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Modelling a response as a function
of high-frequency count data:
The association between physical
activity and fat mass
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Abstract

Accelerometers are widely used in health sciences, ecology and other application areas. They quantify the intensity of

physical activity as counts per epoch over a given period of time. Currently, health scientists use very lossy summaries of

the accelerometer time series, some of which are based on coarse discretisation of activity levels, and make certain

implicit assumptions, including linear or constant effects of physical activity. We propose the histogram as a functional

summary for achieving a near lossless dimension reduction, comparability between individual time series and easy

interpretability. Using the histogram as a functional summary avoids registration of accelerometer counts in time. In

our novel method, a scalar response is regressed on additive multi-dimensional functional predictors, including the

histogram of the high-frequency counts, and additive non-linear predictors for other continuous covariates. The

method improves on the current state-of-the art, as it can deal with high-frequency time series of different lengths

and missing values and yields a flexible way to model the physical activity effect with fewer assumptions. It also allows the

commonly made modelling assumptions to be tested. We investigate the relationship between the response fat mass and

physical activity measured by accelerometer, in data from the Avon Longitudinal Study of Parents and Children. Our

method allows testing of whether the effect of physical activity varies over its intensity by gender, by time of day or by day

of the week. We show that meaningful interpretation requires careful treatment of identifiability constraints in the light

of the sum-to-one property of a histogram. We find that the (not necessarily causal) effect of physical activity on kg fat

mass is not linear and not constant over the activity intensity.
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1 Introduction

This paper proposes a novel method for practical and interpretable modelling of predictors that are high-
frequency monitoring of counts or intensity that contain much more information on the data than the current
methods. Examples of high-frequency count data include the monitoring of traffic, heart rate in intensive care,
brain activity and financial transactions. We are concerned with data on the intensity of physical activity (PA)
recorded by an accelerometer. Accelerometers are now widely used for many different applications, such as
protecting hard drives from impact damage, monitoring vibrations in industry and in many medical situations.
The specific accelerometer used for the application discussed here records the time-varying acceleration signal.
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The signal passes through a filter that passes frequencies within a range typical for human motion (10 to 50Hz)
and excludes frequencies atypical for human motion such as vibrations from a car. Due to limited storage, the
signal – measured in units called counts – is summed over a user-specified interval called an epoch. The resulting
data are hence counts per epoch, ranging between 10 and 60 s, over a given period of time, e.g. a number of weeks.
Figure 1 shows four sample accelerometer profiles of children aged 12 years with counts summarised by minutes.
Due to data storage becoming smaller and cheaper, newer generation accelerometers are able to store the pass
band filtered raw signal without summing it over epoch; this leads to even denser time series of PA measurements.

In epidemiology, accelerometers are now increasingly used to monitor the intensity of PA for investigating its
relationship with adiposity, cardiovascular disease, diabetes, depression and other health outcomes. For estimating
energy expenditure from accelerometer output, regression methods are traditionally used. More recently, machine-
learning algorithms – such as support vector machines,2,3 artificial neural networks4,5 and hiddenMarkov models6 –
have been used for estimating energy expenditure and classifying type of activity. All these methods rely on initial
calibration studies that record energy expenditure and accelerometer counts for different type of activities. Mostly
scalar summaries of accelerometer data are used as predictors. Other work applies functional data analysis methods
to smoothed accelerometer data as functions of time as a response, for example, Morris et al.7 used wavelet-based
functional mixed models, Sera et al.8 used functional analysis of variance models based on penalised splines; see also
Ding et al.,9 Wang et al.,10 Goldsmith et al.,11 Xiao et al.12 and Shou et al.13 for various approaches to functional
principal component analysis. As daily structure is highly variable between individuals, it is not clear whether and
how the accelerometer time series are registered in time in order to make the activity curves comparable between
individuals. The above approaches are useful for exploring variability in the accelerometer time series by time of day,
season, environmental and socio-economic factors, but it is not clear how the methods could be used to describe the
effects of a PA time series on a response in an interpretable way.

