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The functional linear array model
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Abstract: The functional linear array model (FLAM) is a unified model class for functional regression
models including function-on-scalar, scalar-on-function and function-on-function regression. Mean,
median, quantile as well as generalized additive regression models for functional or scalar responses
are contained as special cases in this general framework. Our implementation features a broad variety
of covariate effects, such as linear, smooth and interaction effects of grouping variables, scalar and func-
tional covariates. Computational efficiency is achieved by representing the model as a generalized linear
array model. While the array structure requires a common grid for functional responses, missing values
are allowed. Estimation is conducted using a boosting algorithm, which allows for numerous covariates
and automatic, data-driven model selection. To illustrate the flexibility of the model class we use three
applications on curing of resin for car production, heat values of fossil fuels and Canadian climate
data (the last one in the electronic supplement). These require function-on-scalar, scalar-on-function
and function-on-function regression models, respectively, as well as additional capabilities such as
robust regression, spatial functional regression, model selection and accommodation of missings. An
implementation of our methods is provided in the R add-on package FDboost.
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1 Introduction

Functional data analysis (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006) aims
at analyzing data where the observation units are functions. Often functional regres-
sion models (Ramsay and Silverman, 2005) are of interest, i.e., models containing a
functional response or at least one functional covariate, resulting in three types of
functional regression models: scalar-on-function, function-on-scalar and function-on-
function regression models. We introduce the functional linear array model (FLAM),
which includes all three model types as special cases and provides a unified model
class for functional regression. Compared to existing work, which typically focused

Address for correspondence: Sarah Brockhaus, Institut für Statistik, Ludwig-Maximilians-Universität
München, Ludwigstraße 33, D–80539 München, Germany.
E-mail: sarah.brockhaus@stat.uni-muenchen.de
Fax: (+49) 89 2180 5308

© 2015 SAGE Publications 10.1177/1471082X14566913

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1471082X14566913&domain=pdf&date_stamp=2015-01-14


280 Sarah Brockhaus et al.

on one of the three cases, we provide three novel extensions. First, the use of general
loss functions allows us to model not only the conditional mean but also the median,
any quantile or any other property of the conditional distribution representable by
a suitable loss function. Most existing work has focused on mean regression for
functional data, but more general loss functions than the squared error loss are in
particular important for robust regression models, using, e.g., the absolute error loss
or the Huber loss, and for non-normal functional data. Second, our approach is able
to handle a large number of covariate effects—even more than observations—and
model selection. Both, large numbers of variables and variable selection are largely
unaddressed in the functional data context to date. Third, we provide a common
software platform for functional regression which makes use of the array structure of
FLAMs to obtain computational efficiency for estimation via generalized linear array
models (Currie et al., 2006). Although we assume for the FLAM that the functions
are intrinsically smooth and measured on a fine grid, missing values are allowed and
make estimation for sparse functional data possible, albeit at some loss of compu-
tational efficiency. In addition to computational efficiency, this unified and modular
platform has the advantage of allowing for and encouraging extensions of the model
class (even though many models of common interest are already implemented) and
new model terms or loss functions will then be instantly available for all models
covered by our framework.

A recent overview on functional regression can be found in Morris (2015). Most
prior work in this area has focused on quite narrow classes of models. The proposed
models are often restricted to one functional predictor without consideration of
further scalar or functional covariates and minimization of a quadratic loss function.
Much work has concentrated on scalar-on-function regression—also called signal
regression—modelling the functional effect linearly as the scalar product of the
functional predictor and a smooth coefficient function, in the context of linear models
(e.g., Reiss and Ogden, 2007; James et al., 2009), generalized linear models (e.g.,
Marx and Eilers, 1999; Müller and Stadtmüller, 2005; Wood, 2011; Gertheiss et al.,
2013) or quantile regression models (e.g., Cardot et al., 2005; Chen and Müller,
2012a). Some approaches model the effect of the functional predictor without the as-
sumption of linearity (e.g., James and Silverman, 2005; Müller et al., 2013; McLean
et al., 2014; Zhu et al., 2014). A fundamentally different approach is pursued by Fer-
raty et al. (2005, 2007) who estimate scalar-on-function regression models nonpara-
metrically using kernel methods, yielding predictions but no interpretable models.

For function-on-scalar regression, which can also be viewed as smooth repeated
measures varying coefficient models, most approaches model the conditional mean of
a functional variable in the setting of independent (e.g., Reiss et al., 2010) or depen-
dent data (e.g., Morris and Carroll, 2006; Di et al., 2009; Greven et al., 2010; Chen
and Müller, 2012b). Staicu et al. (2012) model conditional quantiles of a functional
variable as depending on the index of the response but not on covariates.

In the context of function-on-function regression, a linear effect of a functional
covariate is modelled using a bivariate coefficient surface (e.g., Ramsay and Dalzell,
1991; Yao et al., 2005; Ivanescu et al., 2014). Ferraty et al. (2012) investigate a
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nonparametric kernel approach and Müller and Yao (2008) consider a non-linear
effect of a functional covariate.

