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Abstract: Different statistical models have been proposed for maximizing prediction accuracy in genome-
based prediction of breeding values in plant and animal breeding. However, little is known about the sen-
sitivity of these models with respect to prior and hyperparameter specification, because comparisons of 
prediction performance are mainly based on a single set of hyperparameters. In this study, we focused on 
Bayesian prediction methods using a standard linear regression model with marker covariates coding addi-
tive effects at a large number of marker loci. By comparing different hyperparameter settings, we investigated 
the sensitivity of four methods frequently used in genome-based prediction (Bayesian Ridge, Bayesian Lasso, 
BayesA and BayesB) to specification of the prior distribution of marker effects. We used datasets simulated 
according to a typical maize breeding program differing in the number of markers and the number of simu-
lated quantitative trait loci affecting the trait. Furthermore, we used an experimental maize dataset, com-
prising 698 doubled haploid lines, each genotyped with 56110 single nucleotide polymorphism markers and 
phenotyped as testcrosses for the two quantitative traits grain dry matter yield and grain dry matter content. 
The predictive ability of the different models was assessed by five-fold cross-validation. The extent of Bayes-
ian learning was quantified by calculation of the Hellinger distance between the prior and posterior densities 
of marker effects. Our results indicate that similar predictive abilities can be achieved with all methods, but 
with BayesA and BayesB hyperparameter settings had a stronger effect on prediction performance than with 
the other two methods. Prediction performance of BayesA and BayesB suffered substantially from a non-
optimal choice of hyperparameters.
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Introduction
The term genomic selection was introduced by Meuwissen et al. (2001) to denote the prediction of breeding 
values using molecular markers covering the whole genome. Genomic selection is principally based on two 
steps. In the first step, effects are estimated for all markers simultaneously based on a large phenotyped and 
genotyped training population, using some appropriate genome-based prediction model. In the second step, 
genomic estimated breeding values (GEBVs) of selection candidates are calculated based on their genomic 
information by using marker effects estimated in the first step. Candidates are selected based on their GEBVs 
and not on their phenotypes (Jannink et al., 2010). First used in animal breeding [e.g., Schaeffer (2006)], 
genome-based prediction of breeding values has been investigated in plant populations recently (Heffner 
et al., 2009; Albrecht et al., 2011; Heslot et al., 2012; Riedelsheimer et al., 2012), yielding encouraging results 
for its application in breeding.
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Many statistical models that can handle the problem of having more marker effects (p) than pheno-
types (n) and that differ with respect to the assumption of marker effect distribution, have been proposed 
for genome-based prediction. In a plant breeding context Crossa et al. (2010) and Heslot et al. (2012) com-
pared the performance of various models proposed for genome-based prediction using several datasets 
and crops. However, the use of Bayesian models requires specifying prior distributions with hyperpara-
meters, and comparisons have been made based on a single set of hyperparameters. Limited efforts have 
been made towards evaluating impact of the choice of model hyperparameters, although this is likely to 
influence the performance of the model. In our study, we investigate the sensitivity of the performance of 
Bayesian genome-based prediction models with respect to hyperparameter choice. We focused on quan-
titative traits affected by a large number of loci and an advanced cycle breeding population of maize with 
strong linkage disequilibrium (LD) between markers. We employed the models known as Bayesian Ridge 
(Kneib et al., 2011), Bayesian Lasso (Park and Casella, 2008), BayesA and BayesB (Meuwissen et al., 2001), 
as these are frequently used for genome-based prediction. The models differ in the prior specification 
for the marker effects with hyperparameters controlling the amount of shrinkage of the effects. With an 
increasing number of observations n, the influence of the prior on the posterior distribution should vanish, 
which is known as the concept of Bayesian learning (Sorensen and Gianola, 2002). However, when the 
number of parameters p exceeds n (p>>n), which is typical in genome-based prediction, the prior setting 
will always matter. Thus, to obtain good predictive abilities an adequate choice of hyperparameters is nec-
essary to prevent both over- and underfitting. This study was motivated by theoretical results of Gianola 
et al. (2009), who pointed out that BayesA and BayesB are strongly influenced by hyperparameter choice 
due to a limited extent of Bayesian learning. Our objectives were to evaluate the sensitivity of these four 
models to the choice of hyperparameters. The goal was to identify a model with both good predictive ability 
and robustness over a wide range of hyperparameters in practice. In order to quantify the Bayesian learn-
ing ability of the models, we used the Hellinger distance as distance measure between prior and posterior 
densities of marker effects.

The superiority of specific Bayesian models has been shown in many studies using simulated data with 
prior specifications according to simulation parameters. In this study we evaluated the four models based on 
two datasets simulated according to a typical maize breeding program, differing in the number of markers 
and in the number of simulated quantitative trait loci (QTL). Results were compared to those from an experi-
mental maize dataset, comprising 11646 polymorphic high-quality single nucleotide polymorphism markers 
(SNPs) and 698 doubled haploid (DH) lines, phenotyped for two quantitative traits (grain dry matter yield and 
content). The predictive ability of the models was assessed by five-fold cross-validation.

Datasets

Simulated datasets

We simulated two maize datasets (maizeA & B), starting with a base population similar to that described in 
Meuwissen et al. (2001). One thousand individuals were generated with diploid genomes having a length of 
16 Morgan (M) assuming 10 equally sized chromosomes with two haplotypes each. The coding in the haplo-
type sequence was 0 or 1 with equal probability to simulate biallelic markers. A mutation-drift equilibrium 
was expected to be reached after 1000 generations of random mating. We simulated different marker densi-
ties by assigning 800 and 64,000 equidistant markers per chromosome to datasets maizeA and B, respec-
tively. A random subset of 1000 (500) markers was initially selected as QTL in dataset maizeA (B). Each QTL 
was assigned an additive effect of equal magnitude on the phenotype.

