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Abstract:  Varying-coefficient models with categorical effect modifiers are considered within the 
framework of generalized linear models. We distinguish between nominal and ordinal effect modifiers, 
and propose adequate Lasso-type regularization techniques that allow for (1) selection of relevant 
covariates, and (2) identification of coefficient functions that are actually varying with the level of a 
potentially effect modifying factor. For computation, a penalized iteratively reweighted least squares 
algorithm is presented. We investigate large sample properties of the penalized estimates; in simulation 
studies, we show that the proposed approaches perform very well for finite samples, too. In addition, 
the presented methods are compared with alternative procedures, and applied to real-world data.
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1  Introduction

In regression modelling, the researcher is often faced with categorical predictors, 
also called factors. Nevertheless, variable selection for discrete covariates and the 
connected problem which categories within one factor are to be distinguished has 
been somewhat neglected in the literature.

We analyze data from a consumer study on the acceptance of boar meat. As surgical 
castration of male piglets, as typically done, shall be banned by 2018 (European 
Declaration on alternatives to surgical castration of pigs, 2010), the production of 
so-called entire male pigs may become an alternative. To investigate whether this is 
indeed a suitable alternative (Meier-Dinkel et al., 2013), we consider meat from four 
different product groups: (1) castrate or gilt meat (hereafter referred to as ‘control’) 
with label ‘pork’, (2) control with label ‘young boar meat’, (3) boar meat with 
label ‘pork’ and (4) boar meat with label ‘young boar meat’. The response is binary  
saying weather consumers liked the taste of the meat (see Meier-Dinkel et al., 2013). 
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We investigate whether the probability of liking depends on the type of meat and/
or the labelling, and furthermore, if the influence of other variables like gender, age 
or health status (sick: yes/no) on liking depends on the product type. Therefore, the 
label is considered as an effect modifying factor. That is, we address model selection 
with discrete covariates in a slightly extended version of generalized linear models 
(GLMs), namely, GLMs with varying coefficients and categorical effect modifiers.

Varying-coefficient models (Hastie and Tibshirani, 1993) are a quite flexible tool 
to capture complex model structures and interactions. Regression coefficients βj are 
allowed to vary with the value of other variables uj. Hence the linear predictor η in 
a GLM has the form

			 
= + + +0 1 1( ) ( ) ... ( ),p pxβ β βη pu x u u0 1 � (1.1)

where x1, x2, . . ., xp are continuous covariates, and u0, . . ., up are the so-called effect 
modifiers, which modify the effects of the covariates in an unspecified, typically 
smooth form βj(⋅). Thus, the predictor is still linear in the regressors x1, . . ., xp, 
but scalar coefficients βj turn into functions depending on the effect modifiers uj, 
j = 0, . . ., p. As common in GLMs, it is assumed that the predictor η is linked 
to the conditional mean of response y by a known response function h, that is, 
µ = E(y|x1, . . ., xp) = h(η), and y follows a simple exponential family. Throughout 
the article, we assume that covariates x1, . . ., xp are measured on comparable scales 
or have been scaled.

For continuous effect modifiers, unknown functions βj(⋅) are typically assumed 
as smooth and have been modelled by splines (Hastie and Tibshirani, 1993; Hoover 
et al., 1998; Lu et al., 2008), using localizing techniques (Wu et al., 1998; Fan 
and Zhang, 1999; Kauermann and Tutz, 2000) or boosting (Hofner et al., 2012). 
Inference requires to distinguish between varying and non-varying coefficients and 
between relevant and non-relevant terms. Hastie and Tibshirani (1993) proposed to 
adopt techniques for additive models. Leng (2009) distinguishes between varying 
and non-varying coefficients by applying the Cosso penalty (Lin and Zhang, 2006), 
while Wang et al. (2008) obtain selection of spline coefficients by groupwise SCAD-
penalization. Wang and Xia (2009) select covariates by local polynomial regression 
with the grouped Lasso (Yuan and Lin, 2006). However, apart from Hofner et al. 
(2012), selection of predictors and identification of smooth/constant functions is not 
reached simultaneously.

In contrast to most existing approaches, we consider categorical effect modifiers  
uj ∈ {1, . . ., kj}. In the boar data, for instance, the effect modifier label has four categories 
indicating the product group. Functions βj(uj) have the form β

=
=∑ 1

( )
kj

jrr
I rju , where 

I(⋅) denotes the indicator function and, βj1, . . ., βjkj represent regression parameters. 
Therefore the linear predictor is given by

β β
= = =

= = + =∑ ∑ ∑
0

0
1 1 1

( ) ( ).
kk p j

r jr
r j r

I r I rη j ju x u0



Regularization and model selection with categorical predictors  159

Statistical Modelling 2014; 14(2): 157–177

The total coefficient vector is given by 0( , ..., ),T T T
p=β β β where sub-vector 

β β= 1( , ..., )T
j j jkj

β contains the parameters for the jth predictor. With categorical effect 
modifiers, the number of parameters 

=
= ∑ 0

p

jj
q k  can become very large, even for a 

moderate number of predictors p. Usual maximum likelihood (ML) estimates may 
not exist; alternative tools such as regularization techniques are needed. Moreover,  
it is desirable to reduce the model to the relevant terms. One wants to determine 
which predictors are influential, and if so, which categories have to be distinguished.