Among the most general frameworks for functional regression models are two
frameworks that can deal with functional and scalar responses and the effects of
several functional and scalar covariates. One pursues a Bayesian wavelet-based
approach for functional regression models; see Malloy et al. (2010) for scalar re-
sponses in a distributed lag model and Morris and Carroll (2006), Zhu et al. (2011)
and Meyer et al. (2013) for functional responses. Zhu et al. (2011) develop a robust
function-on-scalar regression model for dependent data as generalization of the
model in Morris and Carroll (2006). Zhu et al. (2011) and Meyer et al. (2013) also
discuss possible generalizations to other projections than wavelets. A second general
framework estimates functional regression models based on additive mixed models.
This approach was proposed by Goldsmith et al. (2011) for scalar responses and by
Ivanescu et al. (2014) and Scheipl et al. (2014) for functional responses. Both frame-
works allow random effects, scalar and functional covariates. While our framework
incorporates very similar covariate effect types as these two approaches, it is the first
to go beyond modelling the conditional mean and to be able to deal with a large
number of covariates as well as variable selection. In particular this means that we
can estimate, e.g., quantile or expectile regression models, which is impossible in the
other two approaches focusing on generalized regression models. In addition, we can
accommodate situations with more covariates than observations. Furthermore, the
efficient array methods we use for estimation give a clear computational advantage
over Scheipl et al. (2014) for increasing sample size and number of grid points per
function. Another advantage of our general framework is the unified treatment of
scalar and functional response models in both models and software, making it easier
for new users to get familiar with both within one framework, and allowing for
simpler extension of models and accompanying code for both settings simultaneously.

Our implementation of FLAMs is based on a component-wise boosting algorithm.
Boosting is an ensemble method that aims at optimizing a risk function by stepwise
updates of the parameters of the best-fitting effect in each iteration. Every effect is
represented using a so-called base-learner, which is a simple model; see for instance
Bühlmann and Hothorn (2007) for an introduction to boosting algorithms in a statis-
tical context. We derive an appropriate loss function for functional responses based
on existing loss functions for scalar responses. Boosting has some desirable proper-
ties. It can handle many covariates of mixed types including categorical and metric
scalar variables and their interactions in mixed specifications, as for instance linear,
smooth and multidimensional effects. Additionally, we implement a base-learner for
effects of functional covariates that can be combined with existing base-learners to
form interaction effects of functional and scalar covariates. The number of covariates
can exceed the number of observations and the covariates can be correlated. It is of
large practical importance to note that boosting can also perform variable and model
selection. Little work has been done to date on variable selection in functional regres-
sion models. Gertheiss et al. (2013) pursued variable selection in a scalar-on-function
setting. Boosting was used before in functional data analysis to estimate particular
regression models. In a setting with scalar response and a single functional covariate,
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boosting was used for classification of a binary response (Krämer, 2006), for predic-
tion of a continuous response based on kernel regression (Ferraty and Vieu, 2009)
and for feature extraction (Tutz and Gertheiss, 2010). In the context of function-on-
scalar regression Sexton and Laake (2012) used boosted regression trees. A drawback
of boosting is its lack of formal inference, which we address by bootstrapping.

In the following we define the general FLAM and the tensor product basis
representation of the effects (Section 2). In order to fit a FLAM we define a suitable
loss for functional data (Section 3). We give details on the estimation using a boosting
algorithm in Section 4. In Section 5, we present empirical results on simulated data to
demonstrate correctness of our software implementation and provide a comparison
with penalized regression models proposed by Scheipl et al. (2014). The section on
applications (Section 6) contains the analysis of two data examples. We analyze data
on the viscosity of resin over time depending on five experimental factors, where
the aim is to control the hardening process. In a function-on-scalar regression model
for the viscosity we use median regression incorporating variable selection. In the
second application, spectrography data of fossil fuel samples are used to predict their
calorific values using two spectral measurements (scalar-on-function regression). The
online appendix contains an additional example for function-on-function regression.
All analyses are fully reproducible as the datasets and the code of the simulation and
the applications are part of the online supplement or the R add-on package FDboost
(Brockhaus, 2014) and R is open source software (R Core Team, 2014). The article
concludes with a discussion in Section 7.

2 Model specification

In the following we consider data (Y,X) ⊂ Y × X, where Y is a suitable space for the
response Y and X is a product space of suitable spaces for the covariates. Let Y be the
space of square integrable functionsL2(T, �). For functional response the domain T is
an interval over the real numbers, T = [t1, t2], with t1, t2 ∈ R, and � is the Lebesgue
measure. For scalar response the set T consists of a single point, T = [t, t], and � is
the Dirac measure. The spaces in X are defined analogously for scalar and functional
covariates. We assume that Y given X follows a conditional distribution FY|X; the
explanatory variables X may be fixed or random. As generic model we establish the
following structured additive regression model:

�(Y|X = x) = h(x) =
J∑
j=1

hj(x), (2.1)

where � is some transformation function, for instance the expectation, the median
or some quantile. For a generalized linear model the transformation function corre-
sponds to the expectation composed with the link function g that connects response
and linear predictor, i.e., � = g ◦ E. The linear predictor h is the sum of partial ef-
fects hj which implies additivity. Note, however, that a partial effect hj can depend
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on more than one covariate allowing, e.g., for interactions. Each effect hj(x) ∈ Y is a
real valued function. To give an overview of effects hj(x) that can be specified within
the proposed framework, Table 1 lists the effects that are currently implemented in
the FDboost package (Brockhaus, 2014). A similar table can be found in Scheipl
et al. (2014). In order to obtain identifiable models, further constraints on the hj are
necessary. For an intercept ˇ0 in the model, we centre all effects hj, which contain
an intercept as a special case, by assuming that the expectation over the covariates
is zero on T, i.e., EX(hj(X)) ≡ 0. We describe these constraints and how to include
them in the array framework in the online appendix A.