From generation 1000 we randomly selected 10 individuals to be the founders of a breeding program. This 
mimics the typically small effective population size and large LD of maize breeding populations. Homozygous 
recombinant inbred lines (n = 1250) were derived from crossings of the founders followed by six generations 
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of selfing. For line i (i = 1, 2, …, 1250) three environmental errors (eil, l = 1, …, 3) were sampled from the same 
normal distribution ( )2N 0, σ�  to represent three phenotypic observations per line i. The variance 2σε  was 
chosen to be three times the variance of the true breeding values (TBV), with TBV being the sum of the QTL 
effects times the number of alleles per individual. The variance of the environmental errors 2σ�  produced a 
repeatability parameter of 0.25. The sum of the individual TBV and the mean error ( )3

=11/3 l il∑ �  formed the phe-
notypic value yi for each line i: 3

=1=TBV 1/3 .i i l ily + ∑ �  This procedure mimics a typical approach in plant breed-
ing to observe mean phenotypic values from several observations per line. In each of six breeding cycles, the 
25 lines with the largest phenotypic values were selected as parents and recombined to produce 1250 inbred 
lines in the next cycle. The final datasets maizeA and B consisted of the genotypes and phenotypes from the 
seventh cycle. Due to selection and drift a subset of markers and QTL was monomorphic in the final datasets 
maizeA and B. A summary of the number of polymorphic markers, the number of polymorphic QTL and the 
number of inbred lines n in the datasets is given in Table 1. Additionally the trait heritabilities h2, calculated 
from the squared Pearson correlation between phenotypic values and TBV, are listed for the datasets maizeA 
and B. The dataset maizeA is publicly available within the R package synbreedData (Wimmer et al., 2012).

Experimental dataset

The experimental dataset comprised 752 fully homozygous DH lines of maize (Zea mays L.), derived from 
122 different crosses with 27 inbred lines and nine single crosses as parents. The number of DH lines derived 
from each cross ranged from 1 to 63 with an average of six DH lines per cross. The lines were phenotyped 
in testcrosses with a single-cross tester in four different European locations in 2010 for the traits grain dry 
matter yield (GDY; dt/ha) and grain dry matter content (GDC; %). For the sake of simplicity, hereinafter test-
cross values are denoted as breeding values. Each location comprised eight sets each replicated twice. Sets 
were arranged in a 10 × 10 lattice design containing 94 entries and six checks. Outliers were identified and 
removed based on maximum deviant residuals of a full stage model according to Grubbs (1950). In each 
location, entries were adjusted for set, replication and block effects and, in a second stage, adjusted means 
were calculated over locations. The generalized heritability was 2ˆ 0.74GDYh =  for GDY and 2ˆ 0.94GDCh =  for GDC, 
estimated according to Cullis et al. (2006). For 698 of the 752 DH lines tested in the field marker data were 
generated. Lines were genotyped with the MaizeSNP50 BeadChip from Illumina® (Ganal et al., 2011) contain-
ing 56 110 SNPs. SNPs with a GTScore  < 0.7, a call rate  < 0.9, a minor allele frequency (MAF)  < 0.01 and identical 
SNPs were excluded from the analysis. Missing values were imputed using the function codeGeno() from R 
package synbreed (Wimmer et al., 2012) with option “beagleAfterFamily.” Here, missing values of markers 
that were monomorphic within one family were imputed with the fixed allele, and missing values in fami-
lies segregating for the marker were imputed based on information of flanking markers using the software 
BEAGLE (Browning and Browning, 2009). Finally 11,646 high quality SNPs were used for further analysis. We 
measured pair-wise LD between SNPs as squared correlation (r2) between allelic states according to Hill and 

Table 1 Summary of the simulated and experimental datasets for grain dry matter yield (GDY) and grain dry matter content 
(GDC). Represented are the number of polymorphic single nucleotide polymorphism markers (no. SNP), number of polymorphic 
quantitative trait loci in the simulated datasets (no. QTL), number of lines (n) and the trait heritability (h2). U represents an 
unknown number of QTL.

No. SNP No. QTL n h2

Simulated datasets
 maizeA 1117 500 1250 0.46
 maizeB 7425 369 1250 0.64
Experimental dataset
 GDY 11,646 U 698 0.74
 GDC 11,646 U 698 0.94
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Robertson (1968). The decay of pair-wise LD between SNPs on the same chromosome with increasing physi-
cal distance is depicted in Figure 1. We observed a high long-range LD between SNPs, which is typical for 
advanced cycle breeding populations in maize (Ching et al., 2002).

Genome-based prediction model and Bayesian regularization
We used the standard linear model for genome-based prediction of breeding values:

 y = 1n β0+X β+e, (1)

where y is the n-dimensional vector of phenotypes, 1n an n-dimensional vector of ones, β0 is the intercept, X 
is an n  ×  p incidence matrix with elements xij (i = 1, …, n; j = 1, …, p) representing the genotype score of line i 
at marker j, defined by the number of copies of the minor allele at marker j. For fully homozygous lines such 
as DH lines, the entries can only take values 0 or 2. The vector β is a p-dimensional vector of marker effects 
and e is the n-dimensional vector of residuals. The residuals were assumed to be independent and normally 
distributed with mean 0 and equal variance 2 ,σe  so ( )σ∼ 2N 0, I

e
e  with I being the n × n identity matrix. This 

leads to the following data distribution:

 
( )2 2

0 0
=1 =1

| , , N | , ,
pn

i ij j
i j

f y x
 

= +  ∏ ∑β σ β β σy β � �
 

(2)

where the notation N(yi|μ, σ2) denotes the conditional density of the normal distribution of yi given the mean 
μ and variance σ2 (de los Campos et al., 2013). In the Bayesian framework, prior distributions have to be 
specified for all unknown parameters. By using Bayes’ Theorem the posterior distribution of the parameters 
is assessed by combining the prior and the data distribution (Bernardo and Smith, 2002). A frequently used 
approach is to use conjugate prior distributions, in order to obtain conditional posterior distributions from 
the same family of distributions as the prior with updated parameters. For genome-based prediction, with 
p>>n, shrinkage priors are required, which shrink effects towards zero. Meuwissen et al. (2001) proposed the 
Bayesian models BayesA and BayesB for genome-based prediction, which are frequently used. We compared 
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Figure 1 Linkage disequilibrium in the experimental dataset, measured as squared correlation (r2) of pair-wise marker  
combinations on the same chromosome against physical distance between them.
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the predictive abilities and the sensitivity of these models to the choice of hyperparameters with well known 
shrinkage models, such as the Bayesian Ridge (Kneib et al., 2011) and the Bayesian Lasso (Park and Casella, 
2008). The four models differ with respect to their shrinkage properties. Whereas Bayesian Lasso, BayesA 
and BayesB induce marker-specific shrinkage, Bayesian Ridge uses the same shrinkage parameter for all 
markers.