The methods proposed here extend the work of Gertheiss and Tutz (2012), as 
the latter is restricted to the classical linear model and hence cannot be used for 
analyzing data with non-normal response variables such as the boar data. Hence, we 
present approaches that allow to model categorical effect modifiers within the GLM 
framework. In Section 2, we propose a penalized ML criterion. For computation 
of estimates, a different approach other than the classical linear model is needed; 
a penalized iteratively reweighted least squares algorithm is employed. Moreover, 
large sample properties of the penalized estimators are derived. As an alternative, 
we consider a forward selection procedure using information criteria (Section 3). 
The proposed methods are shown to be highly competitive in numerical experiments 
(Section 4). In Section 5, the new approaches are applied to the boar data, and the 
special case of categorical effects is discussed in Section 6.

2  L1-penalized estimation in GLMs

The main tool for regularization and model selection is the use of penalties. In GLMs, 
penalized estimation means to minimize

          ( ) ( ) ( ) ( ) ( ),pen
n n n nl P l Jλ λ= − + = − + ⋅M β β β β β � (2.1)

where ln(β) denotes the log-likelihood for sample size n, and Pλ(β) stands for a 
general penalty depending on tuning parameter λ. The expression λ ⋅ Jn(β) breaks 
the penalty down to a product, underlining the dependency on one scalar tuning 
parameter only. With λ = 0, ordinary ML-estimation is obtained.

The main issue is to choose an adequate penalty Jn(β): The Ridge penalty (Hoerl 
and Kennard, 1970), for instance, shrinks coefficients, while the Lasso (Tibshirani, 
1996) combines shrinkage and selection of coefficients, and the fused Lasso 
(Tibshirani et al., 2005) applies the Lasso to differences of adjacent parameters. 
Thus, parameters are shrunk towards each other and potentially fused in order to 
gain a local consistent profile of ordered coefficients. In contrast, the grouped Lasso 
(Yuan and Lin, 2006) selects whole groups of coefficients simultaneously. Although 
variable selection is implied, both the Lasso and its grouped version are off target 
since they do not enforce β

jr = βjs for some r ≠ s. The pure fused Lasso indeed leads to 
(piecewise) constant functions βj(uj) but disregards the selection of whole predictors. 
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A combination of both allows not only for shrinkage and selection but also for 
gradual fusion of related coefficients—such that effects of the grouped Lasso are 
embedded.

As nominal and ordinal effect modifiers in (1.1) contain different information, 
they should be treated differently. We consider the general penalty

				       0

( ) ( ),
p

n j
j

J J
=

= ∑β β j � (2.2)

where Jj (βj) = 0 if covariate j is not modified, ( ) ( )nom
j j j jJ J=β β for nominal effect 

modifiers and ( ) ( )ord
j j j jJ J=β β for ordinal effect modifiers.

For a nominal effect modifier uj we propose

                      β β β
> =

= − +∑ ∑
1

( ) ,
kj

nom
j jr js j jr

r s r

J bβ j � (2.3)

where bj is an indicator that (de-)activates the second sum if wanted. Penalty (2.3) is 
equivalent to a fused Lasso penalty applied on all pairwise differences of coefficients 
belonging to βj(uj). Thus, not only adjacent coefficients but each subset of nominal 
categories can be collapsed. In the case of strong penalization, effects βj1, . . ., βjkj 
of covariate j are reduced to one constant coefficient and do not depend on the 
categories of uj anymore; one obtains 1

ˆ ˆ ˆ... .j jjkjβ β β= = =  The second sum in (2.3) 
conforms to a Lasso penalty shrinking all coefficients belonging to βj(uj) individually 
towards zero. The effect is selection and exclusion of covariates. With strong 
penalization, 1

ˆ ˆ... 0j jkjβ β= = = is obtained, and covariate j is excluded. In most cases, 
a constant intercept shall remain in the model; hence, we typically have b0 = 0.

If uj is ordinal, there is additional information. Our proposal is to allow for the 
fusion of adjacent categories βjr and βj,r−1. Hence, for ordinal predictors we use

			 
β β β β−

= =

= − +∑ ∑, 1
2 1

( ) ,
k kj j

ord
j j jr j r j jr

r r

J b � (2.4)

where bj denotes the same indicator as above. Instead of all pairwise differences, 
now only differences of neighboured coefficients are penalized, which corresponds 
exactly to a fused Lasso-type penalty (Tibshirani et al., 2005). Again, with setting 
b0 = 0, the intercept can be treated separately.

Apart from their different amount of information, nom
jJ and ord

jJ work similarly: 
one term leads to fusion within the predictor, while a Lasso-type penalty selects 
coefficients. Thus, overall variable selection as well as distinction of varying and 
non-varying coefficients is obtained.
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If, for example, emphasis should be put on the selection of covariates, it may 
be advantageous to use weights for the two components of the penalty (compare 
Tibshirani et al., 2005). With parameter ψ ∈ (0, 1), the weighted penalty for nominal 
effect modifier j is

		      ψ ψ β β ψ β
> =

= − + −∑ ∑
1

( , ) (1 ) ,
kj

nom
j jr js j jr

r s r

J bβ � (2.5)

and for ordinal effect modifiers, it is

		      ψ ψ β β ψ β−
= =

= − + −∑ ∑, 1
2 1

( , ) (1 ) .
k kj j

ord
j jr j r j jr

r r

J bβ � (2.6)

Parameter ψ is restricted to (0, 1) in order to separate it strictly from tuning 
parameter λ.

