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Abstract: Childhood obesity and the investigation of its risk factors has become an important public health
issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up
to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We
introduce boosting of structured additive quantile regression as a novel distribution-free approach for
longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear
population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific
effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference
method for highly complex models. We propose a component-wise functional gradient descent boosting
algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to
individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear
age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level,
adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model
approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or
structured additive mean regression models), and we compare both model classes with respect to our
obesity data.
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1 Introduction

Obesity is currently considered almost an epidemic and has spread to children during the last decade [1].
Childhood obesity is particularly worrying, because once a child has become obese, it will likely remain
obese in adulthood [2]. Therefore, obese children are at high risk for severe long-term sequelae of obesity,
such as hypertension, heart diseases, and diabetes mellitus. With the objective of developing effective
methods of prevention, enormous public health research efforts have been made to investigate determinants
of childhood overweight and obesity [3].

Our work is motivated by and based on the German birth cohort study LISA [4], including data of 2,226
children with up to ten observations each from birth up to the age of 10 years. The aim of our analysis is to
flexibly estimate nonlinear age curves of upper quantiles of the body mass index (BMI), both on population
and on individual-specific level, while adjusting for early childhood risk factors that have been discussed in
the literature [5, 6], such as maternal prenatal lifestyle, parental overweight, socioeconomic factors, and
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breastfeeding. In addition, we want to investigate if potential effects of categorical risk factors are time
constant or if critical age periods can be identified at which these effects emerge.

This requires to model a quantile function of the form

QYijðτj�Þ ¼ h0ðtijÞ þ xTijβþ hðvijÞ þ gðtijÞ � ui þ bi0 þ bi1 � tij ½1�

for a given quantile parameter τ 2 ð0; 1Þ. The responses yij and covariates are observed for individuals
i ¼ 1; . . . ;N at times 0 � ti1 < � � � < tij < � � � < tini . The predictor has the same structure as in additive mixed
models (AMMs) and – more generally – in structured additive regression (STAR) models [7] and contains:
– a smooth nonlinear population trend h0ðtÞ where t denotes child’s age
– usual linear population effects β of categorical and continuous covariates x
– a smooth nonlinear population effect hðvÞ of a continuous covariate v, such as maternal BMI
– an age-varying nonlinear population effect gðtÞ of a categorical covariate u, such as child’s sex, and
– individual-specific deviations bi0 þ bi1 � t from the population trend h0ðtÞ, including an individual-

specific intercept bi0 and, at least, an individual-specific slope bi1. Individual-specific age curves are
obtained by h0ðtÞ þ bi0 þ bi1 � t.

For simplicity of presentation, we omitted the quantile parameter τ and included only one term of each type
in eq. [1], but extensions to several terms are obvious and included in our general model approach in
Section 3.2 and in the data analysis.

To the best of our knowledge, few existing models for longitudinal quantile regression cover quantile
functions with a structured additive predictor as in eq. [1]. The majority of existing approaches considers
predictors with conventional linear population effects and individual-specific intercepts. They either rely on a
penalized loss criterion where shrinkage of individual-specific effects to zero is imposed [8], on quasi-like-
lihood approaches based on the asymmetric Laplace error distribution as a working likelihood [9–11], or on
full Bayesian inference with a nonparametric Dirichlet process error distribution [12]. On the other hand,
additive quantile regression models without individual-specific effects have been recently proposed by Fenske
et al. [13], using boosting as computationally effective method for smoothing, and by Koenker [14, 15], using a
total variation penalty for enforcing smoothness of the functional effects.

The quantile function of the model in Yue and Rue [16] comes closest to structured additive quantile
predictors as in eq. [1], although it contains only a random intercept and no varying-coefficient terms. A certain
drawback of this Bayesian approach is the assumption of an asymmetric Laplace error distribution, which is only
a working model and possibly too restrictive for adequately approximating the true error distribution. Thus, it is
somewhat unclear how well (quasi-)posteriors are appropriate for inferential purposes in general.

We, therefore, decided to extend the boosting approach for additive quantile regression in Fenske et al. [13]
to structured additive quantile regression (STAQ) for longitudinal data. Boosting is a distribution-free inference
method, that is, it does not require distributional assumptions on the errors, and estimation is based on a loss
function, which is the check function in case of quantile regression. Component-wise functional gradient
descent boosting automatically provides smoothing of nonlinear effects, shrinkage of individual-specific
effects, and an implicit possibility for variable selection. For inferential purposes, such as providing standard
errors of the estimates, we apply block-wise bootstrapping.

Conceptually, the additive model in Koenker [15] could also be extended to longitudinal quantile
regression by including a L1-norm penalty for shrinking the individual-specific effects. However, the
computational effort for solving the resulting linear program will probably pose a serious challenge.

