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Expectile and quantile regression—David and
Goliath?
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Abstract: Recent interest in modern regression modelling has focused on extending available (mean) re-
gression models by describing more general properties of the response distribution. An alternative
approach is quantile regression where regression effects on the conditional quantile function of the
response are assumed. While quantile regression can be seen as a generalization of median regression,
expectiles as alternative are a generalized form of mean regression.

Generally, quantiles provide a natural interpretation even beyond the 0.5 quantile, the median. A
comparable simple interpretation is not available for expectiles beyond the 0.5 expectile, the mean.
Nonetheless, expectiles have some interesting properties, some of which are discussed in this article.
We contrast the two approaches and show how to get quantiles from a fine grid of expectiles. We
compare such quantiles from expectiles with direct quantile estimates regarding efficiency. We also
look at regression problems where both quantile and expectile curves have the undesirable property
that neighbouring curves may cross each other. We propose a modified method to estimate non-crossing
expectile curves based on splines. In an application, we look at the expected shortfall, a risk measure
used in finance, which requires both expectiles and quantiles for estimation and which can be calculated
easily with the proposed methods in the article.
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1 Introduction

Quantile regression allows the estimation of the effect of covariates on the distribution
of a response variable. The idea has been suggested by Koenker and Bassett (1978)
and is well elaborated with numerous extensions in Koenker (2005). The underlying
regression model for the ˛-quantile with ˛ ∈ (0,1) is specified as

yi = qi,˛ + �i,˛, i = 1, . . . , n
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with yi as response variable, i = 1, . . . , n and qi,˛ as the ˛-quantile which may depend
on covariates xi, say, e.g., through the linear model qi,˛ = ˇ

(q)
0˛ + xiˇ

(q)
1˛ . Unlike classical

regression where a zero mean is assumed for the residuals, in quantile regression
one postulates that the ˛-quantile of the residuals �i,˛ is zero, i.e., P(�i,˛ ≤ 0) = ˛.
Estimates for qi,˛ are obtainable through the minimizer of the weighted L1 sum

n∑
i=1

wi,˛
∣∣yi − qi,˛

∣∣, (1.1)

where

wi,˛ =
{

1 − ˛, for yi < qi,˛,

˛, for yi ≥ qi,˛

are asymmetric weights. Numerically, (1.1) can be minimized by linear programming,
see, e.g., Koenker (2005).

As an alternative to quantile regression, Aigner et al. (1976) and Newey and Powell
(1987) proposed to replace the L1 distance in (1.1) by a quadratic L2 term leading to
the asymmetric least squares

n∑
i=1

wi,˛ (yi −mi,˛)2 (1.2)

where the minimizer m̂i,˛, say, is called (estimated) expectile. The underlying regres-
sion model now is

yi = mi,˛ + �i,˛, i = 1, . . . , n

under the assumption that the ˛-expectilemi,˛ of the error terms is zero. The expectile
mi,˛ may again depend on covariates, e.g., through the linear expectile model mi,˛ =
ˇ

(m)
0˛ + xiˇ

(m)
1˛ . Expectile estimation is thereby a special form of M-quantile estimation

(Breckling and Chambers, 1988) and expectile regression has seen some increasing
interest in the last years (Schnabel and Eilers, 2009b; Pratesi et al., 2009; Sobotka
and Kneib, 2012; Guo and Härdle, 2013). An overview about methods focusing on
estimation procedures regarding more features of the data than its centre (including
semiparametric expectile and quantile regression) can be found in Kneib (2013).

In this article, we contrast quantile and expectile regression and propose some
extensions to expectile estimation to link it to quantiles. A comparison of the two
routines might remind us of the story of David and Goliath just by comparing the
number of citations: about 1850 for Koenker and Bassett (1978) referring to quan-
tiles and about 100 for Newey and Powell (1987), as of November 2013. Quantiles
are certainly more dominant in the literature due to the fact that expectiles lack an
intuitive interpretation while quantiles are just the inverse of the distribution func-
tion. Numerically, as seen by comparing (1.1) to (1.2), quantiles ‘live’ in the L1 world

Statistical Modelling 2015; 15(5): 433–456



Expectile and quantile regression—David and Goliath? 435

while expectiles are rooted in the L2 world. This by itself has several consequences.
Quantiles need linear programming for estimation while expectiles are fitted using
quadratic optimization. Beyond all discrepancies between quantiles and expectiles,
it is important to note that both are related in various ways. Jones (1994) shows
that expectiles are in fact quantiles of a distribution function uniquely related to the
distribution of y. Yao and Tong (1996) give a similar result by showing that there
exists a unique bijective function h : (0,1) → (0,1) such that q˛ = mh(˛), where h(.)
is defined through

h(˛) = −˛q˛ +G(q˛)
−m0.5 + 2G(q˛) + (1 − 2˛)q˛

(1.3)

with G(q) = ∫ q
−∞ y dF(y) as the partial moment function and F(y) as cumulative

distribution of y (see also De Rossi and Harvey, 2009). Note that m0.5 = E(y) =
G(∞). In this article, we will make use of relation (1.3) and relate quantile estimates
q̂˛ to expectile-based quantile estimates m̂

ĥ(˛), where ĥ(.) is an estimated version of
h(.) in (1.3). One of the key findings of the article is that m̂

ĥ(˛) are numerically more
demanding than quantile estimates, but, as simulations show, they serve as quantile
estimates which can be even more efficient than the empirical quantile q̂˛ itself.

In quantile regression, a numerical problem in applications are the so-called cross-
ing quantile functions. These occur if for estimated quantiles, one gets q̂˛(x) > q̂˛′(x)
for ˛ < ˛′ for some value x (in the observed range of the covariate), where q̂˛(x) =
ˆ̌ (q)

0˛ + x ˆ̌ (q)
1˛ . Several methods, algorithms and model constraints have been proposed

to circumvent the problem. Bondell et al. (2010) made use of linear programming.
They also gave a good overview about earlier proposals including Koenker (1984),
He (1997), Wu and Liu (2009) or Neocleous and Portnoy (2008). Chernozhukov
et al. (2010) rearranged the fitted (linear) curves into a set of non-crossing curves,
whereas Dette and Scheder (2011) used marginal integration techniques and mono-
tone rearrangements. Schnabel and Eilers (2013b) proposed the so-called quantile
sheets where crossings are circumvented by penalization. The problem of crossing
curves occurs in principle in the same way for expectile regression. We demonstrate
with simulations that crossing expectiles occur less frequently. This implies that less
attention is needed to avoid crossing expectiles compared to crossing quantiles.

