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Abstract: In regression modelling, categorical covariates have to be coded. Depending on the number
of categorical covariates and on the number of levels they have, the number of coefficients can become
huge. To reduce the model complexity, coefficients of similar categories should be fused and coefficients
of non-influential categories should be set to zero. To this end, Lasso-type penalties on the differences of
coefficients are a standard approach. However, the clustering/selection performance of this approach is
sometimes poor—especially when the adaptive weights are badly conditioned or not existing. In some
situations, there is no incentive to cluster similar categories. To overcome this, a L0 penalty on the
differences of coefficients is proposed, whereby the L0 ‘norm’ is defined as the number of non-zero
entries in a vector. The proposed penalty favours to find clusters of categories that share the same effect
on the response variable while the estimation accuracy is comparable to Lasso-type penalties. Numerical
experiments within the framework of generalized linear models are promising. For illustration, data
on the unemployment rates in Germany is analyzed.
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1 Introduction

In the majority of regression problems, at least some of the available covariates are
categorical. A categorical covariate has to be coded. Depending on the number of
categorical covariates and on the number of levels they have, the number of coef-
ficients can become huge. Hence, the accuracy of estimates can be poor. Moreover,
when including categorical variables, users want to know if and how these predic-
tors determine the response, and, in particular, which categories have to be distin-
guished. Typically, there are subsets of categories that have the same effect on the
response variable. Recently, various approaches to obtain selection and fusion of
categories by regularized estimation have been proposed: Bondell and Reich (2009)
propose to apply the fused Lasso (Tibshirani et al., 2005) to the coefficients of a
nominal predictor; all pairwise differences of coefficients are penalized. For ordered
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factors, it is more appropriate to penalize differences of adjacent coefficients, see
Gertheiss and Tutz (2010) and Tutz and Gertheiss (2014). However, Lasso-type
penalties come with shrinkage effects that depend on the coefficients’ absolute values
(Fan and Li, 2001). As a consequence, there are often strong shrinkage effects for large
(differences of) coefficients while small (differences of) coefficients are estimated to be
non-zero. When the focus is on the fusion and the selection of categories, one wants
to avoid such effects. To enhance Lasso-type penalties, Zou (2006) proposes adap-
tive weights; each penalty term is weighted by its inverse maximum likelihood (ML)
estimate. It yields asymptotically normal and consistent model selection. However,
the quality of the adaptive weights depends on the quality of the ML estimate that
can be poor.

As an alternative, we propose L0 penalization for categorical effects; where the
L0 ‘norm’ is defined as the number of non-zero entries in a vector. As Bondell and
Reich (2009) or Gertheiss and Tutz (2010), we consider differences of coefficients; but
instead of the absolute value, the L0 norm is applied to the differences of coefficients.
The difference between unordered and ordered factors is taken into account by using
all pairwise differences or only adjacent differences. Computational issues are met
by local quadratic approximations. The optimization problem is related to model
selection with information criteria like the Akaike information criterion (AIC; see
for example, Bozdogan, 1987) or the Bayesian information criterion (BIC; Schwarz,
1978). As the proposed penalty allows for the fusion of categories, it extends this
approach. L0 penalization is an established approach in some fields of statistics: it is
applied to wavelets (Antoniadis and Fan, 2001) and to signals (see Lu and Zhang,
2010, Rippe et al., 2012).

Moreover, minimizing (approximations of) constrained L0 terms is employed to
find sparse representations of signals; see, for example, Donoho and Elad (2003),
Wipf and Rao (2005), Mancera and Portilla (2006) or Ge et al. (2011).

The article is organized as follows: Section 2 motivates L0 penalization for cate-
gorical effects in generalized linear models. In Section 3, we introduce the method;
computational issues, the relation to best subset selection and some generalizations
are discussed. Section 4 investigates the numerical properties of the proposed method.
In Section 5, the unemployment rates in Germany between 2005 and 2010 are ana-
lyzed. We investigate which state-specific intercepts are clustered in a model with a
global temporal trend.

2 Framework and L1-Type Fusion Penalties

In what follows, we assume a generalized linear model (GLM) with response yi for ob-
servation i, i = 1, . . . , n. As a start, we consider only one categorical covariate x with
levels 0, . . . , k. Let the rows of the design matrix X be given by xTi = (1, xi1, . . . , xik)
with xir = 1 if xi takes the value r and xir = 0 otherwise, r = 1, . . . , k. This rep-
resentation refers to dummy coding with category 0 as reference category, ˇ0 = 0.
The corresponding predictor is defined as �i = xTi ˇ, where ˇ = (ˇint, ˇ1, . . . , ˇk)T is
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the coefficient vector and ˇint denotes the intercept. For the response yi|xi, a simple
exponential family with log-likelihood ln(ˇ) is assumed:

ln(ˇ) =
n∑
i=1

yiϑi(�i) − b(ϑi(�i))
ϕ

+ c(yi, ϕ),

where ϑi(�i) denotes the natural parameter, b(·) is a specific function correspond-
ing to the type of the exponential family, c(·) is the log-normalization constant
and ϕ the dispersion parameter (compare Fahrmeir and Tutz, 2001). The observa-
tions yi are assumed to be conditionally independent. Response and predictor are
linked by the response function h(�i) which is twice continuously differentiable with
det(∂h/∂�i) /= 0 ∀i. That is, we assume:

�i = E(yi|xi) = h(�i). (2.1)

For more details on GLMs, see, for example, Fahrmeir and Tutz (2001). Estimates ˆ̌
are obtained by minimizing the negative log-likelihood ln(ˇ). Accounting for a penalty,
the objective function is defined as:

Mpen(ˇ) = −ln(ˇ) + � · P(ˇ), (2.2)

where P(ˇ) denotes the penalty and where � is a tuning parameter. The larger � is,
the stronger is the impact of the penalty. For � = 0, the ML estimate is obtained.
The choice of the penalty P(ˇ) is crucial. The Lasso (Tibshirani, 1996) penalizes
the absolute values of coefficients and enforces variable selection. One obtains
sparse but shrunken estimates. For dummy-coded categorical predictors, this is not
the best choice; setting parameters to zero corresponds to the fusion with the
reference category which can be chosen arbitrarily. Even though this problem can be
handled by coding the categorical covariates differently—for example, as the devi-
ation from a mean level (‘effect coding’) or as the deviation from adjacent categories
(‘split coding’)—penalties that contain differences of parameters as proposed by
(Tibshirani et al. (2005), Bondell and Reich (2009) or Gertheiss and Tutz (2010), are
a common choice. They encourage the fusion of coefficients and thus, of categories
irrespectively of the coding, and they allow one to fuse coefficients subject to more
than k constraints. However, fusion-type penalties come along with some problems:

For an ordered categorical predictor, fusion-type penalties consider the differences
of parameters that refer to adjacent categories, including the reference category 0. The
corresponding Lasso-type penalty has the form:

P(ˇ) =
k∑
r=1

|ˇr − ˇr−1|. (2.3)

However, the penalty does not always enforce fusion efficiently. If coefficients are or-
dered, for example in the form 0 = ˇ0 ≤ ˇ1 ≤ . . . ≤ ˇk, and if one is close to the true
values, that is, in the range where the estimated parameters are ordered, the effective
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penalty is P(ˇ) = ∑k
r=1 |ˇr − ˇr−1| = |ˇk − ˇ0| = |ˇk|. That means, the approach ba-

sically penalizes the range of the coefficients. The problem is even more obvious in an
orthonormal linear model with one ordered predictor and without an intercept—that
is, XTX is the identity matrix I(k+1)×(k+1). Situations like this, are for example, typical
for models with categorical effect modifiers or models with group specific intercepts.
In this cases, one can derive an explicit solution of the objective function (2.2) with
penalty (2.3):

Proposition 1. Assume a penalized linear model with orthonormal design; that is
XTX = I(k+1)×(k+1) where X ∈ R(k+1)×(k+1) denotes the design matrix without an in-
tercept and where I denotes the identity matrix. Let the ML estimates be ordered
ˆ̌ML

0 < . . . < ˆ̌ML
k

and employ penalty (2.3) with a fixed penalty parameter �, � ≥ 0.

Then for j, ˆ̌ML
j < ¯̌ML, ¯̌ML = 1

k+1

∑k
j=0

ˆ̌ML
j , one obtains:

ˆ̌
j = min

{
¯̌ML, max{ ˆ̌ML

l , ˆ̌ML
j } + (�− �l)I(l≥j)

2(l + 1)

}
,

where l = maxl=0,...,k (�l < �), �l = ∑l
u=1 2u

∣∣∣ ˆ̌ML
u − ˆ̌ML

u−1

∣∣∣, and with indicator func-

tion I. For ˆ̌ML
j ≥ ¯̌ML, one obtains analogously

ˆ̌
j = max

{
¯̌ML, min{ ˆ̌ML

l , ˆ̌ML
j } − (�− �l)I(k−l≥j)

2(l + 1)

}
,

with �l = ∑k−1
u=l 2(k− u)

∣∣∣ ˆ̌ML
u+1 − ˆ̌ML

u

∣∣∣ and l as before.

The proof of Proposition 1 is given in Supplement A. The structure of the explicit
estimate reveals that the coefficients of the outer categories are always merged first.
There is no shrinkage for coefficients that are not yet fused with one of the outer
categories—no matter how close the corresponding ML estimates are. For the min-
imal penalty parameter that causes the fusion of all coefficients, the estimate of all
coefficients is equal to ¯̌ML. For a fixed value of �, the mean of the penalized estimate
equals ¯̌ML in the assumed setting. Similar results in the context of signal processing
can be found in Pollak et al. (2005).

The left panel of Figure 1 shows the (exact) coefficient path of an exemplary model
with k = 7. One can see that a coefficient ˇr is not fused with any other ˇs, r /= s,
unless ˇr is fused with one of the outer coefficients ˇ0, ˇk. The right panel of Figure 1
shows the same situation but the coefficient path is obtained with an L0 norm instead
of the L1 norm in penalty (2.3). Categories with similar effects are fused—no matter
which position they take in the order of ML estimates. This is the main motivation
to consider L0 penalties as an alternative when investigating categorical predictors.
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Figure 1 Coefficient paths for an orthonormal linear model with one categorical predictor (k = 7), dummy
coded without an intercept. In the left panel, penalty (2.3) is applied; in the right panel, the L1 norm in penalty
(2.3) is replaced by the L0 norm.
Source: Authors’ own.

For a nominal categorical predictor, L1 fusion-type penalties consider all pairwise
differences of coefficients:

P(ˇ) =
∑
r>s≥0

|ˇr − ˇs|. (2.4)

Assume a fixed value of the tuning parameter � and let ˇ(1), . . . , ˇ(k) denote the (ar-
bitrary) ordering of the solution. Then, a short transformation (see Supplement A)
shows that

∑
r>s |ˇ(r) − ˇ(s)| = ∑k

r=1w(r)|ˇ(r) − ˇ(r−1)|, where w(r) = r(k− r+ 1). For
the ‘outer’ differences r ∈ {1, k},w(r) = k; for medium values of r, the weightsw(r) are
higher. That is, penalty (2.4) can be represented as a weighted version of penalty (2.3).
The issues for nominal predictors are essentially the same as for ordered predictors.
Similar to Proposition 1, one can show that the slopes of the coefficient path depend
on the order of the corresponding ML estimate—even though not only the ‘outer’
coefficients are fused.

Efficiency of L1-penalized estimates can be improved by using adaptive weights
(Zou, 2006) that weigh each penalty term by its inverse ML estimate. This results
in heavy weights on penalty terms with small ML estimates and in small weights on
penalty terms with large ML estimates. When the adaptive weights of Zou (2006) are
combined with fusion-type penalties, there is an incentive to fuse categories that have
close ML estimates and one obtains asymptotically normal and consistent results
(see for example, Gertheiss and Tutz, 2010; Oelker et al., 2014). However, adap-
tive weighting requires ML estimates; its quality depends on the quality of the ML
estimates.