Our analysis is also innovative from an epidemiological point of view. A typical statistical approach for
analyzing childhood overweight and obesity would be to classify children as obese using reference charts,
followed by multiple logistic regression for the resulting binary response [6, 17]. Since the BMI distribution
typically becomes right-skewed with increasing age, the construction of such reference charts is a challen-
ging task and has been tackled by various statistical approaches in the past, see Borghi et al. [18] for an
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overview. In our investigation, in contrast, we directly model upper BMI quantiles of the study population,
such as the 90% BMI quantile for overweight and the 97% BMI quantile for obesity. Therefore, we avoid
possible loss of information implied by reducing the original continuous response BMI to the binary
response obesity. Since logit and probit models assume a specific symmetric distribution for the original
continuous response variable, the age-specific skewness of BMI distributions makes the use of conventional
binary regression models questionable.

For cross-sectional BMI data, quantile regression methods have been used to model a Z-score of the BMI
depending on covariates [19, 20], which was obtained by transforming raw BMI values based on age- and
sex-specific reference charts. Here, we directly model raw BMI quantiles and include age and sex as
covariates; and we thereby avoid the decision for a specific reference chart.

In our analysis, we compare structured additive median regression with Gaussian AMMs which can be
regarded as a special instance of STAR models for longitudinal data. AMMs currently provide the only
possibility to fit the full variety of population and individual-specific effects of eq. [1] and are, thus, the only
serious competitor of our model. AMMs not only imply conditional mean modeling but can also be used for
quantile regression, since the conditional response distribution is completely determined by the iid Gaussian
assumption for the error terms. Thus, AMMs are an appropriate approach for quantile regression when the
distribution of the conditional response is homoscedastic and approximately Gaussian. We would like to stress
this fact, because one can then benefit from AMMs as a well-studied, established, and implemented framework
for STAQ models for longitudinal data, as illustrated in a pre-analysis of the LISA study [21].

2 Data description

The LISA study is a large prospective longitudinal birth cohort study in four German cities (Bad Honnef, Leipzig,
Munich, and Wesel), in which 3,097 healthy neonates born between 11/1997 and 01/1999 were originally
included. The follow-up time was until the age of 10 years, and data were collected through questionnaires
covering the nine mandatory well-baby check-up examinations by a pediatrician at birth and the age of 2 weeks
and 1, 3, 6, 12, 24, 48, and 60months. For the 10-year (120months) follow-up, anthropometricmeasurementswere
taken by physical examination at the study centers. Thus, themaximumnumber of observations per childwas 10.
Further details on the LISA study can be found in Breitfelder et al. [22] and Rzehak et al. [23].

In our analysis, we followed a complete case approach. When an observation of a time-constant
covariate was missing, we excluded all observations of the respective child from the analysis. When, on
the other hand, a single observation of age or BMI was missing, only this particular observation of the
respective child was excluded from the analysis. Altogether, a total of 19,819 observations of 2,226 children
were included in the analyses and for statistical modeling. The decision for the complete case approach
resulted from several analyses with respect to missing data and dropout, suggesting the missing data
mechanism to be “missing at random”.

Tables 1 and 2 give an overview of the continuous and categorical variables, respectively, included in
the analysis.

Table 1 Description of continuous variables for complete cases.

Variable Abbrev. Unit Median Mean SD N

Time-varying variables
BMI BMI kg/m2 15.36 15.28 2.08 19,819
Age Age Years 0.54 1.86 2.64 19,819

Time-constant variables
Maternal BMI at pregnancy begin mBMI kg/m2 21.72 22.59 3.76 2,226
Maternal BMI gain during pregnancy mBMIgain kg/m2 4.95 5.12 1.67 2,226
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The covariates cover most of the early childhood risk factors that are discussed in the literature, such as
parental overweight (maternal BMI), socioeconomic factors (urban/rural location and maternal education),
nutrition (breastfeeding), and maternal prenatal lifestyle factors, such as maternal BMI gain during preg-
nancy and maternal prenatal smoking which are believed to be associated with rapid postnatal growth of
the offspring [24–26]. All variables except for age and BMI are time constant.

Figure 1 displays scale and skewness of the empirical BMI distribution by age. Thereby, the relationship
between age and skewness of the empirical BMI distribution can be inspected, which is an important tool

Table 2 Description of categorical variables.

Covariate Abbrev. Categories Frequ. in (%) N

Sex Sex 0 = Female 47.8 1,064
1 = Male 52.2 1,162

Study location Location 0 = Rural (Bad Honnef, Wesel) 21.5 478
1 = Urban (Leipzig, Munich) 78.5 1,748

Nutrition until the age of 4 months Nutri 0 = Bottle fed and/or breast fed 41.2 917
1 = Breast fed only 58.8 1,309

Maternal smoking during pregnancy Smoke 0 = No 85.0 1,899
1 = Yes 15.0 327

Maternal highest level of education mEdu 1 = Certificate of secondary education 7.0 157
(CSE) or lower-level secondary
school (Hauptschule)
2 = Secondary school (Realschule) 35.8 798
3 = High school (Abitur/Fachabitur) 57.1 1,271

Note: Absolute frequencies N relate to complete cases of 2,226 children.
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Figure 1 Empirical BMI distribution by age. Relative frequencies in the histograms were calculated based on all observations
within an age interval. The six age intervals are shown on the x-axis, each n denotes the total number of observations in the
interval. Vertical lines are drawn at the midpoints of the intervals. Lines connecting the age-specific empirical 10%, 50%, 90%,
and 97% quantiles of the BMI distribution within each class are also shown.
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for checking the distributional assumptions for the later modeling, that is, a Gaussian distribution condi-
tional on covariates in the case of AMMs. Figure 1 suggests an age-specific skewness of the BMI distribution,
beginning after the age of 6 years. Note that no adjustment for additional covariate information is done in
this plot. A main goal of the present analysis is to model nonlinear population and individual-specific age
curves of upper BMI quantiles that adequately reflect the shape of the BMI distribution in Figure 1, while
adjusting for covariates other than age. In addition, it is of interest if the shape of the BMI distribution
changes for different levels of the categorical covariates.

