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Abstract

Low and high birth weight (BW) are important risk factors for neonatal morbidity and mortality.

Gynecologists must therefore accurately predict BW before delivery. Most prediction formulas for BW

are based on prenatal ultrasound measurements carried out within one week prior to birth. Although

successfully used in clinical practice, these formulas focus on point predictions of BW but do not

systematically quantify uncertainty of the predictions, i.e. they result in estimates of the conditional

mean of BW but do not deliver prediction intervals. To overcome this problem, we introduce

conditionally linear transformation models (CLTMs) to predict BW. Instead of focusing only on

the conditional mean, CLTMs model the whole conditional distribution function of BW given prenatal

ultrasound parameters. Consequently, the CLTM approach delivers both point predictions of BW

and fetus-specific prediction intervals. Prediction intervals constitute an easy-to-interpret measure of

prediction accuracy and allow identification of fetuses subject to high prediction uncertainty. Using a

data set of 8712 deliveries at the Perinatal Centre at the University Clinic Erlangen (Germany),

we analyzed variants of CLTMs and compared them to standard linear regression estimation

techniques used in the past and to quantile regression approaches. The best-performing CLTM variant

was competitive with quantile regression and linear regression approaches in terms of conditional

coverage and average length of the prediction intervals. We propose that CLTMs be used because

they are able to account for possible heteroscedasticity, kurtosis, and skewness of the distribution

of BWs.
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1 Introduction

Birth weight (BW) is among the most important risk indicators for neonatal morbidity and
mortality.1,2 As shown in numerous studies, high BW is associated with serious maternal trauma
after vaginal and surgical delivery and shoulder dystocia with fetal brachial plexus paralysis and/or
clavicular fracture3,4 and low BW increases the risk of neurological and developmental deficits
during childhood.5,6 The accurate estimation of BW is challenging for gynecologists who need to
plan the mode of delivery and organize obstetric management.

Fetal ultrasound examinations have become routine during the last 40 years7 and result in readily
available two-dimensional measurements highly correlated with BW. Most prediction formulas for
BW incorporate biometric parameters, such as biparietal diameter (BPD), fronto-occipital diameter
(FOD), head circumference (HC), abdominal transverse diameter (ATD), anterior-posterior
abdominal diameter (APD), abdominal circumference (AC), and femur length (FL). Here we
focus on the statistical aspects of prediction formulas for BW. Our analysis is based on prenatal
ultrasound measurements recorded within seven days before delivery of N ¼ 8712 babies at the
Perinatal Centre of the University Clinic Erlangen, Germany, in 2003–2011.

Statistically, the development of a prediction formula for BW is a regression modeling task that
involves the accurate estimation of ultrasound predictor effects on BW:

(1) Many traditional prediction formulas for BW have been derived by applying linear regression
models with Gaussian errors.7–10 Only little attention has been given to the frequent departure
of the distribution of BW from the normal distribution, which could make relying on a Gaussian
model suboptimal. For example, if a high percentage of the newborns are very small, the
distribution of BW would not be normal but rather right skewed. A suitable approach to
model BW should take this skewness into account.

(2) A thorough investigation of the accuracy of the prediction formulas is essential for clinical
practice because, as stated by e.g. Scioscia et al.,7 many prediction formulas show the same
tendency to under- and over-estimate BW at the extremes, regardless of the ultrasound
parameters relied upon. To assess the performance of new prediction formulas, measures
such as the relative percentage error (defined as ðBW�dEWÞ=BW) and the absolute
percentage error (defined as jBW�dEWj=BW) have been commonly used, where dEW denotes
estimated fetal weight.7,11,12 As the traditional formulas for predicting BW estimate only the
conditional mean, the aforementioned performance measures focus on the quality of the point
estimates for the actual BW, and an appropriate measure of prediction uncertainty is missing.
An easy-to-interpret measure of prediction accuracy accompanied with some measure of
uncertainty is interval estimates that cover the true weights of newborns with a high
probability. Although it is possible to construct prediction intervals around the point
estimates obtained from the Gaussian modeling approach mentioned earlier, these intervals
are subject to potential bias. First, intervals obtained from Gaussian models are always
symmetric around the conditional mean. Consequently, these intervals might be suboptimal
because the distribution of BW (and possibly also the distribution of the residuals in linear
regression) is skewed. Second, Gaussian prediction intervals all have the same length owing to a
constant residual variance term, regardless of the ultrasound measurements. This assumption is
often inappropriate as the prediction accuracy may depend on the actual BW (via the ultrasound
measurements), e.g. larger fetuses might have wider prediction intervals than smaller fetuses.

To address these issues, we propose conditionally linear transformation models (CLTMs) as a novel
approach to predict BW. Instead of considering the conditional mean only (as traditional Gaussian
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regression does), CLTMs model the whole conditional distribution function of BW given prenatal
ultrasound parameters. Consequently, each quantile of the BW distribution can be predicted by a
single CLTM. This implies that the CLTM approach not only results in point predictions of BW (i.e.
in predictions of the median), but additionally results in fetus-specific prediction intervals (whose
boundaries are given, e.g. by the predicted 10% and 90% quantiles). The interval estimates obtained
from CLTMs represent an easy-to-interpret measure of prediction accuracy and allow identification
of fetuses subject to high prediction uncertainty. Moreover, interval lengths obtained from
the CLTM approach depend on individual ultrasonic measurements of each fetus. This strategy
results in ‘‘personalized’’ prediction intervals for each fetus and clearly provides more information
than classical point predictions alone.

The CLTM approach is a special case of the recently proposed conditional transformation
modeling (CTM) approach.13 Compared to the CTM approach, the CLTM methodology
proposed herein has the advantage that the underlying modifications lead to model results that
are easier to interpret, and a closer insight into model structure can be gained.

In Section 2, we review common prediction formulas for BW and associated traditional methods
of estimation. We also introduce the Perinatal Database Erlangen and discuss prediction intervals
for BW. A thorough introduction to CLTMs, including some comments on interpretability and
estimation, is given in Section 3. We present the results of the analysis of the Perinatal Database
Erlangen in Section 4 and discuss the results in Section 5.

2 Prediction of birth weight

2.1 Review of common prediction formulas for BW

Since the 1970s, gynecologists have developed numerous formulas to predict BW based on prenatal
ultrasound measurements. Summaries of these formulas are given in the literature.7,8,14 A well-
established prediction formula commonly used in clinical practice is that proposed by Hadlock
et al.15

log10ðdEWÞ ¼ 1:304þ 0:05281�ACþ 0:1938� FL� 0:004�AC� FL,

where biometric parameters are measured in centimeters and estimated fetal weight (dEW) is
measured in grams. In addition to classical prediction formulas based on 2-D ultrasound
measurements, other formulas incorporate clinical parameters16 or 3-D ultrasound
measurements,17 or focus on high-risk deliveries.11,12,18 Choi et al.19 suggest a model with spatio-
temporally varying coefficients for low BWs. Because 3-D ultrasound measurements do not seem to
improve many predictions and are poorly suited for every-day clinical practice,7 we focused
on routinely measured 2-D biometric parameters in our study. The traditional prediction
formulas for BW that we are aware of were derived using linear regression approaches with
Gaussian errors.