Each hj(x) is represented using a tensor product basis

hj(x)(t) = (
bj(x)� ⊗ bY (t)�

)
�j, (2.2)

where ⊗ is the Kronecker product, bj : X → RKj is a vector of basis functions de-
pending on one or several covariates, bY : T → RKY is a vector of basis functions over
the domain of the response and �j ∈ RKjKY is a vector of coefficients. In the case of
scalar-on-function regression, bY (t) ≡ 1 with KY = 1. Regularization of the effects is
achieved by a quadratic penalty term. A suitable penalty matrix for a tensor product
basis as in equation (2.2) can be constructed as PjY = �j(Pj ⊗ IKY ) + �Y (IKj ⊗ PY ),
where Pj ∈ RKj×Kj is an appropriate penalty matrix for the marginal basis bj(xi),
PY ∈ RKY×KY is an appropriate penalty matrix for the marginal basis bY (t), and �j,
�Y ≥ 0 are the corresponding smoothing parameters (Wood, 2006, sec. 4.1.8). Other
penalty matrices are possible, e.g., the direct Kronecker product of the two marginal
penalties P∗

jY = �jPj ⊗ PY (Wood, 2006, sec. 4.1.8) or the penalty of the sandwich-
smoother P∗∗

jY = �jPj ⊗ B�
YBY + �YB

�
j Bj ⊗ PY + �j�YPj ⊗ PY , where Bj and BY are

the design matrices of the marginal bases (Xiao et al., 2013). The penalty term has

Table 1 Basic effects that can be fitted within a FLAM.

Covariate(s) Type of effect hj (x )(t )

(none) Smooth intercept ˇ0(t )
Scalar covariate z Linear effect zˇ(t )

Smooth effect �(z, t )
Two scalars z1, z2 Linear interaction z1z2ˇ(t )

Functional varying coefficient z1f (z2, t )
Smooth interaction f (z1, z2, t )

Functional covariate x (s) Linear functional effect
∫
x (s)ˇ(s, t )ds

Scalar z and functional x (s) Linear interaction z
∫
x (s)ˇ(s, t )ds

Smooth interaction
∫
x (s)ˇ(z, s, t )ds

Grouping variable g Group-specific intercepts ˇg(t )

Grouping variable g and scalar z Group-specific linear effects zˇg(t )
Curve indicator i Curve-specific smooth residuals ei (t )

Source: Authors’ own.
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a quadratic form, resulting in a Ridge-type penalty. The description of bases and
suitable penalty matrices corresponding to the effects hj(x) in Table 1 are deferred to
Section 6, as we hope that concrete examples improve readability of these technical
details. The three examples in Section 6 and the online appendix are chosen in
particular such that bases and penalties for most effect types in Table 1 are introduced.

As we represent all effects as Kronecker products of two bases and use a Ridge-type
penalty, the model is a special case of a generalized linear array model as introduced
by Currie et al. (2006). This approach in particular avoids rearranging responses and
coefficients into vectors, but preserves the array structure throughout and makes use
of the special Kronecker structure in the design matrix to reduce computations to
nested operations in lower dimensions. For instance, it is not necessary to actually
compute and save theNG× KjKY design matrix, whereN is the number of observa-
tion units andG is the number of observation points per functional response. Instead
we only need to compute and save the much smaller marginal basis matrices. By defin-
ing suitable array-based linear algebra routines the number of operations required
to compute effect estimates and predictions, as well as the storage requirements, are
reduced dramatically (cf. Currie et al., 2006).

3 Estimation

The basic idea for the estimation of a FLAM (2.1) is the use of an adequate loss
function that represents the estimation problem. The choice of the loss function
depends on the transformation function � and on the conditional distribution of
the response. In the following, we present some possible loss functions to give an
idea of the variety of models that can be represented within this framework. Let
� : (Y × X) × H → L1(T, �) be a function mapping the data (Y,X) and the model h
to a function in the space of integrable functions L1(T, �). The model h is an element
of the set H = Y(X×T), which is the set of all functions from (X × T) to Y. In other
words, � maps the data and the model to a function over the domain of the response
which computes a measure of discrepancy between Y(t) and h(X)(t) for each t ∈ T.
For clarity, the argument t is omitted in the following examples of loss functions.
For a continuous Y, a typical choice is the squared error loss, the so-called L2-loss,
�L2

(
(Y,X), h

) = 1
2(Y − h(X))2. Minimizing the quadratic loss corresponds to least

squares optimization and is equivalent to minimizing the negative log-likelihood of a
normal distribution. Thus minimizing the L2-loss yields the classical linear regression
model for conditionally normally distributed response and corresponds to the case
when the transformation function is the expectation.

One possibility to obtain a more robust model is to use the absolute loss, also called
L1-loss, which is equivalent to minimizing the negative log-likelihood of the Laplace
distribution and is defined as �L1

(
(Y,X), h

) = |Y − h(X)|. The L1-loss is minimized
by the conditional median and hence corresponds to median regression. To obtain
quantile regression, i.e., �(Y|X) = Q�(Y|X), where Q�(Y|X) is the �-quantile of Y

Statistical Modelling 2015; 15(3): 279–300



The functional linear array model 285

conditional on X for a given quantile � ∈ (0,1), one can use the check function
(Koenker, 2005)

��
(
(Y,X), h

) =
{

(Y − h(X))�, if Y − h(X) ≥ 0
(Y − h(X))(� − 1), if Y − h(X) < 0,

which is minimized by the �-quantile. Modelling quantiles is a distribution-free
approach and is often of interest for skewed and heteroskedastic conditional
distributions or in applications where some extreme quantile is of special interest.