In the epidemiological setting where PA may be the predictor of a health outcome, the high-dimensional
accelerometer time series are typically summarised into a single summary statistic per individual. Examples for
such statistics are: mean counts per minute (cpm), mean daily moderate to vigorous PA (MVPA) (which is the
average minutes per day spent at moderate or vigorous activity), and average sedentary behaviour (which is
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Figure 1. Sample of four PA profiles at age 12 years. The horizontal lines denote from bottom to top the cut-points for light,

moderate and vigorous PA at 200, 3600, 6200 counts per minute derived in the calibration study by Mattocks et al.1
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the average minutes per day spent in sedentary activity).14–16 For each of these summaries, cut-points of counts per
minute are used for different levels of energy expenditure relating to light, moderate and vigorous activity.
These are based on estimates of energy expenditure described above, either using published models from the
literature or using models based on calibration studies performed on a subset of the study population. There is
some debate whether the energy expenditure and the cut-points change with age in children.17 Using only scalar
summaries ignores the pattern of PA, that is the distribution of the activity counts per minute and the frequency
spectrum of activity counts.

Figure 1 illustrates that accelerometer profiles typically are high-frequency spiky time series containing missing
periods, here ranging from minutes to whole days. In order to compare accelerometer profiles between individuals
and to reduce the high dimension, a functional summary is required. When mean cpm and MVPA are used as
predictors in models, certain implicit assumptions about the effect of PA on the outcome are made. We propose to
use instead the histogram as a functional summary. The histogram automatically deals with high-frequency time
series of differing lengths and with missing values but still contains much of the information in the data. This yields
a flexible way to model the PA effect on the outcome with fewer assumptions. It also allows the commonly made
modelling assumptions to be tested. We can easily extend the model to allow for interactions between PA and
gender, day of the week, or time of day and other variables. The model also allows the inclusion of smooth effects
of scalar predictors.

In our novel method, a scalar response is regressed on additive multi-dimensional functional predictors for
exploring the relationship between high-frequency count data of PA and health outcomes. The method is an
extension of generalised regression of scalars on functions or signal regression18,19 and extends the approach
presented in Augustin et al.20 We use the modelling approach to investigate the following questions:

(1) Is the effect of PA linear over the activity intensity range, i.e. is it sufficient to use mean cpm as a predictor? Or
does the effect of PA vary over the intensity range and how?

(2) Does the effect of PA intensity vary by gender? This would be plausible as there are differences in the
metabolism.

(3) Does the effect of PA intensity vary by time of day?
(4) Does the effect of PA intensity vary depending on whether it happens on a weekday or on the weekend?

Evidence for different effects could be explained by the fact that weekends and weekdays are associated with
different activity types.

We investigate the above questions using data from Avon Longitudinal Study of Parents and Children
(ALSPAC) where accelerometer data are available as a time series of accelerometer counts per minute over
seven days for a subset of children. Our interest lies in fat mass as a health outcome. At ages of approximately
12, 14 and 16 years, the children were attending research clinics where they were asked to wear an accelerometer
for seven days. Fat mass was also assessed using a DXA scanner. We use fat mass as a health outcome because
it is a measure of adiposity and it is strongly associated with other health outcomes such as cardio-metabolic
health (cardiovascular disease and type 2 diabetes).21 We consider fat mass at age 12, 14 and 16 years with PA
at 12, 14 and 16 years as predictors, since lack of PA in youth is a likely cause of early-onset adiposity which is
associated with adiposity in adults.22 We use fat mass rather than body mass index (BMI) because it is more
precise – BMI does not differentiate between fat and lean mass.

Regarding the association between fat mass and PA, the ALSPAC data have been extensively analysed by
considering summary statistics such as MVPA and mean cpm as predictors for the health outcome fat mass and
vice versa. The results for ages 12 and 14 years indicate that an increase in MVPA is associated with a lower risk of
obesity in children as they go through adolescence and more so in boys than girls.14 When the analyses were repeated
with BMI as outcome, similar patterns of association were found, but associations estimated from models with the
outcome BMI were considerably weaker than associations estimated frommodels with the outcome fat mass.14,23 As in
Riddoch et al.14 and due to the unknown lag structure and interaction with age of potential effects of PA on fat mass,
we fit several cross-sectional and prospective models to the ALSPAC data resulting in six different age combinations of
fat mass and PA. This allows us to assess whether the effects of PA differ between ages and whether there are any
prospective associations between PA and fat mass, which would be somewhat indicative of causality. We also use the
model to predict changes in fat mass when we redistribute the time spent in different intensity levels of PA.
These predictions also show how our model can be used to investigate potential changes regarding PA.