2.2 Perinatal Database Erlangen

Our analysis is based on data of N ¼ 8712 singleton pregnancies with a complete ultrasound
examination within seven days before delivery. Biometric parameters included BPD, FOD, HC,
ATD, APD, AC, and FL. Additionally, the mother’s body mass index (BMI) was measured. In cases
in which fetus growth was followed serially, we used measurements only from the last examination
before delivery. All ultrasound measurements were made by experienced examiners who underwent
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extensive training at University Clinic Erlangen. BW was measured by the nursing staff at Erlangen
University Hospital within 1 h after delivery. Children with chromosomal or structural
malformations and intrauterine deaths were excluded from analysis.

2.3 Prediction intervals

Since we are interested in some measure that quantifies the uncertainty of predictions for BWs, we
considered fetus-specific prediction intervals.20 These intervals result in a range of predicted values
that cover the BW with high probability 1� �, where a is a pre-specified error level.

A common way to define the boundaries of a prediction interval is to use the �=2 quantile and the
1� �=2ð Þ quantile of the conditional distribution of BW given ultrasound measurements

bPI1��ðxÞ ¼ q̂�=2ðxÞ, q̂1��=2ðxÞ
� �

ð1Þ

Here, x denotes the ultrasound measurements of a new fetus, and q̂�=2 and q̂1��=2 the �=2 and the
1� �=2ð Þ quantile, respectively, of the corresponding conditional distribution of BW. Since the
estimated prediction intervals depend on the ultrasound measurements, the interval lengths and
interval borders are fetus-specific. In other words, depending on the ultrasound measurements,
accurate or inaccurate predictions can be made, which results in narrow or wide prediction
intervals, respectively.20 Nevertheless, the underlying assumptions of the regression model used
(e.g. normally distributed responses and homoscedasticity for linear regression models) in
equation (1) influence the form of the resulting prediction intervals. For example, the resulting
prediction intervals may differ in symmetry assumptions and methods for boundary estimation.
Common methods for the calculation of prediction intervals are, e.g., linear regression or
quantile regression approaches.

2.4 Existing approaches for calculation of prediction intervals

If linear regression models are used for BW prediction, the conditional mean of BW is modeled as a
linear function of the (possibly transformed) prenatal ultrasound measurements. After estimation of
the model parameters, symmetric prediction intervals are constructed around the point predictions
based on the assumptions of homoscedasticity and normality.21 Hence, the resulting symmetric
prediction intervals are inadequate if the BW’s distribution is skewed and if the residual variance
depends on ultrasound measurements.

The use of linear or additive quantile regression approaches to determine prediction intervals for
BW conveniently solves these problems. With quantile regression,22,23 one directly estimates the
boundaries of the prediction intervals by using separate regression models for the quantiles q�=2 and
q1��=2 (equation (1)).24 The influence of the ultrasound parameters on the respective quantiles is
assumed to be additive. Although this approach avoids any distributional assumptions, a non-trivial
problem associated with quantile regression is quantile crossing.25 The logical monotonicity
requirements of the probability p (p ¼ q�1) are not fulfilled, and neighboring quantile curves may
cross because they are estimated independently.

To avoid quantile crossing (and also the aforementioned problems associated with linear
regression), we propose CLTMs to estimate intervals for the prediction of BW. In contrast to
quantile regression approaches, CLTMs model all conditional quantiles simultaneously by
estimating the whole conditional distribution function, and the relevant quantiles are extracted
afterwards. Thereby, inconsistencies between neighboring quantiles are avoided.
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3 Conditionally linear transformation models

3.1 Model class

CLTMs are a special case of CTMs that model the conditional distribution function of a response
Yx ¼ ðYjX ¼ xÞ depending on explanatory variables x. Most common regression models model
only the conditional mean EðYjX ¼ xÞ of the response Y 2 R as a function of the explanatory
variables X ¼ x. This is due to the underlying assumption of additivity of signal and noise, which
is relaxed by considering CTMs.13 Therefore, not only the conditional mean but also higher
moments of the conditional distribution function may depend on explanatory variables.

We used the CTM approach to model the conditional distribution function of BW depending on
prenatal ultrasound measurements

PðBW � �jX ¼ xÞ ¼ FBWjX¼xð�Þ ¼ Fðhð�jxÞÞ ð2Þ

The conditional distribution function is modeled in terms of the monotone transformation function
h : R! R, which depends on ultrasound measurements x. Moreover, � 2 R denotes some arbitrary
BW and F denotes an absolute continuous distribution function F : R! ½0, 1� with corresponding
quantile function Q ¼ F�1. The transformation function h transforms the BWs conditionally on x,
so that the distribution of the transformed BWs follows the distribution function F. When fitting
CTMs, we assume that such a montone transformation function h exists. CTMs can be understood
as the inverse of a quantile regression model, since we do not model the conditional quantile
function, but we model the conditional distribution function of the BWs directly. Thereby, we are
able to estimate all quantiles simultaneously in a joint model and do not need to fit separate models
for all quantiles like in quantile regression. When CTMs are estimated, the monotone
transformation function h is estimated, but the continuous distribution function F is chosen
arbitrarily. A common choice is the standard normal distribution function F ¼ � with
corresponding quantile function Q ¼ ��1. Hence, model characteristics must be defined in terms
of characteristics of the transformation function h.

As we modeled the whole conditional distribution function, higher moments (e.g. the variance)
may also depend on ultrasound measurements. In addition, further moments of the prediction
distribution of the BWs can be modeled flexibly, e.g. kurtosis and skewness. When functionals of
the conditional distribution function, such as prediction intervals, are calculated, it is important to
note that variance and skewness may depend on explanatory variables; otherwise, heteroscedasticity
and varying higher moments are ignored.

Nevertheless, the CTMs presented in Hothorn et al.13 define a very complex and general class of
transformation models, and therefore model interpretations can be challenging. Moreover, a lack of
orthogonality of the model components constricts insights into model structure. As a consequence,
direct interpretations of the relationship between the explanatory variables and certain moments of the
distribution function of the response are difficult to obtain because these effects usually cannot
be separated. Since we are interested in a more easily interpretable version of CTMs in this
application, we reduced the model complexity by imposing restrictions on CTMs and introducing
CLTMs. The model class of CLTMs can be described by the following linear transformation
conditional on x

hðYxjxÞ ¼ Z � F, with

hðYxjxÞ ¼ h0ðYxÞ � �ðxÞ þ �ðxÞ ð3Þ
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Here, h denotes a monotone transformation function that depends on explanatory variables. The
random variable Z is a transformation of the responses Yx depending on explanatory variables x and
follows the known distribution function F. In CLTMs, we modeled only linear functions of the
transformed responses to reduce model complexity (equation (3)). Hence, we considered a flexible
and possibly unknown response transformation h0ðYxÞ that depends only on the response values Yx.
The response transformation itself was transformed by the explanatory variables via a linear function,
where the coefficients �ðxÞ and �ðxÞ depend on the explanatory variables. The coefficients �ðxÞ induce
shifts of the response transformation h0ðYxÞ, and the coefficients �ðxÞ induce shifts and scalings of the
response transformation h0ðYxÞ depending on the respective explanatory variables.