If effect modifiers uj have different numbers of categories, additional weighting of 
penalty terms analogously to Bondell and Reich (2009) could be used to prevent an 
eventual selection bias.

2.1  Computational issues

Since penalty (2.2) contains absolute values, a convex but not continuously differenti
able optimization problem has to be solved. In the classical linear model, quadratic 
programming can be used, or the solution can be approximated by employing the 
lars algorithm (Efron et al., 2004); see Gertheiss and Tutz (2012) for details. In a 
GLM, however, a more general approach is needed. Non-differentiability can be 
evaded by approximating the penalty at the critical points, i.e., in a neighbourhood 
of | ξ |, ξ = 0. As for example in Koch (1996), the absolute values | ξ | in the penalty 
are approximated by the differentiable function c+2ξ , where c denotes a small 
positive constant. Combining this approximation with a local trick of Fan and  
Li (2001) and a proposal to complete the square of Ulbricht (2010) allow to derive 
a penalized iteratively reweighted least squares (PIRLS) algorithm like the one 
described in Oelker and Tutz (2013).

We assume a penalty that can be written as λ λβ α β
=

= ∑ ,1
( ) (| |)

L T
l ll

P p , where al are 

known vectors. Like in Ulbricht (2010), penalty terms , (| |)T
l lp aλ β  are supposed to 

map | |T
la β  onto the positive real numbers, to be continuous and monotone in | |.T

la β  
In addition, penalty terms , (| |)T

l lpλ a β  are assumed to be continuously differentiable 

0T
l∀ ≠a β such that λ ≥ ∀ >,d (| |)/d| | 0 | | 0T T T

l l l lp a a aβ β β holds. Penalty Jn(β) from 
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equation (2.2) fits in this framework: let the vectors al denote the columns of a 
block-diagonal matrix A = diag (A0, . . ., Ap) ⊂ Rq×L and functions pλ,l(ν) be defined as 
λ ⋅ ν. Let block Aj refer to the effect modifier uj. If uj is nominal, 

T
j jA β  shall give the 

values of the according coefficients βj1, . . ., βjkj and their pairwise differences. The 
former is reached when using the columns of a (kj × kj) identity matrix, the latter 
by columns containing these combinations of ±1 building the needed differences. 
Hence, e.g., for kj = 4, we have

1 0 0 0 1 0 0 1 1 0

0 1 0 0 1 1 0 0 0 1
,

0 0 1 0 0 1 1 1 0 1

0 0 0 1 0 0 1 0 1 0

nom
j

− − − 
 − − =
 −
 
 

A

which is a 
1

(1 )
2j j jk k k × +  

 dimensional matrix. If uj is ordinal, only pairwise 

differences of coefficients βj1, . . ., βjkj are penalized. Thus, in (kj × (2kj − 1)) matrix 
ord
jA the last three columns of matrix nom

jA are omitted. If the intercept is modified 
by any effect modifier, matrix A0 depends on the concrete form of the penalty. In 
general, if bj = 0 the ‘diagonal part’ part of 

nom
jA , ord

jA respectively, is omitted. For a 
covariate xj whose influence on y is not modified by any uj, matrix 

none
jA  is an empty 

matrix with zero columns and kj rows.
With this representation and starting with an initial value (0)

ˆ ,β  we obtain

	 1
( 1) ( ) ( ) ( ) ( )

ˆ ˆ(1 ) ( ) ,T T
k k k k kWλν ν −

+ = − ⋅ + ⋅ + β β X W X A X y

where ( )
ˆ

kβ is the estimate of the current iteration; the matrix W(k) denotes weights 
and ( )ky denotes pseudo-observations like in usual GLMs. We have 1

( ) ( ) ( ) ( ),k k k k
−=W D DΣ

( ) ( )
ˆdiag( ( ( ))/ ),ik kh= ∂ ∂D η β η  2

( ) ( )
ˆdiag( ( )),ik kσ=Σ β  1

( ) ( ) ( )
ˆ( )k k k

−= − +y D y Xµ β  and µ(k) = 
h(η). ν is a step length parameter that usually equals 1; it allows to control the 
algorithm’s convergence whenever necessary and avoids back stepping. Matrix 
Aλ ∈ Rq×q implements the approximated penalty:

ˆ{ 0}( )

21
( )

1
.

ˆ( )

TL al k T
l l

Tl
l k c

β

λ

λ
≠

=

⋅
= ⋅

+
∑A a a

a β
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It is updated in each iteration; the approximation of the absolute values is enhanced 

continually. In general, function ξ +2 c  deviates only slightly from the absolute 

| ξ |; for ξ = 0 the deviation is ,c  for all other values of ξ, the deviation is smaller 
than .c The algorithm stops when + −( 1) ( ) ( )

ˆ ˆ ˆ| |/ | |k k kβ β β
 
≤ ε, for a fixed small ε > 0. 

The generalized hat matrix of the algorithm’s final iteration allows to estimate 
the model’s degrees of freedom. The presented algorithm, however, is only locally 
convergent. Only if the objective function is strictly convex, a local optimum is 
ensured to be the global optimum, too. Strict convexity implies that the penalized 
Fisher information matrix is positive definite. The penalty applied here leads to a 
positive semi-definite penalty matrix. Therefore, for XTW(k)X positive definite, the 
quasi-Newton approach will find descent directions in each iteration; but for the 
q > n case, it may happen that the solution is not unique (Ulbricht, 2010). In this 
case, we recommend to use several starting values and to check the likelihood scores 
of the according solutions; however, in our experience, this is a minor problem.