Bayesian Ridge

In the Bayesian Ridge model (Kneib et al., 2011) a Gaussian prior with mean 0 and common variance 2
βσ  is 

assigned to all marker effects βj (j = 1, …, p):

 
( ) ( )2 2

1
| N |0, .

p

j
j

f
=

= ∏β βσ β σβ
 

(3)

With a smaller variance 2
βσ  the prior density of marker effects is more concentrated around 0 and so effects 

are shrunken to a greater extent than when the variance is larger. The same prior variance 2
βσ  is assigned to 

all marker effects, so the shrinkage is marker-homogeneous. Each of the variance parameters 2
βσ  and 2σe  is 

assigned a scaled inverse-χ2 prior, ( ) ( )2 2= , f df S−σ χe e e  and ( ) ( )2 2 , ,f df Sβ β βσ χ−=  respectively, with df
e
 and df

β
 

being the degrees of freedom, and S
e
 and S

β
 the scale parameters of the corresponding scaled inverse-χ2 prior 

distribution. A flat prior distribution is assigned to the intercept β0, with f(β0) ∝ const. A Gibbs sampler is 
employed for posterior inference.

A question remains: how hyperparameters of prior distributions ( )2f σe  and ( )2f βσ  should be chosen? 
According to Pérez et al. (2010), parameters can be chosen on prior beliefs that suggest a certain partition 
of the phenotypic variance into residual and genotypic variance, respectively. Here, we focus on the hyper-
parameter setting of ( )2 .f βσ  In principle, the approach for 2

βσ  can also be adapted for 2 .σe  The mean and 
mode of the scaled inverse-χ2 distribution are mean ( ) ( )2 / 2df S dfβ β β βσ = −  and mode ( ) ( )2 = / 2 ,df S dfβ β β βσ +  
respectively. The larger the scale S

β
, for fixed df

β
, the larger the mean and mode of the distribution. To get 

an a priori guess for 2 ,βσ  a prior expectation about the genotypic variance is used. According to classical 
quantitative genetics, the phenotypic value of an individual yi can be expressed as the sum of its genotypic 
value and an environmental deviation (Falconer and Mackay, 1996). In the simulated datasets the genotypic 
value of line i is the true breeding value TBVi. In a population the total phenotypic variance is given as the 
sum of the genotypic and the environmental variance components. Assuming model (1) holds it follows that 

β β= +∑0 =1
TBV .p

i ij jj
x  Thus, with marker scores xij assumed to be fixed the genotypic variance of an individual 

i in the Bayesian Ridge model is derived as

 
2 2 2

=1 =1
Var , 1, , .

i

p p

G ij j ij
j j

x x i n
 

= = = ...  ∑ ∑ βσ β σ
 

(4)

Following Pérez et al. (2010), substituting the individual marker score xij by the average marker score over 
all individuals, ( )=11/ 1, , ,n

j i ijx n x j p= ∑ = ...  approximates 2 2 2
=1 .p

G j jx=∑ βσ σ  Thus, the variance of effects 2
βσ  is 

assessed as:

 

2
2

2
1

.
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jj
x

=

=
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σ
σ

 
(5)

Setting df
β
 to a small value, e.g., df

β
 = 4, to get a relatively flat prior distribution and applying the a priori 

expected genotypic variance for 2
Gσ  from (5), the scale S

β
 can be calculated by using the prior mode as:

 

( ) ( )2 2

2
1

2 2
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p
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S
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β
β β

σ σ

=
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(6)
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Bayesian Lasso

The second model we explored for genome-based prediction is the Bayesian Lasso (Park and Casella, 2008; 
de los Campos et al., 2009). Here, conditional Gaussian priors with mean 0 are assigned to the marker effects. 
In the Bayesian Lasso the variance 2 2

jσ τe  of a marker effect is peculiar to marker locus j (j = 1, …, p) so that the 
joint prior distribution, given 2σe  and 2 ,jτ  is

 ( ) ( )2 2 2 2

=1
| , N |0, .

p

j j
j

f =∏σ β σ τβ τ e e  (7)

Thus, contrary to marker-homogeneous shrinkage like in Bayesian Ridge, Bayesian Lasso has the potential of 
providing marker-heterogeneous shrinkage. The extent of shrinkage depends on 2 ,jτ  with smaller values of 

2
jτ  producing more shrinkage of effect βj. For each of the variance parameters { }2 2

jτ=τ  the same exponential 
prior distribution is used with ( ) ( )2 2 2

=1
|  Exp | ,p

jj
f =∏λ τ λτ  under independence assumptions. Here, we denote 

with ( )2 2Exp |jτ λ  the conditional density of the exponential distribution of 2
jτ  given the rate parameter λ2. The 

shrinkage parameter λ can then be either set to a fixed value, or a prior distribution can be assigned to λ. Park 
and Casella (2008) suggested using a Gamma prior for λ2, that is, f (λ2) = Gamma(r, δ). For the residual variance 

2σe  and for the intercept the same prior distributions as in Bayesian Ridge are used. As in Bayesian Ridge, a 
Gibbs sampler is employed in Bayesian Lasso. The fully conditional posterior distributions of the unknown 
parameters are given in de los Campos et al. (2009). To find an appropriate λ, the prior variance of the effects 

2 2 2= 2
j

−
βσ σ λe  is used, as derived by Pérez et al. (2010). By using the genotypic variance 2 ,Gσ  an “optimal” a 

priori value of λ can be arrived at through the relationship

 

22
2 2

2 2
=1 =1

1ˆ 2 2 ,
p p

j j
j jG

h
x x

h
−

= =∑ ∑σ
λ

σ
e

 
(8)

with ( )2 2 2 2/G Gh = +σ σ σe  being the trait heritability (Falconer and Mackay, 1996).