In Section 2, we introduce the data and the processing protocol and present summary statistics. In Section 3, we
present the regression of a scalar on multi-dimensional functional and additive non-linear predictors; we cover
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parameter estimation, model selection and extra considerations for model interpretation induced by the sum-to-
one property of the histogram. In Section 4, we present results followed by a discussion in Section 5.

2 The ALSPAC data

ALSPAC is a birth cohort study; see Boyd et al.24 and Fraser et al.25 for a detailed description. In this study, all
pregnant women in the former Avon Health Area, who had an expected delivery date between 1/04/1991 and 31/12/
1992, were asked to participate in the study. The Avon Health Area is situated around Bristol in the UK. A total of
14,541 pregnant women were enrolled, and this resulted in 14,062 live births. Detailed data have been collected from
pregnancy onward. Please note that the study website contains details on data that are available at www.bris.ac.uk/
alspac/researchers/data-access/data-dictionary/ All children of the study have been invited to regular research clinics
from the age of seven years. At the ages of 11, 13 and 15 years, the children attending these clinics were asked to wear
anMTI Actigraph AM7164 2.2 accelerometer for seven days. As the mean ages of children were actually closer to 12,
14 and 16 years, we will refer to the children as 12-, 14- and 16-year-olds. Children wore the accelerometer at the
waist during waking hours, except for showering, bathing, swimming and any watersports. At age 14, children were
wearing either the AM7164 or the newer GT1M Actigraph. Unfortunately, data on which type of accelerometer was
worn by the children at age 14 were not available for this analysis. In addition, fat mass was derived using a Lunar
Prodigy DXA scanner (GE Medical Systems Lunar, Madison, WI, USA), and the children’s height was measured.
See Mattocks et al.26 for more details on the measurement protocol.

2.1 Summary statistics

Here, we consider fat mass and activity profiles at all three ages of 12, 14 and 16 years. Not all of the children who
had their fat mass measured by scanner also had their PA measured and vice versa. Following the processing
protocol of the accelerometer data yields 4161 children with both measurements at age 12, 2919 children at age 14
and 1488 children at age 16. Of the 4161 children with both measurements at age 12, 2484 had both measurements
repeated at age 14 and 1352 at age 16. Below we use the accelerometer data in the processed form, that is, blocks of
10 zeros and invalid days have been set to missing. For details, see the Supplementary Material (available at:
http://smm.sagepub.com/).

The distribution of the outcome variable fat mass (kg) is right-skewed (Figure 2). Girls have a higher fat mass
than boys, and this difference becomes more pronounced as they go through adolescence. Figure 3 shows the mean
histogram of PA over all individuals and ages. A plot of the difference between the mean histogram of each age by
gender combination (not shown) gives the following insight: at the same-age boys, on average, are more active
than girls. The biggest differences in intensity distribution are seen between ages: for example, at age 12, children
spent the smallest amount of time in sedentary activity (very low to zero cpm) and spent more time in moderate to
vigorous activity. With increasing age, boys and girls are on average less active. Investigating the mean of the two-
dimensional histograms over PA intensity and hour of the day shows that time spent in sedentary activity increases
after 14:00 h for all ages. Figure 4 shows the correlation between the relative frequency of the histogram bins for
individuals at age 12, 14 and 16. Shown is the correlation of the columns of a matrix containing the individual
histograms by row, where the rows represent individuals and the columns the histogram bins. Besides very strong
positive correlation between density values of neighbouring bins, there is negative correlation up to �0.6 between
sedentary behaviour (below 200 cpm) and light activity (above 200 cpm). For all three ages, the correlation
between sedentary and moderate to vigorous activity is very small. This implies that if individuals spent little
time in sedentary activity, they spent more time in light activity and vice versa.