Moreover, the proposed computational approach has substantial advantages: it 
keeps within the established framework of Fisher scoring algorithms. It allows not 
only for categorical effect modifiers but handles a more general penalized likelihood 
problem and can hence be extended easily to other penalties. Besides the update of 
matrix Aλ, the computational burden is the same as for Fisher scoring algorithms. 
Even though each set of coefficients has to be computed separately, the method gives 
coefficient paths.

The proposed algorithm is implemented in the R package gvcm.cat (R Develop
ment Core Team, 2012; Oelker, 2013). Besides the algorithm itself, the package pro-
vides a formula environment and different options for cross-validation; it is possible 
to plot coefficient paths, cross-validation scores and coefficient profiles.

2.2  Large sample properties

For asymptotics, general assumptions have to hold and the number of observations 
has to grow in accordance with the requirements of categorical covariates: If the 
sample size n tends to infinity, it is assumed that the number of observations njr on 
level r of uj tends to infinity for all j, r at the same rate. Practically, that means, that 
asymptotically the probability for an observation on level r of uj must be positive 
and tend to a constant cjr for all j, r. Then we have

Theorem 1. Suppose 0 ≤ λ < ∞ has been fixed, and all class-wise sample sizes nr satisfy 
njr/n → cjr, where 0 < cjr < 1. Then the estimate β̂  that minimizes (2.1) with Jn(β) 
defined by (2.2), (2.3) and (2.4) is consistent, i.e., ε→∞ − > =2ˆ *(|| || ) 0limn P β β  for 
all ε > 0.
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The proof is given in Supplement A. Employing the generalized versions (2.5)  
and (2.6) does not affect the consistency results.

As pointed out in Zou (2006), regularization as used so far does not ensure 
consistency in terms of variable selection. To gain selection consistency, Zou (2006) 
proposed an adaptive version of the original Lasso that has the so-called oracle 
properties. A corresponding modification for penalty (2.2) is available: Given effect 
modifiers uj, j = 0, . . ., p, penalty Jn(β) (2.2) is modified to the adaptive penalty ( )ad

nJ β  
by employing

	         β β β
> =

= − +∑ ∑,
( ) ( )

1

( ) | | | | and
kj

ad nom
j rs j jr js j r j jr

r s r

J w b wβ � (2.7)

	         β β β− −
= =

= − +∑ ∑,
, 1( ) , 1 ( )

2 1

( ) | | | |,
k kj j

ad ord
j r r j jr j r j r j jr

r r

J w b wβ � (2.8)

which replace (2.3) and (2.4), and by using adaptive weights

	               1
( ) ( )

ˆ ˆ( )| | andML ML
rs j rs j jr jsw nφ β β −= − � (2.9)

	               1
( ) ( )

ˆ( )| | .ML
r j r j jrw nφ β −= � (2.10)

Here, ˆ ML
jrβ  denotes the ML-estimate of βjr; 

functions φrs(j)(n) and φr(j)(n) are additional 
weights for the penalty terms that are assumed to converge to fixed values:  
φrs(j)(n) → qrs(j) and φr(j)(n) → qr(j), with 0 < qrs(j), qr(j) < ∞. If φrs(j) (n) = φ and φr(j) (n) = 1 − φ, 
0 < φ < 1, are global constants, we obtain a generalization with the same structure as 
given in equations (2.5) and (2.6); 0 < φ < 1 or similar constraints for functions φrs(j)

(n), φr(j)(n), guarantee that the effect of the weights and the effect of the global tuning 
parameter λ are separated. Hence, the adaptive weight of a penalty term becomes 
huge when the ML-estimate of the penalty term is close to zero. The adaptive 
weight becomes smaller as the ML-estimate of the penalty term gets bigger. Thus, 
adaptive weights favour to set coefficients with small ML-estimates to zero, to fuse 
coefficients with close ML-estimates, respectively. Technically, with some additional 
assumptions, this ensures selection consistency: First of all, the penalty parameter 
λ has to increase with sample size n; one assumes that λ = λn with / 0n nλ →  and 
λn → ∞, and all class-wise sample sizes nr satisfy nr/n → cr, where 0 < cr < 1.

In addition, we define some vectors: ˆ nβ  denotes the estimate of ;β  we emphasize 
that it is based on the sample size n. Then, the vector ˆ ˆn T n=θ βA  with block-diagonal 
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matrix A ∈ Rq×L contains the estimates of all the terms in penalty (2.2), that is, 
the estimated values of all penalized coefficients ˆ

ijβ  and—according to the level of 
measurement—the estimated values of their differences. Furthermore, define C and 
Cn. C denotes the set of indices corresponding to those entries of ˆnθ  which are truly 
non-zero; whereas Cn denotes the estimate of C based on n observations. 

*θC  is the 
vector with the true values of the entries in C; ˆnθC  denotes its estimate.

Previous assumptions concerning ML-estimation are extended: the model must 
hold, the negative log-likelihood −ln(β) has to be convex. ln(β) has to be at least 
three times continuously differentiable, the third moments of y have to be finite. 