Statistical Modelling 2015; 15(5): 389–410



394 Margret-Ruth Oelker, Wolfgang Pößnecker and Gerhard Tutz

3 L0-Type Fusion Penalties

In what follows, the fusion of categories is enforced by penalizing differences of coef-
ficients as in the approaches discussed previously, but to overcome the drawbacks of
Lasso-type penalties, the L0 norm is employed. For an ordered predictor, we propose

Pord(ˇ) =
k∑
r=1

‖ˇr − ˇr−1‖0, (3.1)

where ‖·‖0 = |·|0 and where we define 00 = 0. In contrast to Lasso-type penalties,
it does not matter whether a difference is small or huge; the penalty is reduced only
if one of the differences equals zero. As a consequence, when two different values
of �, for example �1 > �2, yield solutions with the same set of zero and non-zero
differences, Pord( ˆ̌

�1) = Pord( ˆ̌
�2) holds. The set of zero/non-zero differences changes

for specific thresholds.
When the predictor x is nominal, an appropriate coefficient profile does not only

relate to the coefficients of adjacent categories but to the comparison of all coefficients.
The penalty considers all pairwise differences of coefficients,

Pnom(ˇ) =
∑
r>s≥0

‖ˇr − ˇs‖0. (3.2)

Penalty (3.2) is more complex; with k levels, there are k(k+ 1)/2 pairwise differences;
but apart from that, the effect of the penalty is the same as for ordered predictors.

Note that for large values of the tuning parameter �, the coefficients ˇ1, . . . , ˇk are
set to zero as the differences in penalties (3.1) and (3.2) include the difference to the
reference category ˇ0 = 0. As it will be seen in Section 5, it can be useful to weight
the penalty terms. To this end, we introduce general weightswr,wr,s respectively, and
use the modified penalties:

Pord(ˇ) =
k∑
r=1

wr ‖ˇr − ˇr−1‖0 and Pnom(ˇ) =
∑
r>s≥0

wr,s ‖ˇr − ˇs‖0. (3.3)

To enhance the performance, we will, for example, combine the L0 approach with
adaptive weights as employed for the L1 penalties in Section 4.1. When analyzing
the unemployment rates in Germany in Section 5, the weights allow one to account
for the spatial structure of the federal states. Therefore, we define the weights wr,s as
an indicator for a common border of two states – such that we obtain a coefficient
profile that is consistent with geography.

3.1 Computational Issues

In the literature, there is a wide range of strategies to handle optimization prob-
lems that contain L0 norms. In order to represent for example, signals sparsely, the
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objective minˇ ‖ˇ‖0 subject to y = Xˇ has to be optimized. With some assump-
tions on X and assuming that there is a sufficiently sparse representation of y,
Donoho and Elad (2003) find this representation by solving a convex optimization
problem instead. Wipf and Rao (2005) derive a method based on sparse Bayesian
learning including local optimality conditions to solve the same problem. In the
framework of wavelets, the L0 norm acts as penalty. The objective minˇ f (ˇ) + � ‖ˇ‖0
is, for example, solved by penalty decomposition methods that are based on rank
optimization procedures (see Lu and Zhang, 2010, 2013). Rippe et al. (2012) and
Johnson (2013) minimize

∑n
i=1(yi − ˇi)2 + �

∑n
i=2 ‖ˇi − ˇi−1‖0 to smooth segmented

observations y1, . . . , yn. While Johnson (2013) proposes a dynamic programming al-
gorithm, Rippe et al. (2012) solve the problem iteratively employing a weighted Ridge
penalty.

In order to minimize the objective function (2.2), we propose to approximate the
L0 norm by a modified logistic function and to derive a quasi Newton method for
the approximated objective function. In detail, the L0 norm is approximated by:

‖�‖0 ≈ 2

1 + exp(−	
√
�2 + c)

− 1, (3.4)

where 	 is a relatively large scalar and where c is a small, positive constant. Figure 2
gives some illustration: the circles denote the L0 norm for a scalar argument �. The
continuous line denotes the approximation of the L0 norm. For 	 → ∞ and c → 0,
the approximation approaches the L0 norm.
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Figure 2 Graphical illustration of the approximation of the L0 norm. � = 25, c = 10−5.
Source: Authors’ own.

To obtain a penalized iteratively re-weighted least squares (PIRLS) algorithm,
in addition to approximation (3.4), we employ a local quadratic approxima-
tion if ˆ̌

(k+1) is close to ˆ̌
(k) as proposed byFan and Li (2001) and as described
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by Oelker and Tutz (2013). It allows for derivatives of the approximated objective
that fit exactly in the framework of known PIRLS algorithms. Sketching the idea
shortly, penalties (3.1) and (3.2) are rewritten as P(ˇ) = ∑L

l=1

∥∥aT
l
ˇ
∥∥

0, where vectors
al build all needed differences of coefficients. For a nominal predictor x with five
levels including the reference category, where all pairwise differences are considered,
one obtains, for example,

Anom = (a1 · · · aL) =

⎛⎜⎜⎝
1 0 0 0 −1 0 0 −1 −1 0
0 1 0 0 1 −1 0 0 0 −1
0 0 1 0 0 1 −1 1 0 1
0 0 0 1 0 0 1 0 1 0

⎞⎟⎟⎠ .