3 Models

We introduce the approach by considering the following generalised linear model (GLM) for fat mass as a
function of the accelerometer profile

gð�iÞ ¼ xTi bþ
X
j

�jzið pj Þ:

The yi is the scalar response with mean �i for individual i – (log) total fat mass at a given age for the ALSPAC
study – zi(pj) is the relative frequency of the histogram with some given number at mid-point pj and derived from
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Figure 2. Histogram of fat mass (kg) measured by scanner at ages 12, 14 and 16 for boys and girls.
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the vector of count entries. The g is a known monotonic link function. The yi follow an exponential family
distribution, and the vector xi is a row of the model matrix containing scalar variables and factors – in our
case, intercept, gender, height, height2, weartime and whether the mother is obese (m.obese). The variable
weartime is included because it is a measure of compliance which could be a proxy for hidden confounders.
The problem with this model is that, besides being unidentifiable due to

P
zið pj Þ ¼ 1, the coefficients � j for the

histogram values will be highly correlated, and their interpretation will hence be difficult. The model treats the
relative frequency for each of the histogram mid-points as a separate explanatory variable, and this is not
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appropriate. It makes more sense to exploit the fact that the histogram is a function and constrain the estimate of
� j to be similar to the � l at neighbouring mid-points pl. That is, the histogram enters the model as a function. We
let the � j vary smoothly, where �j¼ f(pj), an unknown ‘coefficient’ function to be estimated and f(p) can be
parameterised using any penalised regression spline basis. Then

gð�iÞ ¼ xTi bþ
X
j

fpð pj Þzið pj Þ:

Here, fp(p) is represented using an adaptive smooth27 with a P-spline basis,28 based on a B-spline basis function
and discrete random walk penalties on the basis coefficients. The model is identifiable through a constraint on the
smooth function fp(p); see our discussion in Section 3.3. The smooth is adaptive by letting the terms in the penalty
have different weights depending on the histogram mid-point j and then multiplying the smoothness parameters by
these weights. We use an adaptive smooth in order to allow different degrees of smoothness at different intensity
levels. Models such as the above are also called generalised regression of scalars on functions or signal regressions.
Marx and Eilers18 first applied P-splines in signal regression; see also Ramsay and Silverman.19

We extend the above model by also allowing multi-dimensional functional predictors and additive non-linear
predictors for continuous covariates. This is illustrated by the following models for the ALSPAC study, each of
which will be used to answer one of the four questions posed in the introduction. The first model below allows us
to test whether the effect of intensity is linear over the activity range

Baseline model gð�iÞ ¼ xTi bþ fhðheightiÞ þ
X
j

fpðpjÞziðpjÞ ð1Þ

where fh is a smooth function and the vector xi contains intercept, gender, weartime and m.obese. Note that the
way we specify the effect of PA actually allows us to check whether the common modelling approach using the
scalar summary statistic mean cpm is adequate. In order to see this, we point out that model (1) contains as a
special case for a linear effect function fp() the model

Question 1 gð�iÞ ¼ xTi bþ fhðheightiÞþ�
X
j

pjzið pj Þ: ð2Þ

As the mean cpm can be written as
P
j

pjzið pj Þ estimated from the histogram, the models are nested and allow, for
example, for testing of the implicit assumptions made in using mean cpm as a predictor. Further, we can
investigate whether the effect of PA intensity varies by gender by introducing different smooth functions for
males and females

Question 2 gð�iÞ ¼ xTi bþ fhðheightiÞ þ
X
j

fsðiÞð pj Þzið pj Þ ð3Þ

where s(i)¼ 1 for male and s(i)¼ 2 for female. For investigating whether the effect of PA intensity varies with time
of day, we introduce, zið pj, tmÞ, a two-dimensional histogram over PA intensity with bins of equivalent width, as in
model (1), and hour of the day with bin widths lm

Question 3 gð�iÞ ¼ xTi bþ fhðheightiÞ þ
X
j

X
m

fptð pj, tmÞzið pj, tmÞlm ð4Þ

where the smooth function fptð pj, tmÞ is now two-dimensional. And lastly, we investigate whether the effect of PA
intensity varies between weekday and weekend

Question 4 gð�iÞ ¼ xTi bþ fhðheightiÞ þ
X
j

fweð pj Þz
we
i ð pj Þ þ

X
j

fwdð pj Þz
wd
i ð pj Þ ð5Þ

where fwe is the smooth function over the histogram for the weekend and fwd for weekdays, with separate
histograms for weekend zwei ð pj Þ and weekday zwdi ð pj Þ.
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3.1 Parameter estimation