3 Statistical modeling

This section briefly explains Gaussian AMMs with respect to quantile regression and introduces the general
model class of STAQ for longitudinal data, followed by a description of the boosting algorithm and of the
specific model used for our analysis.

Throughout the section, we use the following notation: (i) indices i ¼ 1; . . . ;N; for individuals and

j ¼ 1; . . . ; ni; for intra-individual observations; (ii) total number of observations n ¼ PN
i¼1 ni; (iii) response

variable yij for individual i at observation j, later corresponding to the BMI, design vectors

xij ¼ ð1; xij1; . . . ; xijpÞT for p covariates with linear effects, and vij ¼ ðvij1; . . . ; vijmÞT for m continuous covariates

with potentially nonlinear effects on the response; (iv) quantile function QYðτjxÞ ¼ F�1
Y ðτjxÞ for the τ � 100%

quantile with τ 2 ð0; 1Þ of the response variable Y conditional on a given covariate vector x, where F�1
Y ðτjxÞ

denotes the inverse cdf of Y jx.

3.1 Gaussian additive mixed models

Linear and AMMs are a common statistical approach to model relationships between covariates and the
conditional mean of a response variable in longitudinal data; see, for example, Ruppert et al. [27]. The AMM
considered here can be written as

yij ¼ xTijβþ h1ðvij1Þ þ � � � þ hmðvijmÞ þ zTijbi þ εij ¼ ηðμÞij þ zTijbi þ εij ½2�

with iid errors εij , Nð0; σ2εÞ. The linear part xTij β of the additive predictor ηðμÞij contains usual linear

population effects β of covariates, while the unknown functions hlð�Þ; l ¼ 1; . . . ;m; describe possible smooth
nonlinear population effects of the basic time scale and of further continuous covariates. This population

part of the predictor is denoted as ηðμÞij and can also be extended to varying-coefficient terms

ui1 � g1ðageijÞ þ � � � þ uir � grðageijÞ, where ui1; . . . ; uir are r time-constant categorical covariates (subvectors
of xij) and g1ðageijÞ; . . . ; grðageijÞ denote age-varying effects that are estimated in analogy to hlð�Þ. The
random effects bi , Nð0;ΣbÞ are independent for different individuals i, and also independent from
the errors εij. By including time-varying covariates such as age in the design vector zij, model (2) allows

for the estimation of individual-specific random slopes or curves. Thus, the model accounts for the
correlation between repeated intra-individual measurements and thereby avoids confounding of the covari-
ate effects with latent heterogeneity between individuals. When only a random intercept bi0 is included in
the model equation, for example, an equicorrelation between intra-individual response observations is
induced.

In the case of Gaussian distributed error terms, AMMs not only model the mean but also the quantile
function of the response’s distribution and thereby imply quantile regression. When the resulting quantile
function of the response variable is regarded, we have to distinguish between
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the conditional quantile function: QYijðτjηðμÞij ; biÞ ¼ ηðμÞij þ zTij bi þ qτσε

and the marginal quantile function QYijðτjηðμÞij Þ ¼ ηðμÞij þ qτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zTijΣbzij þ σ2ε

q

where qτ denotes the τ � 100% quantile of a standard Gaussian distribution. For covariates that are just
contained in the predictor ηðμÞij , the interpretation of covariate effects with respect to the quantile functions
remains the same as for the mean. In the case of time-varying covariates included in zij, however, the
relationship between covariate and quantile functions becomes more involved, since both quantile func-
tions depend on the design of zij. When only a random intercept is included in the model equation, both
quantile functions reduce to a simple time-constant shift of the population predictor ηðμÞij .

However, AMMs are not adequate for quantile regression if higher moments (variance, skewness, or
kurtosis) of the conditional response’s distribution depend on covariates, which means that the iid Gaussian
error assumption is violated. As shall be shown, this will be the case for the LISA study analyzed here
because of an age-specific skewness of the BMI distribution.

With regard to estimation, AMMs are a well-studied and established framework for longitudinal mean
regression, and estimation algorithms and software are highly developed. Common approaches for estimat-
ing AMMs rely on penalized likelihood concepts, see, for example, Ruppert et al. [27] and are aimed at
estimating smooth nonlinear covariate effects based on penalized spline functions [28]. For fitting AMMs in
our analysis, we used the R package amer [29]. This package has recently been retired from the CRAN
repository, since its scope of functionality is completely covered by the more sophisticated R package
gamm4 [30].