The ‘diagonal part’ of Anom gives the differences with the reference category ˇ0.
Finally, starting with an initial value ˆ̌ (0), one obtains the following iterative update
for the current estimate ˆ̌

(k):

ˆ̌
(k+1) = (1 − 
) · ˆ̌

(k) + 
 · (XTW (k)X + A�)−1XTW (k)ỹ(k),

where matrixW (k) denotes weights and ỹ(k) denotes pseudo-observations like in usual
GLMs; W (k) = D(k)�

−1
(k)D(k), D(k) = diag(∂h(�i( ˆ̌

(k)))/∂�), �(k) = diag(�2
i ( ˆ̌

(k))), ỹ(k) =
D−1

(k) (y − �(k)) + X ˆ̌
(k) and �(k) = h(�). The parameter 
 is a step length parameter

that usually equals 1; if 
 < 1, it allows one to control the algorithm’s convergence
and to stabilize the algorithm in the case of marginal solutions. Approximating the
L0 norm, smaller values of 
 seem to be a good choice. Matrix A� basically contains
the derivatives of the approximated L0 norm:

A� = �

L∑
l=1

(
1

1 + exp(−	|aT
l
ˇ(k)|)

) (
1 − 1

1 + exp(−	|aT
l
ˇ(k)|)

)
· 2 · 	 · alaTl√

(aT
l
ˇ(k))2 + c

.

The algorithm is terminated when | ˆ̌
(k+1) − ˆ̌

(k)|/| ˆ̌
(k)| ≤ �, for a fixed � > 0. Con-

cerning the tuning, the constant c > 0 guarantees differentiability, 	 determines the
steepness of the logistic function. Both parameters have to be determined subject to
the scale of the (coded) covariate x. However, in penalized regression models, the
covariates are usually scaled and/or standardized (E(x) = 0 and V(x) = 1). In such
settings, c = 10−5 works quite well in our experience. When 	 is sufficiently large, the
coefficients paths look like step functions; the steps occur when the coefficients are
merged and as the shift of the estimates is relatively large compared to the change of �.
As long as the approximation is close enough to the L0 norm, the concrete choice of 	
has no major impact on the result’s quality. However, for different tuning parameters,
the scale of � changes; if 	 is too large, there may be convergence problems.
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The structure of the objective function is not trivial. As the penalty is not convex,
there is no guarantee that the proposed algorithm finds the global minimum of the
objective function. However, the results are very plausible. Given that the tuning
parameter � is in a realistic range, the results for different initial values do not differ
essentially in a majority of cases. We recommend ˆ̌ (0) = 0T or to combine the default
approach of the R function glm() (�(0) = y for the loss function) with the initial
value ˆ̌ (0) = 1T for the approximation of the penalty (referred to as ‘default set of
initial values’). Furthermore, the results for different initial values should be checked.
Comparisons with a simulated annealing algorithm (Xiang et al., 2013) that is ap-
propriate for complex optimization problems, show that the deviations of the PIRLS
algorithm from the simulated annealing are small for the relevant range of �. The
L0 approach of Rippe et al. (2012) for signals works with a different approximation
but also with a PIRLS algorithm and obtains similar results. Fan and Li (2001)
propose to approximate the SCAD penalty that has a similar curvature, by a PIRLS
algorithm; comparisons with the exact estimate in an orthonormal setting approves
this procedure.

Oelker and Tutz (2013) give detailed information on the local quadratic approx-
imation. The algorithm is implemented in the R package gvcm.cat (Oelker, 2013;
R Core Team, 2013).

3.2 The General Case with Multiple Predictors

So far, we assumed that there is only one predictive factor x. Of course, this is not the
standard case and, in what follows, we assume that there are p nominal and/or ordered
predictive factors xj with kj + 1 levels each. The design matrix is still denoted by X ,
but now X ∈ Rn×q, where q = 1 + ∑p

j=1 kj; X contains p dummy coded predictors
and an intercept. The according penalty is defined as:

P(ˇ) =
p∑
j=1

Jj(ˇj),

where Jj equals penalty (3.1) for ordered factors and penalty (3.2) for nominal factors.
The parameter ˇj = (ˇj1, . . . , ˇjkj )

T denotes the vector of coefficients linked to the j-th
covariate. The computational issues are not affected by this generalization.

However, the tuning should be adjusted as the penalty terms of several factors with
different numbers of levels and measured on different scales (nominal/ordered) should
be comparable. Bondell and Reich (2009) argue for example, that there is a bijective
relation between the standardization of the data and weighting the penalty terms if
one penalty term relates to one covariate and if the penalty is a norm; for example, in
case of the Lasso for p continuous covariates. Bondell and Reich (2009) transfer this
idea to penalties that contain pairwise differences related to nominal covariates; they

propose to weigh each difference by k−1
j

√
n

(l)
j + n

(m)
j , where n(l)

j denotes the number of
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observations on level l of covariate j. For ordered covariates,
√
n

(l)
j + n

(m)
j is appropri-

ate; see, Gertheiss and Tutz (2010). The weights consider the number of observations
per level and the number of differences in the penalty. They can be combined with
the L0 penalty easily. Depending on the concrete content, different weighting schemes
can be reasonable; alternatively, one could for example, think of Jj(ˇj) = const.∀j.

3.3 L0 Penalization and Information Criteria

There is a relation between L0 penalization and model selection by information cri-
teria like the AIC or the BIC: one minimizes

IC(ˇ) = −ln(ˇ) + � · df(model), (3.5)

where �AIC = 1 for the AIC and �BIC = log(n)/2 for the BIC. The degrees of free-
dom df(model) are the number of influential parameters in the model and therefore
equal

∑p
j=0 ‖ˇr‖0. Let us first consider a model with binary predictors only. Then the

proposed L0 penalty has the form Pbin(ˇ) = ∑p
j=1

∥∥ˇj∥∥0. Hence, it holds that

Pbin(ˇ) + 1 = df(model).

That is, when the tuning parameter of the proposed L0 approach is fixed to the
values �AIC or �BIC, the objectives of the L0 approach and of model selection based
on information criteria AIC/BIC coincide. However, the computational approach
differs: for model selection based on information criteria, unconstrained models with
all possible subsets of coefficients are compared by criterion (3.5). The L0 approach
optimizes the approximated, constrained objective and does it without subsets.