Quantile regression, as well as expectile regression, can be extended to non-
parametric functional estimation. For quantile estimation, Koenker et al. (1994) pro-
posed spline-based estimation. Bollaerts et al. (2006) made use of penalized B-splines
with an L1 penalty. Recently Reiss and Huang (2012) suggested quantile estima-
tion based on penalized iterative least squares (see also Yuan, 2006). For expectiles,
smooth estimation has been pursued by, e.g., Pratesi et al. (2009), and Schnabel and
Eilers (2009b). Other semi- or non-parametric extensions of quantile regression which
allow for flexibility are varying coefficient models. Here smoothness is achieved by
letting the quantile not only depend on (unknown) coefficients which are constant,
but on (smooth) coefficient functions (see, e.g., Honda, 2004; Noh et al., 2012 or
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Andriyana et al., 2014). The idea of smoothing can be extended by assuming that
a ‘set’ of ˛-quantile curves smoothly depends on both, the covariate and ˛. Using
B-splines this easily allows us to incorporate non-crossing conditions, as in Bon-
dell et al. (2010) or Muggeo et al. (2013), for quantile estimation. The estimation
of quantile sheets is proposed in Schnabel and Eilers (2013b). Schnabel and Eilers
(2009a) give a description of non-crossing smooth expectile curves (see also Eilers,
2013). Both approaches are based on penalized spline smoothing. Our approach to
estimate expectile sheets is very similar to an extension formulated in Schnabel and
Eilers, 2009a, who propose the estimation of expectile sheets using a tensor product
of B-splines combined with a penalty in direction of the asymmetry parameter and
covariate. But it is different in the sense that we are using a linear B-spline in direction
of the asymmetry parameter and avoid the use and choice of a smoothing parameter
in that same direction.

Expectiles might not gain popularity as much as quantiles, but we think they de-
serve their niche. For example, Aigner et al. (1976) construct expectiles to estimate
production frontiers and give an additional argument for using expectiles by stat-
ing that expectile regression is a way to treat asymmetric consequences as it places
different weights on positive and negative residuals. But there are other fields which
demand for expectiles as well, for example the field of risk measures for financial
assets. Ziegel (2013) argues for the use of expectiles as a risk measure as they have
desirable properties. Another frequently used risk measure is the ‘expected shortfall’,
which needs the calculation of both, quantiles and expectiles. The expected shortfall
(ES) is a trimmed mean, that is, the mean of a random variable conditional that its
value is above (or below) a certain quantile. The ES can be written as a function
of both, the quantile and the expectile for a level ˛. Estimation of the ES has been
recently proposed by Leorato et al. (2012) by employing the integrated (conditional)
fitted quantile regression function (see also Wang and Zhou, 2010). We extend an
idea of Taylor (2008) and use the fitted quantiles and expectiles for the estimation of
the ES. This connection becomes extremely useful for calculating the ES as it depends
both on expectiles and their corresponding quantiles (as described by Taylor, 2008).

The article is organized as follows. In Section 2, we compare and contrast quantiles
and expectiles, both theoretically and based on simulation. In Section 3, we look at
quantile and expectile regression before Section 4 provides extensions and examples.
Section 5 concludes the contest of David and Goliath.

2 Expectiles and quantiles

2.1 Quantiles from expectiles

Quantiles as well as expectiles uniquely define a distribution function. Let F(y) denote
the continuous distribution function of a univariate random variable Y, which for
the sake of simplicity for now is assumed to not depend on any covariates x. The
distribution is uniquely defined by the quantile function q˛ = q(˛) = F−1(˛) for ˛ ∈
(0,1) or by the expectile function m˛ = m(˛) for ˛ ∈ (0,1). First we show how to
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numerically derive the quantile function q(˛) from the expectile function m(˛). With
other words we demonstrate how the transfer function h(.) in (1.3) can be derived
numerically, which in practice allows us to calculate the quantile function from a
fitted expectile function m̂(˛), say. Note first that expectiles are defined through

m˛ = (1 − ˛)G(m˛) + ˛(m0.5 −G(m˛))
(1 − ˛)F(m˛) + ˛(1 − F(m˛))

(2.1)

which needs to be solved numerically for F(m˛). Let, therefore, 0 < ˛1 < ˛2 · · · <
˛L < 1 be a dense set of knots covering the (0,1) interval. In the following we denote
m̂l = m̂˛l to simplify the notation. In principle, a fine grid of expectiles is all we need
to estimate the distribution function or quantiles. If the original data is still at hand,
one can set m̂0 = min{yi, i = 1, . . . , n} − c0 and just as well m̂L+1 = max{yi, i =
1, . . . , n} + cL+1, where c0 and cL+1 serve as tuning parameters. In our simulations in
Section 2.2 and in the examples in Sections 2.4 and 4.2, we set m̂0 = m̂1 + (m̂1 − m̂2),
m̂L+1 = m̂L + (m̂L − m̂L−1). If one chooses ˛1 to be close to zero (and analogously ˛L
to be close to 1), then there is obviously just a small difference between the minimal
expectile and the minimal observed value of the data.

We now solve (2.1) for m̂l, l = 1, . . . , L, and denote the resulting estimator of
the cumulative distribution function with F̂m(.). To obtain F̂m(.), we estimate the
distribution function at the estimated expectiles m̂l through

F̂l := F̂m(m̂l) =
l∑
j=1

�̂j (2.2)

for non-negative steps �̂j ≥ 0, j = 1, . . . , L and �̂L+1 = 1 − ∑L
l=1 �̂l ≥ 0. Making use

of linear interpolation between adjacent values of F̂(.) leads to

Ĝl = Ĝ(m̂l) =
l∑
j=1

ĉj�̂j

with ĉj = (m̂j − m̂j−1)/2 and ĜL+1 = m̂0.5 as (linear) constraint. This setting now
allows to calculate �̂ = (�̂1, . . . , �̂L) from a set of estimated expectiles. Details are
given in the Appendix.