If it is assumed that the conditional distribution of the response is from the expo-
nential family, the negative log-likelihood is an appropriate loss function. Examples
for exponential family distributions used for generalized linear models (GLMs) in-
clude binomial, Poisson, log-normal and Gamma distributions (Nelder and Wedder-
burn, 1972).

We define the loss function � : (Y × X) × H → R that results in a real valued loss
by integrating the loss function �

�
(
(Y,X), h

) =
∫
�

(
(Y,X) , h

)
d�. (3.1)

Remember that � is the Dirac measure for scalar response and the Lebesgue measure
for functional response. Weight functions can be incorporated by defining d�(t) =
v(t)dt where v(t) > 0 for t ∈ T and v(t) = 0 for t /∈ T, e.g., v(t) = I(t ∈ T), with I the
indicator function. Weight functions that are not constant can be used in case a certain
area of T is of special interest or variability varies along T.

4 Boosting

The FLAM (2.1) could be fitted using different approaches, e.g., by penalized
likelihood-based methods or Bayesian methods, replacing penalties with priors. We
chose to use boosting as it can easily deal with both the diversity of possible loss
functions of interest as well as with a large number of covariates (potentially more
than observations) and variable selection. Boosting is an ensemble method that
pursues a divide-and-conquer strategy for optimizing an expected loss criterion.
The estimator is updated step-by-step to minimize the loss criterion � as defined
in (3.1) along the steepest gradient descent. The model is represented as the sum
of simple (penalized) regression models, the so-called base-learners, that fit the
negative gradient in each step (Friedman, 2001; Bühlmann and Hothorn, 2007). The
base-learners determine the type of possible covariate effects. Their parametrization
for the FLAM (2.1) is given in equation (2.2). The loss criterion determines which
characteristic of the response variable’s conditional distribution is the goal of
optimization. The loss function is assumed to be differentiable with respect to h.
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The aim of boosting is to find the solution of the optimization problem

h∗ = argmin
h

EY,X�
(
(Y,X), h

)
. (4.1)

In practical problems the expectation in equation (4.1) has to be replaced by the ob-
served mean and the integral in equation (3.1) has to be approximated by the weighted
sum over the observed points, giving optimization of the empirical risk. We consider
a random sample (Yi,Xi), i = 1, . . . ,N, where Yi ∼ FY|Xi follow a common distribu-
tion and Xi can be fixed or random. We assume that the responses Yi are observed
over a common grid (t1, . . . , tG) ∈ T. Then we use the empirical risk for optimization

h∗ = argmin
h

(GN)−1
N∑
i=1

G∑
g=1

wi�i(tg)�
(
(Yi,Xi), h

)
(tg),

where wi are weights for the observations and �i(tg) are integration weights. The
weights wi are used in resampling methods, e.g., bootstrapping or subsampling, and
are set to one for an ordinary model fit. The integration weights �i(tg) are weights of
a numerical integration scheme. As a default, Riemann sums are used. In the case of a
missing valueYi′(tg′), the corresponding weight�i′(tg′) is set to zero and the integration
weights of adjacent observations�i′(tg′−1),�i′(tg′+1) are increased accordingly. If� in-
cludes a weight function, the integration weights are pre-multiplied by v(tg) at each tg.

We adapt the component-wise boosting algorithm developed by Hothorn et al.
(2013) to estimate conditional transformation models for the case of functional
regression models. In detail, we use the following algorithm to estimate FLAMs, as
defined in equation (2.1).

Algorithm: Boosting for Functional Linear Array Models
1. Define the bases bj(x), bY (t), their penalties PjY , j = 1, . . . , J, and the weights
w̃ig = wi�i(tg), i = 1, . . . ,N, g = 1, . . . ,G. Initialize the parameters �[0]

j for j =
1, . . . , J. Select the step-length 	 ∈ (0,1) and the stopping iterationmstop. Set the
number of boosting iterations to zero, m := 0.

2. Compute the negative gradient of the empirical risk

Ui(tg) := − ∂

∂h
�

(
(Yi,Xi) , h

)
(tg)

∣∣∣∣
h=ĥ[m]

,

with ĥ[m](xi)(tg) = ∑J
j=1

(
bj(xi)� ⊗ bY (tg)�

)
�

[m]
j .

Fit the base-learners for j = 1, . . . , J:

�̂ j = argmin
�∈RKjKY

N∑
i=1

G∑
g=1

w̃ig{Ui(tg) − (bj(xi)� ⊗ bY (tg)�)�}2 + ��PjY�,
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with weights w̃ig and penalty matrices PjY .
Select the best base-learner:

j� = argmin
j=1,...,J

N∑
i=1

G∑
g=1

w̃ig{Ui(tg) − (
bj(xi)� ⊗ bY (tg)�

)
�̂ j}2.

3. Update the parameters �[m+1]
j� = �

[m]
j� + 	�̂ j� and keep all other parameters fixed,

i.e., �[m+1]
j = �

[m]
j , for j /= j�.

4. Unless m = mstop, increase m by one and go back to step 2.

Then the final model is:

�̂(Yi|Xi = xi) =
J∑
j=1

ĥ
[mstop]
j (xi),

with ĥ
[mstop]
j (xi)(t) = (

bj(xi)� ⊗ bY (t)�
)
�

[mstop]
j .

