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The preference scaling of a group of subjects may not be homogeneous, but
different groups of subjects with certain characteristics may show different
preference scalings, each of which can be derived from paired comparisons
by means of the Bradley-Terry model. Usually, either different models are fit
in predefined subsets of the sample or the effects of subject covariates are expli-
citly specified in a parametric model. In both cases, categorical covariates can
be employed directly to distinguish between the different groups, while numeric
covariates are typically discretized prior to modeling. Here, a semiparametric
approach for recursive partitioning of Bradley-Terry models is introduced as a
means for identifying groups of subjects with homogeneous preference scalings
in a data-driven way. In this approach, the covariates that—in main effects or
interactions—distinguish between groups of subjects with different preference
orderings, are detected automatically from the set of candidate covariates. One
main advantage of this approach is that sensible partitions in numeric covari-
ates are also detected automatically.

Keywords: Bradley-Terry-Luce model; subject covariates; recursive partitioning

1. Introduction

The choice model suggested by Bradley and Terry (1952) is the most widely
used means for deriving a latent preference scale from paired comparison data

The authors would like to thank the participants of the “Psychometric Computing 2009 workshop
for feedback and fruitful discussions—especially Regina Dittrich and Reinhold Hatzinger for sharing
both their code and their expertise for paired comparison models.
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when no natural measuring scale is available. In a measurement-theoretic
approach, Luce (1959) showed that the model can be derived from a simple
axiom for the choice probabilities. Therefore, the model is referred to either as
the Bradley-Terry-Luce (BTL) model or the Bradley-Terry (BT) model. (In the
following we will use the latter abbreviation.)

The BT model has been applied in a variety of fields in psychology and related
disciplines. Early applications and developments are summarized in an exten-
sive bibliography compiled by Davidson and Farquhar (1976) containing more
than 350 references. More recent applications include, for example, surveys
on health care, educational, and political choice (Dittrich, Francis, Hatzinger,
& Katzenbeisser, 2006; Dittrich, Hatzinger, & Katzenbeisser, 1998; McGuire
& Davison, 1991) as well as psychophysical studies on the sensory evaluation
of pain, sound, and taste (Choisel & Wickelmaier, 2007; Matthews & Morris,
1995; Oberfeld, Hecht, Allendorf, & Wickelmaier, 2009).

In many applications it is reasonable to assume that the preference scaling of a
group of subjects not only depends on characteristics of the stimuli to be judged
by the subjects but also on characteristics of the subjects themselves. It is com-
mon practice to fit separate BT models, for example, for younger and older par-
ticipants (Kissler & Bauml, 2000; McGuire & Davison, 1991). In more advanced
approaches (such as Bockenholt, 2001a, 2001b; Dittrich et al., 1998), the covari-
ates are explicitly included in the model. An overview over seminal and
advanced methods on preference scaling in the field of psychology is given by
Bockenholt (2006). An overview of methods applied in the field of market seg-
mentation, including mixture approaches for paired comparisons, is given by
Wedel and Kamakura (2000).

Here, we suggest a new approach for incorporating subject covariates in BT
models: The approach of model-based recursive partitioning, that is well estab-
lished in the field of statistics and machine learning, can be applied intuitively to
identifying groups of subjects that differ in their preference scalings.

The approach of model-based recursive partitioning in general, as well as the
framework for treating the BT model with this approach, is introduced in the fol-
lowing section. Two application examples are presented to illustrate the usage
and benefits of this new technique for incorporating subject covariates in BT
models. The main differences between model-based recursive partitioning and
previous approaches for incorporating subject covariates in choice models are
reviewed in the discussion.

2. Method

Model-based partitioning employs the same principle as the more widely
known classification and regression trees (CART; Breiman, Friedman, Olshen,
& Stone, 1984): The covariate space is recursively partitioned to distinguish
between groups of subjects with different characteristics. In the following, we will
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FIGURE 1. Exemplary regression tree indicating that the average income varies in
groups defined by a combination of the covariates age and gender (artificial data).

briefly outline the rationale of recursive partitioning in general, before we provide
the framework and technical details for model-based partitioning of the BT model.