Owing to the restriction of the transformation function h to linear functions of the response
transformation h0ðYxÞ, the explanatory variables x can only influence the conditional mean and
conditional variance of the response transformation. This follows directly from calculating the
conditional mean and conditional variance in equation (3) and solving the equation for both
Eðh0ðYxÞjxÞ and Vðh0ðYxÞjxÞ:

Eðh0ðYxÞjxÞ ¼
EðZÞ � �ðxÞ

�ðxÞ

Vðh0ðYxÞjxÞ ¼
VðZÞ

�ðxÞ2
ð4Þ

If we assume that the transformed responses Z follow a standard normal distribution Z � Nð0, 1Þ,
we get EðZÞ ¼ 0 and VðZÞ ¼ 1, and equation (4) simplifies accordingly. The coefficients �ðxÞ
influence only the conditional mean of the response transformation, whereas the coefficients �ðxÞ
influence its conditional mean and its conditional variance. Hence, the influence of the explanatory
variables on the conditional mean and conditional variance of the response transformation can be
formulated in CLTMs, whereas such a formulation cannot be given in CTMs. This difference can
also be seen by looking at the conditional quantile functions implied by CTMs and CLTMs

QCTMð pjxÞ ¼ h�1ðF�1ð pÞjxÞ

QCLTMð pjxÞ ¼ h�10

F�1ð pÞ � �ðxÞ

�ðxÞ

� �

For CTMs, the effect of the explanatory variables on the conditional quantile may vary with p,
whereas in CLTMs, the conditional quantile is a nonlinear transformation of a linear function of
F�1ð pÞ, where the coefficients of the latter do not depend on p. Because only the mean and the
variance may depend on explanatory variables in CLTMs, we can only model constant kurtosis and
skewness in contrast to quantile regression. A possible influence of the explanatory variables on
higher moments can only be estimated in the more complex model class of CTMs.

Furthermore, we assumed additivity on the scale of the transformation function; therefore, we
decomposed the monotone transformation function h into Jþ 1 partial transformation functions,
given the explanatory variables13 (equation (3)):

Z ¼ hðYxjxÞ ¼
X
j¼0

J

hj ðYxjxÞ ¼
X
j¼0

J

h0ðYxÞ � �j ðxÞ þ �j ðxÞ
� �

¼ h0ðYxÞ �
X
j¼0

J

�j ðxÞ þ
X
j¼0

J

�j ðxÞ ð5Þ
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Despite this decomposition, the random variable Z still remains a linear function of the response
transformation h0ðYxÞ.

Prominent members of the family of linear transformation models, most importantly the
proportional hazards and the proportional odds model, can be connected by restricting the
aforementioned CLTMs to the case where only shifts of the response transformation that depend
on explanatory variables are allowed

hðYxjxÞ ¼ h0ðYxÞ þ
X
j¼0

J

�j ðxÞ ¼ h0ðYxÞ þ �ðxÞ ð6Þ

In this model, the explanatory variables can only influence the mean ��ðxÞ of the transformed
response h0ðYxÞ. The transformation functions of the proportional hazards model and
the proportional odds model result if we choose a CLTM (equation (5)) with �ðxÞ � 1
and an appropriate response transformation h0ðYxÞ, which is treated as a nuisance
parameter in classical formulations of the proportional hazards model and proportional odds
model. For linear shift functions �ðxÞ, a unified estimation framework has been proposed by
Cheng et al.26

We assumed that the response transformation h0ðYxÞ is unknown. In the first step, we
decomposed the response transformation into one part consisting only of linear functions and a
more complex part representing deviations from linearity:

h0ðYxÞ ¼ �0 þ �0 � Yx|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
linear part

þ ~h0ðYxÞ|fflfflffl{zfflfflffl}
deviations from linearity

ð7Þ

The decomposition in equation (7) is reasonable since the model component ~h0ðYxÞ can be used
to decide whether the response variable follows a normal distribution or not, if we additionally
set the link function to F ¼ �. If the model component ~h0ðYxÞ is missing, we only observe a
linear transformation of the conditional response, and hence we cannot leave the class
of normal distributions because the normal distribution is invariant towards linear
transformations. Consequently, by estimating the more complex deviations from linearity ~h0ðYxÞ,
we are able to leave the class of normal distributions and model other classes of distribution
functions as well.

Combining equation (7) with the definition of CLTMs in equation (3) leads to

hðYxjxÞ ¼ ðYx þ
~h0ðYxÞÞ � �ðxÞ þ �ðxÞ ¼ Yx � �linðxÞ þ ~h0ðYxÞ � �cðxÞ þ �ðxÞ

where �linðxÞ denotes the part of �ðxÞ influencing the linear part of the response transformation
h0ðYxÞ, and �cðxÞ denotes the part of �ðxÞ influencing the more complex deviations from linearity
~h0ðYxÞ.
We furthermore assumed that the more complex deviations ~h0ðYxÞ do not depend on any

explanatory variables; therefore, we set �cðxÞ � 1. This is a strong assumption, but since we are
interested in an interpretable model class, this is a necessary restriction of model complexity. The
transformation function h with an unknown and decomposed response transformation at the start
results in

hðYxjxÞ ¼ Yx � �linðxÞ þ ~h0ðYxÞ þ �ðxÞ

Möst et al. 2787



Then we included the decomposition of the monotone transformation function h into Jþ 1 partial
transformation functions (equation (5)):

hðYxjxÞ ¼ ~h0ðYxÞ þ Yx �
X
j¼0

J

�j,linðxÞ þ
X
j¼0

J

�j ðxÞ ð8Þ

We furthermore set �0ðxÞ � �0 and �0,linðxÞ � �0, which we already implicitly did in equation (7). By
introducing the scalars �0 and �0, the transformation function h can be decomposed into an
unconditional part (not depending on any explanatory variables) and a conditional part
(depending on explanatory variables), which facilitates model interpretations. The resulting
structure of the monotone transformation function is still consistent with the model class of CLTMs:

hðYxjxÞ ¼ �0 þ �0 � Yx þ
~h0ðYxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

unconditional part

þ Yx �
X
j¼1

J

�j ðxÞ þ
X
j¼1

J

�j ðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conditional part

ð9Þ

Hence, in this model, only the linear part of the response transformation (¼ Yx) may depend on
explanatory variables, whereas the function representing deviations from linearity ~h0ðYxÞ is flexible
and depends only on the response values Yx. In accordance with the definition of CLTMs, the
explanatory variables solely influence the mean and variance of the transformed responses. We
denote the coefficients �j,linðxÞ, j ¼ 1, . . . , J (equation (8)) simply by �j ðxÞ as we no longer need to
distinguish the linear and the more complex part of the coefficient vector. In this model, we can
estimate further characteristics of the conditional distribution function of the response (e.g.
skewness and kurtosis) in terms of ~h0ðYxÞ.

By further differentiating between linear and flexible explanatory variable effects, we get

Linear CLTM

hðYxjxÞ ¼ �0 þ �0 � Yx þ
~h0ðYxÞ þ Yx �

X
j¼1

J

�j � xj þ
X
j¼1

J

�j � xj

where �j and �j, j ¼ 1, . . . , J are regression coefficients, and therefore the explanatory variables have
a linear influence on the response transformation.

Additive CLTM

hðYxjxÞ ¼ �0 þ �0 � Yx þ
~h0ðYxÞ þ Yx �

X
j¼1

J

�j ðxÞ þ
X
j¼1

J

�j ðxÞ

where �j ðxÞ and �j ðxÞ, j ¼ 1, . . . , J denote smooth functions. Hence, the explanatory variables have
a flexible influence on the response transformation.