To complete the specification of the boosting algorithm, it is necessary to set all
parameters mentioned in step 1. The bases and their corresponding penalty matrices
directly correspond to the chosen partial effects hj(x) in the model, with an overview
of possible model terms given in Table 1 and various examples of choices for bases
and penalties discussed in Section 6. Obvious choices are splines for smooth terms
and the observations themselves for linear terms, in each case provided with adequate
penalty matrices. We used a simplified penalty matrix PjY = �j(Pj ⊗ IKY + IKj ⊗ PY )
which contains only one smoothing parameter for both directions in our implementa-
tion. Additional simulations (results not shown) indicate that the effect estimates still
adapt well to anisotropic effect surfaces over the course of the boosting iterations.
The smoothness parameters �j are chosen such that the degrees of freedom are the
same for all base-learners to ensure a fair model selection. Otherwise base-learners
with higher degrees of freedom are more likely to be chosen (Hofner et al., 2011).
The resulting estimates adapt to the true complexity of the effects by the selection
frequency of the base-learners, which depends on the number of boosting iterations
mstop (Bühlmann and Yu, 2003). A natural choice for all initial values �[0]

j is zero.
However, the convergence rate of the boosting algorithm is faster if a suitable offset
is chosen for the intercept. For scalar responses typical choices are mean or median.
For functional responses, we use a smoothed mean or median function as offset.

The number of boosting iterations mstop and the step-length 	 are connected, as
a smaller step-length typically requires more boosting iterations. Choosing the step-
length sufficiently small (e.g., 	 = 0.1) and using the number of boosting iterations as
tuning parameter has been shown to be a good strategy (Friedman, 2001). Stopping
early here leads to regularized effect estimates and the number of boosting iterations
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mstop can be chosen by resampling methods like cross-validation or bootstrapping.
If bootstrapping is used, the weights wi are drawn from an N-dimensional multi-
nomial distribution with constant probability parameters pi = N−1, i = 1, . . . ,N.
Then the out-of-bootstrap (OOB) empirical risk with weights wOOBi = I(wi = 0) is
computed and the stopping iteration yielding the lowest empirical risk is chosen
(Hothorn et al., 2013).

Stability selection (Meinshausen and Bühlmann, 2010) can be used to improve
variable selection. The basic idea is to fix an upper bound for the per-family-error-rate
and the expected number of terms in the model. Then the model is refitted on sub-
samples of the data and the stability selection procedure provides a cutoff value for the
relative frequency of a base-learner to be selected among the first model terms across
the subsamples. Terms with selection frequencies greater than the cutoff are retained
in the model. In this article we use complementary pairs stability selection as proposed
by Shah and Samworth (2013), which improves on the theoretical guarantees of the
original proposal of Meinshausen and Bühlmann (2010) by replacing purely ran-
dom subsampling of the data with subsampling consisting of complementary pairs—
for each subsample of size N/2� another subsample containing the observations
not used in that subsample, i.e., the complementary pair, is also used as a training
subsample.

5 Simulation study

The aim of the simulation study is to demonstrate correctness of our software
implementation in the R add-on package FDboost (Brockhaus, 2014). Details on the
construction of the base-learner for a functional covariate are given later in Section
6.2. Boosting for scalar responses and covariates is well tested and extensive simula-
tion studies have already been conducted for the R add-on package mboost (Hothorn
et al., 2014) on which our implementation is based (e.g., Bühlmann and Hothorn,
2007; Schmid and Hothorn, 2008; Fenske et al., 2011). To keep the simulation
section short, we use a function-on-function setting which covers the functional
response and the functional covariate setting—both new in our framework—at the
same time. To allow comparison with a benchmark we simulate a mean regression
model, i.e., � = E, with a moderate number of covariates and no need for variable se-
lection. We can then use penalized function-on-function regression (PFFR) proposed
by Ivanescu et al. (2014) and Scheipl et al. (2014) and implemented in the R add-on
package refund (Crainiceanu et al., 2014) as a benchmark. Scheipl et al. (2014)
demonstrated in the function-on-scalar setting that the PFFR approach is better
suited to smooth functional data—as we assume—than the Bayesian wavelet-based
approach by Morris and Carroll (2006). The effect of the functional covariates in
both approaches is specified using the default settings, which means that a tensor
product of cubic regression splines is used in PFFR and cubic P-splines are used in
the boosting algorithm. For the boosting algorithm of the FLAM, the optimal mstop
is determined by 10-fold bootstrap over curves and the maximal mstop is set to 2000.
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Simulation set-up and goodness of fit measure. We consider a model with func-
tional response and two functional covariates. The true model is

Yi(t) = ˇ0(t) +
∫
x1i(s)ˇ1(s, t)ds+

∫
x2i(s)ˇ2(s, t)ds+ εit,

with s, t ∈ [0,1]. The functional covariates are simulated using a sum of five natu-
ral cubic B-splines with random coefficients from a uniform distribution U[−3,3].
The smooth global intercept is ˇ0(t) = cos(3t2) + 2, the coefficient function ˇ1(s, t)
is a bimodal surface ˇ1(s, t) = �(s, .2, .3)�(t, .2, .3) + �(s, .6, .3)�(t, .8, .25), where
�(·, �, �) is the density of the normal distribution with mean � and standard de-
viation �, and the coefficient function ˇ2(s, t) is unimodal with ˇ2(s, t) = 1.5 sin(t +
0.3) sin(s). The errors are normally distributed with εit ∼ N(0, �2

ε ), where �2
ε depends

on the signal-to-noise ratio. In the online appendix B a figure of the true coefficient
functions and responses together with the estimates by PFFR and FLAM is given for an
exemplary setting. We consider all combinations of the following parameter settings:

1. total number of observations N ∈ {100,500}
2. number of grid points G ∈ {30,100}; the same number of grid points is used

for response and functional covariates
3. signal-to-noise ratio SNRε ∈ {1,2}, where SNRε is the ratio of the standard

deviation of the linear predictor and the standard deviation of the residuals.