2.1. A Brief Introduction to Recursive Partitioning

Following the principle of recursive partitioning, CART produce a tree-
structured partition of the covariate space, where, starting with the entire sample,
subjects are divided into groups according to their values of selected covariates.
The splitting rules represented by the tree are chosen such that the subjects within
the resulting groups have similar values of the response variable, whereas their
response values differ from the subjects in the other groups.

The illustrative example in Figure 1 shows a regression tree as applied to an
artificial data set with response income and covariates gender and age. The tree
detects three groups with different income levels: Subjects under the age of 30 (in
the leftmost Node 2) have a low average income, male subjects over 30 (in the
middle Node 4) have a high average income, and females over 30 (in the right-
most Node 5) have a medium average income. (Note that the node numbers are
only labels assigned recursively from left to right starting from the top node.)

In comparison to simple CART, model-based partitioning does not aim at find-
ing groups of subjects with different values of the response variable but with
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FIGURE 2. Partitioned paired comparison model for the attractiveness data, indicating
that judged attractiveness varies in groups defined by combinations of the covariates age,
q2, and gender (B: Barbara, Ann: Anni, H: Hana, F: Fiona, M: Mandy, and Anj: Anja).

different values of certain model parameters. Such parameters could be, for
example, intercepts and slopes in a linear regression or—as in our case—the worth
parameters of the stimuli in a BT model, which may vary between groups of subjects.

An example for a BT-based tree is displayed in Figure 2. Here, the preference
scales for the stimuli derived from the BT model vary between the groups of sub-
jects represented by the terminal nodes: Subjects up to the age of 52 who answered
yes to Question 2 (in the leftmost Node 3) clearly prefer the third stimulus over all
other stimuli, while, for example, subjects over 52 (in the rightmost Node 7) prefer
all other stimuli over the second stimulus, and so on.

In the remainder of this section, the construction of the tree is described in
detail, serving as an illustration of the general method for estimation of BT tree
models.

The data underlying the tree displayed in Figure 2 were collected in a study at
the Department of Psychology, Universitdt Tiibingen: n = 192 subjects were
interviewed and asked to judge the attractiveness of the candidates of the second
season of “Germany’s Next Topmodel,” which aired March through May 2007.

“Germany’s Next Topmodel” is a casting show for topmodel hopefuls on
German television—an adaptation of the corresponding U.S. show “America’s
Next Topmodel.” Based on photos of the contestants taken at the beginning of
the season, the participants of the study judged the attractiveness of the £ = 6 fin-
alists (Barbara Meier, Anni Wendler, Hana Nitsche, Fiona Erdmann, Mandy
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Graff, and Anja Platzer, listed here in decreasing order, that is, starting with the
winner of the show, Barbara Meier) in a forced choice experiment.

The stimuli were digital portrait photographs (resolution 303 x 404 pixels) of the
contestants. Participants were presented with all 15 pairs of photographs. In each
trial, their task was to judge which of the two women on the photos was more
attractive.

The sample was stratified with respect to gender and age (younger vs. older
than 30 years) with an equal number of subjects in each group. Overall, the sam-
ple contained 96 female and 96 male raters between the ages of 15 and 77.

Additionally, several subject-specific covariates about the raters are available:
gender, age, and the answers (yes/no) to the following three questions:

Question 1 (q1): Do you know the women on the photos? Do you know the TV show
Germany’s Next Topmodel?

Question 2 (q2): Did you watch the latest season of Germany’s Next Topmodel
regularly?

Question 3 (q3): Have you seen the final of the latest season of Germany’s Next Topmo-
del? Do you know who won the latest season of Germany’s Next Topmodel?

For Questions 1 and 3, a positive answer to at least one of the subquestions
resulted in a positive overall answer.

As explained in detail in the remainder of this section, the recursively
partitioned BT model displayed in Figure 2 was generated by means of a simple
algorithm consisting of the following consecutive steps:

1. Fit a BT model to the paired comparisons of all subjects in the current subsample,
starting with the full sample.

2. Assess the stability of the BT model parameters with respect to each available
covariate.

3. If there is significant instability, split the sample along the covariate with
the strongest instability and use the cutpoint with the highest improvement
of the model fit.

4. Repeat Steps 1-3 recursively in the resulting subsamples until there are no
more significant instabilities (or the subsample is too small).