3.2 Structured additive quantile regression for longitudinal data

Distribution-free quantile regression models are directed at modeling specific τ � 100% quantiles of a
response variable without assuming any distribution for response or errors. The general approach of
quantile regression is thoroughly treated in Koenker [14]. For a fixed value of τ, the STAQ model for
longitudinal data can be written as:

yij ¼ xTijβτ þ hτ1ðνij1Þ þ � � � þ hτmτ ðνijmτ Þ þ zTij bτi þ ετij ½3�

¼ ηðτÞij þ zTij bτi þ ετij where ετij , Fετij and Fετijð0Þ ¼ τ : ½4�

At first glance, the predictor looks similar to the predictor in AMMs. However, the linear effects βτ, the functions
hτlð�Þ; l ¼ 1; . . . ;mτ, and the individual-specific effects bτi are now quantile specific. Also, the design vectors xij
and zij may depend on the given quantile,meaning that for different quantile parameters different covariates can
be included in the predictor. The error terms ετij in eq. [4] are assumed to bemutually independent, but no specific
distributional assumption ismade for themapart from the restrictionFετijð0Þ ¼ τ. A consequence of this condition
is that model (3) implies quantile regression of the response conditional on covariates and individual-specific
effects, that is, the conditional quantile function has an additive structure

QYijðτjηðτÞij ;bτiÞ ¼ qτij ¼ ηðτÞij þ zTij bτi : ½5�

To ease later notation, the complete predictor is denoted by qτij. We assume the individual-specific effects
bτi to be independent for different i but without a specific distribution to conserve the distribution-free
character of the model. As shall be seen in Section 3.3, we will estimate the bτi with a ridge-type penalty
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which leads to shrunken individual-specific effects. Due to the quadratic form of the penalty term (corre-
sponding to the log-density of Gaussian random effects priors from a Bayesian perspective), the individual-
specific effects can be interpreted in accordance with the conditional view of AMMs. Similar to individual-
specific conditional means scattering around the population mean in AMMs, individual-specific conditional
τ � 100% quantiles scatter symmetrically around the τ � 100% population quantile in STAQ models
for longitudinal data. To illustrate this interpretation, Figure 2 shows the results of a small simulation
example.

In both plots, boxplots display the empirical distributions of the same data simulated from the model
yij ¼ β0 þ bi þ εij with i ¼ 1; . . . ; 10; individuals and j ¼ 1; . . . ; 10; observations per individual, where bi and

εij were both drawn from a Gaussian distribution with variances of 4 and 1, respectively. We fitted two STAQ

models by boosting for τ ¼ 0:50 and τ ¼ 0:75, containing a population intercept as well as quantile- and
individual-specific intercepts. The results for the median are shown in panel (a), while panel (b) shows the
results for the 75% quantile. It can be seen that the individual-specific intercepts differ for different
quantiles. Also, the sums of the estimated population effects and individual-specific intercepts roughly

correspond to the respective individual-specific empirical quantiles given by the boxplots. Extensions of the
model to covariates and individual-specific slopes would not change the interpretation of individual-specific
effects in longitudinal quantile regression. This illustration additionally points out that the interpretation of
population effects is conditional on individual-specific effects, corresponding to the conditional quantile
function of AMMs.

3.3 Boosting estimation for STAQ models

In general, estimation of distribution-free quantile regression models relies on the minimization of an
empirical loss criterion, which is in accordance with eq. [5] given as
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Figure 2 Boxplots displaying empirical distributions of simulated data for ten individuals with ten observations each.
(a) Results from an STAQ model for τ ¼ 0:50 containing only a population intercept and individual-specific intercepts. (b)
Results from a similar STAQ model for τ ¼ 0:75. Dotted horizontal lines correspond to the estimated respective population
quantiles, whereas individual vertical arrows stand for estimated individual-specific intercepts as deviations from the popula-
tion quantile.
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XN
i¼1

Xni
j¼1

ρτðyij; qτijÞ; ½6�

where the check function

ρτðy; qτÞ ¼
τ � jy � qτ j y � qτ

ð1� τÞ � jy � qτ j y < qτ

(

is the standard loss function for quantile regression models and is proportional to the absolute value loss

for τ ¼ 0:5, i.e. ρ0:5ðy; q0:5Þ ¼ 0:5jy � q0:5j. Standard approaches for solving the optimization problem in
eq. [6] rely on linear programming [8, 14].

For fitting STAQ models, we use a component-wise functional gradient descent boosting algorithm to
minimize the criterion in eq. [6], as has been recently proposed for estimating additive quantile regression
models [13]. In brief, component-wise functional gradient descent boosting is an optimization algorithm that
aims at minimizing an empirical loss criterion as given in eq. [6] by stepwise updating an estimator
according to the steepest gradient descent of the loss criterion; see Bühlmann and Hothorn [31] for a
general overview. In addition to smooth nonlinear and time-varying effects already explored [13], we here
also include individual-specific effects in the additive predictor and estimate them with penalized least-
squares base learners. In the following, we briefly describe the adapted boosting algorithm for estimating
STAQ models for longitudinal data. Our description is based on the general boosting algorithm treated in
Fenske et al. [13], and we here only concentrate on the adaptations that were necessary to make the
penalized estimation of individual-specific effects possible. To ease the notation, we suppress the index τ.