We run 10 replications per combination of parameter settings, which results in
narrow interquartile ranges of the performance measures and thus seems sufficient.
As a measure of the goodness of estimation, the relative integrated mean squared
error (reliMSE) is used:

reliMSE(Y(t)) =
∑N

i=1

∫ (
�i(t) − Ŷi(t)

)2
dt

∑N
i=1

∫ (
�i(t) − Ȳ

)2
dt

where �i(t) is the true value of the response without noise, Ŷi(t) is the predicted
value and Ȳ = N−1 ∑

i

∫
�i(t)dt is the global mean of the response. Thus, the mean

squared error (MSE) is standardized with respect to the global variability of the
response. The reliMSE is calculated analogously for the coefficient surface ˇ(s, t):

reliMSE(ˇ(s, t)) =
∫ ∫ (

ˇ(s, t) − ˆ̌ (s, t)
)2
dsdt,

∫ ∫ (
ˇ(s, t) − ¯̌ )2

dsdt

where ˇ(s, t) is the true coefficient surface, ˆ̌ (s, t) is its estimate and ¯̌ = ∫ ∫
ˇ(s, t)dsdt

is the overall mean of the true surface. Thus the MSE is standardized by a measure of
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the global variability of the coefficient surface. The reliMSE is defined analogously
for the univariate coefficient function ˇ0(t).

Simulation results. A graphical analysis of results (Figure 1) shows that the accu-
racy of estimates for the functional effects as well as the prediction of the response
using boosting is quite similar to that obtained when estimating the models with
PFFR. The reliMSE depends mainly on the signal-to-noise ratio SNRε and the num-
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Figure 1 Simulation results. The upper left panel shows the reliMSE for the prediction of the response, the
upper right panel the reliMSE for the smooth intercept and the two lower panels show the reliMSE for the two
functional effects for all combinations of sample size N , number of grid points G and signal-to-noise ratio
SNRε.
Source: Authors’ own.

ber of observation points per curveG. As expected, the estimates and predictions are
better for higher signal-to-noise ratio, more observations per curve and a higher num-
ber of observed curves. The estimates of ˇ2(s, t) are generally better than the estimates
of ˇ1(s, t), which can be explained by the more complex bimodal shape of the latter.
As the reliMSE is similar for PFFR and FLAM, showing no preference for one of the
two methods, one can assume that the new boosting algorithm is up to the standard
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of the benchmark for those cases where the benchmark is applicable, while consider-
ably extending the class of possible models. The computation time of the models in
all the considered settings and for both algorithms ranges from some seconds up to 10
minutes. To compute the computation time for the FLAM, we parallelized the 10-fold
bootstrap on 10 cores. For the relatively small data situations considered in the simu-
lation (small samples size, few observations per curve, only two effects), PFFR is faster,
but FLAM scales better for a growing number of observations and more covariates
and is faster for the setting with N = 500 and G = 100 (see online appendix B).

6 Applications

In this section, we present analyses for scalar-on-function and function-on-scalar
regressions, giving exemplary choices of transformation functions � and base-learners
for hj(xi) to illustrate some possibilities of the generic model (2.1). Online appendix
C contains an additional example for function-on-function regression, together with
a comparison with the PFFR approach of Scheipl et al. (2014). In addition to base-
learners for scalar and functional covariates and their interactions, the three examples
require robust (median) regression, variable selection and the handling of missing
values and spatially correlated functional residuals.

6.1 Function-on-scalar regression: viscosity

In the fabrication of cars, casting is an important production technology. For this
process the curing of the material, in our example resin, in the mould is crucial. To
determine factors that affect curing, the viscosity of the resin is measured over time
in an experiment varying five binary factors (Wolfgang Raffelt, Technical Univer-
sity of Munich, Institute for Carbon Composites). The ideal viscosity-curve should
have low values in the beginning and then increase quickly. This corresponds to low
viscosity during filling of the mould and a rapid hardening. Following a fractional
factorial design, 16 factor combinations were tested with 4 replications per experi-
mental setting. Due to technical reasons the measuring method has to be changed in
a certain range of viscosity. As the time-point for the change of measuring method
is at 109 seconds for some curves and at 129 seconds for others, there are missing
values in those curves with the earlier change point due to the smaller frequency for
the second method. After the change of method some curves show large amounts of
measurement error. In Figure 2 the observed viscosity curves are plotted on a log-
scale in micropascal. For the modelling, main effects and interactions of first order
for the five experimental factors are of interest, resulting in 15 potential effects. The
estimates should be robust because of the apparent measurement error problems in
some curves. All in all it is necessary to estimate a robust (median) regression model,
incorporating model selection and accommodating missing values. A FLAM can deal
with all of these problems: Median regression is obtained by using the absolute loss,
variable selection is achieved by stability selection, and missing values are dealt with
by setting the corresponding weights to zero.
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Figure 2 Viscosity over time and estimated coefficient functions. On the left hand side the viscosity measures
are plotted over time with temperature of tools (T C) and temperature of resin (T A) colour-coded. On the right
hand side the coefficient functions are plotted.
Source: Authors’ own.