3.1.1 Introduction of specific CLTMs for the analysis of the Perinatal Database Erlangen

For the analysis, we chose six variants of CLTMs with unknown response transformation CLTM 0
(linear) and CLTM 0–CLTM 4, in which the models are ordered with increasing model complexity
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(Table 1). For comparison, we used the common conditional transformation model CTM as a
reference model representing the most complex modeling approach.

3.1.2 CLTM 0 (linear): linear transformation model

hðYxjxÞ ¼ Yx þ
~h0ðYxÞ þ

X
j¼1

J

�j � xj ¼
Equation 7

h0ðYxÞ þ
X
j¼1

J

�j � xj

CLTM 0 (linear) is denoted Linear Transformation Model because it belongs to the class of well-
known linear transformation models (equation (6)). The transformation function h is decomposed
into a flexible function h0ðYxÞ depending only on the response values Yx and a part depending only
on the explanatory variables. The coefficients �j induce linear shifts of the response transformation
depending on the explanatory variables xj, j ¼ 1, . . . , J. The flexible response transformation h0ðYxÞ

is restricted to monotone functions. The transformation function results from a linear CLTM if we
set �0 ¼ 0, �0 ¼ 1 and �j ¼ 0, j ¼ 1, . . . , J.

In the conditional distribution function of BW, these definitions result in fetus-specific means that
depend linearly on the ultrasound measurements. Beyond that, the BWs might follow some arbitrary
distribution function because higher moments are modeled flexibly. The corresponding class of
distribution functions is the same for all fetuses because the deviations from the normal
distribution are not influenced by any ultrasound measurements.

3.1.3 CLTM 0: linear transformation model with flexible explanatory variable effects

hðYxjxÞ ¼ Yx þ
~h0ðYxÞ þ

X
j¼1

J

�j ðxÞ ¼
Equation 7

h0ðYxÞ þ
X
j¼1

J

�j ðxÞ

CLTM 0 also represents a linear transformation model, but the influence of the explanatory
variables is modeled in terms of smooth functions �j ðxÞ, j ¼ 1, . . . , J. This results in flexible shifts

Table 1. Overview: Relevant CLTMs (conditionally linear transformation models) and CTM (conditional

transformation model).

Linear

Expl. variable

effects

Flexible

Expl. variable

effects

Model �ðxÞ �ðxÞ �ðxÞ �ðxÞ
Linear uncond.

Transf. function

Flexible uncond.

Transf. function

Higher moments

Depend on expl. variables

CLTM 0 (linear) � �

CLTM 0 � �

CLTM 1 � � �

CLTM 2 � � �

CLTM 3 � � �

CLTM 4 � � �

CTM � � �
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of the response transformation depending on the explanatory variables. The flexible response
transformation h0ðYxÞ is again restricted to monotone functions. This transformation function
results from an additive CLTM if we set �0 ¼ 0, �0 ¼ 1 and �j ¼ 0, j ¼ 1, . . . , J.

Based on CLTM 0, fetus-specific means result that depend flexibly on the ultrasound
measurements. Moreover, the BWs may follow some arbitrary distribution, but the corresponding
class of distribution functions is again the same for all fetuses. Thus, model CLTM 0 describes a very
general but easy interpretable set of distributions. The explanatory variables have an additive influence
only on the conditional mean and the response distribution belongs to the rich set of distributions that
can be generated form the normal distribution via a monotone transformation.

3.1.3 CLTM 1: CLTM with linear explanatory variable effects and linear unconditional response transformation

hðYxjxÞ ¼ �0 þ �0 � Yx þ Yx �
X
j¼1

J

�j � xj þ
X
j¼1

J

�j � xj

This is a linear CLTM in which ~h0ðYxÞ is cancelled, and, therefore, the unconditional part of the
response transformation is linear in Yx. Hence, conditional on the explanatory variables x, the whole
conditional transformation function hðYxjxÞ is linear in Yx. As we cancelled the deviations from
linearity ~h0ðYxÞ, we assumed that the response has a normal distribution function if we additionally
set the link function to F ¼ � in equation (2). This is due to the underlying assumption that the
coefficients �j and �j, j ¼ 0, . . . , J influence only the mean and variance of the response. These
definitions result in normal distribution functions for all fetuses with fetus-specific means and
variances that depend linearly on the ultrasound measurements.

3.1.4 CLTM 2: CLTM with linear explanatory variable effects and unconditional response transformation with

monotone constraints

hðYxjxÞ ¼ �0 þ �0 � Yx þ
~h0ðYxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

uncond: trans: function

þYx �
X
j¼1

J

�j � xj þ
X
j¼1

J

�j � xj

CLTM 2 is also a linear CLTM but is more complex than CLTM 1 as the unconditional response
transformation is a flexible monotone function. We suggest that the distribution function of the
response possibly does not belong to the class of normal distributions if we additionally set the link
to F ¼ �. This is due to the term describing deviations from linearity ~h0ðYxÞ, which is able to affect
higher moments of the distribution function of the response.

Hence, the BWs follow some arbitrary distribution function because higher moments are modeled
flexibly. Nevertheless, the corresponding class of distribution functions is again identical for all fetuses
as the deviations from linearity are not influenced by any ultrasound measurements. Moreover, the
resulting fetus-specific means and variances depend linearly on the ultrasound measurements.

3.1.5 CLTM 3: CLTM with flexible explanatory variable effects and linear unconditional response transformation

hðYxjxÞ ¼ �0 þ �0 � Yx þ Yx �
X
j¼1

J

�j ðxÞ þ
X
j¼1

J

�j ðxÞ
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This model is an additive CLTM with ~h0ðYxÞ ¼ 0. Again, the unconditional response transformation
is a linear function (compare CLTM 1), and we therefore implicitly assumed that the response follows
a normal distribution. Therefore, these definitions result in normal distribution functions for all fetuses
with fetus-specific means and variances that depend flexibly on the ultrasound measurements.

3.1.6 CLTM 4: CLTM with flexible explanatory variable effects and unconditional response transformation with

monotone constraints

hðYxjxÞ ¼ �0 þ �0 � Yx þ
~h0ðYxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

uncond: trans: function

þYx �
X
j¼1

J

�j ðxÞ þ
X
j¼1

J

�j ðxÞ

Also, this model is an additive CLTM and is the most complex CLTM considered. Comparable to
CLTM 3, the influence of the explanatory variables on the linear response transformation is
modeled flexibly. Additionally, the unconditional response transformation is a flexible monotone
function (compare CLTM 2), in which we implicitly assumed that the response may not follow a
normal distribution.

Hence, we assumed fetus-specific means and variances that depend flexibly on the ultrasound
measurements. Again, BWs for all fetuses follow some arbitrary distribution because higher moments
are modeled flexibly, but the corresponding class of distribution functions is the same for all fetuses.

3.1.7 CTM: Conditional transformation model

hðYxjxÞ ¼
X
j¼1

J

hj ðYxjxÞ ð10Þ

We define the common CTM13 as our reference model because it represents a more general and more
complex model class than the considered CLTMs. The transformation function hðYxjxÞ is
decomposed additively into J partial transformation functions without any further restrictions.
Thereby, we assume additivity on the scale of the transformation function, which is
fundamentally different to additive mean or quantile regression, where additivity is assumed on
the scale of the conditional mean or quantile function. Simulation results presented in Hothorn
et al.13 show a better performance of CTMs compared to the parametric generalized additive models
for location, scale and shape (GAMLSS) and to nonparametric kernel estimators. Since CTMs are
an alternative to quantile regression models, the authors also compared the two approaches and
assessed that both model classes are equally flexible. Nevertheless, CTMs have the advantages of
being based on differentiable and convex proper scoring rules as risk functions that allow relatively
easy optimization algorithms to be applied, the simultaneous estimation of all quantiles in a joint
model, and the dependency on only one hyperparameter (the number of boosting iterations),
compared to additive quantile regresssion. Based on this CTM, we defined the model class of
CLTMs and finally the special cases of CLTMs presented above.