Selection problems are much more complex if one has p categorical covariates with
kj + 1 levels each, because then, in addition to simple selection of relevant variables,
one also wants to investigate which categories of the categorical predictor have to
be distinguished. In best subset selection with categorical predictors, all models that
can be built by the fusion of categories must be considered as candidate models. It is
well known from cluster theory that the number of such candidate models increases
strongly with the number of categories per predictor (Jain and Dubes, 1988). For a
nominal covariate with three coefficients ˇ1, ˇ2, ˇ3, this already results in 15 com-
binations: {(), {ˇ1}, {ˇ2}, {ˇ3}, {ˇ1, ˇ2}, {ˇ1, ˇ3}, {ˇ2, ˇ3}, {ˇ1 = ˇ2}, {ˇ1 = ˇ3}, {ˇ2 =
ˇ3}, {ˇ1 = ˇ2, ˇ3}, {ˇ1 = ˇ3, ˇ2}, {ˇ2 = ˇ3, ˇ1}, {ˇ1, ˇ2, ˇ3}, {ˇ1 = ˇ2 = ˇ3}}. Thus,
model selection based on candidate models as it is used by AIC and BIC, is restricted
to cases with very few categories in the predictor(s).

In this general case, the degrees of freedom are defined as the number of
coefficients in a model that are unlike and unequal to zero. They are given by
df(model) = 1 + ∑p

j=1

∑kj
r=1

∥∥ˇjr∥∥0

∏
s<r

∥∥ˇjr − ˇjs
∥∥

0—which is unequal to the
proposed penalties. However, the proposed penalties can be applied to the same
situations as best subset selection for categorical covariates. In contrast to best subset
selection, the proposed penalties do not need candidate models and—as we will see
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later on—they are nevertheless feasible for more complex models. As the tuning
parameter � can be varied, information on the order of fusions of coefficients is
obtained. Hence, the proposed penalty is not only an attractive alternative to Lasso-
type penalties, but as well an alternative to model selection based on information
criteria.

4 Illustration and Numerical Experiments

In this section, we investigate some aspects of the proposed approach by numerical
experiments. We start with an illustrative example followed by some experiments on
the estimation accuracy and on the clustering/selection performance when the tuning
parameter is chosen according to cross-validation criteria.

4.1 Illustrative Example

We consider a linear model with the two ordered predictors x1 and x2. Both
predictors have four levels and are drawn from a multinomial distribution with
equal probabilities for each level. The response is Gaussian; ˇtrue = (ˇint, ˇ12, ˇ13,
ˇ14, ˇ22, ˇ23, ˇ24)T = (2,0.8,0.6,0.4,−0.6,−0.6,−0.4)T and Var(yi|X ) = 1 ∀i. All
levels of x1 have different impact on the response whereas the levels 2 and 3 of
x2 are influential but do not need to be distinguished. We generate n = 100 obser-
vations and consider two models: the proposed L0 penalty, that is, penalty (3.1)
for the two ordered factors, and a penalty with the same differences but with
the L1 norm instead of the L0 norm. There is one global tuning parameter � in
both models, which is chosen by a generalized cross-validation criterion (GCV)
as for example defined in O’Sullivan et al. (1986) and as used in the R package
mgcv (Wood, 2011). The GVC criterion is given by GCV = n · dev/(n− df(model))2,
where the deviance is defined as dev(y, �̂) = −ϕ(ln(y, �̂, ϕ) − ln(y, y, ϕ)), where ln(·)
denotes the log-likelihood; df(model) is estimated by the trace of the hat matrix
W

T/2
(k∗)X (XTW (k∗)X + A�)−1XTW

1/2
(k∗) of the final iteration (k∗) of the PIRLS algorithm.

Figure 3 (top) shows the resulting coefficients paths and the GCV score for the L0
penalization with tuning parameters c = 10−5, 
 = 0.05, 	 = 60. At the very right
end of the coefficient paths, the ML estimates are displayed; at the very left end,
the estimate for the minimal tuning parameter � that gives maximal penalization is
shown. As there are no shrinkage effects, for some values of �, the estimates are
the same. The coefficient path looks like a horizontal tree. The GCV score in the
right panel is a step function that jumps when the estimate changes. This happens
because the GVC criterion does not depend on the tuning parameter �; for identi-
cal estimates ˆ̌

�1 = ˆ̌
�2 , the GCV scores are the same. Hence, the function has no

clear minimum; we choose the maximal value of � with minimal GCV score as �CV .
The optimal model is marked by a dotted line at �CV = 0.36. In this model, levels
2 and 3 of predictor x2 have the same impact on the response ( ˆ̌ 22 = ˆ̌ 23 = −0.41,
ˆ̌ 24 = −0.40). Levels 3 and 4 of predictor x1 are falsely fused ( ˆ̌ 13 = ˆ̌ 14 = 0.30).
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Figure 3 Illustration of L0 penalization (top) and L1 penalization (bottom) in a linear model with two ordered
effects. The left panel shows the resulting coefficient path. The right panel shows the corresponding GCV
score. The tuning for the approximation of the L0 norm is � = 60, c = 10−5 and � = 0.05. The tuning for the
approximation of the L1 norm is c = 10−5. In all panels, the dotted line marks the optimal models.
Source: Authors’ own.

The estimates of the remaining effects are: ˆ̌
int = 2.05, ˆ̌ 11 = 0.81. In the optimal

model with the same differences but with a L1 norm in the penalty, two coeffi-
cients are falsely fused ( ˆ̌ L1 = (2.04,0.60,0.27,0.27,−0.37,−0.27,−0.26)T ). Fig-
ure 3 (bottom) shows the coefficient paths and the GCV score accordingly. In con-
trast to the L0 penalty, the path is characterized by steady shrinkage effects; the
GCV score is a continuous function with a clear minimum. For the L1 penalty, the
shrinkage effect is slightly bigger as for the L0 penalty: the sum of squared errors are
ŜSEL1 = ∑7

i=1( ˆ̌ L1
i − ˇtruei )2 = 0.3488 > 0.1748 = ŜSEL0 .
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4.2 Choice of the Tuning Parameter �

As for every penalized approach, the choice of the tuning parameter � is a crucial
issue for L0 penalization. In the illustrative example, we employ a GCV criterion that
requires an estimate of df(model) and that gives concurrent jumps in the coefficient
paths and in the GCV score. An alternative, frequently used approach to choose
the tuning parameter is K-fold cross-validation with the predictive deviance as loss
criterion. K-fold cross-validation relies on models estimated on different training/test
data sets for different values of �. As we approximate the L0 norm which is not
continuous, the estimate can change abruptly even if the tuning varies only slightly.
The values of � at which the estimate changes, will not be the same for all training
data set. Thus, depending on the chosen folds, for K-fold cross-validation, the overall
cross-validation score can be quite wiggly. Therefore, we compare the performance
of the GCV criterion and of 5-fold cross-validation in Section 4.3.