BayesA

Meuwissen et al. (2001) suggested the model BayesA for inferring marker effects in genome-based prediction. 
Here each of the effects βj (j = 1, …, p) is assigned a Gaussian prior with mean 0 and variance 2 ,

jβσ  leading to 
the joint prior distribution

 ( ) ( )2 2 2
1

=1
| , , N |0, .

p j

p

j
j

f ... =∏β β βσ σ β σβ
 

(9)

As opposed to Bayesian Ridge each marker effect βj is assigned a marker-specific variance 2 .
jβσ  This leads to 

marker-heterogeneous shrinkage as in Bayesian Lasso. However, differently from the Bayesian Lasso where 
the prior distribution of the variances of marker effects is exponential, in BayesA the same scaled inverse-χ2 
prior ( ) ( )2 2 , 

j
f df Sβ β βσ χ−=  is used. For the intercept β0 a flat prior distribution like in Bayesian Ridge is used, 

and for the residual variance 2σe  the same scaled inverse-χ2 prior as in Meuwissen et al. (2001). A Gibbs sampler 
is employed for sampling from the joint posterior distribution and the required fully conditional posterior dis-
tributions are given in Meuwissen et al. (2001). For finding appropriate values for the hyperparameters df

β
 and 

S
β
 the same guidelines as in Bayesian Ridge can be used, as the prior distributions are also scaled inverse-χ2.

BayesB

The model BayesB was suggested by Meuwissen et al. (2001) as an extension to BayesA. Due to the assump-
tion that many SNPs are expected to have no effect on the trait, in difference to BayesA the variances of 
marker effects 2

jβσ  are assigned the following mixture distribution as prior:
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( ) ( )

2

2 2

0 with probability ,

, with probability 1 .
j

j
df S−

=

−

β

β β β

σ π

σ χ π∼

Generally 2 =0
jβσ  implies, that the effect βj is set to a constant value. Here the conditional prior distributions 

of the effects βj are normal as in BayesA, with mean 0 and variance 2 .
jβσ  Thus, if the variance 2

jβσ  is set to 
zero, the effect βj is set to zero in turn. A Gibbs sampler with a Metropolis-Hastings (MH) step is used, as 
described in Meuwissen et al. (2001), for posterior inference. The MH step is needed here, because no closed 
form of the fully conditional posterior distribution of βj can be derived due to the mixture distribution. In 
principle, the same guidelines as in Bayesian Ridge can be used to choose the hyperparameters df

β
 and S

β
, 

but the probability π of setting 2
jβσ  to zero must be taken into account. Considering this in equation (5), 2

jβσ  
can be denoted as

 ( )

2
2

2
=1

.
1j

G
p

jj
xβ

σ
σ

π
=

− ∑  
(10)

By using the mode of the scaled inverse-χ2 distribution a scale parameter S
β
 can be arrived at by writing

 

( )
( )

2

2
1

2
,

1
G

p
jj

df
S

df x
β

β

β

σ

π
=

+
=

− ∑  
(11)

according to equation (6).

Model comparison

Hellinger distance

The Hellinger distance H(f, g) (Le Cam, 1986), which is also used in Roos and Held (2011) to evaluate the 
sensitivity of models with respect to the choice of prior distributions, measures the distance between two 
densities f and g:

 ( ) ( )∞

−∞
= −∫

21, ( ) ( )  d .
2

H f g f u g u u  (12)

H(f, g) is a symmetric measure, which takes its maximum value of 1, if the density f assigns probability 0 to 
every data point to which g assigns a positive value, and vice versa. The minimum value of H is 0, if f = g. In 
Gianola et al. (2009) it has been pointed out that the results of BayesA and BayesB are highly influenced by 
the choice of hyperparameters that are assigned to the prior distributions. This lack of Bayesian learning 
prevents the posterior distribution to move far away from the prior distribution, at least for some parameters 
such as 2

jβσ  in BayesA and BayesB. To evaluate this for marker effects, we calculated the Hellinger distances 
between marginal prior and posterior densities of the marker effects numerically. The marginal posterior 
density was estimated from the posterior MCMC samples using kernel density estimation with a Gaussian 
kernel and bandwidth chosen based on Silverman’s rule of thumb (Silverman, 1986). To approximate the 
integral in H the trapezoidal rule was used (Atkinson, 1989).

Effective number of parameters

To obtain an estimate of the effective number of parameters in the different models, we calculated the pD values, 
as suggested by Spiegelhalter et al. (2002). The pD statistic is calculated as ( ) ( )( )1

ˆ=1/ , , ,L l
D l

p L D D
=

−∑ y y yθ θ  
with θl being the MCMC sample from the l-th iteration (l = 1, …, L) of θ ( )( )2

0 , , ,= β σθ β e  y being the data vector, 
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( )ˆ yθ  being the posterior mean of θ, and D(y, θ) = −2 log f(y|θ) is the residual deviance. With an informative 
prior, the effective number of parameters pD is generally smaller than the total number of parameters in θ 
(Gelman et al., 2004).