We will now go through each of the steps of this algorithm, provide the statistical
tools, and explain how they were used to generate the model-based partition of
the BT model depicted in Figure 2.

2.2. Fitting Bradley-Terry Models

To fix notation, we consider paired comparison models with possible ties (see
e.g., Critchlow & Fligner, 1991; Section 4): Each comparison of two stimuli can
result in (1) the first stimulus being preferred, (2) the second stimulus being
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preferred, or (3) the subject being undecided between the two stimuli (i.e.,
a tie). The common forced choice experiments, where ties are prohibited
by the experimental design, can be considered as a special case of this more
general view.

In a notation similar to Critchlow and Fligner (1991), we consideri = 1,...,n
subjects who judge all unordered pairs of j=1,... k stimuli. Thus, each
subject performs k* = k - (k — 1)/2 comparisons—each resulting in a choice for
an answer c¢ in 1,2,3. According to the Davidson (1970) extension of the BT
model, the three possible outcomes have probabilities:

-
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where m; > 0 (j = 1,...,k) are stimulus-specific parameters, also called worth

parameters or merits, and v > 0 is a discrimination constant governing the prob-
ability of ties.

This formulation of the model is easy to interpret but has two drawbacks when
it comes to parameter estimation: It is overidentified (multiplication of all 7; with
a constant does not change the probabilities) and the parameters are constrained
to be non-negative. Hence, for parameter estimation, one parameter is typically
kept fixed and all others are considered on a log-scale yielding the k-dimensional
parameter 0 = (log(m), ..., log(m_1),log())". Without loss of generality
log(m) is fixed at zero; equivalently, the sum of the worth parameters can be
constrained to 1. This latter view will be adopted for reporting the ; in our
empirical results.

Note that the classical BT model for forced choice experiments without ties
follows as the simple special case when v = 0 and thus p;73 = 0. Consequently,
the parameter 0 is only k& — 1-dimensional for the BT model.

Giveni = 1,...,n observations y; € {1,2, 3}k*, that is, each y; containing the
k* comparisons with outcome ¢ = 1,2, 3, the joint log-likelihood is given by:

n 3
log LO®y1, - pm) = DY > Iy = ) log(pjye)

i=1 j<j c=1

= Z l}l(yiv 6)7
i=1
where W(y;, 0) denotes the likelihood contribution of the i-th observation and
I(-) is the indicator function. The parameter estimates § can then be obtained

by maximum likelihood (ML) estimation:

140



Individual Differences in Bradley-Terry Models

1200 40004

1000+ 2000

800 w\/\*v/VV‘vv\/\
=~ B : ! H r . . > 0
600+ LM ML,

200 -2000
200+ ~4000+
2004 2006 2008 2010 2012 2004 2006 2008 2010 2012

t t

FIGURE 3. Structural change in the mean over time (artificial data). In the left plot, the
dotted line indicates the overall mean, the dashed lines illustrate that deviations from
the overall mean are positive before the structural change and negative afterward. In the
right plot, the positive and negative deviations are cumulated and the structural change is
noticeable from the triangular shape of the path of the cumulative sum process.

0 = argmax, Z Y(y;,0).
i=1

Typically, the ML estimate is not derived by direct maximization of the
multinomial likelihood above but instead by fitting a surrogate log-linear Poisson
model for the aggregate frequencies nj;. = Y ., I(yi;; = ¢). This can be easily
performed in many statistical software packages, see Critchlow and Fligner
(1991) for more details.

2.3. Assessing Parameter Instability in Bradley-Terry Models

After fitting the BT model, the next question is whether the set of parameters 0
(i.e., the preference scale) is really the same for all # subjects or there are subsam-
ples with differing sets of parameters. As our aim is to capture potential effects of
the available covariates, it should be formally tested whether there are parameter
instabilities over one of the covariates. This step will be repeated recursively
within the newly created subsamples. However, in order to keep the notation sim-
ple, we only use the full-sample notation in the following.

The simplest example of parameter instability (also termed structural change
or structural break in the literature) is a change in a single parameter, such as a
shift in the mean. The artificial example of a change in the mean illustrated in
Figure 3 (left) could depict, for example, a drop in stock returns or consumer
spendings after a financial crisis.