Let 
2 ( )n

n T

l β
β β

 ∂= − ∂ ∂ 
F E  denote the expected information matrix, then Fn/n must 

have a positive definite limit F; for the score function 
( )

( ) n
n

l
s

∂=
∂

ββ
β

, we suppose 

E(sn(β)) = 0. Then one obtains

Theorem 2. Suppose λ = λn with / 0n nλ →  and λn → ∞, and all class-wise sample 
sizes njr satisfy njr/n → cjr, where 0 < cjr < 1. Then penalty ( )ad

nJ β  employing terms 
(2.7) and (2.8) with weights (2.9) and (2.10), where ˆ ML

jrβ , φrs(j)(n) and φr(j)(n) are 
defined as above, ensures that

	 (a)	 ˆ * *( ) ( , Cov( ))
dnn N− → 0θ θ θC CC

	 (b)	limn→∞ P(Cn = C) = 1.

The proof uses ideas from Zou (2006) and Bondell and Reich (2009), and is given in 
Supplement A. The concrete form of *Cov( )Cθ results from the asymptotic marginal 
distribution of a set of non-redundant truly non-zero regression parameters or 
differences thereof. Since all estimated differences are (deterministic) linear functions 
of estimated parameters, the covariance-matrix *Cov( )Cθ  is singular.

/
n

n n F
→∞
→F  with positive definite F is typically assumed in observational studies 

but it raises problems in experiments. In this case the given proof can be extended to 
matrix normalization (see, for example, Fahrmeir and Kaufmann, 1985).

For λ = 0, the unpenalized likelihood is maximized; therefore, asymptotic normality 
and consistency hold as shown by McCullagh (1983). Distributional properties for  
n → ∞ given a fixed λ are not discussed since the penalty shall not vanish in proportion 
to −ln(β) for n → ∞.

For the normality part of Theorem 2, the speed of convergence is λn/ n → 0. 

Since 1/2 1/2( ) ( , ( )/ ) ( )n n pn s N n n− −∼ +Oβ β0 F
 
and β λ≤ →1/2ˆ( | | ) 1ML

jr nnP
 
like c/ n → 0, 
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the consistency part behaves the same. Thus, the overall speed of convergence is 
Op(n

−1/2).
In some cases, in particular for small sample sizes, ML-estimates required for 

adaptive weighting may not exist. If necessary, ML-estimates can be replaced by other 
n-consistent estimates, e.g., Ridge estimates with fixed tuning parameter. However, 

adaptive estimation is as good as the used weights and hence not recommended by 
all means.

3  Alternative selection strategies

For the selection of variables, stepwise procedures are often used. In particular, 
forward and backward selection methods based on information criteria like the 
Akaikes Information Criterion (AIC) or the Bayesian Information Criterion (BIC) 
are popular. One tries to find the model that performs best with respect to the chosen 
criterion. By construction, these strategies yield variable selection but no fusion of 
categories. Gertheiss and Tutz (2012) obtain the fusion of categories by using an 
enlarged setting. For a nominal effect modifier uj with three categories having impact 
on covariate xj, for example, the varying coefficient βj(uj) corresponds to sub-vector 
(βj1, βj2, βj3)

T in coefficient vector β. All possible selections of coefficients belonging 
to xj would be: {(), (βj1), (βj2), (βj3), (βj1, βj2), (βj1, βj3), (βj2, βj3), (βj1, βj2, βj3)}. Allowing 
for fusion increases the number of possibilities by {(βj1, βj2 = βj3), (βj2, βj1 = βj3), (βj3, 
βj2 = βj1), (βj1 = βj2 = βj3)}. When selecting a model, all possibilities to select and/or 
fuse coefficients must be considered.

Concretely, we start with a model containing an intercept only. In each step, the 
degrees of freedom of the model are enlarged by one until the chosen criteria (AIC 
or BIC) is not improved anymore, with the degrees of freedom being defined as the 
number of non-zero coefficient blocks in β̂  (Tibshirani et al., 2005). Hence, in each 
step, a former zero coefficient can be set to non-zero, or an entire group of zero 
coefficients can become non-zero, but with all coefficients within this group being 
equal. Alternatively, a group of non-zero but identical coefficients can be split into 
two groups of non-zero coefficients, with coefficients now being identical within 
each of both groups but different between groups.

4  Simulation studies

The proposed methods are compared in simulation studies. For illustration, we start 
with a simple example.



Regularization and model selection with categorical predictors  167

Statistical Modelling 2014; 14(2): 157–177

4.1  Illustrative example

We assume a logistic regression model with two covariates x1, x2 and one nominal 
effect modifier u with categories 1, 2 and 3. u possibly impacts all covariates plus the 
intercept. Concretely, the predictor is

	 ηtrue = b0(u) + x1 b1(u) + x2 b2(u)

= b0 + x1 (b11I(u = 1) + b12I(u = 2) + b13I(u = 3)) + x2 b2

= 0.2 + x1 (0.3I(u = 1) + 0.7I(u = 2) + 0.7I(u = 3)) − x2 · 0.5.� (4.1)

That means, while the intercept and x2 do not depend on u, covariate x1 varies with 
categories 1 and 2/3 of u. Covariates x1 and x2 are independently drawn from an 
uniform distribution U(0, 2); the effect modifier u is multinomial with probabilities 
0.3, 0.4 and 0.3 for categories 1, 2 and 3, respectively. For response y, y = h(η) holds, 
where h−1(⋅) is the natural link (logit) function. We generate n = 400 observations. 
When fitting the model, all coefficients are allowed to vary with effect modifier u, 
that is, we have

			   η β β β= + ⋅ + ⋅0 1 1 2 2( ) ( ) ( ).model x xu u u � (4.2)

Figure 1 shows the resulting coefficient paths for the proposed estimator subject to 
penalty parameter λ. λ is scaled as 1 − λ/λmax, where λmax refers to the smallest value 

Figure 1  Coefficient paths for binary model (4.1) assuming predictor (4.2)—with adaptive weights (left) and 
the standard penalty (right).