After having initialized the model parameters contained in the predictor qij with suitable starting
values, the negative gradient residuals of the empirical risk in iteration m ¼ 1; . . . ;M can be expressed as

u½m�
ij ¼

τ yij � q̂½m�1�
ij

τ � 1 yij < q̂½m�1�
ij ;

8<
:

where q̂½m�1�
ij represents the estimated predictor from iteration m� 1. In every iteration m of the boosting

algorithm, the negative gradient residuals u½m�
ij are used as working responses for the base learners, which

can be described as univariate regression models and are fitted separately for each covariate. For linear
population effects β, base learners typically correspond to simple univariate least-squares models. In the

case of smooth functional effects hlð�Þ, base learners correspond to penalized least-squares models esti-
mated by P-splines. Here, we only present the specific base learners for estimating individual-specific
effects.

First of all, the individual-specific effects in bi ¼ ðbi0; bi1; . . . ; biKÞT from the STAQ model in eq. [5] are
separated into K þ 1 different base learners. In analogy to Gaussian random effects in AMMs, a natural

concept for estimating individual-specific effects is penalized least-squares base learners with ridge-type

penalties. Thus, for fitting the vectors of N individual-specific effects bk ¼ ðb1k; . . . ; bNkÞT for k ¼ 0; . . . ;K,

we denote the corresponding kth base learner with ak ¼ ða1k; . . . ; aNkÞT. We derive the penalized least-
squares optimization criterion to be minimized as

XN
i¼1

Xni
j¼1

ðu½m�
ij � aikÞ2 þ λ

XN
i¼1

a2ik
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with smoothing parameter λ controlling the degree of shrinkage of the individual-specific effects. The fitted
base learner can then be written as

â½m�
k ¼ ðZT

kZk þ λINÞ�1ZT
ku

½m� ;

where the ðn� 1Þ-vector u½m� contains negative gradient residuals of all observations at iteration m, IN
represents the identity matrix with dimension N, and Zk is a ðn� NÞ design matrix and depends on the type

of base learner. The fitted negative gradient residuals can then be expressed as û½m� ¼ Sλu½m� with smoother

matrix Sλ ¼ ZkðZT
k Zk þ λINÞ�1ZT

k .
For fitting individual-specific intercepts b0 ¼ ðb10; . . . ; bN0ÞT, the matrix Z0 is a zero-one indicator

matrix, such that the ðn� 1Þ-vector resulting from Z0a0 contains respective individual-specific intercepts.

For fitting individual-specific slopes b1 ¼ ðb11; . . . ; bN1ÞT of a time-varying covariate z, the design matrix Z1

links individual-specific slopes to the corresponding observations of covariate z, leading to:

Z0 ¼

1 0 � � � � � � 0
..
. ..

. ..
.

1 0 � � � � � � 0
0 1 0 � � � 0
..
. ..

. ..
. ..

.

0 1 0 � � � 0
..
. ..

. . .
. ..

.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Z1 ¼

z11 0 � � � � � � 0
..
. ..

. ..
.

z1n1 0 � � � � � � 0
0 z21 0 � � � 0
..
. ..

. ..
. ..

.

0 z2n2 0 � � � 0

..

. ..
. . .

. ..
.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

To summarize, in every boosting iteration m, all possible base learners are fitted, but only the parameters
corresponding to the best-fitting base-learning procedure are updated, that is, the base learner that
minimizes the squared error loss between fitted values and negative gradient residuals is updated.
Therefore, the boosting algorithm has a component-wise character and provides an inherent variable
selection property, since some covariates will be chosen more often during the boosting process and earlier
for the first time than others. For example, when the individual-specific intercept is the best-fitting base-
learning procedure, its corresponding update is given as

b̂½m�
i0 ¼ b̂½m�1�

i0 þ ν � â½m�
i0 i ¼ 1; . . . ;N :

The parameter ν 2 ð0; 1� controls the step length and is implicitly connected to the total number of boosting
iterations mstop. The smaller the ν chosen the larger will be the optimal mstop, which can, for example, be
determined by cross-validation of the empirical risk. Early stopping is usually done to avoid overfitting and
leads to biased estimates shrunken toward zero [31]. This is also the reason why the individual-specific
effects of the STAQ model can be regarded as shrunken fixed effects.

Note that with boosting, the smoothing parameter λ is fixed in advance and not considered as a
hyperparameter to be optimized [32]. Instead of choosing λ based on generalized cross-validation or
similar criteria as in classical AMM estimation, the degree of smoothness of a penalized effect is
controlled by the number of boosting iterations mstop. Due to the repeated selection of a base learner,
the final degree of smoothness can still achieve a higher order than the one imposed by the initial
degrees of freedom [31]. In addition, the initial degrees of freedom should be fixed at the same (small)
value for all base learners to ensure that the complexity and selection probability of each base learner is
comparable [32].

With regard to software, boosting for quantile regression can be embedded in the well-studied and
implemented class of component-wise functional gradient descent boosting algorithms. We used the
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function gamboost from package mboost [33, 34] with options family=QuantReg() and base learner
brandom(); see the Appendix for details on the model specification, implementation, and estimation.