Cross-validation

We used five-fold cross-validation (CV) to assess the predictive ability of the different models. For five-
fold CV, each dataset was randomly divided into five subsets, with four subsets forming the training set 
and the fifth subset forming the test set. The training set was used to infer the marker effects with the 
different models, and the test set was used to predict the breeding values based on the genotypic data. 
Each of the five subsets formed the test set once. The correlation between estimated breeding values 
ŷ(k) (for k = 1, …, 5) and observed phenotypic values y(k) cor(ŷ(k), y(k)) yields an estimate of the predictive 
ability of a model in fold k, where ŷ(k) is obtained from ( ) ( )β= +0

ˆ ˆˆ ,k k
n1 Xy β  where the matrix X(k) includes 

the marker genotypes of the test set. The effects β̂  were estimated posterior means based on the train-
ing set. For the simulated datasets true breeding values (TBVs) are available and the accuracy can be 
calculated directly. No TBVs are available for experimental data, so here the accuracy is approximated 
according to Dekkers (2007) by dividing the predictive correlation by the square-root of the heritability h2: 

( ) ( )( ) ( ) ( )( ) 2ˆ ˆcor , TBV cor , .k k k k h≈y y y

Model overview and computation

For every combination of model and dataset, a scenario with hyperparameter setting as denoted earlier as 
“optimal” was computed. Therefore, for Bayesian Ridge, BayesA and BayesB, we set the degrees of freedom 
of the scaled inverse-χ2 distribution of 2

βσ  to df
β
 = 4, for BayesB π was set to 0.8. The “optimal” scale para-

meter S
β
 was then calculated using equations (6) and (11), respectively. The required genotypic variance 2

Gσ  
was calculated from the product of the trait heritability h2 and the phenotypic variance 2 .Pσ  For Bayesian 
Lasso, an “optimal” λ was calculated by using equation (8). To judge the influence of the hyperparameters 
on predictive ability, scenarios with altered hyperparameters were computed for every model. Table 2 gives 
an overview of the hyperparameter settings for the different datasets. The models Bayesian Ridge, Bayesian 
Lasso, BayesA and BayesB are abbreviated as BR, BL, BA and BB, respectively, and different numbers indi-
cate different model scenarios. In the case of BR1, BA1 and BB1 the scale parameter S

β
 was set to the value 

from the formulas given previously. For the scenarios BR2, BA2 and BB2, the chosen scale parameter was ten 
times the “optimal” value, and for BR3, BA3 and BB3 the “optimal” value was divided by ten, respectively. In 
the BL1 scenarios the parameter λ was set to the “optimal” value, in BL2 the “optimal” value was divided by 

10  and in BL3 multiplied by 10. This range of hyperparameters was chosen to make prior distributions 
comparable across scenarios for the four different models. In BL4-6 a Gamma prior was assigned to λ2, with 
shape parameter δ = 0.52 and rate parameter r chosen according to a density of λ with a mode corresponding 
to the λ values in BL1-3.

Computation was done using the software package R (R Development Core Team, 2012). For Bayes-
ian Ridge and Bayesian Lasso the function BLR() of the R package BLR (de los Campos and Pérez, 2012) 
was used. For computation of BayesA and BayesB we implemented our own algorithm within R. We used 
13,000 iterations for the MCMC algorithms of the different models, with the first 3000 iterations discarded 
as burn in. Only every 10th sample was retained for storage reasons. Hence, 1000 MCMC samples were 
used for the calculation of posterior means and densities. The convergence of the Markov chains was 
checked by visualizing the sampling paths and by Geweke’s diagnostic of the R package coda (Plummer 
et al., 2006).
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Simulation results

Full datasets and Hellinger distance

The results from the full (not cross-validated) simulated datasets are shown in Table 3. For all models the cor-
relation between phenotypic values y and estimated breeding values ŷ and the correlation between TBVs and 
ŷ is given. Taking the correlation between the true and estimated breeding value cor(TBV, ŷ) as a reference, 
we interpreted an increase of cor(y, ŷ) accompanied by a decrease of cor(TBV, ŷ) as a sign of model overfit-
ting. If both parameters decreased we interpreted this to be the result of model underfitting. Furthermore, we 
report the effective number of parameters in the models (pD). For Bayesian Lasso models, we also report the 
posterior mean of λ.

The fixed λ value in BL1-3 had a great impact on the estimation. Bayesian Ridge and Bayesian Lasso sce-
narios with random λ (BL4-6) showed similar correlations and pD values in both simulated maize datasets. 
The correlation between TBV and ŷ was highest in these models. In BL3 with a large λ value, effects were 
shrunken strongly, which is reflected in the small pD value and the low correlation between y and ŷ, which 
indicates underfitting. Here the correlation with TBVs is also low. In BL2 with small λ, the pD statistic and 
cor(y, ŷ) were high but cor(TBV, ŷ) was decreasing, indicating overfitting on the training data, especially 
in the dataset maizeB, where the number of SNPs strongly exceeded the number of observations (p n). It 
should be noted that the posterior mean of λ in the Bayesian Lasso models with random λ exceeded the 
“optimal” λ calculated a priori in all datasets. Hence, fixing λ to an “optimal” a priori value might distort 
inference relative to the situations where λ is inferred from the data. We conclude that assigning hyperpriors 
to λ should be preferred to assigning a fixed value, as it seemingly allows for Bayesian learning, providing 
that the posterior distribution of λ is sharp. Similar to the Bayesian Lasso models with different fixed λ, the 
scale parameter S

β
 in BayesA and BayesB had a strong impact on the estimation procedure. In scenarios BA2 

and BB2 a higher scale S
β
 was assigned to the inverse-χ2 prior of 2

βσ  than in the other BayesA and BayesB 

Table 2 Parameter setting for all models in the different datasets. For Bayesian Ridge, BayesA and BayesB the value of S
β
 

varied, with df
β
 = 4 in all scenarios. In BayesB parameter π was set to 0.8. In scenarios BL1-3 different values for λ were chosen, 

and in BL4-6 the parameter r of the Gamma prior for λ2 varied, with δ = 0.52 in all scenarios.