Defining the linear interpolation F̂m(y) = ∑l
j=1 �̂j + �̂j+1(y− m̂l)/(m̂l+1 − m̂l) for

y ∈ [m̂l, m̂l+1) allows us to invert F̂m(.) to obtain quantile estimates based on estimated
expectiles. We define these as

m̂
ĥ(˛) = F̂−1

m (˛).
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Note that with the definition of m̂
ĥ(˛) for ˛ ∈ (0,1), we get an explicit estimate of ĥ(.)

as a by-product. This is derived by interpolating ˛l and F̂m(ml), which defines h−1(.),
and by taking the inverse we get h(.).

We need that �̂l ≥ 0 which must be fulfilled since m̂l ≥ m̂l−1. Numerical inaccuracy
may yield negative values for �̂l, in particular, for ˛l close to 0 or 1. Estimation under
the linear constraint �̂ ≥ 0 circumvents the problem. Moreover, the estimation can
get numerically unstable, which is easily eliminated by imposing a small penalty on
the calculated values �̂. In fact, defining the density corresponding to F̂(·) as f̂ (·)
with f̂ (y) = �̂l+1/(m̂l+1 − m̂l) for y ∈ [m̂l+1, m̂l), we want f̂ (·) to be ‘smooth’. In other
words, f̂ (y) − f̂ (y+ h) should be small for h small. Given that f̂ (·) is a step function,
this translates to imposing the penalty

�pen

L−1∑
l=1

(
�̂l

m̂l − m̂l−1
− �̂l+1

m̂l+1 − m̂l

)2

. (2.3)

Details are provided in the Appendix. Note that the calculation of quantiles from
expectiles is somewhat numerically demanding. Alternative approaches to estimate
quantiles from expectiles are described in Efron (1991) and Schnabel and Eilers
(2013a). Schnabel and Eilers (2013a) propose to estimate non-crossing expectile
curves using a so-called expectile bundle. Within the expectile bundle crossing curves
are prevented but, as a location scale model is assumed, one also loses flexibility.
Schnabel and Eilers (2013a) also give a description of how to estimate the density
(and therefore, quantiles) from a set of expectiles by using penalized least squares.
The approach by Efron (1991) is a more naive way to get an estimation for quantiles
on a bases of expectiles. Efron (1991) proposed to estimate a high number of expec-
tiles and to count the number of observations lying below each expectile. He calls
the resulting estimates percentiles. Taylor (2008) also uses this method to estimate
quantiles from expectiles to calculate the ES. The method proposed in Efron (1991)
clearly has the advantage that it is simple and easy to perform, but, as one can imag-
ine, it is not very efficient. Especially for extreme values of ˛, our method is to be
preferred as it leads to more precise estimates.

Conclusion: From a set of expectiles we can numerically obtain the quantile
function. The method can also be applied in the regression scenario by conditioning
on the explanatory variable as will be demonstrated in the article later.

2.2 Empirical evaluation

Evidently, the resulting fitted distribution function Fm(.) is continuous but has L+ 1
non-differentiable edges. In principle, one can set L large to n, but this may require
heavy and numerically unstable calculations. In our experience, a sequence from
0.0001,0.001,0.01,0.02, . . . ,0.98,0.99,0.999,0.9999 usually is sufficient for
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deriving the quantile in the range between 1% and 99%, but for large sample sizes,
it may be sensible to choose L such that L is proportional to n.

The procedure allows us now to derive quantiles from expectiles and the question
arises how they perform in terms of efficiency. We, therefore, run a small simulation
study where we estimate a number of expectiles slightly smaller than n (for n = 499,
we estimated 459 expectiles; for n = 199, we set L = 159). We simulate (a) from the
standard normal distribution, (b) from the Chi-squared distribution (df = 2) and (c)
from the t-distribution (df = 3) with sample sizes n = 199 and n = 499, and each
simulation is replicated 1000 times. We use odd sample sizes to guarantee unique
quantiles, for e.g., ˛ = 0.5. We compare our quantiles from expectiles m̂

ĥ(˛) with
ordinary quantiles for ˛ = 0.01,0.02,0.05, . . . ,0.95,0.98,0.99. The calculation of
quantiles from expectiles is a part of the R-package ‘expectreg’ (as all R-packages
available from cran.r-project.org). Quantiles q̂˛ are calculated using the func-
tion rq from the R-Package ‘quantreg’ by Koenker (2013b). We also look at smooth
quantiles denoted by q̂smooth

˛ and calculated using the method proposed by Jones
(1992). For a moderate number of L, numerical instability does not seem to be a
problem within the estimation of quantiles from expectiles. In total, the simulation
includes 6 × 1000 times the calculation of quantiles from expectiles, a procedure
which failed in none of the 6000 cases. Penalty (2.3) does not only lead to a smooth
distribution function and, therefore, to smooth quantile estimates, but also improves
the numerical stability of the calculations. For n = 499 and a number of 459 expec-
tiles, the implemented function needs around seven seconds to calculate F̂m(.) (using
one kernel of an ordinary computer).

In Figure 1, we show for one (randomly chosen) sample of each distribution with
n = 499 the fitted transfer function h(.).

The true function is provided for comparison and apparently the fit looks accept-
able. The function h itself is of secondary interest for this simulation study, but we
see that h(.) in fact can be estimated. Moreover, we will need the transfer function
later in the example of Section 4.3 where we estimate the ES.

In Figure 2, we visualize the result of our simulations. Here we compare m̂
ĥ(˛) with

q̂˛ (solid lines) and, to make a fair comparison, with q̂smooth
˛ (dotted lines). As the

results for n = 199 and n = 499 are very similar, Figure 2 concentrates on n = 199.
The first plot of Figure 2 shows the simulation-based relative root mean squared error
(RMSE) of the estimated quantiles for the standard normal distribution. Results for
the Chi-squared distribution can be found in the second plot and in the third plot,
findings for the student t-distribution are visualized. Results above the unit line stand
in favour for expectiles, and Figure 2 mirrors surprisingly satisfactory performances
for m̂

ĥ(˛). We notice the gain of efficiency for the two symmetric distributions and inner
quantiles: The RMSE for quantiles from expectiles is 5–10% lower than the RMSE
for smooth quantiles. Not surprisingly, the difference between quantiles and smooth
quantiles becomes stronger when looking at extreme quantiles. This is also mirrored
in the relative RMSE as we see that for quantiles reflecting extreme observations
the smoothing leads to an improvement. Generally, it occurs that the expectile-based
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α
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χ

Figure 1 Estimated transfer function ĥ(.) (in black) and theoretical transfer function (in grey) for the three kind
of error distributions considered here
Source: Authors’ own (prepared with GNU R).