3.2 Model estimation

First, we will briefly describe the model estimation in CTMs (equation (10)) and then present the
necessary adaptations for CLTMs. In Hothorn et al.,13 a parametrization of the partial
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transformation functions hj, j ¼ 1, . . . , J in CTMs via basis functions is presented and illustrates the
high flexibility of the partial transformation functions in both the response variable and the
explanatory variables. For example, the j-th partial transformation function is parametrized as
follows:

hj ðYxjxÞ ¼ bj ðxÞ
>
	 b0ðYxÞ

>
� �

cj ð11Þ

where b0 is a basis along the grid of response values Yx, and bj is a basis along a grid of explanatory
variables x. The two sets of basis functions are connected via a Kronecker product, thereby
establishing an interaction surface between the basis for the response and the basis for the
explanatory variables. The basis b0 defines the functional form of the response transformation
(i.e. a linear or flexible response transformation), and the functional form of bj defines how this
response transformation is influenced by the explanatory variables (i.e. the response transformation
varies linearly or flexibly with varying explanatory variables).13 For example, if one chooses linear
basis functions for b0, one gets a linear response transformation, and if one chooses B-spline basis
functions for b0, one gets a flexible response transformation. Hence, the user is free to choose a very
complex and general model framework (e.g. by choosing a B-spline basis for b0 and bj) in CTMs,
which often ends up in a lack of interpretability (see Section 3.1). In CTMs, one aims at obtaining an
estimate for each partial transformation function hj that is smooth in both the response and the
explanatory variables, which is achieved by imposing an appropriate penalty on the Kronecker
product of basis functions in equation (11). For further details on parametrization and penalty
specification, see Hothorn et al.13

In CTMs, model estimation is based on the minimization of the log score

LS ¼ �
1

N � n

XN
i¼1

Xn
�¼1

IðBWi � ��Þ logðFðhð��jxiÞÞÞ þ IðBWi 4 ��Þ logð1� Fðhð��jxiÞÞÞ ð12Þ

which is a proper scoring rule.13,27 The log score measures the mismatch between the individual
empirical distribution functions of subjects i ¼ 1, . . . ,N and the corresponding probabilities of the
conditional distribution function Fðhð��jxiÞÞ resulting from the CTM in terms of the negative
binomial log-likelihood. The score is evaluated on a grid of BWs �1, . . . , �n covering their range.
As CLTMs are a special case of CTMs, we used the same approach for model estimation. All we had
to adapt is the parametrization of the partial transformation functions in equation (11), which is
straightforward.

The choice of the functional form of b0ðYxÞ and bj ðxÞ, j ¼ 1, . . . , J (either linear or flexible basis
functions) depends on the definition of the conditional transformation function hðYxjxÞ. As an
example, we present the parametrization of transformation model CLTM 0 given in the previous
subsection. CLTM 0 can be decomposed into the unconditional transformation function h0ðYxÞ that
depends only on the response values and the part �ðxÞ ¼

PJ
j¼1 �j ðxÞ that depends only on the

explanatory variables. Both parts of the transformation function are parametrized separately as
special cases of equation (11). First, the unconditional transformation function is parametrized via

h0ðYxÞ ¼ 1>N 	 b0ðYxÞ
>

� �
c

where 1N denotes the one-vector whose length is equal to the number of observations N. Since the
unconditional transformation function does not depend on any explanatory variables, the basis
functions for the explanatory variables bj ðxÞ are replaced by 1N to maintain correct dimensions.
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The basis functions for the response variables b0ðYxÞ are monotonic B-splines as h0ðYxÞ is assumed
to be a flexible monotone function in the response values. Second, the function depending on the
explanatory variables is parametrized by the set of basis functions

�j ðxÞ ¼ bj ðxÞ
>
	 1>n

� �
cj, j ¼ 1, . . . , J

where 1n denotes the one-vector with length n, the number of unique � values (a hyper parameter to
the algorithm). As the functions �j ðxÞ, j ¼ 1, . . . , J do not depend on the response variable, the
corresponding basis functions b0ðYxÞ are replaced by the one-vector to maintain correct dimensions.
The basis functions bj ðxÞ, j ¼ 1, . . . , J are B-spline basis functions because the explanatory variables
have a flexible influence on the mean of the transformed response in CLTM 0. The parametrizations
of the other special cases of CLTMs result accordingly.

3.3 Computational details

All analyses were carried out in the R system for statistical computing (version 2.15.328). Model
estimation in CLTMs and CTMs was carried out using the R add-on package ctm.29 To compare
our proposed transformation models and established methods, we estimated a linear regression
model, linear quantile regression model, and additive quantile regression model. To estimate the
linear regression model, we used the lm function in the stats package and fitted the linear quantile
regression model using the rq function of the quantreg package.30 We used component-wise boosting
for the estimation of the additive quantile regression model31 in the mboost package.32 A tutorial R
example ex_fetus_CLTM.Rnw including the code for estimating the proposed regression and
transformation models, the calculation of intervals for the BW, and the generation of Figure 1 is
publicly available in the ctm package from the R-forge repository (https://r-forge.r-project.org/
projects/ctm).

3.4 Evaluation of fetus-specific prediction formulas for BW

As we are interested in reliable prediction intervals for BWs (see Section 1), we calculated fetus-
specific prediction intervals based on equation (1) with a coverage probability of 80%. A further
goal was to identify the C(L)TM that described the Perinatal Database Erlangen best among the
proposed C(L)TMs in Section 3.1.1. We considered certain aspects of model misspecification.

For the construction of prediction intervals, we considered the conditional median and the
conditional �=2 quantile and 1� �=2 quantile representing the point prediction for the BW and
the boundaries of the fetus-specific prediction intervals in equation (1). Therefore, we used the well-
known relationship between the conditional distribution function and the conditional quantile
function to extract the relevant quantiles:

q�ðxÞ ¼ F�1BWjX¼xð�Þ

where � ¼ �=2, 0:5, 1� �=2
	 


denotes the quantiles of interest and FBWjX¼x is defined in equation
(2).20

In the analysis of the Perinatal Database Erlangen, we used 10 regression or transformation
models to estimate the median BW and the associated interval borders. The transformation
models used encompass a standard CTM and the six CLTMs [CLTM 0 (linear) and CLTM
0–CLTM 4] presented in Section 3.1.1. For comparison, we also considered a linear regression
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model (LM), which served as a standard procedure in the past, a linear quantile regression model
and an additive quantile regression model (LQR and AQR).