3.4 Longitudinal STAQ model for the LISA study

For our analysis of the LISA study, we estimated STAQ models for the 90% and 97% BMI quantiles and – for
reasons of model comparison – for the median and the 10% quantile. We considered the following predictor
for τ 2 f0:10;0:50;0:90;0:97g:

BMIij ¼ ηðτÞij þ bτi0 þ bτi1 � Ageij þ ετij; ½7�

where the population part is given by

ηðτÞij ¼ β0 þ hτAgeðAgeijÞ þ hτmBMIðmBMIiÞ þ hτmBMIgain ðmBMIgainiÞ

þ βτSex Sexi þ βτLocation Locationi þ βτNutri Nutrii þ βτSmoke Smokei

þ βτmEdu2 mEdu2i þ βτmEdu3 mEdu3i

þ Sexi � gτMaleðAgeijÞ þ Locationi � gτUrbanðAgeijÞ þ Nutrii � gτNutriðAgeijÞ

þ Smokei � gτSmokeðAgeijÞ þmEdu2i � gτmEdu2ðAgeijÞ þmEdu3i � gτmEdu3ðAgeijÞ :

Our model thus contains main effects for the entire set of covariates given in Tables 1 and 2, and age-varying
effects of categorical covariates. For the boosting algorithm, we defined separate base learners for all
smooth effects. All continuous covariates, including age and age-varying effects, were modeled by pena-
lized least-squares base learners based on P-splines with dfðλÞ ¼ 5. The three-level covariate mEdu was split
into two dummy-coded variables relating to the reference category “No degree or CSE”, but was fitted in one
single base learner with dfðλÞ ¼ 5 together with main effects of all other categorical covariates. To account
for the longitudinal data structure, we included an individual-specific intercept bτi0 as well as a slope bτi1 for
age in the model, describing individual-specific deviations from the population effect for age. These effects
were again fitted by penalized least-squares base learners with dfðλÞ ¼ 5 to equalize selection probabilities
of different base learners as described above. The number of boosting iterations mstop was chosen based on
block-wise fivefold cross-validation and resulted in about 5,000 iterations per model. We set the step length
ν ¼ 0:4, since this results in fewer boosting iterations and therefore lower computational effort than for
smaller values of ν. For reasons of model comparison, we estimated an AMM with the same predictor as in
eq. [7].

Since boosting does not directly provide standard errors for the estimated effects, we additionally
conducted a block-wise bootstrap analysis in accordance with Liu and Bottai [10]. We obtained one single
bootstrap sample by randomly choosing 2,226 children with replacement at the first stage. To conserve the
longitudinal data structure, all observations corresponding to the chosen children were included in the
bootstrap sample at the second stage. In this way, we generated a total of 50 different bootstrap samples
and used each sample to fit STAQ models and AMMs as described above.

To formally compare the results from AMMs and STAQ models, we additionally constructed 50 out-of-
bag samples with children that were not contained in the respective bootstrap samples. These out-of-bag
samples were used to calculate the empirical risks based on the check function as given in eq. [6] for the
three different quantiles and two different model classes. To obtain an estimated predictor q̂τij for a child in
an out-of-bag sample, we set its individual-specific effects to zero in order to obtain the empirical risk for
model comparison.
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In a simultaneous analysis with respect to missing data, we created an imputed version of the data
using several missing data imputation methods. Then, we repeated all statistical analyses with the imputed
data and obtained similar results as from the complete case approach.

4 Results

The resulting smooth nonlinear population effects of age on BMI quantiles are shown in Figure 3. Overall,
the shape of the age effect remains stable over the bootstrap iterations for all models and confirms the first
impression from the descriptive analysis in Figure 1. In sparse data regions, that is, between the ages of 6
and 10 years, the variation of the effects is larger than in regions with more observations. The effects for the
AMM and STAQ median look roughly similar. For upper quantiles, the age effect strongly increases
beginning after the age of 6 years.

Furthermore, Figure 4 shows estimated age-specific quantile curves from the two model classes. To make the
effects comparable, we concentrate on the population quantile functions conditional on individual-specific
effects. Thus, AMM curves for upper quantiles were obtained by a parallel shift of the median curve, whereas for
STAQ models, all quantile curves were modeled separately. The resulting curves are estimated to be roughly
similar until the age of 6 years. At the age of 10 years, the 90% BMI curve estimated by STAQ regression is above
the 97% curve estimated by AMMs, whereas the 10% STAQ curve is below the AMM median.

We additionally compared the model fits by block-wise bootstrap and calculated the empirical quantile-
specific risks based on the check function in the 50 out-of-bag bootstrap samples, as described in

Figure 3 Estimated nonlinear BMI quantile curves by age resulting from (a) AMM and from STAQ models for (b) τ ¼ 0:50,
(c) τ ¼ 0:90, and (d) τ ¼ 0:97. BMI observations (in gray) with estimated curves (in black) for 50 different bootstrap samples are
shown; the superimposed red line represents the estimated nonlinear quantile curve of the respective model on the full dataset.
Quantile curves are adjusted for other covariates (fixed combination).
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Section 3.4. Figure 5 shows that there are no fundamental differences between the empirical risks for the
median, but that STAQ models clearly outperform AMMs for other quantiles. This result is in accordance
with Figure 4, which together demonstrates that STAQ models are more appropriate for handling the age-
specific skewness of the BMI distribution than AMMs.