In the first step a smooth intercept, all main effects and all interaction terms of first
order are included in the model as smooth effects over time. To estimate such a model
we need a base-learner for an effect of the form xˇ(t), where x is a dummy variable
for a factor or an interaction and ˇ(t) is the smooth coefficient function over time.
Such an effect is obtained by setting bj(x)� = (1 x) and bY (t) = �Y (t), where �Y (t)
is a vector of cubic B-splines evaluated at t. The smooth intercept is represented by
setting b1(x)� = (1). In order to get more stable estimates and reduce the necessary
number of boosting iterations, we include an intercept term in each base-learner. After
fitting the model, the intercept-part is subtracted from each coefficient function and
added to the global intercept. The penalty matrix Pj for the linear term in the dummy
variable is 0 so that the linear term is unpenalized, and the penalty matrix PY is D�D
with second-order difference matrix D, yielding P-splines for the time-varying effects
(Eilers and Marx, 1996).

The optimal stopping iteration is determined by 10-fold bootstrapping over curves.
In the resulting model, all main effects and most of the interaction effects are selected.
Most base-learners contribute very small effects to the prediction of the viscosity and
are selected quite rarely. To obtain a parsimonious model only containing important
effects we conduct stability selection (Shah and Samworth, 2013). We set the per-
family-error-rate to 2 and the expected number of terms in the model to 5. For the
16 possible base-learners this results in a cutoff value of 0.63. Using a total of 100
subsamples, the effects for temperature of tools (T A), temperature of resin (T C) and
their interaction are selected into the model, yielding

median
(
log(visi(t))|T Ai,T Ci

) = ˇ0(t) + T AiˇA(t) + T CiˇC(t) + T ACiˇAC(t),
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where visi(t) is the viscosity of observation i at time t, T Ai and T Ci are the temper-
atures of resin and of tools, respectively, each coded as -1 for the lower and 1 for the
higher temperature. The interaction T ACi is 1 if both temperatures are in the higher
category and -1 otherwise. The estimated coefficients for this model are shown in
Figure 2 on the right hand side.

Temperature of tools (T C) has a very strong influence. For higher temperature
of tools the resin has lower viscosity in the beginning, but from about 40 seconds
onwards it cures faster. For the temperature of the resin (T A), the effect is similar but
much smaller, i.e., the resin cures faster for higher temperatures. If both temperatures
are in the higher category the viscosity curves have the desired shape (low in the
beginning and rapid increase). The other factors seem to have no or a very small
influence on the curing process. This is good news for the production process, as
these parameters do not have to be controlled precisely.

6.2 Scalar-on-function regression: spectral data of fuels

In this application, the aim is to predict the heat value of fossil fuels using spectral
data (Fuchs et al., 2015, Siemens AG). The dataset was obtained in a laboratory and
contains the heat value in megajoule (MJ), percentage of humidity and two spectra
types with different wavelength ranges for 129 fossil fuel samples. One spectrum is
ultraviolet-visible (UV-VIS), measured at 1335 wavelengths, the other a near infrared
spectrum (NIR), measured at 2307 wavelengths. The observation points along the
wavelength are non-equidistant for both spectra, with larger distances for higher
wavelengths.

The aim is to predict the heat value using information obtainable as measurements
in a power plant, i.e., using only the spectral data. To use more information, we com-
pute the derivatives of both spectra as further functional covariates. As the humidity
cannot be measured automatically in a power plant, it should not be used directly for
the prediction of the heat value. But it is possible to predict the humidity using the
spectral data and then to use predicted humidity as additional variable. To predict the
humidity we use a scalar-on-function regression model with both spectra and both
derivatives as covariates. For this dataset the humidity can be predicted quite accu-
rately, with the relative mean squared error (relMSE) determined by 50-fold bootstrap
being about 10%. Through the predicted humidity the information contained in the
spectra is used in a non-linear way for the model of the heat value. Figure 3 shows
a histogram of the heat value (top left panel), whose distribution is skewed towards
higher values. The scatterplot of heat value against predicted humidity (Figure 3 top
right) shows that low heat values all occur for rather low humidity values, but for
the low humidity values there are high heat values as well.

For this application, we want to estimate a scalar-on-function regression model
that predicts the heat values as precisely as possible. Two spectra, their derivatives and
the predicted humidity are available as predictors and can be used to specify models
with different covariate effects. The most complex model contains the functional
effects of the two spectra and their derivatives, the effect of the predicted humidity
and the interaction effects of the predicted humidity with the four functional variables.
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The functional variables are denoted by xki, k = 1, . . . ,4, and the predicted humidity
by zi, i = 1, . . . ,129. Then we can write the model as

E(Yi|xi, zi) = ˇ0 +
4∑
k=1

∫
xki(sk)ˇk(sk)dsk + f (zi) +

4∑
k=1

∫
xki(sk)˛k(sk, zi)dsk, (6.1)

where Yi are the heat values, ˇk(sk) are the coefficients of the main functional effects,
sk are the respective wavelengths, f (zi) is the smooth effect of the predicted humidity
and ˛k(sk, zi) are the interaction effects of the functional covariates with the predicted
humidity.

To estimate the full model (6.1), linear effects of functional variables, a smooth
effect of a scalar variable and interactions between them are needed. The effect of
a functional covariate x(s) over the domain s ∈ S is modelled as

∫
S x(s)ˇ(s)ds. The
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integral can be approximated numerically as a weighted sum over (s1, . . . , sR)�, the
grid of observation points in S, by using adequate integration weights �(s), yielding∫
S xi(s)ˇ(s)ds ≈ ∑R

r=1�(sr)x(sr)ˇ(sr) (Wood, 2011). Then we compute the basis as

bj(x(s))� = [x̃(s1) · · · x̃(sR)]

⎡
⎢⎣
�j(s1)�

...
�j(sR)�

⎤
⎥⎦ , (6.2)

where x̃(s) = �(s)x(s) and �j(s) is a vector of B-splines evaluated at s. The penalty
matrix Pj is a squared difference matrix. The smooth effect f (zi) of the scalar covariate
upon a scalar response is a standard problem and is estimated by P-splines, i.e.,
bj(z) = �j(z) with difference penalty Pj. An interaction term between a functional
and a scalar variable can be computed as a tensor-product basis of the basis for the
functional covariate and the basis for the scalar covariate yielding

bj(x(s), z)� = bj1(x(s))� ⊗ bj2(z)�,

with bj1 defined as in (6.2) and the bj2(z) defined like bj(z) above. The penalty matrix
Pj for the interaction can be computed from the marginal penalties as described for
(2.2). As there is a scalar response, the basis bY (t) over the domain of the response is 1.