Source:  Authors’ own.
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of penalty parameter λ that already gives maximal penalization; i.e., the smallest λ 
that sets all penalized coefficients to zero. Hence, we see ML-estimates at the 
right end. The left end relates to maximal penalization; here only the intercept 
remains non-zero. In the left panel, the penalty is adaptive, the weights are fixed 
(see equation (2.7) with b0 = 0, φrs(j) = φr(j) = 0.5). The paths show how clustering/
selection of coefficients works; Even slight penalization discovers the intercept to be 
non-varying; coefficients of covariate x1 are fused such that only category 1 makes 
a difference. Concerning covariate x2, coefficients should be fused to one non-
varying scalar. But stronger penalties are necessary to make this happen. The  
dotted line marks the optimal model in terms of 5-fold cross-validation with the 
predictive deviance ˆ( , )Dev y µ  as loss function. It shrinks coefficients slightly—in 
return all but one relevant structures are identified. Absolute deviation to the true 
coefficients is small.

When the standard penalty (2.3) is used instead, results change: while coefficient 
paths remain basically the same in structure, the standard penalty slows down fusion 
and selection of coefficients (see Figure 1, right panel). To reach the same effects, 
stronger penalization is needed. Cross-validated λCV is 2.11 now. However, the 
performance is worse than with adaptive weights: in the model chosen by cross-
validation (see dotted line), coefficients of covariate x1 are not fused.

4.2  Comparison of methods

4.2.1  Simulation settings

To compare the proposed methods, various model features are systematically 
varied. Concretely, we consider a model with binomial response, two influential 
covariates and six non-influential noise variables. Training data sets contain  
n = 200 and n = 600 observations, test data sets n = 600 and n = 1800 observations, 
respectively. That is, we have two settings named S200 and S600. All covariates 
are continuous and independently drawn from an uniform distribution U[−2, 2]. 
There is a known effect modifier. It is nominal, has four categories 1, . . ., 4 and 
is independently drawn from a multinomial distribution with probability 0.25 per 
category. The true linear predictor is

β β β= + +0 1 1 2 2( ) ( ) ( )true u x u x uη

= = + = + = + =(0.7 ( 1) 0.7 ( 2) 0 ( 3) 0 ( 4))I I I Iu u u u

+ = − = − = + =1 (1 ( 1) 1.5 ( 2) 1.5 ( 3) 0.5 ( 4))I I I Ix u u u u

+ = + = + = − =2 (0 ( 1) 1 ( 2) 2 ( 3) 3 ( 4)).I I I Ix u u u u
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Since the truly varying coefficients are to be detected by the procedure, all coefficients 
are allowed to vary with effect modifier u. As six non-influential noise variables 
n3, . . ., n8 are added, the assumed predictor is

0 1 1 2 2 3 3 8 8( ) ( ) ( ) ( ) . . . ( ).model u nβ β β β β= + ⋅ + ⋅ + ⋅ + + ⋅η x u x u n u u

This model is estimated using all the methods discussed. That means, we consider 
various penalized estimates: with weight y fixed at 0.5, with flexible weight y, with 
adaptive weights and fixed φrs(j), φr(j) (φrs(j) = φr(j) = φ = 0.5), with adaptive weights and 
flexible φrs(j), φr(j) (φrs(j) = φ, φr(j) = 1 − φ). In addition, we consider forward selection 
strategies with criteria AIC and BIC, and the usual ML-estimate. For ML-estimates, 
neither regularization nor model selection is required. They are the benchmark for 
all the other estimators’ performances. Penalty parameter l is chosen by 5-fold 
cross-validation. If weights y and f are flexible, they are cross-validated, too. 
For each setting, we generate 50 data sets, that is, for each setting each method is 
evaluated 50 times.

4.2.2  Results

To assess parameter estimation, we compute the coefficients’ mean squared error for 
each simulation run:

( )
=

= −∑
2

1

1ˆ ˆ ˆMSE( , ) ,
q

j j
jq

β β β β

where 
=

= ∑ 0

p

jj
q k , β denotes the vector of true coefficients and β̂  its estimate. To 

judge the prediction accuracy, the mean predictive deviance ˆ( , )Dev y µ  is considered, 
referred to as MSEP. Figures 2 and 3 show the boxplots of MSE and MSEP for 
both settings. Error values of penalized approaches and forward selection strategies 
tend to be smaller than those of the ML-estimates. However, in particular forward 
selection based on AIC suffers from a high variability—especially for n = 200, several 
extreme values are observed in Figure 2. Also for penalization with adaptive weights, 
we see that the variability becomes smaller compared to ‘standard’ penalization only 
for increasing sample size. This is due to the construction of the adaptive weights, 
which are the inverses of the ML-estimates. The more observations we have, the 
more stable is the ML-estimate and so is the corresponding weight. We clearly see 
that for small sample sizes oracle properties from Theorem 2 are not given at all, but 
with n becoming larger adaptive estimates become better and better. Of course, the 
point at which the estimator with superior asymptotic properties becomes superior 
for finite samples depends on the concrete setting.
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Figure 3  Boxplots of scaled squared errors (MSE, left panel) and deviances (MSEP, right panel) for setting 
S600; medians mark estimates of MSE and MSEP.