4.3 Performance

To evaluate the overall performance of the penalties, we consider the estimation ac-
curacy, the prediction accuracy and the error rates of the selection and clustering
process. The estimation accuracy is assessed by the squared errors in terms of coef-
ficients: ŜSE = 1

q

∑q
j=1(ˇtruej − ˆ̌

j)2, where ˇtrue denotes the vector of true coefficients
and ˆ̌ the estimate of the current simulation run. The median of all squared errors
is the robust estimate for the mean squared error (MSE) of a method. The predic-
tion accuracy is assessed by the predictive deviance and referred to as MSEP. To
judge the model selection process, we consider the selection and the clustering of
coefficients separately; the selection of coefficients refers to the coefficients (ˇjl = 0)
whereas the clustering process refers to the differences of coefficients (ˇjl = ˇjm). We
distinguish between false positive rates (fraction of truly zero coefficients that are set
to non-zero, FP) and false negative rates (fraction of truly non-zero coefficients that
are set to zero, FN). We focus on four settings. A setting similar to the illustrative
example of Section 4.1 is considered in more detail, it is referred to as G3. In ad-
dition, a setting with Gaussian response and 50 nominal predictors is investigated
(G50). Settings with Poisson distributed and with binomial distributed response are
analyzed (P8, B8). For each setting, 100 replications are considered; for each repli-
cation, we compute the ML estimate, the estimate obtained with the L1 penalty,
the estimate obtained with the adaptively weighted L1 penalty and the estimate ob-
tained with the proposed L0 penalty. Moreover, we combine the proposed L0 penalty
with the same adaptive weights as employed for the adaptively weighted L1 penalty.
For all penalized approaches, the tuning parameter is chosen by the GCV criterion
and by 5-fold cross-validation with the predictive deviance as loss criterion (CV).
In addition, a model selection method for categorical predictors is implemented.
The method is based on the information criteria AIC and BIC and compares not
only all possible subsets of coefficients, but as well all possibilities to fuse different
numbers of levels of a categorical predictor. This method is referred to as AIC, BIC
respectively.
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For all settings, the tuning parameters c = 10−5 and 
 = 0.05 are fixed; we employ
the default set of initial values. 	 is empirically chosen as described in Section 3.1
(	G3 = 20, 	G50 = 10, 	P8 = 20, 	B8 = 10).

In the setting G3, there are three nominal covariates with four levels each;
ˇtrue = (ˇint, ˇT1 , ˇ

T
2 , ˇ

T
3 )T = (1, (0,−1.5,−1.5), (0,0,2), (−3,−3.5,4))T ; in each

replication, n = 50 observations are generated. The upper left panel of Figure 4
shows the boxplots of the squared errors. Apart from some outliers, the estimation
accuracy of all considered approaches is approximately the same. This is typical:
in standard situations, (adaptive) L1 and L0 penalization do not show substantial
differences. However, as seen in Table 1, the L0 approach produces more parsi-
monious and interpretable models. The methods based on information criteria are
characterized by the highest FN rates. Comparing the L1 penalization with and
without adaptive weights, the adaptive weighting improves the FP rates substantially.
Comparing the adaptively weighted L1 and the adaptively weighted L0, the clustering
performance is substantially enhanced by the L0 penalty. Again, this is typical: with
the L0 penalty, the false positive rates are lower while it can happen that the false
negative rates increase slightly in comparison with L1 penalization.

In setting G50, there are 50 nominal covariates with four levels each; ˇtrue is a
vector of length 151, it contains 72 non-influential coefficients and 54 truly different
effects; n = 500. In contrast to setting G3, for this and the following settings, model
selection based on information criteria is not feasible anymore on a default computer.
The lower panel of Figure 4 depicts the squared errors of setting G50. It stands
out that the L0 penalized models perform slightly better than the pure L1 penalized
approaches. Regarding the FP/FN rates in Table 1, it is even more obvious that the
proposed L0 approach generates more parsimonious models. Overall, the approach
‘L0, CV’ performs the best.

In setting P8, there are four influential nominal covariates; ˇtrue =
(ˇint, ˇT1 , ˇ

T
2 , ˇ

T
3 )T = (2, (0,−1.2,−1.2), (1.4,1.4,0), (0.4,0.6,0.8),

(−0.7,−1,−1.3))T. We assume four more non-influential, nominal covari-
ates which are to be detected. For an observation i, the assumed predictor is
�modeli = ˇint +

∑8
j=1 x

T
ij ˇj; n = 100. In Figure 5, the squared errors and the PMSE

of the penalized methods are distinctively smaller than of the ML estimates. In
Table 1, the L0 approach reduces the false positive rates even more as the adaptively
weighted L1 penalty. However, for the L0 approach, the CV performs better than
the GCV criterion. A possible explanation is that df(model) is not estimated as good
as before. In the optimal model obtained by L0 penalization and GCV, df(model) is
estimated adequately in only eight of 100 cases (was 52 in setting G3).

In setting B8, there are four influential and four non-influential ordered predictors.
In contrast to the previous settings, the distribution of the categorical covariates is not
balanced; for the n = 400 observations, the covariates are drawn from a multinomial
distribution with sampled probabilities between 0.12 and 0.44. In this setting, it can
happen that the unpenalized estimate is quite extreme. As the adaptive weights depend
on the quality of the ML estimate, they rely on estimates with a slight Ridge penalty
for all coefficients (in the PIRLS algorithm A� is replaced by A

ridge
� = diag(0.2)).
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Figure 4 Results for settings G3 (top) and G50 (bottom): boxplots of squared errors of coefficients (left panel)
and of the predictive deviances (right panel).
Source: Authors’ own.