Technically speaking, what is depicted in Figure 3 (left) can be considered as
the change in the parameter “mean return” over the order implied by the variable
“time”—and from this understanding, it is only a small step to describing the
change in any kind of parameter over the range of any variable: The values of
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the model parameter of interest can be ordered with respect to each candidate
variable, and the significance of the structural change over the range of this
variable can be tested statistically.

Various approaches are conceivable for this objective. A particularly conve-
nient one—due to its generality and ease of computation—is the usage of fluc-
tuation tests (Zeileis & Hornik, 2007) as adopted in the model-based recursive
partitioning framework of Zeileis, Hothorn, and Hornik (2008). The idea of this
class of tests is to compute subject-wise model deviations that should fluctuate
randomly around zero under the null hypothesis of parameter stability.

In our example in Figure 3 (left), under the null hypothesis of parameter sta-
bility, the overall mean (dotted line) should hold over the entire time range.
Accordingly, the deviations from the overall mean (dashed lines) should not
show any systematic variation under the null hypothesis, while under the alterna-
tive of a structural break, we would expect the deviations to differ systematically
from zero before and after the cutpoint, as is actually the case in Figure 3.

A general measure of deviation for likelihood-based models is the subject-
wise score function or estimating function: the derivative of the likelihood con-
tributions with respect to the parameter vector. For the BT model, these are given

by:

a‘I’(y,,

V(i 0) = = ZZ[()’U/’ =c) alog(pjja)-

J<Je=

Thus, for computing the estimating functions for the parameters 0, the gradients
of the log-probabilities log(p;s.c), ¢ = 1,2, 3, just need to be aggregated suitably.
These can be shown to be:

L —pji —0.5p3 h=j
0log(pjr1) _ —py2 —0.5pys h=]j
N —Pj3 h=k

0 otherwise

—Pjj1 —0.5p;3 h=j
alog(p]j’2) _ 1 —pji2 —0.5p;3 h =
90 —Pjj’3 h=k

0 otherwise

0.5 —pjn —0.5p3 h=j
Olog(p;r3) _ 0.5 —py2 —0.5pys h=j

90, 1 —pps h=k
0 otherwise

With this notion of model deviation available, it can be assessed whether sys-
tematic deviations occur along one of the m covariates: x;; (i=1,...,n,
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¢=1,...,m). To do so, the deviations are cumulatively aggregated along each
of the m covariates:

|n-t) )
Wi(t)=v—"7n ' Z\P(y(imﬁ) (0<r<),
i=1

where the index (i|¢) denotes the i-th ordered observation with respect to the ¢-th
covariate, |-| denotes the integer part, and ¥ = 37, (i, )W (y;, 0)T is the
outer-product-of-gradients estimate of the covariance matrix.

For the artificial example of a structural change in the mean in Figure 3 (left),
the cumulative aggregation is depicted in Figure 3 (right): Since the deviations
from the overall mean are positive in the first half of Figure 3 (left), the cumu-
lative aggregation in Figure 3 (right) rises up to the point of the structural change
and decreases again when the negative deviations from the second half are added.
Thus, the sharp kink in the path of the cumulative aggregation in Figure 3 (right)
is an indicator of the strong structural change in the mean in Figure 3 (left).

The cumulative aggregation is used here to incorporate the order of the indi-
vidual deviations with respect to the considered covariate: Thei = 1, ..., n indi-
vidual deviations are ordered with respect to the ¢-th covariate and aggregated up
to the |7 - ¢]-th element in each step. When W,(¢) is considered as a function of
the fraction ¢ of the sample size, the null model with no structural change corre-
sponds to the path of a random process with constant zero mean.

The advantage of this approach is that the model does not have to be reesti-
mated for all subsamples, because the individual deviations remain the same and
only their order (and the corresponding path of W(¢)) needs to be adjusted for
evaluating the different covariates.