Model maizeA maizeB GDY GDC

Bayesian Ridge (S
β
)

 BR1 0.15 0.013 0.012 0.00049
 BR2 1.45 0.129 0.123 0.00486
 BR3 0.01 0.001 0.001 0.00005
Bayesian Lasso with fixed λ (λ)
 BL1 30 52 44 17
 BL2 9.5 16.4 13.9 5.4
 BL3 95 164 139 54
Bayesian Lasso with random λ (r)
 BL4 2×10–5 7×10–6 1×10–5 7×10–5

 BL5 2×10–4 7×10–5 1×10–4 7×10–4

 BL6 2×10–6 7×10–7 1×10–6 7×10–6

BayesA (S
β
)

 BA1 0.15 0.013 0.012 0.00049
 BA2 1.45 0.129 0.123 0.00486
 BA3 0.01 0.001 0.001 0.00005
BayesB (S

β
)

 BB1 0.73 0.064 0.062 0.0024
 BB2 7.26 0.645 0.615 0.0243
 BB3 0.07 0.006 0.006 0.0002
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scenarios, leading to less shrinkage of marker effects. This is reflected in the high effective number of param-
eters in these models (pD), and in an overfitting of the data, indicated by the high value of cor(y, ŷ) but lower 
value of cor(TBV, ŷ) compared to the other scenarios. However, the overfitting is less pronounced in BayesB 
than in BayesA. Vice versa in BA3 and BB3, the small scale value S

β
 led to high shrinkage of marker effects 

and did not result in overfitting.
For maizeA, we calculated the Hellinger distance H(  f, g) between marginal prior (f) and approximated 

marginal posterior density (g) of the marker effects. In Figure 2, the distribution of the Hellinger distance for 
the different model scenarios is visualized by boxplots for all 1117 SNPs. For Bayesian Ridge and Bayesian 

Table 3 Results from the full (not cross-validated) simulated datasets. The correlations between phenotypic values y and 
estimated breeding values ŷ as well as the correlations between true breeding values (TBV) and ŷ, the effective number of 
parameters (pD) and the posterior means of λ from Bayesian Lasso models are given.

maizeA maizeB

Model cor(y, ŷ) cor(TBV, ŷ) pD λ̂ Model cor(y, ŷ) cor(TBV, ŷ) pD λ̂

Bayesian Ridge Bayesian Ridge
 BR1 0.72 0.85 196  BR1 0.86 0.89 357
 BR2 0.73 0.86 212  BR2 0.86 0.89 366
 BR3 0.72 0.86 193  BR3 0.86 0.89 354
Bayesian Lasso Bayesian Lasso
 BL1 0.74 0.86 232  BL1 0.87 0.89 389
 BL2 0.82 0.84 450  BL2 0.96 0.87 803
 BL3 0.62 0.80 80  BL3 0.73 0.83 132
 BL4 0.73 0.86 198 37.21  BL4 0.86 0.89 350 59.65
 BL5 0.73 0.86 199 36.83  BL5 0.86 0.89 353 58.99
 BL6 0.73 0.86 201 36.73  BL6 0.86 0.89 351 59.56
BayesA BayesA
 BA1 0.78 0.86 322  BA1 0.92 0.89 577
 BA2 0.86 0.82 568  BA2 1.00 0.82 1115
 BA3 0.66 0.82 111  BA3 0.77 0.85 178
BayesB BayesB
 BB1 0.74 0.85 232  BB1  0.90  0.89  508
 BB2 0.74 0.84 249  BB2  0.97  0.86  870
 BB3 0.67 0.83 136  BB3  0.79  0.87  210

BR1 BR2 BR3 BL1 BL2 BL3 BL4 BL5 BL6 BA1 BA2 BA3 BB1 BB2 BB3
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Figure 2 Distribution of Hellinger distance (H) between the marginal prior and posterior densities of marker effects β from  
different model scenarios, calculated with simulated dataset maizeA. Each boxplot displays the distribution of Hellinger  
distances of the 1117 marker effects out of each model.
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Lasso models H was considerably higher than for BayesA and BayesB, indicating that there was less Bayesian 
learning in BayesA and BayesB, as there is more similarity between the marginal prior and posterior densities 
of the effects βj. The Bayesian Ridge scenarios showed less variability with respect to Hellinger distances of 
the marker effects than the other models. We conjecture that the marker-heterogeneous shrinkage in Bayes-
ian Lasso, BayesA and BayesB caused the higher variability in these models.

Cross-validation

We used cross-validation to assess the predictive ability on simulated data. Figure 3 shows the predictive 
ability and the accuracy from five-fold CV, for all model scenarios in the simulated datasets maizeA and 
maizeB. The mean pD value from each CV-fold is depicted as a measure of model complexity. In the dataset 
maizeA, BL1 yielded the highest predictive ability and accuracy with mean 0.53 and 0.79, respectively. The 
mean predictive ability of all Bayesian Ridge models and Bayesian Lasso models with random λ was 0.52, 
and the mean accuracy was approximately 0.79. The Bayesian Lasso models with fixed non-“optimal” λ 
(BL2-3) showed lower predictive abilities and accuracies. The mean predictive ability of BayesA and BayesB 
models did not exceed 0.52, the highest accuracy with these models was 0.78. Thus, no BayesA or BayesB 
scenario exceeded the performance of Bayesian Ridge and Bayesian Lasso models with random λ, as well 
as BL1, in terms of predictive ability. However, the predictive ability and accuracy of BayesA models with a 
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Figure 3 Predictive abilities and accuracies from five-fold cross-validation, calculated with simulated datasets maizeA (upper 
panel) and maizeB (lower panel). The black dots show the mean predictive ability from five-fold cross-validation for the different 
scenarios, the gray stars show the mean accuracy. The lines define the interval [mean–SD; mean+SD]. The open circles denote 
the mean effective number of parameters pD in the models.
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non-“optimal” scale (BA2-3) was significantly reduced when compared to BA1 (tested with Student’s paired 
t-test, α = 0.05). In BayesB models the scenarios with non-“optimal” scale also showed a reduced predictive 
ability and accuracy, but not as strong as in BayesA models. The highest mean predictive ability in maizeB 
was 0.64 and the highest mean accuracy was 0.80. All Bayesian Ridge models, Bayesian Lasso models with 
random λ and BL1 yielded the same predictive ability and accuracy. BayesA and BayesB with “optimal” 
scale had the same predictive ability, but the predictive ability of BayesA and BayesB models with non-
“optimal” S

β
 was significantly reduced. It is worth mentioning that the marker-heterogeneous shrinkage in 

Bayesian Lasso, BayesA and BayesB did not outperform the marker-homogeneous shrinkage of Bayesian 
Ridge. This did not happen in dataset maizeA nor in dataset maizeB, where the number of markers strongly 
exceeded the number of observations. The higher values of predictive ability and accuracy in the dataset 
maizeB than in maizeA are presumably due to higher heritability, fewer simulated QTL and more markers. 
As seen in the pD values, both over- and underfitting led to reduced predictive abilities and accuracies.