A common strategy to check the adequacy of prediction intervals is to check their coverage
probability. When we defined prediction intervals in Section 2.3, we stated that a correctly
specified prediction interval PI1��ðxÞ for a new set of ultrasound parameters x covers a new
observation BW with high probability 1� �. The correct measure to evaluate prediction intervals
adequately is the conditional coverage.20 Therefore, we checked whether for any particular
combination of ultrasound measurements x about ð1� �Þ � 100 % of the corresponding
observations ðBW1, xÞ, . . . , ðBWM,xÞ were covered by the prediction interval PIðxÞ

�̂jx ¼bEðBW 2 PIðxÞjX ¼ xÞ ¼
1

M

X
i¼1

M

I BWi 2 PIðxÞ
	 


ð13Þ

Figure 1. Birth weight prediction. Observed birth weights of 8712 newborns (dots) ordered with respect to the

predicted conditional mean (LM only) or median birth weight (central black line). The lower and upper black lines

display estimated 10% and 90% quantiles of birth weights, respectively. The areas in-between represent fetus-specific

80% prediction intervals. Each subplot shows the results for one of the regression or conditional transformation

models. LM, linear model; LQR, linear quantile regression; AQR, additive quantile regression; CLTMs (CLTM 0–CLTM

4), conditionally linear transformation models; CTM, conditional transformation model.
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where I denotes the indicator function. The conditional coverage reflects what we really expect from
a prediction interval because the prediction interval for a specific combination of ultrasound
parameters should cover the BWs of 80% of the fetuses with exactly the same ultrasound
measurements.20

In practice, the evaluation of the conditional coverage of prediction intervals is
impossible because we usually only have one observation for each combination of ultrasound
parameters x and more are needed with exactly the same combination of ultrasound
measurements (equation (13)). Especially in a regression setting with continuous explanatory
variables, multiple response values for each combination of explanatory variables are unlikely to
occur. Therefore, we calculated the conditional coverage of our prediction intervals using binned
observations:

(1) We used the ultrasound parameters AC and FL to divide the fetuses in the database into
categories because these two parameters are essential for the prediction of BWs.7,10,12,16 AC
and FL were divided quantile-based into categories, resulting in five AC categories measured
in cm (1 : ð175, 316�; 2 : ð316, 331�; 3 : ð331, 343�; 4 : ð343, 357�; 5 : ð357, 428�) and five FL
categories measured in cm (1 : ð31:1, 69:6�; 2 : ð69:6, 71:7�; 3 : ð71:7, 73:4�; 4 : ð73:4, 75:4�;
5 : ð75:4, 86:6�).

(2) When we combined the five AC and five FL categories, we get 25 categories of fetuses, which
results in good sample sizes of at least 102 observations for all groups. The distribution of the
BWs in the respective categories are displayed in Figure 9 (see Appendix 1).

(3) To assess the conditional coverage, we generated a training data set by randomly choosing 90%
of the fetuses in each of the 25 categories and generated a validation data set by choosing the
remaining fetuses. We then estimated CLTM 0 (linear)—CLTM 4, CTM, LM, LQR, and AQR
for the training data, and predicted the BWs for the validation data set for each of the models.
We assessed the conditional coverage (equation (13)) for each of the regression and
transformation models in each of the 25 categories.

In addition to the conditional coverage of the prediction intervals, we also checked their average
interval lengths.

To identify the C(L)TM that described the Perinatal Database Erlangen best, we compared the
performance among all CLTMs to the performance of the CTM and the LM. We fitted the models
on a training data set and evaluated their predictive ability on an evaluation data set. Twenty-five
training and evaluation data sets were generated by choosing randomly 50% of the original
observations in each AC–FL category. The predictive ability was measured in terms of the
log score given in equation (12), which was used to evaluate the conditional distribution function
for the whole evaluation data set and for each AC-FL category separately. As the complexities of
the C(L)TMs differed, this procedure could also be used to reveal model misspecifications. We
were able to detect missing covariate effects on the variance (e.g. CLTM 0 against all other
C(L)TMs), missing flexibility of the covariate effects on the mean or the variance (e.g. CLTM 2
against CLTM 4), and missing flexibility of the response transformation (e.g. CLTM 1 against
CLTM 2). If even higher moments of the conditional distribution function were affected by the
explanatory variables, it could be checked by comparing all CLTMs to the CTM, and by comparing
all CLTMs to the LM if the assumption of a normal distribution with constant variance works for
the database. The out-of-sample log score cannot be calculated for the quantile regression models
because quantile crossing makes the inversion of the quantile function into a distribution function
impossible.
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4 Results

4.1 Estimated transformation and regression models

All ultrasound parameters were included as main effects in the model equations of the regression and
transformation models. One exception was the interaction between AC and FL, which has been
important in many earlier prediction formulas for BW.15 Therefore, we additionally included this
interaction in models CLTM 0 (linear), CLTM 1, CLTM 2, LM, LQR, and AQR; we did not
include this interaction in models CLTM 0, CLTM 3, CLTM 4, and CTM because the model
estimation became too complex.

The estimates of the BWs based on the prenatal ultrasound parameters are displayed in Figure 1.
In model LM, symmetric intervals around the estimated conditional mean with equal interval
lengths for all fetuses resulted, and possible heteroscedasticity, kurtosis, and skewness were
ignored. Despite these restrictive assumptions, model LM provided satisfying and narrow
intervals. We concluded that deviations from normality were small and no strong
heteroscedasticity occurred. Nevertheless, we pursued further model improvements.

The quantile regression approaches (LQR and AQR) also provided satisfying results associated
with narrow intervals. The wiggly estimates for the interval borders were due to the separate
estimation of the quantiles. In contrast, smooth interval borders resulted for C(L)TMs because
all quantiles were estimated simultaneously.

In CLTM 0 (linear), the influence of the ultrasound parameters on the conditional mean was
modeled linearly, comparable to model LM. Owing to the unconditional transformation function,
also a possible skewness and kurtosis of the distribution of the BWs can be modeled. This led to
wider intervals for CLTM 0 (linear) compared to LM, especially for extreme BWs. In model CLTM
0, the influence of the ultrasound measurements on the conditional mean was modeled flexibly, and
thus the corresponding fetus-specific intervals were narrower than with CLTM 0 (linear).

In general, a flexible inclusion of the ultrasound parameters seems advisable because the intervals
with models CLTM 0, CLTM 3, and CLTM 4 were narrower than with CLTM 1 and CLTM 2.
Besides, in CLTM 1–CLTM 4, the ultrasound parameters may influence the conditional mean and
conditional variance. Hence, these models accounted for possible heteroscedasticity induced by the
ultrasound measurements.

An additional slight improvement was gained by estimating the unconditional transformation
function in terms of a flexible monotone function and thus accounting for possible kurtosis and
skewness. This can be observed by direct comparison of CLTM 1 and CLTM 2 and of CLTM 3 and
CLTM 4. Nevertheless, deviations from normality seemed to be small since the associated
improvements were minor.

We were also interested in identifying the C(L)TM that described the Perinatal Database
Erlangen best. We calculated the out-of-sample log scores based on 25 evaluation data sets for
the proposed C(L)TMs and the LM to evaluate the estimated conditional distribution functions
for new observations for the whole evaluation data set (Figure 2) and for each AC–FL category
separately (Figures 10 and 11 in Appendix 1). The results were in accordance with those in Figure 1:
the out-of-sample log scores of CLTM 0, CLTM 3, CLTM 4, CTM, and LM were similar, whereas
those of CLTM 0 (linear), CLTM 1, and CLTM 2 were clearly lower. Hence, the inclusion of flexible
covariate effects clearly improves the estimated conditional distribution functions. On the other
hand, consideration of heteroscedasticity, deviations from the normality assumption, and higher
moments depending on explanatory variables were of minor importance, which was also supported
by the good performance of the LM.
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To further illustrate important characteristics of CLTMs, we more closely examined CLTM 4,
which is the most flexible among all considered CLTMs. The influence of the ultrasound
measurements on the conditional mean and conditional variance was modeled flexibly, and the
unconditional response transformation was modeled as a flexible monotone function. We
assumed that the response values most likely do not follow a normal distribution, as the
following results indicated.