α αα

Figure 2 Relative root mean squared error RMSE (q̂˛)/RMSE (m̂ĥ(˛)) (solid lines) and RMSE (q̂smooth
˛ )/

RMSE (m̂ĥ(˛)) (dotted lines) where h(.) is estimated through ĥ(.) for different simulation distributions and
n = 199
Source: Authors’ own (prepared with GNU R).
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quantile estimators m̂
ĥ(˛) behave sound and are (for most values of ˛) more efficient

than the direct quantile estimates q̂˛. This holds as well in terms of relative RMSE
as in terms of relative mean absolute error which is not reported here as the results
were quite similar.

Conclusion: All in all, we see, that the calculation of quantiles from a set of ex-
pectiles is a sensible thing to do also in terms of efficiency. The numerical burden is
of course not ignorable.

2.3 Expectiles and quantiles in the tail

As can be seen from Figure 1, we have for small values of ˛ that h(˛) � ˛ and ac-
cordingly for ˛ close to 1, (1 − h(˛)) � (1 − ˛), unless the distribution is heavily
tailed. For instance, the ˛ = 0.01 quantile of the standard normal distribution corre-
sponds to the h(˛) =: ˜̨ = 0.0014524 expectile. This raises the question if and how
well extreme expectiles can be estimated. To tackle this question formally, we look
at expectiles and quantiles in the tail of the distribution by setting

˛ = �/n (or ˛ = 1 − �/n) (2.4)

for some � ≥ 1. Moreover, we assume that the tails have a reasonable interpretation
in that the second-order moment of the underlying distribution is finite. The expectile
estimate m̂ ˜̨ is defined as a minimizer of (1.2) for ˜̨ = h(˛) and we get

m̂ ˜̨ =
( n∑
i=1

ŵi, ˜̨

)−1( n∑
i=1

ŵi, ˜̨Yi

)
, (2.5)

where ŵi, ˜̨ = 1 − ˜̨ for Yi < m̂ ˜̨ and ŵi, ˜̨ = ˜̨ for Yi ≥ m̂ ˜̨ . Note that (2.5) is not
an analytic definition, since the iterated weights ŵi depend on the fitted value
m̂ ˜̨ . We simplify (2.5) by replacing the ‘fitted’ weights by their ‘true’ weights wi, ˜̨
defined through wi, ˜̨ = 1 − ˜̨ for Yi < m ˜̨ and wi, ˜̨ = ˜̨ otherwise. This allows us to
approximate (2.5) to

m̂ ˜̨ ≈
( n∑
i=1

wi, ˜̨

)−1( n∑
i=1

wi,˛Yi

)
. (2.6)

Note that as shown in the Appendix, we have ˜̨ � ˛ for ˛ close to 0 and (1 − ˜̨ ) �
(1 − ˛) for ˛ close to 1. Therefore, we find w˛ := E(wi,˛) = (1 − ˜̨ )˛+ ˜̨ (1 − ˛) ≈ ˛,
so that with (2.4), we may approximate (2.6) through expansion to

m̂ ˜̨ −m ˜̨ ≈�−1
n∑
i=1

wi, ˜̨ (Yi −m ˜̨ )− (2.7)

�−2
n∑
i=1

(wi, ˜̨ −w)
n∑
j=1

wj(Yj −m ˜̨ ) + · · · . (2.8)

Statistical Modelling 2015; 15(5): 433–456



442 Linda Schulze Waltrup et al.

The first component in (2.7) has mean zero and variance

V ˜̨ := �−2
[
(1 − ˜̨ )2

{
H(q˛) − 2G(q˛)q˛ + q2

˛˛
}

(2.9)

+ ˜̨ 2
{(
H(∞) −H(q˛)

)(
m0.5 −G(q˛)

) + (1 − ˛)q2
˛

}]
.

Note that with the assumption of finite second-order moments, we have∫ q˛
−∞ y

2f (y)dy < ∞ which implies that f (y) = o(|y|−3) for y → −∞. This in
turn yields that ˛q2

˛ = o(1) and G(q˛)q˛ = o(1) so that overall V ˜̨ = o(1).
Looking at the second component in (2.8), we find that its mean equals �−2 ˜̨ (q˛ −

m0.5) while its variance is of orderO( ˜̨ 2)O(V˛).Arguing that ˜̨ � ˛, see the Appendix,
we can conclude that the second term in (2.8) is of ignorable asymptotic order for
˛ = �/n → 0. The same holds by simple calculation for the remaining components
not explicitly listed in (2.7) and (2.8). Hence, we may approximate the distribution
of m̂ ˜̨ −m ˜̨ through

m̂ ˜̨ −m ˜̨ ≈ �−1
n∑
i=1

wi, ˜̨ (yi −m ˜̨ ). (2.10)

In particular, with (2.10), we get the (asymptotic) unbiasednessE(m̂ ˜̨ ) = m ˜̨ . One may
even derive asymptotic normality from (2.10) by showing that higher order moments
vanish. We can, therefore, conclude that even for extreme expectiles, i.e., ˜̨ = h(˛)
or 1 − ˜̨ = 1 − h(˛) very small, respectively, we achieve asymptotic unbiasedness and
normality.

We now pose the same question to quantiles, i.e., what can be said asymptotically
about quantile estimation in the tails of the distribution. Following Koenker and
Bassett (1978) and Koenker (2005, pp. 71–72), we can derive the distribution of the
quantile estimate q̂˛ as follows. Let g˛(q) = 1

n

∑n
i=1 1{Yi ≤ q} − ˛ with 1{.} as a indi-

cator function, then q̂˛ is defined through g˛(q̂˛) ≥ 0 and g˛(q̂˛ − ı) < 0 for all ı > 0.
Hence

P(q̂˛ − q˛ ≤ ı) = P
( n∑
i=1

1{Yi ≤ q˛ + ı} ≥ n˛
)= 1 − P(Zı < n˛), (2.11)

where Zı is a binomial random variable with parameters Zı ∼ Bin
(
n, F(q˛ + ı)

)
.