Parameter estimation of the above regression with additive multi-dimensional functional predictors is based on the
fact that all of the models 1 to 5 can be expressed as a penalised GLM; gð�iÞ ¼ Xih, where Xi is a row of the model
matrix containing all components of the model; that is, all strictly parametric components, such as explanatory
variables of linear effects, the sum of the relative frequencies of the histogram of observation i multiplied by the
basis functions evaluated at histogram mid-points pj and the basis functions for non-linear predictors evaluated at
observations i. The parameter vector h contains the coefficients of the bases functions and coefficients of linear
terms. Each of the smooth functions used in models (1) to (5) has one or several quadratic penalties, hTSkh, with an
associated smoothing parameter �k and the matrices Sk, contain known coefficients of the penalty. Typical penalty
choices are derivative-based, and the penalty thus measures how wiggly the smooth function is and is defined by
the type of smooth. The model is then estimated by minimising DðhÞ þ

PP
k¼1 �kh

TSkh with respect to h, where D is
the model deviance: the saturated log likelihood minus the log likelihood all multiplied by two times the scale
parameter �. In models 1 to 5, we made the following choices for smooths. The smooth fh for height is represented
using a thin plate regression spline29 with a penalty based on the second derivative of the smooth function. The
adaptive smooth used for the histogram (fp,fs(i), fwe and fwd) has adaptive penalties along the intensity of PA. The
two-dimensional smooth function fptð pj, tmÞ in model (4), expressed by a tensor product of two cubic regression
spline bases, has separate smoothing parameters and second derivative penalties for the two dimensions intensity
and time. By having two penalties and smoothing parameters, we ensure that the smoothness is appropriate for the
two scales. Tensor product smooths are useful for multi-dimensional smoothing problems, where the dimensions
represent different scales.30

The parameters are estimated using a nested iteration scheme27 where the outer iteration is approximate
restricted maximum likelihood (REML) estimation of smoothness parameters, minimising a Laplace
approximation of REML where the parameter vector, h, containing coefficients of linear terms and of basis
functions for the smooth terms, is integrated out; see, e.g. Laird and Ware.31 The inner iteration is a penalised
iterative re-weighted least squares (PIRLS) algorithm to find all other parameters, i.e. the coefficients of basis
functions and coefficients of linear terms. We use the computational set up of Wood27 implemented in the gam()
function of the R package mgcv32 to estimate the model.

For prediction, we use Bayesian credible intervals by sampling from the posterior of all model parameters h to
obtain a sample from the predictive distribution; see also Wahba33 and Wood.29 For this, the model is represented
as a Bayesian model, where the smooth terms are a mixture of fixed and random effects. This approach recognises
that imposing a particular penalty effectively imposes some prior beliefs about the likely characteristics of the
correct model. That is, the model structure allows considerably more flexibility than is believed to be really likely,
and the choice is made to penalise models that are in some sense too wiggly. This is done by specifying a prior
distribution on the parameters h with a distribution proportional to exp ð� 1

2 hT
PP

k¼1 S
k�khÞ, i.e. the quadratic

penalties are equivalent to assuming an improper multivariate normal prior. The �k are parameters controlling the
dispersion of the prior, and the matrices Sk contain known coefficients of the P penalties. Choosing the �k in this
Bayesian formulation is equivalent to choosing the smoothing parameters �k since �k ¼

�k
� , where � is the scale

parameter. Here, the choice of the �k is data driven as they are estimated by REML.
With the generally improper prior distribution for h, a posterior distribution for h can be derived:

h � Nðbh, ðXWXT þ
P
k

�kS
kÞ
�1�Þ, with W ¼ diag 1

VðlÞ gðl2Þ
; see Wood29 for details. We obtain a posterior sample

of the distribution of estimates h and obtain from this the predictive distribution of the response. Then, the pth draw

from the posterior distribution is �ip ¼ ŷitp ¼ g�1 Xi
bhp� �

. For prediction, the Xi is re-evaluated for the prediction data.

Otherwise, the same procedure as described above is carried out. For example, for estimating the percentage change in
fat mass when some of the sedentary activity is redistributed to higher intensities, as shown in Figure 6, we obtain a

sample of the percentage change rip ¼
g�1ðXr

i
bhpÞ

g�1ðXi
bhpÞ � 1

� �
� 100, where Xi is the observed model matrix for individual i,

and Xr
i is the model matrix where relative frequencies of the histogram are redistributed according to some scenario.

Shown in Figure 6 are the median and the 2.5% and 97.5% percentiles of the posterior distribution of rip.