In order to assess the predictive power of the models we use 50-fold bootstrap and
evaluate the MSE as well as the relative MSE (relMSE), which is defined as

relMSEo =
∑

i∈Io(Yi − Ŷi)2

∑
i∈Io(Yi − Ȳ)2

, o = 1, . . . ,50,

where Io is the index set of the out-of-bag sample for bootstrap-fold o, i.e., the
validation sample, and Ȳ is the mean of the response in the learning sample. The
MSE corresponds to the numerator, MSEo = ∑

i∈Io(Yi − Ŷi)2. The optimal stopping
iteration is determined at the minimal mean MSE over all bootstrap samples.

The predictive power of model (6.1) (full model) is compared to the smaller models
with all main effects ((d)spec H2O), with all functional effects ((d)spec), with both
spectra (spec) and with the NIR spectra (NIR). The relMSE and the MSE for these
are plotted in Figure 4. The NIR model is worse than the other models. As the model
with both spectra has MSE and relMSE values close to those of the more complex
models, we keep that model. The relMSE values of around 10% indicate adequate
prediction of the heat values. The coefficient estimates (Figure 5) on the entire dataset
(long-dashed blue lines) are plotted together with the estimates calculated on the 50
bootstrap folds (gray lines), the mean coefficient function over the bootstrap sam-
ples (black lines) and point-wise 5% and 95% values over the estimated coefficient
functions on the bootstrap samples (dashed red lines). The estimates are quite stable
having a similar form and size over the bootstrap-samples. High values of the UV-VIS
spectrum for the lowest wavelengths and low values for wavelengths of about 300
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to 400 nm are associated with higher heat values. A higher spectrum in the lower
wavelengths of the NIR spectrum (approximately 1000 to 1200 nm) as well as in
the area of 2200 to 2600 nm are associated with a higher heat value. For the highest
wavelengths and the wavelength between 1400 and 2100 nm the effect is negative,
i.e., higher values in the spectrum imply lower heat values.

7 Discussion

In this article we introduced the functional linear array model (FLAM), a generic
model class for functional data measured on a common grid with potential missings.
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The response can be scalar or functional. The FLAM has a modular structure: the
transformation function allows us to choose which feature of the conditional distri-
bution of the response to model and the additive predictor allows the specification of
a variety of covariate effects. We take advantage of the Kronecker product structure
of the design matrix to achieve computational efficiency using linear array models.
The optimization problem in (4.1) could be solved by a variety of algorithms. We
decided to use a boosting approach for estimation as it is well suited to the modular
structure of the model class. New base-learners can easily be implemented to adapt
the modelling framework even further if new kinds of covariate effects are needed in
a given problem at hand, as shown by the interaction effect between a scalar and a
functional covariate in the spectral data example or the smooth spatially correlated
residuals in the model for the Canadian weather data. Our current implementation
includes base-learners for quite a number of common effects of scalar, functional and
grouping variables and their interactions. Another attractive feature of boosting is its
capability to deal with many covariate effects and to facilitate variable selection, as
illustrated with the viscosity data.

Considering other general frameworks for functional regression, the mixed model
based approach by Scheipl et al. (2014) and the Bayesian wavelet-based approach
by Meyer et al. (2013) (and earlier work by each group), some advantages and
drawbacks of FLAMs become visible. Our boosting framework is more flexible in
allowing to model more general features of the response than the mean and handling
the case of a large number of potential covariates. The modular framework easily
allows the extension of the model class by specifying new covariate effects or loss
functions. For the case of mean regression, these other two approaches naturally
allow for inference as a by-product of the mixed models/Bayesian modelling frame-
work. We handle the lack of formal inference using the bootstrap as illustrated with
the spectral data. A table summarizing the characteristics of the three approaches is
given in the online appendix D.

We are considering several future extensions to our framework. It is
straightforward to implement further base-learners for additional covariate effects.
One possibility would be a non-linear functional effect

∫
S f (X(s), s)ds, with f a smooth

unknown function (e.g., Müller et al., 2013; McLean et al., 2014), where the basis
and penalty specification of McLean et al. (2014) could be directly translated to a
new base-learner. Another is to use a different set of basis functions in the estimation
of linear functional effects. For instance, one could use the eigenfunctions of the es-
timated covariance function as basis functions for bY (t), as is commonly done in the
context of functional principal component analysis (e.g., Scheipl et al., 2014).

Another interesting future direction would be to use boosting for functional
regression models that cannot be written as linear array models. This would
allow for responses observed on irregular grids and for functional effects whose
integration limits depend on the current observation point of the response. For
instance, if functional response and covariate are observed over time, the histor-
ical functional linear model (Malfait and Ramsay, 2003; Harezlak et al., 2007)
�(Y(t)|X = x) = ∫ t

t−ı x(s)ˇ(s, t)ds can be of interest, where only lagged past values of
the functional covariate are used to model the current value of the response.
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