Note that F(q˛ + ı) ≈ ˛+ f (q˛)ı and with (2.4) we have that the distribution of
Zı (for small ı) converges to a Poisson distribution. As a consequence, for extreme
quantiles, we do not achieve asymptotic normality and, therefore, unbiasedness
is not guaranteed. We can easily calculate the limit of P(q̂˛ ≤ q˛) which equals
1 − P(Z ≤ �) for Z ∼ Poisson(�). For instance, for � = 1, this equals 0.26, which
mirrors skewness of the distribution of extreme quantiles. Note, of course, that we
may use extreme value theory to derive the asymptotic distribution of q̂˛.
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Figure 3 Sampling distribution of ı = q̂˛ − q˛ (solid line) and ı = m̂ ˜̨ −m ˜̨ (dashed line) for different
underlying distribution functions. Top row is for ˛ = 0.999 and bottom row for ˛ = 0.99. Left column is for
normal distribution, middle column for Chi-squared (df = 2) distribution and right column for t-distribution (df
= 3). The vertical line indicates the mean values for both distributions
Source: Authors’ own (prepared with GNU R).

We run a small simulation to study the performance of tail expectile and tail quan-
tile estimation. We simulate data and look at the distribution of extreme quantiles. In
Figure 3 we show the distribution of q̂˛ − q˛ (solid line) and m̂ ˜̨ −m ˜̨ (dashed line) for
a sample size of n = 1000. We look at the ˛ = 0.999 (top row) and the ˛ = 0.99 (bot-
tom row) quantiles and the corresponding expectile. We simulate from (a) a normal
distribution (left column), (b) a Chi-squared (with two degrees of freedom, middle
column) and (c) a t-distribution (with three degrees of freedom, right-hand side col-
umn). The vertical line indicates the mean value of q̂˛ − q˛ (solid line) and m̂ ˜̨ −m ˜̨
(dashed line) which should be zero to indicate unbiasedness. There is apparently a
bias occurring for quantile estimation for ˛ close to 1 (or close to zero).

Conclusion: Overall we may conclude that expectiles estimates behave stable even
for very small or very large values of ˛. This is of course important to know if one
uses a sequence including even extreme expectiles to estimate quantiles as suggested
in the previous subsection.

2.4 Example

To illustrate expectiles and the conversion of expectiles to quantiles we give a short
example. We apply our methods to data collected 2012 in Munich to construct the
Munich rent index. The full data set consists of 3080 observations, i.e., rented apart-
ments in Munich, Germany, and we here analyze the variable giving the net rent per
squared meter (m2) for each apartment. For illustration, we restrict our attention to
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Figure 4 Left: Quantiles and expectiles for the Munich rent data. Right: QQ-Plot quantiles versus quantiles
from expectiles
Source: Authors’ own (prepared with GNU R).

apartments between 45 m2 and 55 m2 and examine the net rent per square for the
resulting 421 apartments in the data set of that size.

First we calculate a fine grid of sample expectiles and quantiles for the variable net
rent per m2 and plot them in Figure 4 on the left. The estimated expectiles naturally
form a smooth curve while the estimated quantiles mirror some variability. In a next
step, we use the set of expectiles to calculate quantiles from expectiles and plot these
against the empirical quantiles (see the right part of Figure 4). When zooming into the
figure, one can notice, that the estimated quantiles for the inner range of ˛ ∈ (0,1)
nearly coincide with their empirical counterpart, whereas for extreme values of ˛ there
is some minor fluctuation around the identity line. This behaviour is also supported
by our simulation results in Section 2.2. All in all, we see the applicability of the
approaches. The example will be further discussed in subsection 4.2 by regressing
the rent on the floorspace.

3 Quantile and expectile regression

3.1 The problem of crossing quantiles and expectiles

So far we have considered the simple scenario with no explanatory variables involved.
We extend this now to quantile and expectile regression. To do so, we assume a
continuous covariate x and define the quantile and expectile regression functions
through q˛(x) = ˇ

(q)
0˛ + xˇ

(q)
1˛ andm˛(x) = ˇ

(m)
0˛ + xˇ

(m)
1˛ . Estimation of q˛(x) andm˛(x)
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is carried out using the weighted L1 sum (1.1) and the corresponding L2 version (1.2),
respectively, with qi,˛ = q˛(xi) and mi,˛ = m˛(xi).

A central problem occurring in quantile and expectile regression is crossing
of fitted functions. For 0 < ˛ < ˛′ < 1, by definition, we have q˛(x) < q˛′(x) and
m˛(x) < m˛′(x), for all x. This inequality can, however, be violated for some
(observed) x values in the fitted functions, which is called the crossing quan-
tile or expectile problem. Several remedies have been proposed to circumvent
the problem, some of which will be used later in the next section. Before turn-
ing to that, we want to explore empirically in simulations how frequently one is
faced with crossing quantile and expectile functions. We run a small simulation
study and count the number of crossings between neighbouring fitted expectiles
and quantiles. Therefore, we select a set of ˛ ∈ {0.01,0.02,0.05,0.1,0.2,0.5,0.8,
0.9,0.95,0.98,0.99} and simulate data from the following simple linear regression
setting

y = 4 + 3x+ ε. (3.1)

The covariate x is drawn from a uniform U(−1,1) distribution, and the random er-
ror is added from either (a) a normal N(0,1.52), (b) a Chi-squared (df = 2) or (c) a
t-distribution (df = 3). Data sets are generated with sample sizes of n = 49,199,499
and for each combination of settings 1000 replications are created. A data set is
then analyzed by computing the set of ˛-quantiles using the R-package ‘quantreg’.
For expectiles, we compute the resulting ˜̨ = h(˛) expectiles using the R-package
‘expectreg’. Function h(.) is computed separately for each error distribution accord-
ing to (1.3), which makes the estimates comparable. For each data set and every
generated covariate value, all neighbouring pairs of ˛ and h(˛) are checked for cross-
ing regression lines within the range of observed covariates.

The resulting number of crossings within the 1000 replications is summarized in
Table 1. Not surprisingly, crossings occur in the tail of the distribution and become
less frequent with increasing sample size. However, the numbers show that there are
generally fewer crossings of expectiles, in particular, within the central 90% of the
distribution, while for quantile regression we obtain a large proportion of crossings
for small samples even in the inner part of the distribution, i.e., between the 0.2 and
0.8 quantiles.

Conclusion: We may conclude from the simulation that expectiles seem less vul-
nerable for crossing problems than quantile estimates.