Results: experimental dataset

Full dataset

The results from the full, not cross-validated, experimental dataset, for both phenotypic traits GDY and GDC, 
are shown in Table 4. Here the same parameters as for the simulated data are given, except for the correlation 
between estimated and true breeding values. In BL2, BA2 and BB2 cor(y, ŷ) = 1.00 indicates a strong overfit-
ting, because of p n and little shrinkage of the effects. For both traits the posterior mean of λ of BL models 
with random λ (BL4-6) was higher than the calculated “optimal” value, which was already seen with the 
simulated datasets.

Table 4 Results from the experimental data. The correlations between phenotypic values y and estimated breeding values ŷ, 
the effective number of parameters (pD) and the posterior means of λ of Bayesian Lasso models are given.

Grain dry matter yield (GDY) Grain dry matter content (GDC)

Model cor(y,ŷ) pD λ̂ Model cor(y,ŷ) pD λ̂

Bayesian Ridge Bayesian Ridge
 BR1 0.86 208  BR1 0.97 377
 BR2 0.89 249  BR2 0.97 391
 BR3 0.86 203  BR3 0.97 364
Bayesian Lasso Bayesian Lasso
 BL1 0.94 358  BL1 0.99 561
 BL2 0.99 593  BL2 1.00 676
 BL3 0.81 136  BL3 0.96 315
 BL4 0.86 207 90.25  BL4 0.97 372 41.28
 BL5 0.87 215 86.76  BL5 0.97 378 40.27
 BL6 0.87 213 87.24  BL6 0.97 361 43.21
BayesA BayesA
 BA1 0.98 510  BA1 1.00 595
 BA2 1.00 487  BA2 1.00 340
 BA3 0.83 162  BA3 0.96 310
BayesB BayesB
 BB1 0.97 469  BB1 1.00 576
 BB2 1.00 483  BB2 1.00 583
 BB3 0.84 180  BB3 0.95 281
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Cross-validation

CV results for the two experimental traits GDY and GDC are shown in Figure 4. For GDY the highest pre-
dictive ability was achieved with BL5 (mean≈0.65). All Bayesian Ridge models, all Bayesian Lasso models 
with random λ and BL1 had an average predictive ability of approximately 0.65. Predictive abilities of BayesA 
and BayesB models were lower but in BA3 and BB3 only slightly. The scenarios with S

β
 set to its calculated 

“optimal” value (BA1 and BB1) gave lower predictive abilities, than models where a 10 times smaller scale 
was used (BA3 and BB3). The effective number of parameters pD in BA3 and BB3 were in a similar range as 
in Bayesian Ridge and Bayesian Lasso models with random λ. For the Bayesian Ridge and Bayesian Lasso 
models the estimated pD values met our expectations. However, for BA2 and BB2 they were surprisingly low. 
Due to the reduced shrinkage, the pD values should be higher than in BA1 and BB1. The pD statistic is based 
on a number of assumptions (Spiegelhalter et al., 2002; Celeux et al., 2006), which are partially violated in 
BayesA and BayesB and thus the pD statistic might not be a meaningful estimate of the effective number of 
parameters here. The predictive ability for GDC was higher than for GDY, most likely due to its higher herit-
ability. Here, BL5 also yielded the highest predictive ability, with a mean of 0.83. The other Bayesian Lasso 
models with random λ and the Bayesian Ridge models yielded a similar predictive ability. As in the case of 
GDY, in GDC BayesA and BayesB scenarios also showed more variability in their predictive abilities. The 
scenarios BA3 and BB3 gave the highest predictive abilities among BayesA and BayesB models, respectively, 
which was not expected because “optimal” values for S

β
 had been chosen for BA1 and BB1. It seems that the 
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Figure 4 Predictive abilities and accuracies from five-fold cross-validation, calculated with experimental data, for traits grain 
dry matter yield (upper panel) and grain dry matter content (lower panel). The black dots show the mean predictive ability 
from five-fold cross-validation for the different scenarios, the gray stars show the mean accuracy. The lines define the interval 
[mean–SD; mean+SD]. The open circles denote the mean effective number of parameters pD in the models.

Bereitgestellt von | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Angemeldet

Heruntergeladen am | 17.12.18 17:28



388      Christina Lehermeier et al.: Sensitivity of Bayesian genome-based prediction models

proposed equation for finding an “optimal” scale S
β
 overestimated the “true” value. Neither for GDY, nor for 

GDC marker-heterogeneous shrinkage outperformed marker-homogeneous shrinkage, which corroborated 
the results from the simulated datasets.

Discussion
We examined the performance of four Bayesian models for genome-based prediction of breeding values in 
maize, as well as their sensitivity with respect to the choice of hyperparameters. The models were evaluated 
with simulated data resembling a commercial maize breeding program and with experimental maize data. A 
strong influence of prior parameters on the predictive ability was seen in BayesA and BayesB models, as well 
as in the Bayesian Lasso models with fixed λ. The variation of the scale parameter S

β
 in BayesA and BayesB 

had a strong impact on prediction. Choosing a too large scale S
β
 for the prior distribution of variance 2

jβσ  led 
to an overfitting of the data, whereas a too small scale parameter led to underfitting, due to too much shrink-
age of the effects. In both cases the predictive ability is considerably reduced.