Under the null hypothesis of parameter stability, the cumulative sum process
W,(-) can be shown to converge to a k-dimensional Brownian bridge (Zeileis &
Hornik, 2007), which can be used as the basis for statistical inference. To capture
systematic deviations in W,(-), different test statistics can be used depending on
whether the /-th covariate is a numeric or a categorical variable. If it is numeric,
Zeileis et al. (2008) point out that a natural test statistic is:

. N -1 .
Sy = max (i-n l) Wy (i)
i=i..i \n N n

This can be interpreted as the maximum Lagrange-multiplier statistic (also
known as score statistic) for a single shift alternative over all conceivable cut-
points in [, i]. The limiting distribution is the supremum of a tied-down Bessel
process from which p values can be computed (see Zeileis et al., 2008, for
details).

If, on the other hand, the ¢-th covariate is categorical (withg = 1,. .., O cate-
gories, say), it is more natural to use the following test statistic:

2

2
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TABLE 1
Parameter Instability Test Statistics Sy, . .., Ss and Corresponding P Values for the
Full-Sample Bradley-Terry (BT) Model for the Attractiveness Data

Gender Age ql q2 q3
Statistic 17.0880 32.3566 12.6320 19.8392 6.7586
p value .0217 .0008 .1283 .0067 7452

2

s Soa(Souwea) o).

i=1

2

where A, is the increment within the g-th category. This test statistic is invariant
to reordering of the O categories and the subjects within each category. The test
statistic captures the instability over the O subsamples. Its limiting distribution is
¥* with (Q — 1) - k degrees of freedom from which p values can be computed.

Although the technical details of this testing procedure are somewhat challen-
ging, the results are easy to interpret: Parameter instability test statistics Sy
(¢ =1,...,m) with associated p values (corrected for multiple testing) are pro-
vided for each candidate variable. The variable with the smallest p value is then
used for determining the subsamples in the current step of the recursive partition-
ing algorithm—unless all p values exceed the significance level (commonly 5%),
indicating that there is no (more) significant parameter instability and thus no
need for partitioning.

For the attractiveness data example, the parameter instability test statistics and
p values of each candidate splitting variable in the full sample are displayed in
Table 1. Accordingly, the variable age associated with the smallest p value is
used for the first split in Figure 2. The choice of the cutpoint within the chosen
splitting variable is discussed in the next section. In the subsamples resulting
from splitting in the first cutpoint, splitting continues recursively in the same
or other splitting variables, until no more significant parameter instability is
detected or until the number of observations is a subsample falls below a given
threshold. Note that, while a sudden structural change in the data, as in our arti-
ficial data example in Figure 3 can be adequately described by a single cutpoint,
other patterns, such as multiple, continuous, or nonlinear changes, can can be
captured by sequences of splits.

2.4. Cutpoint Selection in Bradley-Terry Models

After the ¢-th covariate was chosen for splitting, the optimal cutpoint within
this variable is selected by maximizing the partitioned likelihood (i.e., the sum

144



Individual Differences in Bradley-Terry Models

-1870
-1880
°
o
o)
£
©
=
- -1890
=]
o)
J
-1900—

T T T T T
20 30 40 50 60
Age

FIGURE 4. Log-likelihood of partitioned BT model for the first split in the covariate age.

of the likelihoods for the observations before and after the cutpoint) over all
candidate cutpoints.

More formally, for a numeric splitting variable, we can define the subsamples
L(&) = {i|xi < &} and R(&) = {i|x;¢ > £} on the left and right, respectively, of

A(L (R
some cutpoint £. For both subsamples, the parameters 9< ) and 6( ) can be esti-
mated as described above. To determine the optimal cutpoint &, the partitioned
likelihood

S (0 0") + 3w (0")

i€L(€) i€R(€)

is maximized over all candidate cutpoints £ (typically requiring a certain minimal
subsample size) as illustrated in Figure 4.

While this approach can be applied to numeric and ordered covariates, it is
inappropriate for unordered categorical covariates. Instead, the Q categories of
an unordered categorical covariate can be split into any two groups. From all
these candidate binary partitions, again the one with the maximal partitioned
likelihood is chosen. (Note that, in principle, the partitioning idea is not limited
to binary splits—however, binary splits are typically found convenient in prac-
tice. See Zeileis et al., 2008 for strategies to compute multi-way splits.)

For the attractiveness data example, Figure 4 depicts the partitioned log-
likelihood for all candidate cutpoints within the range of the numeric covariate
age, which was selected for the first split. Note that the sharp kink in the log-
likelihood in Figure 4—just like the sharp kink in the cumulative sum of scores
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in Figure 3 (right)—indicates a strong instability in at least one of the model
parameters over the range of the variable age.