To assess the uncertainty for individual-specific mean predictions, we constructed individual-specific 90%
prediction intervals based on estimated 5% and 95% BMI quantile curves. This procedure was based on the
suggestion in Meinshausen [35]. Figure 6 shows individual-specific BMI quantile curves depending on age
for 12 randomly chosen children estimated by AMMs. The dashed quantile curves, corresponding to the
interval limits, are parallel shifts of the mean curves. The symmetric shape and the distance between the
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Figure 5 Risk comparison of STAQ and AMM for the four quantiles τ ¼ 0:10, τ ¼ 0:50, τ ¼ 0:90, and τ ¼ 0:97. Boxplots show
empirical distributions of the empirical risks calculated on 50 out-of-bag (OOB) bootstrap samples. Results for one out-of-bag
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curves remain the same for all children. The offset differences between children can be attributed to the
child-specific intercept and covariate combination; the shape differences can be attributed to the child-
specific slopes. One can see that the mean curve reproduces the true BMI pattern (in gray) in most cases.

For STAQ models, individual-specific BMI quantile curves are shown in Figure 7. Since the three
quantile curves are estimated independently from each other, the quantile curves are no longer parallel
shifts of the median curves, as was the case for AMMs. The interval widths vary notably between children,
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Figure 6 Individual-specific BMI quantile curves estimated by AMMs for 12 randomly chosen children. Continuous black line
shows the estimated median, while the dashed lines show the estimated 5% and 95% quantile curves, respectively. Observed
BMI values are displayed by gray line-connected points.
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Figure 7 Individual-specific BMI quantile curves estimated by STAQmodels for 12 randomly chosen children, in analogy to Figure 6.
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since the individual-specific intercepts estimated by STAQ models differ for the different quantiles. The
upper quantile curve, in particular, seems to account better for the increasing skewness of the BMI
distribution with increasing age.

The results of smooth nonlinear effects for covariates other than age are not shown but briefly described
here. With regard to the effect of maternal BMI, the shape of all BMI quantile curves looks roughly similar.
The effect increases with increasing maternal BMI and remains constant from maternal BMI values around
30 kg/m2. The slope of the 97% BMI quantile is estimated to be larger than that of other quantiles. The effect
of maternal BMI gain during pregnancy was estimated to be almost linear and slightly increasing through-
out all models, which suggests that larger maternal BMI gains during pregnancy result in larger BMI values
of children.

Regarding age-varying effects, Figure 8 exemplarily displays estimated age-varying effects for high
compared to low maternal education. The effect of high maternal education is estimated to be almost zero
for the BMI median and the 10% quantile. Yet, estimated upper BMI quantiles are smaller for children
whose mothers have achieved a high school diploma (compared with children of mothers with “CSE or
Hauptschule”). These effects are not present at birth and do not emerge before the age of around 5 years.
Then, they show a continuing decrease until the age of 10 years. One should be cautious to attribute this
effect on maternal education only, since maternal education is closely related to the socioeconomic status
and can also be seen as a proxy of further life style factors.

The results for all other age-varying effects are not shown but just described. Concerning sex, conditional
BMI quantiles for boys are estimated to be larger than those for girls, and the effect size is clearly varying with
age. The results for study location suggest that upper BMI quantiles of children living in urban areas are

Figure 8 Estimated age-varying effects for high maternal education (mEdu ¼ 3) compared to low maternal education
(mEdu ¼ 1) resulting from STAQ models for all four quantile parameters. Age-varying effects are shown by solid black lines
(full model) and gray lines (50 different bootstrap samples). Dashed line at zero corresponds to the reference category.
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smaller than those of children from rural areas. Yet, this effect is not present for the median and the 10%
quantile and not before the age of 7 years. Both age-varying and main effects of breastfeeding are estimated to
be almost zero for all quantiles. Maternal smoking during pregnancy exerts a slightly positive effect between 3
and 6 years and no clear effect afterward, but the effect clearly varies with age. Age-varying effects of maternal
education refer to the reference category of low maternal education (mEdu ¼ 1, “CSE or Hauptschule”). The
age-varying effect of high maternal education was already shown and discussed in Figure 8. Medium maternal
education (mEdu ¼ 2, “secondary school or Realschule”) does not show an age-varying effect.

Note that such age-varying effects as observed for sex, study location, maternal smoking, and education
can only be detected with STAQ models, since they are only present for upper BMI quantiles.

5 Discussion

Key findings. The comparison of STAQ models with classical Gaussian AMMs suggested that STAQ models
can better handle the age-specific BMI skewness and are thus more adequate than AMMs when the interest
is directed toward overweight and obesity.

By using quantile regression, we obtained similar results as Beyerlein et al. [19, 20] with regard to time-
constant risk factors. Apart from age, other risk factors also exert their effect in a different way on upper
quantiles of the BMI distribution than on the mean. In our analysis here, we could additionally assess
individual-specific BMI patterns during life-course and age-varying effects.