3.2 Non-crossing spline-based estimation

Several remedies have been suggested to circumvent or correct for crossing quan-
tiles with references given in the introduction. We here extend the idea of Bondell
et al. (2010) who fit non-crossing quantiles using linear programming. We pick up
the idea and generalize it towards non-crossing spline-based expectile estimation. To
do so, we first present spline-based quantile and expectile estimation by replacing
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Table 1 Number of crossings between two neighbouring expectiles/quantiles in the linear model (3.1) from
1000 data sets, starting with ˛ = 0.01. Crossing counts are given for all 10 pairs of expectiles or quantiles,
respectively, sample sizes of n = 49,199,499 and the three error distributions for ε, as defined previously.
Quantiles smaller than 1/n are omitted and indicated as ∗ in the table

expectiles

ε ∼ N(0,1.52) �2(2) t(3)

h(˛) with ˛ / n 49 199 499 49 199 499 49 199 499
0.01–0.02 ∗ 21 5 ∗ 56 1 ∗ 49 48
0.02–0.05 54 2 0 207 3 0 22 35 24
0.05–0.1 8 0 0 44 0 0 7 18 3
0.1–0.2 1 0 0 4 0 0 5 5 2
0.2–0.5 0 0 0 0 0 0 1 0 0
0.5–0.8 0 0 0 1 0 0 0 0 0
0.8–0.9 0 0 0 5 0 0 10 3 1
0.9–0.95 8 0 0 19 0 0 14 11 2
0.95–0.98 48 2 0 42 0 0 23 27 23
0.98–0.99 ∗ 27 3 ∗ 27 1 ∗ 53 45

quantiles

ε ∼ N(0,1.52) �2(2) t(3)

˛/n 49 199 499 49 199 499 49 199 499

0.01–0.02 ∗ 564 210 ∗ 593 226 ∗ 612 296
0.02–0.05 714 123 10 758 143 16 679 208 27
0.05–0.1 443 46 0 439 46 0 377 78 3
0.1–0.2 144 6 0 167 3 0 156 2 0
0.2–0.5 5 0 0 5 0 0 3 0 0
0.5–0.8 3 0 0 13 0 0 4 0 0
0.8–0.9 168 2 0 154 5 0 166 7 0
0.9–0.95 433 37 1 432 40 1 411 78 3
0.95–0.98 680 130 12 718 175 18 704 214 37
0.98–0.99 ∗ 593 213 ∗ 599 199 ∗ 647 267

Source: Authors’ own (prepared with GNU R).

q˛(x) and m˛(x) with bivariate functions

q(˛, x) and m(˛, x), (3.2)

where both functions are smooth (or just linear) in the direction of ˛ and smooth
(or just linear) in the direction of x. The bivariate functions may be called quantile
sheets or expectile sheets. The setting (3.2) transfers the estimation exercise to bivari-
ate smoothing, as proposed in Schnabel and Eilers (2013b) and Schnabel and Eilers
(2009a). We replace (or approximate) q(˛, x) through

q(˛, x) = [B(1)(˛) ⊗ B(2)(x)] u, (3.3)

where B(1)(˛) is a (linear) B-spline basis set up on knots 0 < ˛1 < · · · < ˛L < 1, B(2)(x)
is a B-spline basis built upon some knots �1 < · · · < �K covering the range of observed
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values of x and u is the vector of coefficients. If q(˛, x) is assumed to be linear in x,
one may take B(2)(x) as linear B-spline and set K = 2 in this case. Let l = 1, . . . , L
be the indices of columns of B(1)(˛), and k = 1, . . . , K the indices of columns of
B(2)(x). Vector u may then be indexed by ulk for l = 1, . . . , L, k = 1, . . . , K, and let
ul. = (ul1, . . . , ulk)T . Non-crossing quantiles are now guaranteed by linear constraints
on the parameter vector of the form

B(2)(x)(ul. − ul+1.) ≤ 0 for l = 1, . . . , L− 1 (3.4)

for all x in the observed range of the covariates. If B(2)(x) is a linear B-spline basis,
this simplifies to ulk ≤ ul+1k for l = 1, . . . , L− 1 and k = 1, . . . , K. In general, we can
formulate (3.4) as a linear constraint by inserting for x the observed values xi, i =
1, . . . , n.

We can now fit q(˛, x) by replacing (1.1) with its multiple version

L∑
l=1

n∑
i=1

wi,˛l

∣∣∣yi − B(1)(˛l) ⊗ B(2)(xi) u
∣∣∣ (3.5)

which is minimized with respect to u subject to the linear constraints (3.4) using linear
programming. Alternatively, one may work with iterated weighted least squares by
using the fact that |y− q˛| = (

√
(y− q˛)2)−1(y− q˛)2. Schnabel and Eilers (2013b)

change the weight from wi,˛ to wi,˛(
√

(y− q˛)2)−1 and apply iterated weighted least
squares to fit the function q(˛, x).

Replacing the L1 distance in (3.5) by the L2 distance

L∑
l=1

n∑
i=1

wi,˛l

(
yi − B(1)(˛l) ⊗ B(2)(xi) v

)2
(3.6)

gives a weighted least-squares criterion which allows to estimate the expectile sheet
m(˛, x) = B(1)(˛) ⊗ B(2)(x) v, where again the linear constraints (3.4) need to be ful-
filled. Estimation can be carried out by iterative quadratic programming.

In Figure 5, we show an example for the simulation model (3.1) of the previous sub-
section. We plotted the resulting quantile and expectile sheets under the assumption
of normally distributed residuals. We use a linear B-spline basis for xwith K = 2. For
every value, we have increasing (or nondecreasing) functions q(˛, x) andm(˛, x) in ˛.
A simple visual impression shows that the quantile sheet is more variable compared
to the fitted expectile sheet. Note that we can now calculate for each value of x a set of
expectiles m̂˛l (x) = m̂(˛l, x), which allows to apply the results of Section 2 to derive
quantiles based on expectiles. The code for calculating the linear non-crossing quan-
tile curves by Bondell et al. (2010) is available from the homepage of Howard Bon-
dell (see http://www4.stat.ncsu.edu/˜bondell/Software/NoCross/
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Figure 5 Quantile and expectile sheets for normally distributed errors
Source: Authors’ own (prepared with GNU R).

NoCrossQuant.R, last date of access 10 January 2014). The programme for fitting
non-crossing expectiles is part of the R package ‘expectreg’ by Sobotka et al. (2013).