The maximum of the log-likelihood in Figure 4 is achieved for & = 52.
Accordingly, this value is used as the cutpoint and the sample is split into two
subsamples with age < 52 and age > 52, as displayed in Figure 2.

Within the subsamples created by this first split, splitting is again repeated
recursively as illustrated in Figure 2. However, for the following splitting vari-
ables g2 and gender no cutpoint selection is necessary because there are only two
subsamples associated with the two categories of both variables. Thus, the cut-
point is already determined by the selection of these covariates for splitting.

This concludes the discussion of the recursive partitioning procedure for BT
models: The four basic steps—(a) BT model estimation, (b) parameter instability
tests for splitting variable selection, (c) maximization of the segmented likeli-
hood for cutpoint selection, and (d) sample splitting—are repeated recursively
until there are no more significant instabilities or the subsample size is too small
to consider further splitting. Note that the significance level and minimal sub-
sample size required for further splitting need to be defined by the researcher.
While in most cases the common significance level of 5% will be appropriate,
lower values should be chosen when the overall sample size is very large in order
to avoid growing too complex trees that may induce overfitting. The minimal
subsample-size, on the other hand, should be chosen such as to provide a suffi-
cient basis for parameter estimation in each subsample and should thus be
increased when the number of stimuli becomes large.

For the application examples presented so far and in the following, which
have moderate sample sizes and numbers of stimuli, a significance level of 5%
and a minimal subsample size of 5 subjects were employed.

3. Application Examples

For the illustrative attractiveness data example already presented in the previ-
ous section, a more thorough discussion is provided here to highlight the straight-
forward interpretability of the tree-structured model. Additionally, the BT tree
method is applied to a well-known data set from the field of education: Following
Dittrich et al. (1998) and Bockenholt (2001b), we investigate which covariates
influence business students’ choice of a university for studying abroad.

3.1. Attractiveness Data

The model-based partitioning procedure for the attractiveness data was out-
lined in the previous section, with the resulting tree displayed in Figure 2. This
data set is particularly useful for illustrating the BT tree method because, in addi-
tion to binary covariates with only a single potential cutpoint, it contains the
numeric covariate age. As emphasized above, one important advantage of
model-based partitioning for including subject-covariate information in BT
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TABLE 2
Estimates of Worth Parameters in Terminal Nodes From the Partitioned Paired
Comparison Model for the Germany’s Next Topmodel 2007 Data

Barbara Anni Hana Fiona Mandy Anja
Node 3 .19 17 .39 11 .09 .05
Node 5 17 A2 .26 .23 .10 A1
Node 6 27 21 .16 .19 .06 .10
Node 7 .26 .06 15 .16 .16 21

models is that such a numeric covariate does not need to be discretized in
advance but can be directly included in the analysis, where an appropriate cut-
point is selected in a data-driven way.

In addition to the graphical representation of the partitioned model in Figure 2,
the results can be summarized by reporting the worth-parameter estimates
(scaled to sum to unity) in each subsample, as in Table 2. These show that the
rating of those subjects up to age 52 who watched the show on a regular basis
(Node 3) essentially conforms with the assessment of the jury—except for the
rating of the candidate Hana, who was judged by viewers of the show to be about
twice as attractive as Barbara, the actual winner. This extreme preference for
Hana cannot be found in any of the groups who did not watch the show on a reg-
ular basis. Of the subjects up to age 52 who did not watch the show on a regular
basis, males (Node 5) have preferences for Hana and Fiona, while females (Node
6) rank Barbara highest, followed by Anni and Fiona.

Interestingly, the preferences of older participants (Node 7) are completely
different from all other groups: Unlike the other groups, subjects over 52 judged
Anja to be almost as attractive as Barbara, while they strongly dislike Anni (her
attractiveness scale value is only about 20% of Barbara’s). In addition to that, this
group shows almost no discrimination between Hana, Fiona, and Mandy.

While the latter finding supports the common perception that the ideal of
beauty varies between generations, the fact that those subjects who regularly
watched the show have such a strong preference for one candidate may indicate
that the candidates’ personality, rather than their physical appearance, can be cru-
cial for the audience’s appreciation of candidates in casting shows.