As seen in Figure 5, the estimation accuracy of the approximated L0 penalty is slightly
worse than that of the Lasso penalties. Concerning the selection and clustering per-
formance in Table 1, it stands out that the FN rates are quite high when the L0 penalty
is combined with the CV criterion. For these approaches, the optimal values of � are
relatively large, too. Apparently, the sample size of the training data sets is too small
for differentiated estimates. Hence, in settings like B8, the CV criterion is not rec-
ommended for L0-type penalties. In contrast, with the GCV criterion, the clustering
and selection performance of the L0/GCV penalized models is better than that of the
corresponding L1 penalized approaches.

In general, L0 penalized models seem to be sparser; the L1 penalized models tend
to have smaller FN rates. Even though there is less shrinkage in the coefficients paths
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Table 1 Estimates of false positive (FP) and false negative (FN) rates for the selection (s) and clustering (c)
performance for all considered settings.

Setting ML L1,
CV

L1,
GCV

L1,
adapt,
CV

L1,
adapt,
GCV

L0,
CV

L0,
GCV

L0,
adapt,
CV

L0,
adapt,
GCV

AIC BIC

G3 FPs 1.00 0.85 0.80 0.50 0.50 0.60 0.40 0.36 0.35 0.27 0.12
FNs 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01
FPc 1.00 0.90 0.88 0.53 0.58 0.61 0.42 0.30 0.34 0.26 0.14
FNc 0.00 0.02 0.03 0.07 0.06 0.09 0.11 0.15 0.12 0.15 0.22

G50 FPs 1.00 0.74 0.72 0.37 0.47 0.13 0.51 0.23 0.44 - -
FNs 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.02 0.01 - -
FPc 1.00 0.77 0.76 0.42 0.52 0.21 0.60 0.28 0.50 - -
FNc 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.02 0.01 - -

P8 FPs 1.00 0.74 0.69 0.40 0.41 0.17 0.33 0.15 0.31 - -
FNs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -
FPc 1.00 0.78 0.75 0.42 0.44 0.20 0.39 0.15 0.33 - -
FNc 0.00 0.01 0.01 0.02 0.02 0.05 0.02 0.06 0.03 - -

B8 FPs 1.00 0.74 0.83 0.53 0.69 0.37 0.65 0.35 0.56 -
FNs 0.00 0.07 0.04 0.17 0.09 0.40 0.15 0.40 0.20 - -
FPc 1.00 0.55 0.71 0.36 0.54 0.16 0.42 0.15 0.34 - -
FNc 0.00 0.18 0.12 0.32 0.20 0.57 0.28 0.54 0.35 - -

Source: Authors’ own.

obtained with L0 penalization, in general, the MSE of the L0 approach is not smaller
than the MSE of the L1 approach as the estimates obtained with the L0 approach
are more sensitive to variations in the data. In standard situations, the adaptively
weighted L1 penalty and the L0 approach perform comparably in terms of the estima-
tion accuracy. In terms of variable selection, the L0 approach has a higher incentive
to cluster categories and reaches smaller FP while slightly enlarged FN are possi-
ble. Combining the L0 approach with adaptive weights enhances the clustering and
variable selection performance distinctly. With the L0 penalization, we obtain stable
results in settings where the computation of all possible subsets of coefficients which
is needed for model selection based on information criteria, is not possible/efficient.

5 Unemployment Rates in Germany

We analyze the unemployment rates of the federal states of Germany in the years
2005 to 2010 (Weise et al., 2011). The data is given in Table 2. For each of the
16 federal states, there are six annual unemployment rates observed: (stateit, rateit),
i = 1, . . . ,16, t = 2005, . . . ,2010. The aim is to find states with the same trends
in the unemployment rates while accounting for the heterogeneity amongst the
16 units. Mixed models are the default approach to such data; see, for example,
Molenberghs and Verbeke (2005). If one wants to model the unemployment rates
by a mixed model, a potential predictor is �it = ˇint + bint,i + ˇ1 · time; whereby
bint,i, i = 1, . . . ,16, are random effects for which a distribution is assumed, typically
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Figure 5 Results for settings P8 (top) and B8 (bottom): boxplots of the squared errors (left panel); boxplots of
predictive deviances (right panel).
Source: Authors’ own.

a normal distribution with variance �2
b
: bint,i ∼ N(0, �2

b
). Clustering federal states

with similar effects relates to identical random effects and hence, requires sophis-
ticated distributional assumptions; for example, a mixture distribution of Gaussian
components. This in turn requires elaborate estimation theory, for details, see for
example Heinzl (2013). Moreover, the data is positively skewed. There are high
unemployment rates, but they occur rarely. The response seems to be rather Gamma
than Gaussian distributed.

Hence, we assume a fixed effects model with Gamma distributed response and a
logarithmic link function. The predictor contains one intercept per federal state and
a global temporal trend:

�it = ˇint,i + ˇ1 · time, with i = 1, . . . ,16. (5.1)
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Table 2 Unemployment rates for the federal states of Germany in 2005 to 2010.

Abbreviation Federal State 2005 2006 2007 2008 2009 2010

BB Brandenburg 18.20 17.00 14.90 13.00 12.30 11.10
BE Berlin 19.00 17.50 15.50 13.90 14.10 13.60
BW Baden-Würtenberg 7.00 6.30 4.90 4.10 5.10 4.90
BY Bayern 7.80 6.80 5.30 4.20 4.80 4.50
HB Hansestadt Bremen 16.80 14.90 12.70 11.40 11.80 12.00
HE Hessen 9.70 9.20 7.60 6.60 6.80 6.40
HH Hansestadt Hamburg 11.30 11.00 9.20 8.10 8.60 8.20
MV Mecklenburg-Vorpommern 20.30 19.00 16.50 14.10 13.60 12.70
NI Niedersachsen 11.60 10.50 8.90 7.70 7.80 7.50
NRW Nordrhein-Westfalen 12.00 11.40 9.50 8.50 8.90 8.70
RP Rheinland-Pfalz 8.80 8.00 6.50 5.60 6.10 5.70
SA Sachsen 18.30 17.00 14.70 12.80 12.90 11.90
SH Schleswig-Holstein 11.60 10.00 8.40 7.60 7.80 7.50
SL Saarland 10.70 9.90 8.40 7.30 7.70 7.50
ST Sachsen-Anhalt 20.20 18.30 16.00 14.00 13.60 12.50
TH Thüringen 17.10 15.60 13.20 11.30 11.40 9.80

Source: Data from Weise et al. (2011).