Conclusion: For both expectiles and quantiles, we can fit sheets guaranteeing non-
crossing functions. Overall, the expectile sheet provides a more smooth surface com-
pared to the quantile sheet, in particular, in the direction of ˛.

4 Extensions and examples

4.1 Penalized smooth expectile sheets

Following the expectile sheet m(˛, x), we may assume that m(˛, x) is smooth in x,
but without any parametric (linear) assumption. This can be fitted with a B-spline
basis as in Section 3.2, but now with K being large. In order to control for a smooth
and numerically stable fit, one may impose a penalty on the coefficients in the style
of penalized spline regression (see Ruppert et al., 2003, 2009). In other words we
supplement (3.6) by the quadratic penalty

�vv
TDTDv,

where DTD is an appropriately chosen penalty matrix, and �v is the smoothing pa-
rameter which is chosen data driven. We give an example in the next subsection. This
was first proposed by Schnabel and Eilers (2009a) with an additional penalization in
direction of ˛. For a specific value of ˛ this has been proposed in Sobotka et al. (2012)
for expectile smoothing or in Bollaerts et al. (2006) for quantile smoothing where
the latter use a different penalization. The smoothing parameter �v can be chosen by
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asymmetric cross-validation or the Schall algorithm for mixed models as described
in Schnabel and Eilers (2009b).

4.2 Rent index of Munich

To see how the method performs in practice, we again take a look at the Munich
rental data from Section 2.4. As a reminder, the data consists of 3080 observations,
i.e., rented apartments in Munich, Germany. We consider two variables in our ex-
ample: net rent per m2 as response and living space measured in m2 as covariate.
First, we perform both a non-crossing and non-parametric expectile regression as
described in Sections 3.2 and 4.1, respectively. Our underlying model is given with
the expectile sheet m(˛, living space). The smoothing parameter �v was chosen auto-
matically by using the Schall algorithm (see Schnabel and Eilers, 2009b). The sheet
resulting from the estimation procedure is shown in Figure 6. As one can see the
dependency of the two variables is obviously of non-linear nature. The amount of
smoothing done for the expectile sheet seems appropriate. The sheet serves as a
basis to calculate quantile estimates for certain values of x = 25,30, . . . ,155 and
˛ = 0.01,0.02,0.05,0.10,0.20,0.50,0.80,0.90,0.95,0.98,0.99. We apply the al-
gorithm as described in Section 2 and obtain the mid-panel of Figure 6. The calculated
values for the quantiles are indicated by points which are connected by lines. All in
all, the quantiles from expectiles seem to behave well. We can see that there is a de-
crease in net rent per square metre as the apartment size grows. This continues for
apartments up to size 100 m2, but then net rent remains, more or less, constant. A
nice feature of our conversion is that non-crossing of quantiles is guaranteed.

As an alternative to the expectile-based analysis, we apply smooth non-crossing
spline-based quantile fitting as described in Muggeo et al. (2013) and implemented in
the R-package ‘quantregGrowth’. Here, we choose cubic B-splines with a penalization
through second-order differences. Muggeo et al. (2013) guarantee non-crossing of
quantile curves by imposing inequality constraints on the spline coefficients. As the
R-package allows us to estimate growth charts, there is also the possibility to enforce
monotonicity in the direction of the dependent variable. The resulting fit is shown
in the right part of Figure 6. All in all, spline-based quantiles exhibit similar features
as the quantiles from expectiles, although the quantile smoothing spline, due to its
L1 nature, is angled. For the non-crossing quantile smoothing, we decided to pick a
smoothing parameter which would result in a smoothness comparable to the amount
of smoothing mirrored in the second panel of Figure 6.

4.3 Expected shortfall

Investment risks are frequently measured using the ES, a stochastic risk measure,
for the lower tail defined as ES(˛) = E(Y|Y < q˛) for a continuous random variable
Y with ˛-quantile q˛. It measures the expectation given that the random variable
does not exceed a fixed value and is often applied to financial time series. A naı̈ve
estimate would calculate the mean beyond a previously estimated quantile and would,
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therefore, be rather inefficient. Taylor (2008) presents a possibility to estimate the ES
using expectiles and their connection to quantiles.

Note that the ˜̨ -expectile is implicitly defined through arg minE
(
wi, ˜̨ (yi −m)2

)
so

that the expectile satisfies

1 − 2 ˜̨
˜̨

E[(Y −m ˜̨ )I(Y < m ˜̨ )] = m ˜̨ − E(Y), (4.1)

where, as above, ˜̨ = h(˛). That is, the expectile m ˜̨ is determined by the expectation
of the random variable Y conditional on Y < m ˜̨ . Rewriting (4.1) and using the fact
F(m ˜̨ ) = ˛ leads to

ESlow(˛) := E(Y|Y < q˛) =
(
1 + ˜̨

(1 − 2 ˜̨ )˛

)
m ˜̨ − ˜̨

(1 − 2 ˜̨ )˛
m0.5 (4.2)

for the lower tail of F. Depending on whether the random variable describes a win
or a loss, we define the ES for the upper tail as ESup(˛) = E(Y|Y > m1− ˜̨ ). In order
to determine the appropriate ˜̨ to a given ˛, Taylor (2008) estimates a dense set
of expectiles and then constructs an empirical distribution function on the basis of
the expectile curves. Here, we make use of the results derived in subsection 2.1 and
estimate the distribution function F̂m(.) from expectiles. As introduced in Section 2.1,
we estimate a dense set of expectiles (i.e., we set ˛l = 0.0005,0.001,0.005,0.01,
0.02, . . . ,0.98,0.99,0.995,0.999,0.9995) and compute the cumulative distribution
function at each observed covariate value. The estimated distribution allows us to
conclude the ˜̨ value for a given ˛-quantile. We then calculate the ES explicitly for
certain values of ˛, e.g., ˛ = 0.01,0.05,0.95,0.99.