3.2. CEMS University Choice Data

Students of the WU Wirtschaftsuniversitidt Wien can spend part of their study
abroad, visiting one of currently 17 CEMS (Community of European Manage-
ment Schools and International Companies) universities. Dittrich et al. (1998)
conduct and analyze a survey of n = 303 first-year students to examine the stu-
dents’ preferences for k = 6 CEMS universities located in different European
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TABLE 3
Observed Frequencies of Comparisons for the Community of European Management
Schools and International Companies (CEMS) University Choice Data

> = < Missing
London:Paris 186 26 91 0
London:Milano 221 26 56 0
Paris:Milano 121 32 59 91
London:St. Gallen 208 22 73 0
Paris:St. Gallen 165 19 119 0
Milano:St. Gallen 135 28 140 0
London:Barcelona 217 19 67 0
Paris:Barcelona 157 37 109 0
Milano:Barcelona 104 67 132 0
St. Gallen:Barcelona 144 25 134 0
London:Stockholm 250 19 34 0
Paris:Stockholm 203 30 70 0
Milano:Stockholm 157 46 100 0
St. Gallen:Stockholm 155 50 98 0
Barcelona:Stockholm 172 41 90 0

cities: London School of Economics, Haut Etudes Commercials (Paris),
Universita Commerciale Luigi Bocconi (Milan), Universitit St. Gallen, Escueala
Superior de Administracion y Direccion de Empresas (Barcelona), and
Handelshogskolan i Stockholm. To identify reasons for the students’ preferences,
several subject-specific covariates have been assessed as well.

The covariates included in the analysis are gender, major field of study, and
indicators of whether the students work full time, aim for an international degree,
and have good skills in French, Spanish, and Italian. The aggregate observed
frequencies ;. for the k* = 15 possible comparisons are listed in Table 3. Note
that in this examples ties are possible if a subject is undecided between two sti-
muli. For 91 subjects, the comparison Paris:Milan has unintentionally been left
out (Dittrich et al., 1998).

To assess the influence of the subject-specific covariates, the paired compar-
ison model is recursively partitioned. Figure 5 shows the resulting tree. The cor-
responding worth-parameter estimates (scaled to sum to unity) in each of the
subsamples are displayed in Table 4.

The results show that the preference scaling of the universities highly depends
on the subject covariates: While for the majority of students, London is the most
appealing option, students with good skills in Italian and Spanish (Node 3) have
the strongest preference for Barcelona (more than twice as strong as for London),
students with good skills in /falian but not in Spanish (Node 4) have a preference
for Milan that is almost as pronounced as that for London, and for students with
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FIGURE 5. Partitioned paired comparison model for the Community of European
Management Schools and International Companies (CEMS) university choice data
(L: London, P: Paris, M: Milan, SG: St. Gallen, B: Barcelona, and S: Stockholm).

TABLE 4

Estimates of Worth Parameters in Terminal Nodes From the Partitioned Paired
Comparison Model for the Community of European Management Schools and
International Companies (CEMS) University Choice Data

London Paris Milano St. Gallen Barcelona Stockholm
Node 3 21 13 .16 .07 43 .01
Node 4 43 .09 .34 .05 .06 .03
Node 7 33 42 .05 .06 .09 .04
Node 8 40 23 .09 13 .09 .06
Node 9 41 .10 .08 .16 .16 .09

poor skills in [talian but good skills in French, the preference depends on the
students’ major field of study: Those students with an emphasis on commerce
(Node 7) have a preference for Paris, which has a high reputation in this field,
while the remaining students share the preference for London, most likely due
to the fact that all Austrian university students have been exposed to several years
of English language training.

Interestingly, Dittrich et al. (1998) point out that the low preference for
Stockholm throughout the entire sample is most likely due to the fact that most
students believe that lectures at Handelshdgskolan i Stockholm are held in
Swedish—while in fact they are held in English, too.
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4. Discussion and Comparison to Existing Methods

Our results for the two data examples illustrate that the model-based
partitioning approach for incorporating subject covariates in BT models is well
suited for identifying groups of subjects with common preference scales. All cov-
ariates found relevant for partitioning in the university choice data example were
also included in the model of Dittrich et al. (1998) for the same data set. How-
ever, the graphical representation as a tree makes the fitted models more acces-
sible and intuitive to interpret compared to the parametric approaches of Dittrich
et al. (1998) and Bockenholt (2001b).