Low BWs did not exactly follow a normal distribution, i.e. the resulting estimated unconditional
transformation function showed deviations from a linear function for low BWs (see equation (7)),
whereas medium and high BWs followed a normal distribution (Figure 6 in Appendix 1). Therefore,
the response values for low BWs needed to be transformed.

This conclusion can be observed clearly in normal quantile–quantile plots for original and
transformed BWs resulting from model CLTM 4 (Figure 7 in Appendix 1). Low original BWs
deviated from the normal distribution, but low transformed BWs approximately followed a
normal distribution. A scatterplot showing the relationship between original and transformed
BWs (Figure 8 in Appendix 1) also revealed similar results. Medium and high BWs scattered

Figure 2. Out-of-sample log scores for CLTM 0–CLTM 4, LM, and CTM based on 25 randomly chosen evaluation

data sets consisting of 4355 observations.

Möst et al. 2797



unsystematically around some linear function, whereas low BWs deviated, which indicated that a
non-linear transformation took place. Moreover, a kernel density plot (Figure 8 in Appendix 1)
shows that the estimated density of the transformed BWs is in good accordance with the
corresponding density of the normal distribution.

These results together indicated that those regression models that allow deviations from the
normal distribution assumption are more reliable when original data do not entirely follow a
normal distribution.

We stressed that the main advantage of CLTMs over CTMs is the improved interpretability of the
estimated effects of ultrasound measurements on moments of the distribution function of BWs. The
estimated effects of ultrasound parameters for model CLTM 4 (Figure 3) can be interpreted according

Figure 3. Estimated effects of ultrasound parameters on the conditional mean and conditional variance of

transformed birth weights. Solid lines represent estimated functions �̂ð ultrasonic parameter Þ and dashed lines

represent estimated functions �̂ð ultrasonic parameter Þ. The corresponding values of t-statistics belong to the

coefficients of the ordinary linear model LM. BPD: biparietal diameter, FL: femur length, AC: abdominal

circumference, HC: head circumference, FOD: fronto-occipital diameter, ATD: abdominal transverse diameter, APD:

anterior–posterior abdominal diameter, BMI: mother’s body mass index.
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to equation (4). For almost all ultrasound parameters, estimated non-linear functions a and b resulted,
which suggested that the ultrasound parameters influence both the conditional mean and conditional
variance. This again argues for the presence of heteroscedasticity that increases with increasing BWs.

4.2 Assessing the accuracy of the prediction intervals

We assessed the accuracy and adequacy of the (fetus-specific) prediction intervals by calculating the
conditional coverage and average interval length as quality criteria.

The conditional coverage of the prediction intervals for the BWs (Figures 4 and 5; Tables 3 and 4 in
Appendix 1) is a measure to check the adequacy and correctness of estimated prediction intervals.

Figure 4. Conditional coverage of the prediction intervals for fetuses of the 25 AC–FL categories. Points refer to

the point estimates of the conditional coverage, and error bars display corresponding Clopper-Pearson confidence

intervals. Gray reference lines symbolize the postulated 80% confidence level. Model estimation was carried out with

CLTM 0 (linear), CLTM 0, CLTM 1, CLTM 2, and CLTM 3.
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We were interested in how often the postulated coverage probability of 80% was violated in the 25
AC and FL categories (defined in Section 3.4) for the 10 regression models. Moreover, the accuracy of
the prediction intervals can be measured by the average interval lengths given in Table 2.

The conditional coverage of all 10 models was satisfying. The postulated coverage probability of
80% was not significantly violated by any of the suggested models in any of the categories. The
length of the corresponding error bars was mainly determined by the number of fetuses used for
estimation. Hence, the length of the error bars was especially high in the categories 5–1, 4–1, 1–5,
and 1–4.

The smallest associated average interval lengths were found for CLTM 3, CLTM 0, LM, CLTM
4, LQR, and AQR (Table 2). Hence, regarding the accuracy of prediction intervals, our new model
class of CLTMs can compete with linear regression models and quantile regression approaches.

Figure 5. Conditional coverage of the prediction intervals for fetuses of the 25 AC–FL categories. Points refer to

the point estimates of the conditional coverage, and error bars display corresponding Clopper-Pearson confidence

intervals. Gray reference lines symbolize the postulated 80% confidence level. Model estimation was carried out with

CLTM 4, CTM, LM, LQR, and AQR.
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5 Discussion

Although the accurate prediction of BW is one of the most important issues in gynecology,
traditional prediction formulas focus on point predictions and an easy-to-interpret, correct
measure of quantifying prediction uncertainty is lacking. We therefore aimed at finding a new
model-based strategy to predict BWs based on prenatal ultrasound parameters, accompanied by
some measure of prediction uncertainty. We introduced CLTMs—a new model class that not only
results in point estimates for the median BW but also provides a measure of uncertainty in terms of
prediction intervals.

Especially BWs at the extremes have been over- or underestimated by prediction formulas
presented earlier.7 This could be due to the use of linear regression models for estimation, which
are not able to deal with possible heteroscedasticity, kurtosis, or skewness of the response
distribution, and are accordingly inadequate in such situations. The standard approach around
this problem is the use of quantile regression approaches as no distributional assumptions are
made, but one often has to deal with the problem of quantile crossing instead.25

In our novel approach of estimating CLTMs, we modeled the conditional distribution function of
BW based on ultrasound measurements. Hence, all quantiles were estimated simultaneously, and
problems such as quantile crossing were avoided. Koenker 23 already suggested the direct estimation
of the conditional distribution function via transformation models as an alternative to quantile
regression models. The flexibility of the influence of the ultrasound parameters on the quantiles
in CLTMs is similar to the flexible influence in quantile regression, as the ultrasound measurement
effects may also vary for different values of the conditional distribution function in CLTMs. The
borders of the fetus-specific prediction intervals arose directly from the corresponding quantile
function. In contrast to linear regression models, the fetus-specific prediction intervals showed
individual interval lengths based on the ultrasound measurements and are therefore a useful
measure for individual prediction accuracy. Moreover, the variance may depend on explanatory
variables, and CLTMs account for possible heteroscedasticity. In addition, CLTMs can deal with
skewed distributions as higher moments of the distribution of the response (e.g. kurtosis and

Table 2. Average prediction interval length.

Model Average interval length

CLTM 0 (linear) 1.042

CLTM 0 0.785

CLTM 1 1.132

CLTM 2 1.042

CLTM 3 0.790

CLTM 4 0.776

CTM 0.807

LM 0.777

LQR 0.764

AQR 0.755

Note: Estimation is based on models CLTM 0 (linear), CLTM 0–CLTM 4,

CTM, LM, LQR, and AQR. CLTM: conditionally linear transformation

models; CTM: conditional transformation model; LM: linear regression

model; LQR: linear quantile regression model; AQR: additive quantile

regression model.
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skewness) can be modeled flexibly in terms of the unconditional monotone transformation function.
Hence, using CLTMs instead of linear regression models is advantageous in numerous situations,
especially in our application of predicting BWs.