The results of the smooth age-varying effects of categorical covariates were particularly interesting. For
several variables, quantile curves were estimated to be similar until a certain age period at which the age-
varying effects emerged. For example, the effect of highmaternal education did not become apparent before the
age of around 5 years. Then, the effect size slowly increased until it was most pronounced at the age of 10 years.
To the best of our knowledge, such age-varying effects have not yet been investigated in the obesity literature.

Strengths and limitations of our analysis. By applying STAQ regression for upper quantiles of the BMI
distribution, it was possible to adequately and flexibly model the age-specific skewness of the BMI
distribution while adjusting for other risk factors and individual-specific effects. Since we analyzed raw
BMI values directly, our analysis did not require reference charts to construct a binary or Z-score response
which are modeled in usual regression approaches for overweight and obesity.

We applied boosting for longitudinal quantile regression which is currently the only approach that can
estimate individual-specific and smooth nonlinear effects as well as varying-coefficient terms in the same
STAQ predictor. By including individual-specific effects, the model accounted for the temporal correlation
between repeated measurements. Varying-coefficient terms enabled several age-varying effects of time-
constant risk factors to be detected.

In addition, our life-course approach allowed to adequately model individual-specific BMI patterns, as
illustrated in Figure 7. The figure shows individual-specific 90% BMI prediction intervals which were
constructed in accordance with the approaches in Meinshausen [35] and Mayr et al. [36]. First, two separate
models for the 5% and 95% BMI quantiles were estimated, and then, the individual-specific quantile
predictions were taken as interval limits.

However, an inherent limitation of boosting is that it requires high computational effort. Furthermore,
subsampling strategies have to be applied in order to obtain standard errors. This results in an even more
computationally challenging and time-consuming fitting process – in particular when a large dataset with
many individuals is analyzed, as was the case here.

Implications for future research. We believe that quantile boosting for STAQ models is a promising approach
for further investigating risk factors for overweight and obesity, since analyzing upper quantiles of the BMI
distribution is more adequate than analyzing the mean for this purpose. Furthermore, quantile regression
does not incur information coarsening in the same way as usual binary regression approaches.
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From an epidemiological point of view, further investigation of the age-varying effects could lead to
additional insights and could, for example, explain differences between findings on the impact of risk
factors in previous studies relying on different age populations. It would also be interesting to re-run the
analysis with data from an additional time point (which is currently collected), since the BMI skewness
becomes even more pronounced for older children.

Finally, it might have seemed obvious that quantile regression would be more adequate than Gaussian
mean regression in our analysis. However, we would like to stress that the use of Gaussian AMMs for
quantile modeling makes sense when the response distribution is homoscedastic and approximately
Gaussian conditional on covariates. In a previous analysis of the LISA study [21], for example, observations
were only available until the age of 6 years. AMMs could compete with the more complex quantile
regression models, since the age-specific BMI skewness is not present until the age of 6 years (see Figure
1). In such cases, we would recommend to use the well-studied framework of AMMs for longitudinal
quantile regression instead of applying more complex quantile regression strategies.

Although inspired by the specific research questions of our analysis, we emphasize that our modeling
approach is general and can also be useful for other applications with similar data structures.

Appendix: computational details

We used software from the statistical software R for estimation [37]. For fitting STAQ models, we used the
function gamboost from package mboost [34] with option family ¼ QuantReg(). Base learners for estimat-
ing individual-specific effects were specified with brandom(), while smooth nonlinear effects and age-
varying effects of categorical covariates were estimated by using the function bbs(). In accordance with the
description in Section 3.4, we used the following model calls to estimate STAQ models on the full LISA
dataset:

staqFormula < BMI , bols(Sex, Location, Nutri, Smoke, mEdu, df=5) +

bbs(AgeC, df=5) + bbs(mBMIgainC, df=5) +

bbs(mBMIC, df=5) + bbs(ageSexInt, df=5) +

bbs(ageLocationInt, df=5) + bbs(ageNutriInt, df=5) +

bbs(ageSmokeInt, df=5) + bbs(ageMedu2Int, df=5) +

bbs(ageMedu3Int, df=5) + brandom(ID, df=5) +

brandom(ID, by=AgeC, df=5)

staq90 < gamboost(staqFormula, data=lisaLong,

family=QuantReg(tau = 0.90),

control=boost�control(mstop=5000, nu=0.4))

Note that AgeC, mBMIgainC, and mBMIC are mean-centered versions of the variables Age, mDiffBMI,
and mBMI. All variables ending on Int are interaction variables between age and different levels of the
categorical covariates which were defined to model age-varying effects.

For fitting AMMs, the function gamm4 from package gamm4 [30] can be specified as follows:

ammLisa < gamm4(BMI , s(AgeC)+ s(mBMIC) + s(mBMIgainC) +

s(ageSexInt) + s(ageLocationInt) +

s(ageNutriInt) + s(ageSmokeInt) +

s(ageMedu2Int) + s(ageMedu3Int) +

Sex + Location + Nutri + Smoke + mEdu +

(1 + AgeCjcID), data=lisaLong)
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Note that in our analysis we used the R package amer [29] for fitting AMMs. However, this package has been
recently retired from the CRAN repository, since its scope of functionality is completely covered by the more
sophisticated R package gamm4 [30] which also provides a more detailed documentation and permanent
maintenance.
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