Besides the straightforward graphical representation, the main difference
between the semiparametric partitioning approach introduced here, and the fully
parametric approaches of Dittrich et al. (1998) and Bockenholt (2001a, 2001b), is
the specification of the influence of the covariates: The recursive partitioning
approach presented here is data driven in the sense that the covariates enter the
model in a non-parametric way, which allows for the selection of relevant cov-
ariates from a larger set of candidates and even leaves the functional form of the
effects of the covariates unspecified.

This flexibility with respect to the functional form is often considered as the
major advantage of recursive partitioning approaches (see also Strobl, Malley, &
Tutz, 2009), because it allows for the detection of both nonlinear effects and
interactions between the covariates. Another advantage of this approach is the
natural treatment of both numeric and categorical covariates: While numeric
covariates, such as age, are often discretized arbitrarily when separate models are
fit to different groups of subjects (as, e.g., in Kissler & Bauml, 2000), in recursive
partitioning the optimal cutpoint for splitting a numeric covariate is automati-
cally selected in a data-driven way.

As opposed to that, fully parametric approaches like those of Dittrich et al.
(1998), who employ a loglinear model framework, and Bockenholt (2001a,
2001b), who employs a mixed-effects framework, require not only an active
selection of the covariates but also a distinct choice of the functional form in
which the covariates are included in the model. Hence these parametric models
are particularly well suited for hypothesis-based modeling of psychological pro-
cesses, while the recursive partitioning approach can also be applied when no or
only partial information on the influence of a variety of potential covariates is
available.

A different class of methods, which shares the goal of identifying groups of
subjects with homogenous model parameters, is latent class or mixture modeling
(an overview with applications in market segmentation, including a mixture
model for paired comparisons of food preferences, is given by Wedel &
Kamakura, 2000). However, in latent class approaches, the covariates responsible
for the heterogeneity in the model parameters are not used for partitioning the data.
Only in a second step of the analysis—if at all—are the covariates used for
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characterizing the latent classes. In contrast to that, the recursive partitioning
approach presented here already employs the covariates when identifying the
groups, so that the interpretation is straightforward. Thus, when no covariates are
available, latent class analysis is a useful tool to identify groups or clusters of
subjects with homogenous model parameters. However, when covariates are
available, this additional information can be readily encorporated in our recursive
partitioning approach.

5. Summary and Outlook

Model-based recursive partitioning is a flexible semiparametric method
adopted from machine learning, which is extended to BT models for identifying
groups of subjects with different latent preference scales. The method employs
splits in different covariates for partitioning the subjects, relying on the well-
established statistical inference framework of fluctuation tests for detecting
structural change points. Advantages of the resulting BT trees for paired compar-
ison data are that (a) they are easy to interpret by means of visualization,
(b) numeric covariates do not need to be discretized in advance, but suitable cut-
points are detected in a data-driven way, (c) from a potentially large number of
candidate covariates those that correspond to a significant change in the model
parameters are automatically detected, and (d) interactions between covariates
are also included in the same way.

Future work will aim at expanding applications of model-based partitioning in
psychometrics to cover extensions of the BT model including observed stimulus-
covariates (Dittrich et al., 1998) and latent characteristics of the stimuli as in the
elimination by aspects (EBA) model (Tversky, 1972), as well as the Rasch model
(Rasch, 1960) and its extensions.

Computational Details

Our results were obtained using R 2.9.2 (R Development Core Team, 2009)
using the package psychotree 0.9-0 (Zeileis, Strobl, & Wickelmaier, 2009),
which implements BT trees as introduced in this article. The package also con-
tains the data for the attractiveness and the university choice examples. It relies
on package party 0.9-999 (Hothorn, Hornik, Strobl, & Zeileis, 2009) for recur-
sive partitioning. R itself and all packages used are freely available under the
terms of the General Public License from the Comprehensive R Archive Network
at http://CRAN.R-project.org/. Code for replicating our analysis is available in
the psychotree package via example("bttree", package = "psychotree").
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