From a conceptual point of view, fetal weight estimation is fundamentally different from the
construction of reference growth charts of child height and weight.33 Growth curves are usually
designed as screening tools for disease after birth (and also as reference standards for group health
and economic status34), whereas prediction of BW is designed to estimate the risk of neonatal
mortality and morbidity before delivery. Consequently, although similar statistical methodology
may be used for both tasks, the CLTM approach proposed here specifically addresses the
problem of BW prediction but not the construction of reference growth curves.

Our results suggested that the best-performing CLTM variant is able to compete with quantile
regression and linear regression approaches in terms of conditional coverage and average length of
the prediction intervals.

Although the differences to alternative methods were small, the estimation of C(L)TMs is
advisable because of the aforementioned advantages of accounting for possible heteroscedasticity,
kurtosis, and skewness. The distribution of the BWs showed deviations from a normal distribution
(Figure 7 in Appendix 1), but the deviations were kept within certain limits. Therefore, the linear
regression model would not be the worst choice in this application, and we would expect larger
differences in favor of C(L)TMs for response variables showing more extreme deviations from
normality. Consequently, our results show that prediction intervals for BWs can be derived from
a relatively easy and stable model, since the medium and high BWs follow a normal distribution and
only small BWs show deviations from normality (Figures 6 and 7 in Appendix 1). This conclusion is
also underlined by the good performance of model CLTM 0 (Figure 2). It would have been very
hard to derive such insights into the conditional distribution of BWs from alternative models, for
example additive quantile regression models. In general, the remarkably good performance of CTMs
compared to alternative modeling strategies has already been investigated in simulation studies and
numerous applications.13,35

Interpretability in CLTMs is different than in linear and quantile regression models. In linear and
quantile regression models, the influence of explanatory variables can be interpreted as direct effects on
the conditional mean or conditional quantile, respectively. In CLTMs, in contrast, the explanatory
variables influence the mean and variance of the transformed response non-linearly (compare equation
(4)). Nevertheless, the effects of the explanatory variables are interpretable in CLTMs, which is a main
advantage over the more complex model class of CTMs. Moreover, we were primarily interested in
predicting BWs accurately, and this is accompanied by correct and precise prediction intervals.
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Palermo, 2013, pp.15–26.
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Appendix 1. Predicting birth weight with conditionally linear transformation
models

Figure 6. Estimated unconditional monotone transformation function resulting from model CLTM 4. The dashed

line symbolizes the linear relationship between the birth weights and their monotone transformation.

Figure 7. Normal Q-Q plot of (a) original and (b) transformed birth weights resulting from model CLTM 4.
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Figure 8. Scatterplot of the original birth weights vs. the transformed birth weights resulting from model CLTM 4

accompanied by a kernel density estimation of the transformed birth weights (solid line) and the corresponding

normal density (dashed line).
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Figure 9. Boxplots for the birth weights in the 25 categories of abdominal circumference and femur length (AC–FL).
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Figure 10. Boxplots of the out-of-sample log scores based on 25 evaluation data sets. The log scores were

determined for the 25 categories for abdominal circumference and femur length (AC–FL) separately. Model

estimation was carried out for CLTM 0 (linear), CLTM 0, CLTM 1, and CLTM 2.
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Figure 11. Boxplots of the out-of-sample log scores based on 25 evaluation data sets. The log scores were

determined for the 25 categories for abdominal circumference and femur length (AC–FL) separately. Model

estimation was carried out for CLTM 3, CLTM 4, CTM, and LM.
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Table 3. Conditional coverage for the prediction intervals of fetuses in the 25 categories defined by abdominal

circumference (AC) and femur length (FL).

AC FL CLTM 0 (linear) CLTM 0 CLTM 1 CLTM 2 CLTM 3

1 1 0.826 0.826 0.587 0.826 0.783

2 1 0.784 0.784 0.838 0.784 0.784

3 1 0.905 0.857 0.905 0.905 0.857

4 1 0.933 0.800 0.933 0.933 0.800

5 1 1.000 0.818 1.000 1.000 0.909

1 2 0.944 0.833 0.944 0.944 0.833

2 2 0.952 0.881 0.976 0.952 0.881

3 2 0.884 0.721 0.907 0.884 0.744

4 2 0.903 0.871 0.903 0.903 0.903

5 2 0.885 0.885 0.962 0.885 0.885

1 3 0.957 0.870 0.957 0.957 0.870

2 3 0.973 0.892 0.973 0.973 0.892

3 3 0.923 0.897 0.974 0.923 0.897

4 3 0.947 0.842 1.000 0.947 0.842

5 3 0.857 0.714 0.857 0.857 0.714

1 4 0.800 0.800 0.867 0.800 0.733

2 4 0.938 0.875 0.938 0.938 0.875

3 4 0.875 0.825 0.925 0.875 0.825

4 4 0.841 0.841 0.886 0.841 0.909

5 4 0.857 0.833 0.881 0.857 0.833

1 5 0.800 0.600 0.900 0.800 0.600

2 5 0.880 0.840 0.880 0.880 0.840

3 5 0.970 0.879 0.970 0.970 0.879

4 5 0.935 0.913 0.957 0.935 0.913

5 5 0.817 0.817 0.850 0.817 0.867

Note: Estimation based on the conditionally linear transformation models CLTM 0 (linear) and CLTM 0–CLTM 3.

Table 4. Conditional coverage for the prediction intervals of fetuses in the 25 categories defined by abdominal

circumference (AC) and femur length (FL).

AC FL CLTM 4 CTM LM LQR AQR

1 1 0.826 0.870 0.815 0.772 0.739

2 1 0.784 0.757 0.865 0.757 0.757

3 1 0.857 0.857 1.000 0.857 0.857

4 1 0.800 0.867 0.933 0.867 0.867

5 1 0.909 0.909 0.909 0.818 0.818

1 2 0.833 0.861 0.778 0.833 0.806

2 2 0.881 0.881 0.833 0.881 0.881

3 2 0.744 0.721 0.930 0.721 0.721

4 2 0.871 0.871 0.742 0.871 0.903

5 2 0.885 0.846 0.846 0.846 0.846

(continued)
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Table 4. Continued

AC FL CLTM 4 CTM LM LQR AQR

1 3 0.870 0.913 0.739 0.870 0.957

2 3 0.892 0.892 0.919 0.892 0.892

3 3 0.897 0.897 0.769 0.872 0.897

4 3 0.842 0.842 0.895 0.842 0.842

5 3 0.714 0.743 0.857 0.714 0.714

1 4 0.800 0.800 0.800 0.800 0.800

2 4 0.875 0.906 0.750 0.906 0.906

3 4 0.825 0.825 0.750 0.825 0.825

4 4 0.864 0.841 0.864 0.841 0.795

5 4 0.833 0.857 0.690 0.786 0.810

1 5 0.600 0.600 1.000 0.600 0.600

2 5 0.840 0.840 0.880 0.840 0.760

3 5 0.879 0.848 0.727 0.788 0.818

4 5 0.913 0.913 0.717 0.935 0.870

5 5 0.850 0.783 0.767 0.733 0.750

Note: Estimation based on the regression models CLTM 4, CTM, LM, LQR, and AQR. CLTM: conditionally linear transformation

models; CTM: conditional transformation model; LM: linear regression model; LQR: linear quantile regression model; AQR: additive

quantile regression model.
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