Source:  Authors’ own.

Figure 2  Boxplots of scaled squared errors (MSE, left panel) and deviances (MSEP, right panel) for setting 
S200; in the left panel outliers are omitted.

Source:  Authors’ own.

In addition, we evaluate the clustering and selection performance. According to 
Theorem 2, using the adaptive estimator (with selection consistency) should yield 
better models in terms of selection and clustering. A model selection strategy should 
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exclude non-influential covariates, especially pure noise variables. That is, truly zero 
coefficients should not be selected. Truly non-varying coefficients should be fused. 
For evaluation, we consider false negative (FNR) and false positive rates (FPR). False 
positive means that a truly zero coefficient is fitted as non-zero. False negative means 
that truly non-zero values are estimated to be zero. With # denoting ‘the number of 
coefficients’ we have

#(truly zero set to non-zero)
FPR and

#(truly zero)selection=

#(truly non-zero set to zero)
FNR .

#(truly non-zero)selection=

FPRclustering and FNRclustering are defined analogously, but refer to differences of coeffi
cients. Table 1 shows false positive and negative rates for both settings.

As expected, the adaptive penalty tends to perform better than the standard version. 
False positive rates are much smaller for the first one. For small n, however, false 
negative rates are substantially larger when using adaptive weights. This illustrates 
that selection consistency is an asymptotic property that may not necessarily yield 
best results for small sample sizes. With increasing n, false negative rates are quite 
small for the adaptive version, too. The reason why false positive rates are still  
rather high (for both adaptive and non-adaptive weights) is that the penalty 
parameters are chosen by cross-validation, and cross-validation tends to select 
accurate estimates but a somewhat too large model. AIC based forward selection 
performs similar here. However, having the high variability from above in mind, the 

Table 1  Estimates of false positive and false negative rates for settings S200 and S600
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FPRclustering 1 0.64 0.69 0.43 0.42 0.40 0.10
FNRclustering 0 0.05 0.03 0.15 0.15 0.19 0.27

Setting S600 FPRselection 1 0.81 0.71 0.43 0.39 0.39 0.11
FNRselection 0 0.00 0.01 0.01 0.01 0.02 0.03
FPRclustering 1 0.77 0.76 0.45 0.42 0.37 0.05
FNRclustering 0 0.01 0.00 0.04 0.03 0.08 0.17

Source:  Authors’ own.
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previous recommendation for adaptive weights still holds. With BIC, by contrast, 
typically a much smaller model is selected, leading to smaller false negative but 
substantially larger false positive rates. So if the primary goal is a sparse model, and 
the analyst is willing to risk that a number of truly relevant variables/differences 
are disregarded, the BIC based forward selection may be an alternative. Otherwise, 
sparseness and relatively low false negative rates are obtained by the proposed 
penalty with adaptive weights.

5  Application: acceptance of boar meat and the effect of labelling

A known sensory problem with respect to boars is the occurrence of so-called boar 
taint, which may affect consumer acceptance of boar meat; see, e.g., Mörlein et al. 
(2012), Meier-Dinkel et al. (2013), and references therein. However, liking or disliking 
a food product does not only depend on the product’s physicochemical proper- 
ties but also on the consumers’ expectations. Therefore we are interested in whether 
the consumer acceptance is affected solely by labelling meat as ‘boar meat’. In addition, 
various consumer characteristics may influence individual liking or disliking of boar 
meat, such as age or gender of the consumer. The data considered here is a subset 
from Meier-Dinkel et al. (2013). Consumers tasted meat from four different product 
groups: (1) control (castrate or gilt meat) with label ‘pork’ (2) control with label 
‘young boar meat’, (3) real boar meat with label ‘pork’ and (4) boar meat with label 
‘young boar meat’. We are interested in whether the probability of liking the taste 
of the product (binary response y ∈ {0, 1}) is affected by the product type, and in 
particular whether acceptance of pork/boar meat even differs between labels ‘boar’ 
and ‘pork’. Hence, we include the product type as a categorical effect modifier in a 
logistic regression model and allow the influence of various covariates to change with 
the product type: consumer’s age, gender, smoker (no/yes), sick (olfactory disability 
caused by sickness, in particular cold and allergy: no/yes) and a factor indicating 
whether the consumer knows what ‘boar meat’ means (self-reported knowledge:  
no/yes). In addition, we correct for the effect of contact to animal husbandry  
(contact: no/yes). Table 2 shows the coefficients estimated by pure maximum 
likelihood (block 1) and using the proposed penalty approach, for both model 
selection and estimation of coefficients (block 2). The sample size is 133, which is 
small for a binary model with 28 parameters. This may explain the quite extreme 
ML-estimates. Regularized estimates can be expected to be more reliable here.