3.2 Model selection and validation

We use the root mean square prediction error (RMSPE) estimated by validation as a selection criterion. In
addition, we consider the Akaike information criterion (AIC), Bayesian information criterion (BIC) and
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adjusted R2. The AIC is defined as AIC ¼ �2lðbhÞ þ 2edf, the BIC is BIC ¼ �2lðbhÞ þ logðnÞedf, where l is the
conditional log likelihood given the penalised parameters, edf are the effective degrees of freedom, here
estimated by the trace of the matrix that maps the un-penalised estimates onto the penalised estimates
corrected for the smoothing parameter uncertainty as described in Wood et al.34; see also Greven and Kneib.35

Comparing these criteria between model (1) and model (2) will show how much can be gained by allowing the
effect of PA intensity to be non-linear. We also test formally whether the effect for PA is non-linear using a
significance test. Replacing the adaptive smooth basis with a thin plate regression spline basis makes this task
relatively easy. The linear part of the regression spline basis, that is the completely smooth basis function with zero
penalty, is separate from the rough penalised basis functions. Hence, the linear basis part can be included as a
separate effect in a model that also includes the rough penalised basis function. In this nested model, we test
whether the non-linear part of the basis is zero using an approximate likelihood ratio test.36

3.3 Model interpretation

Due to the histogram property, we have that
P

j zið pj Þ ¼ 1, yielding equal model fits for �þ
P

j f ð pj Þzið pj Þ
and ð�þ cÞ þ

P
j ð f ðpj Þ � cÞzið pj Þ for any c. We thus need an additional identifiability constraint for our

model. There are several ways this could be achieved, with differing corresponding model interpretations.
The standard assumption is a sum-to-zero constraint

P
j f ð pj Þ ¼ 0, and this is the default as implemented

in the gam() function of the R32 package mgcv.27 To help interpret the coefficient function f(pj) under this
constraint in model (1) and its variant models 3 to 5, consider the simpler model �þ

P
j f ð pj Þzð pj Þ. In this

model, due to
P

j f ð pj Þ ¼ 0, the intercept � can be interpreted as the expected fat mass on the link
function scale g(�i) for the scenario that PA is equally distributed along intensity with zið pj Þ ¼ c for
some c inversely related to the number of bins. The functional coefficient f(pj) measures the deviation
from this expected value according to the actual PA distribution.

A second possible constraint is to restrict f(p1)¼ 0 for the first bin from the histogram corresponding to
sedentary activity. If we insert zið p1Þ ¼ 1�

P
j41 zið pj Þ into the model above, then �þ f ð p1Þzið p1Þ þ

P
j41 f ð pj Þ

zið pj Þ ¼ �þ f ð p1Þ þ
P

j41 f ð pj Þ � f ð p1Þ
� �

zið pj Þ ¼ �
0 þ

P
j41 f

0ð pj Þzið pj Þ: This shows that if we set f(p1)¼ 0, or
equivalently remove the first histogram bin in our model fit, the intercept is now �0 ¼ �þ f ð p1Þ, which is the
expected value of fat mass on the link function scale for sedentary activity, as defined by the breaks of the first
histogram bin. The interpretation of the functional coefficient is also more convenient: f0ð pj Þ ¼ f ð pj Þ � f ð p1Þ

� �
is the effect of activity compared to sedentary activity. Hence, in the following analysis, we fit all models with the
first histogram bin removed instead of imposing the centred smooth constraint to achieve this convenient
interpretability.

