., 1982) but also to define functional domains of the H-2 molecule, such as those involved in interaction with foreign antigens or CTL recognition (Arnold et al., 1984b; Ozato et al., 1983).

The transfer of cloned H-2 genes into tumour cells should help to understand the role of these molecules in tumour growth and metastasis (Hui et al., 1984).

Acknowledgements—We are grateful to Hans Göbler for technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft and the Cancer Research Campaign of Great Britain.

REFERENCES

Zinkernagel R. M. and Doherty P. C. (1979) MHC-