We apply the idea and estimate the ES for a serially drawn time series from the
daily yields of the French stock index CAC40 in the time period between 1991 and
1998. All in all, there are 1860 observations/trading days and we take time t as the
covariate influencing the ES. For estimation, we, therefore, construct the expectile
sheet m(˛, t). As basis in t, we use a cubic B-spline basis with 20 inner knots to
account for the variability in time. However, in order to give a risk prediction for the
next observations, we have equidistant knots from min(t) to max(t) + 0.02(max(t) −
min(t)). That way, we get an estimated risk for the upcoming day(s), i.e., we pursue
out of range prediction. To achieve smoothness in time, we add a penalty of first-
order differences �vvTDTDv to (3.6), where Dv has rows vlk − vlk−1 for l = 1, . . . , L
and k = 1, . . . , K. The optimal smoothing parameter �v is chosen via asymmetric
cross-validation; see Sobotka et al. (2012) for a more extensive description. Next, we
apply the algorithm presented in Section 2 to all observed covariate values and also to
the added time points beyond the data. This delivers the estimated ˛-quantile and its
corresponding ˜̨ -expectile. In turn we are able to estimate the expected shortfall (4.2)
for each point in time. This is done sequentially, that is, observation by observation,
to gather information about the changes in the distribution.

The result of the estimation is presented in Figure 7 (left part). For comparison,
we also fit the ES based on the empirical distribution as suggested by Taylor (2008)
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Figure 7 Estimated ES of the CAC40 yields for ˛ = 0.01,0.05,0.95,0.99. Daily data from 1991 to 1998. Results
with pointwise estimated distribution on the left, and with empirical distribution function on the right
Source: Authors’ own (prepared with GNU R).

(the right part of Figure 7). As can be seen, the volatility of the data is captured
by the curves of the ES, for gains, as well as for losses. A generalization over the
range of time can also be observed. When using the empirical distribution function
on the other hand, especially the curves for ˛ = 0.05,0.95 tend towards overfitting.
This is particularly visible for the time of low volatility around day 1300. The small
amount of prediction incorporated by the splines turns out to be just a linear extension
of the last fits. For accurate predictions, one should aim to combine conditional
autoregressive expectiles (CARE, Kuan et al., 2009) that are able to account for
the autocorrelation in the data with the methods introduced in this article. Still, the
example shows that an improvement in ES estimation is possible when using the
efficient distribution estimation introduced in Section 2.1.

5 Discussion

In this article, we looked at quantiles, as Goliath, and expectiles, as David, and ex-
plored how their connection can be used in practice. An algorithm was presented to
estimate quantiles from a (fine) grid of expectiles. We noticed and examined properties
of extreme quantiles and expectiles and discussed the crossing issue of quantile and ex-
pectile regression. Even so, as crossing of neighbouring curves is an issue, we proposed
a modified method to circumvent this problem. All methods regarding expectiles
which were described in detail in this article can be found in the R-package ‘expectreg’.

Apparently, referring again to the comparison of expectiles and quantiles to
David and Goliath is undissolved. There is no final fight, and research on both
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ends continues. It is certainly true that quantiles are dominant in the literature but
we wanted to show that expectiles are an interesting alternative to quantiles and
that their combined use is helpful, in particular, for the estimation of the ES. We
also demonstrated the use of quantile and expectile sheets as smooth variants to
quantile and expectile regression, respectively. This accommodates quite naturally
the constraints of non-crossing quantile and expectile curves and the latter allows for
smooth expectile regression based on implemented software, as mentioned above.
Also, expectile regression now can be performed without loosing interpretability,
since quantiles can be estimated from expectiles.

All in all, we hope to have convinced the reader that expectiles do not immediately
‘belong in the spittoon’ as Koenker (2013a) provocatively postulates. We think that
expectiles provide an interesting and worthwhile alternative to the well-established
quantile regression.
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Appendix

A.1 Relation of ˛ and ˜̨ for ˛→0

We assume that y has finite second moments, then with (1.3)

˛

˜̨
= − ˛m0.5 + 2˛G(q˛) + ˛(1 − 2˛)q˛

− ˛q˛ +G(q˛)
. (A.1)

Since the nominator and denominator both tend to zero for ˛ → 0, we apply the rule
of de l’Hospital. Observing that ˛q˛ = o(1) for ˛ → 0, we get

lim
˛→0

˛

˜̨
= lim

˛→0
− f (q˛)(q˛ −m0.5) + ˛

˛
> 1. (A.2)

Hence ˜̨ < ˛ for ˛ → 0. Note that since f (q˛) = o
(|q˛|−3

)
which follows due to the

existence of second-order moments, we find again that nominator and denominator
of (A.2) converge to zero for ˛ → 0. Assuming now that f (q˛) is proportional to
|q˛|−3 for ˛ → 0 which is required to guarantee finite second-order moments, we
get, again with the rule of de l’Hospital applied to (A.2), that lim

˛→0
˛/ ˜̨ = const ≥ 1,

while if f (q˛) is proportional to |q˛|−(3+ı) for some ı > 0, we get with the same
arguments that lim

˛→0
˛/ ˜̨ = ∞.
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A.2 Estimation of F̂m(.)

Let 0 < ˛1 < · · · < ˛L < 1 be a dense set of knots covering (0,1) and containing
0.5 and define with l0 the index with ˛l0 = 0.5. First note, that (2.1) for ˛l0 gives a
redundant information as it states that m0.5 = m0.5. That is to say that we need an
additional constraint. This is found by observing that

m0.5 =
∫ ∞

−∞
y dF(y) = mL +mL+1

2
+

L∑
l=1

(cl − cL+1)�l (A.3)

with the approximation of F(.) from Section 2.1. Remembering the definition of the
expectiles (2.1), we define function gl(.) by

gl(�l, . . . ,�1) = ml − (1 − ˛l)Gl(�l, . . . , �1) + ˛l(m0.5 −Gl(�l, . . . , �1))
(1 − ˛l)Fl(�l, . . . , �1) + ˛l(1 − Fl(�l, . . . , �1))

for

l = 1, . . . , L. (A.4)

We now need �1, . . . , �L such that gl ≡ 0 which in principle can be seen as a root
finding problem. We implemented a version where we minimize the sum of squares
of gl(�) under certain restrictions: We face the minimization problem

min
�1,...,�L

S (�1, . . . , �L) = min
�1,...,�L

L∑
l=1

(gl(�l, . . . , �1)2) (A.5)

under the constraints that �l ≥ 0 and
∑L

l=1 �l ≤ 1 which is solved by Newton’s
method in optimization and also implemented in the R-package ‘expectreg’ by
Sobotka et al. (2013). Penalty parameter �pen, which ensures numerical stability and
smoothness of the distribution function, may be set equal to the squared empirical
variance of the data from which the expectiles are estimated. In our simulations, we
set �pen equal to five times the squared empirical variance of the data (for each of the
three distributions considered and for both sample sizes n = 199 and n = 499).
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