When using our approach, we see that on average the probability of acceptance 
is estimated as equal for control and boar meat that is labelled as ‘pork’, as in the 
intercept it is not distinguished between these three groups. But when we have a 
closer look at the consumers, this picture changes. In particular, if the consumer 
knows what ‘boar meat’ means, the chance of accepting boar with label ‘pork’ 
(product group (3)) decreases quite drastically. At first glance, this seems to contradict  
the hypothesis that consumers’ expectations influence liking of products, but it may 
be explained by some sort of disappointment effect, as the consumer expected to taste 
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pork, as labelled, and not boar. For control meat (group (1) and (2)), by contrast, 
there is a positive effect of knowledge which is constant over both labels. Only 
when boar meat is labelled correctly (group (4)), there is no effect of knowledge as 
the coefficient is set to zero. The latter two findings, as well as the effect of gender, 
are rather difficult to explain, but there is another interesting effect of labelling: if 
boar is labelled as ‘pork’ (product group (3)), being sick increases the chance that 
the consumer likes the taste of the product. A possible explanation is that sickness 
affects the sense of taste and the sense of smell, and sick people hence rather rely on 
the label saying that it’s pork and not boar. Though smoking might affect the sense of 
taste, the consumer’s smoking status is fitted as completely irrelevant for acceptance 
of the meat, as all coefficients are set to zero. If we look at the effect of age, we see 
that for older people the chance of liking control meat labelled as boar increases,  
but the chance of liking boar—no matter which label is attached—decreases. Possibly, 
the expectation of a certain taste increases with age.

Using the AIC/BIC-based forward selection (block 3/4), the model is much sparser. 
This may indicate that at least some of the effects found above are false positives. 
But, as seen in the simulations, forward selection strategies may have rather large 
false negative rates. To obtain more insight, further studies are necessary and indeed 
currently conducted.

6  Special case: categorical effects

So far, we considered categorical effect modifiers in general. We did not touch 
categorical effects, which are a special case of categorical effect modifiers. One obtains 
a coded categorical effect, when the effect modifier uj is categorical and the modified 
covariate xj is a constant vector. We have for example

1
1 ( ) 1 ( ).

kj
j j jr jr

I rβ β
=

⋅ = ⋅ =∑u u  
Penalization remains the same. Statements made for penalized varying coefficients 
hold for penalized categorical effects, too. Especially large sample properties can be 
transferred. However, the devil is in the details: unlike usual coding, the obtained 
coding does not contain a reference category. This implies at least two things: the 
design matrix is not of full rank and interpretation changes. As estimation is penalized 
and the tuning parameter λ will be cross-validated in most cases, the first aspect can 
be neglected. Concerning interpretation, penalized estimates can be transformed, such 
that they correspond directly to usual coding of categorical effects. Note, however, the 
penalty we use here is not designed for a reference category. In contrast to Gertheiss 
and Tutz (2010), all categories of a categorical effect are penalized in the same way.

7  Concluding remarks

We investigated categorical effect modifiers within the framework of GLMs. When 
selecting a model with categorical effect modifiers, one wants to find out which 
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covariates have an effect on the response, and if so, which categories have to be 
distinguished. In fact, this is a recoding of usual interactions between categorical 
and metric predictors, but the concept of effect modifiers allows for interpretable 
model selection strategies. We presented two different approaches: on the one hand, 
we extended the ideas of Tibshirani et al. (2005) to varying-coefficient models with 
categorical effect modifiers. Thus, we are able to simultaneously identify varying 
coefficients and select covariates in GLMs. The penalty adjusts for the different 
amount of information in nominal and ordinal effect modifiers. An adaptive version 
of the proposed penalty was shown to be asymptotically normal and consistent. 
These results remain valid when the scale parameter of the exponential family is 
estimated and plugged-in, which allows for quasi-likelihood approaches. On the 
other hand, we investigated a modified forward selection strategy: start with a null-
model and add one degree of freedom in each iteration until a chosen criterion is 
not improved anymore. Numerical experiments suggested both methods to be highly 
competitive. Penalized estimates and forward selection strategies performed distinctly 
better than un-penalized ML-estimates. Forward selection strategies, however, suffer 
from immense variability, particularly when based on the AIC, which makes them 
less attractive. With BIC, typically a smaller model than with L1-regularization is 
selected, which leads to smaller false positive but higher false negative rates.

Lasso-type penalties imply not continuously differentiable optimization problems, 
and in GLMs different algorithms other than in the linear model have to be used. 
For categorical effect modifiers, we adopted algorithms of Fan and Li (2001) and 
of Ulbricht (2010). All functions are available in the R add-on package gvcm.cat 
(Oelker, 2013).

In practice, varying-coefficient models are highly relevant. We analyzed data 
from a consumer study on boar meat. We could confirm that the chance of consumer 
acceptance is smaller for boar meat than for regular pork (castrate or gilt meat). In 
addition, we could find some evidence of labelling effects. For instance, if wrong 
labelling causes too high expectations, disappointment substantially reduces the 
chance of acceptance. If the sense of taste is affected by sickness consumers seem to 
rely on the labelling.

So far we employed a single penalty parameter λ only; for a modest number 
of effect modifiers, however, one tuning parameter per effect modifier could be 
advantageous.

The proposed penalty’s potential is apparent: for longitudinal studies its scope 
can be enlarged to marginal models; and it can be further generalized: varying 
coefficients may depend on more than one effect modifier. In this article we assumed 
continuous covariates x1, . . ., xp. But, of course, covariates can be categorical, too. 
Then, there are even more coefficients, and hence, there is an even stronger demand 
for regularization. Often there will be additional covariates whose influence is not 
modified by a categorical variable, but by a continuous one, or not at all. In the 
latter case the covariate can simply be included in the model without penalization, 
or with the standard Lasso. Technically, this is just a special case of the model 
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considered here—the corresponding effect modifier has just one level. If the effect 
modifier is continuous, smooth functions can be specified. If smoothing is done by 
using a penalty approach, e.g., penalized splines, similar penalization strategies to 
fuse and/or select functions can be applied.
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