To cluster the federal states, in a first model, the subject-specific intercepts are pe-
nalized by penalty (3.2), whereby differences to the reference category are omitted
as there is none; that is, all pairwise differences of intercepts are penalized by the L0
norm:

� · P(ˇ) = � ·
∑
r>s>0

∥∥ˇint,r − ˇint,s
∥∥

0 . (5.2)

In a second model with the same predictor, the spatial structure of the federal states
is considered. Weights wr,s are defined as indicators for states with a common border
(wr,s = 1 if neighbored, wr,s = 0 else). We will refer to this model as the ‘spatial’
model. For both models, the tuning of the algorithm is similar: 	 = 36, 	spatial = 26,

 = 0.5. The tuning parameter � is chosen by the generalized cross-validation criterion
of O’Sullivan et al. (1986). It yields �CV = 0.14 and �spatialCV = 0.05. Figure 6 shows
the coefficient paths of the subject specific intercepts for both models. The left panel
relates to the first model with penalty (5.2), the right one to the spatial model. In both
models, there are basically two clusters of federal states. The upper cluster contains
the states of the former German Democratic Republic (GDR) including Berlin plus
the city state Bremen. Interestingly, with the spatial weights, the city state Bremen
switches the cluster for a relatively large value of �. Figure 7 illustrates the resulting
clusters for the optimal choice of � in a map of Germany. The darker the coloring,
the bigger is the subject-specific intercept and the higher is the unemployment rate
over the time.
In the left panel, the ML estimates are illustrated. Even though all estimates differ,
the pattern of the former GDR in the north-east is clearly seen. In the middle, the
subject specific intercepts are clustered by the pairwise penalty (5.2). Here, the states
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Figure 6 Unemployment rates in Germany—coefficients paths for L0 (� = 36, � = 0.5) penalization
considering all pairwise differences (left panel) and differences of coefficients related to neighboured federal
states only (right panel).
Source: Authors’ own.

Figure 7 Unemployment rates in Germany—visualization of the specific effect of the federal states on the
unemployment rates. In the very left panel, the ML estimates are shown; in the middle, all pairwise differences
of coefficients are penalized by an L0 penalty; in the very right panel, only the differences of coefficients of
neighboured states are penalized.
Source: The maps are based on a figure of Wikipedia User NordNordWest (2008); they are manipulated with
the GNU Image Manipulation Program (GIMP Team, 2012) and with the R package EBImage (Pau et al., 2012).

of the former GDR plus Bremen form one cluster with the biggest impact on the
response ( ˆ̌

int,i = 2.89). The effects of the southern states Baden-Würtenberg and
Bayern are the lowest ( ˆ̌

int,BW = 1.90, ˆ̌
int,BW = 1.91). The remaining states except for

Rheinland-Pfalz ( ˆ̌
int,RP = 2.12) are clustered; the according intercept is ˆ̌

int,i = 2.39.
The right panel of Figure 7 illustrates the results of the spatial model. The results
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resemble the middle panel; however, the picture is more differentiated: the states of
the former GDR form one cluster ( ˆ̌ spatial

int,i = 2.93), but there are slightly different

estimates for the states Thüringen and Bremen ( ˆ̌ spatial
int,TH = 2.78, ˆ̌ spatial

int,HB = 2.80). The
effects of Baden-Würtenberg and Bayern are the same as before; but in the west, only
Hamburg, Niedersachen and Schleswig-Holstein are clustered ( ˆ̌ spatial

int,i = 2.43). The

other states have individual intercepts ( ˆ̌ spatial
int,RP = 2.13, ˆ̌ spatial

int,HE = 2.24, ˆ̌ spatial
int,SL = 2.36,

ˆ̌ spatial
int,NRW = 2.45). The estimates for the global temporal trend are approximately the

same in all models: ˆ̌ML
t = −0.0875, ˆ̌

t = −0.09, ˆ̌ spatial
t = −0.09. In the considered

time period, the unemployment rates decreased in all states. Interestingly, Heinzl
(2013) obtains similar clusters for the same data by fitting a linear mixed model
with Dirichlet process mixtures using the EM algorithm. However, the computational
burden for such models is higher.

6 Summary

In this article, we propose L0 penalization for categorical effects in GLMs. The
penalty works on differences of coefficients and accounts for the different amount of
information contained in nominal and ordered factors. Unlike Rippe et al. (2012),
we provide a classical regression framework for L0 penalization. Computational
issues are met by a local quadratic approximation which can be traced back to (Fan
and Li, 2001). The approximation allows one to derive a PIRLS algorithm; that is, all
features of Fisher scoring algorithms are sustained. It is possible to obtain coefficient
paths.

Applying L0 penalization to plain coefficients with fixed tuning has a close re-
lation to best subset selection. As the L0 approach allows for more flexible terms
such as difference in the penalty and as it works for more complex models, L0 penal-
ization is an attractive alternative to model selection based on information criteria.
In an illustrative example and several numerical experiments, the proposed method
is competitive; however, it requires carefully tailored tuning. The range of applica-
tions for L0 penalization is huge: applied adequately to continuous covariates, it is
an alternative computational approach to model selection based on information cri-
teria; the application to subject specific intercepts is convincing; the computational
framework allows one to combine L0 penalization easily with other types of (smooth)
covariates.
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Proofs for Section 2.
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Data and R Code to replicate the results of Section 5.
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