The strong influence of the choice of hyperparameters indicates a lack of Bayesian learning ability in 
BayesA and BayesB, which was already pointed out by Gianola et al. (2009). We quantified the ability of 
Bayesian learning of the respective models by calculating the Hellinger distance between marginal prior and 
posterior densities of marker effects for the simulated dataset maizeA. A larger distance indicates that the 
posterior density moved away from the prior density, and that Bayesian learning has taken place. For BayesA 
and BayesB models we observed quite small distances, whereas in Bayesian Ridge and Bayesian Lasso the 
distance between prior and posterior density was much larger. We are aware that a small distance between 
prior and posterior density can also emerge if a perfect prior density is assigned, however, this happens with 
probability close to zero if prior knowledge is scant. In combination with a lower predictive ability and the 
fact, that all BayesA and BayesB scenarios yielded a small Hellinger distance between prior and posterior 
density, this is very unlikely to be the reason for the small distances found here. From the Hellinger distances 
it can be seen that Bayesian learning is smaller in BayesA and BayesB than in Bayesian Ridge and Bayes-
ian Lasso and, hence, the influence of the choice of hyperparameters on prediction is large. In BayesA and 
BayesB the degrees of freedom of the fully conditional posterior distribution of 2

jβσ  are df
β
+1, and thus only 

one degree of freedom higher than the prior degrees of freedom, independently of the number of observa-
tions (n) or markers (p) in the model (Gianola et al., 2009). In contrast, in Bayesian Ridge the degrees of 
freedom increase with the number of markers in the model (p). In genomic datasets, Bayesian learning is 
limited due to the p n situation. In real life, as with next generation sequencing data, p will get even larger, 
and is expected to increase much more than n. Thus, models with a strong Bayesian learning ability such as 
the Bayesian Ridge and Bayesian Lasso seem useful.

If the prior parameter setting was appropriate, predictive abilities and accuracies of BayesA and BayesB 
were high and equal to those of Bayesian Ridge and Bayesian Lasso with random λ. However, finding 
“optimal” parameters is not straightforward. The proposed guidelines for finding an “optimal” scale S

β
 and 

λ, according to Pérez et al. (2010), did not always yield the best parameter setting in terms of predictive 
ability. Alternative formulas have been proposed for finding an “optimal” scale parameter S

β
, e.g., in Habier 

et al. (2010, 2011). Both formulas are based on strong assumptions. The formula used in our study suggested 
by Pérez et al. (2010) as well as the formula according to Habier et al. (2010, 2011), assume independence of 
marker effects, which may be inadequate if strong LD among markers translates into a joint dependence of 
their effects.

In experimental data there is additional uncertainty in the proposed formulas for finding “optimal” 
parameters, because the variance components 2

Gσ  and 2σe need to be estimated. In practical application of 
genome-based prediction, variance components can only be estimated based on the training dataset and not 
on phenotypic values of the test dataset, as these are unknown. Thus, there may be additional uncertainty 
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as the data distribution may change from training to test set. We have chosen hyperparameters based on the 
mode of the prior distributions. An option would be to choose hyperparameters based on the mean of the 
prior densities which would change the numerator of formulas (6) and (11) to ( )2 2 .G dfβσ −  In the case of df

β
 = 4 

this would lead to an “optimal” scale S
β
 which would be 1/3 of the “optimal” S

β
 derived from the mode of the 

inverse-χ2 distribution. Thus, our variation of hyperparameter settings is in the order of magnitude of uncer-
tainty due to the choice of formula for hyperparameter calculation and estimation of variance components. 
An alternative to using an ad hoc formula would be to find hyperparameters iteratively via cross-validation, 
but this would have high computational costs. Hence, Bayesian models that are less sensitive with respect to 
the choice of hyperparameters are highly desirable.

The Bayesian Ridge model with marker-homogeneous shrinkage was in all datasets among the models 
with the highest predictive ability. Irrespective of the number of markers and observations, marker-specific 
shrinkage did not outperform marker-homogeneous shrinkage. The performance in the experimental dataset 
was similar as in the simulated datasets for both traits. One reason for the good performance of Bayesian 
Ridge may be the large number of QTL affecting the target traits. The simulated datasets comprised more than 
300 segregating QTL and, also, the two quantitative traits in the experimental datasets have been found to 
be affected by many QTL (Schön et al., 2004). Furthermore, substantial long-range LD exists in maize breed-
ing populations, which was also shown in our data. If there is strong LD, many SNPs are expected to be in 
LD with at least one QTL, and therefore to have non-zero effects. We conjecture that the large number of QTL 
and the strong correlation between markers are reasons for the superiority of the Bayesian Ridge model in 
terms of predictive abilities. The Bayesian Ridge model is similar to genome enabled best linear unbiased 
prediction (Piepho, 2009). These mixed models have also been shown in data with similar genetic archi-
tecture to perform as well as Bayesian models with a more complex prior setting, e.g., with marker-specific 
shrinkage (Heslot et al., 2012). The superiority of Bayesian models with marker-heterogeneous shrinkage has 
been shown mainly in simulation studies with a few simulated QTL (Meuwissen et al., 2001; Habier et al., 
2007). However, such a genetic architecture seems to be unrealistic for truly quantitative traits. If interest 
lies mainly in the prediction of phenotypic traits, there may be little difference if a small effect is assigned 
to a group of highly correlated markers, or a larger effect is assigned to only one of them. On the other hand, 
marker-specific shrinkage models may be advantageous, if one is interested in specific marker effects. It is 
conjectured, that the performance of Ridge regression type models may change compared to that of marker-
specific shrinkage models when marker coverage is more dense and LD is less pronounced (de los Campos 
et al., 2013). However, with denser marker coverage the ratio p/n will further increase and, thus, the influ-
ence of the prior density. Hence, the Bayesian Lasso may be advantageous over BayesA and BayesB due to its 
stronger Bayesian learning ability.

In our study, Bayesian Ridge and the Bayesian Lasso with assigning a hyperprior on λ were quite robust, 
whereas BayesA and BayesB showed a strong sensitivity with respect to the choice of hyperparameters. The 
ability of Bayesian learning is reduced in these models, as indicated by the Hellinger distance between prior 
and posterior densities of marker effects. No superiority of models with marker-specific shrinkage (Bayesian 
Lasso, BayesA, BayesB) was seen in our maize datasets, with a large number of QTL affecting the quantitative 
traits and a high long-range LD. Considering also the higher computing efforts of models with marker-specific 
shrinkage, we recommend Bayesian Ridge as a robust model for genome-based prediction, if one is mainly 
interested in the prediction of breeding values in datasets with a similar genetic architecture as those ana-
lyzed in this study.
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