4 Results and interpretation

We fit models (1) to (5) for the six different age combinations of the variables to investigate possible age-varying
effects with unknown lag structure of PA on fat mass. We model the log of fat mass using a normal distribution, as
this gives a better fit compared to modelling fat mass using a gamma distribution with a log link function. We
compare these models with the different criteria in Table 1 to model ‘base’ (logð yiÞ ¼ xTi bþ fhðheightiÞ þ �i) which
does not include a term for PA. We use the following short notations (a) 12–12, (b) 12–14, (c) 12–16, (d) 14–14, (e)
14–16 and (f) 16–16, where the first number refers to the age when PA was measured and the corresponding
weartime in the model, and the second number refers to the age of the response fat mass and covariate height in the
model. For example, (b) 12–14 has PA and weartime at age 12 and response fat mass and covariate height at age
14. The models are fitted to approximately 3/4 of training data, and the RMSPE is then estimated on the
remaining 1/4 of validation data. Note that the sample size NT of the training data depends on whether both
fat mass and PA was measured for the specific age combination. All the results are based on using 80 bins for the
individual histograms of the accelerometer counts. We selected the number of bins which minimised the prediction
error resulting in 80 bins of equal width, with the exception of the last bin which contains all counts in the range
(8000;15,000). Counts greater than 15,000 are set to missing as misrecording is the most likely cause for these (see
Supplementary Material (available at: http://smm.sagepub.com/)). The results show that the effect of PA intensity
is not linear since model (1) is always better than model (2) which only uses mean count per minute. The results
show that for most age combinations, model (1) is best, and there is little evidence that any of the more complex
models (3) to (5) provides a better fit. In (b) 12–14, models (3) and (4) yield slightly lower RMSPEs than model (1),
and in (f) 16–16, the AIC, BIC and RMSPE select different best models, with model 5 yielding the lowest RMSPE.
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Hypothesis testing, as described in Section 3.2, on whether the effect of PA is non-linear confirms the non-linearity.
The p values for the test of whether the non-linear part of the basis is zero are all <3e-08 except for model (f) 16–
16, where the p value was not significant.

These results show the assumption of a linear effect of PA over intensity made by using the summary mean
(cpm) is not valid. Similarly, using MVPA as a predictor, as e.g. in Riddoch et al.,14 assumes zero effect of activity
for an intensity below moderate and a constant effect of activity at and above the assumed cut-point for moderate
intensity. Figure 5 shows the effect of the histogram of the accelerometer profile, a functional predictor. This
clearly shows that the effect of PA is not linear and not constant over intensity. Our comparison of the RMSPE
estimated by validation confirms that the proposed models yield a lower prediction error than model (2), a model

Table 1. Model selection results for models using a histogram with 80 bins.

Age

combination Model NT edf adjusted R2 �AIC �BIC

RMSPE

(kg)

(a) 12–12 base 2918 8 25.080 0.000 0.000 5.895

þhist (1) 2918 13 31.270 246.700 217.400 5.674

þcpm (2) 2918 9 28.060 117.100 110.900 5.841

hist by gender (3) 2918 16 31.120 237.700 192.000 5.682

2Dhist (4) 2918 28 31.810 255.000 138.100 5.706

hist by WE (5) 2918 14 29.760 182.000 145.300 5.743

(b) 12–14 base 1736 6 23.330 0.000 0.000 6.625

þhist (1) 1736 12 28.050 105.200 77.000 6.442

þcpm (2) 1736 7 25.250 42.890 37.280 6.587

hist by gender (3) 1736 14 27.790 96.180 53.180 6.416

2Dhist (4) 1736 18 27.770 91.720 27.430 6.417

hist by WE (5) 1736 12 26.300 63.610 35.940 6.468

(c) 12–16 base 1630 7 24.180 0.000 0.000 7.055

þhist (1) 1630 10 27.900 78.970 62.300 6.956

þcpm (2) 1630 8 25.980 37.940 32.110 7.062

hist by gender (3) 1630 13 27.950 77.180 44.950 6.959

2Dhist (4) 1630 20 27.190 53.370 �15.200 6.992

hist by WE (5) 1630 11 26.230 40.720 19.140 7.047

(d) 14–14 base 2156 5 32.730 0.000 0.000 7.564

þhist (1) 2156 10 36.470 118.400 90.990 7.401

þcpm (2) 2156 6 34.960 71.550 65.880 7.548

hist by gender (3) 2156 12 36.260 109.600 72.650 7.426

2Dhist (4) 2156 18 36.320 105.700 34.320 7.405

hist by WE (5) 2156 11 35.760 93.060 58.240 7.470

(e) 14–16 base 1656 5 32.090 0.000 0.000 7.852

þhist (1) 1656 9 35.340 77.340 57.310 7.824

þcpm (2) 1656 6 33.720 39.020 33.620 7.873

hist by gender (3) 1656 11 35.200 71.580 39.930 7.839

2Dhist (4) 1656 14 33.560 27.450 �20.210 7.836

hist by WE (5) 1656 9 34.630 58.680 35.300 7.862

(f) 16–16 base 963 5 33.940 0.000 0.000 8.048

þhist (1) 963 8 34.810 9.750 �5.228 8.011

þcpm (2) 963 6 34.420 6.101 1.232 8.018

hist by gender (3) 963 11 35.590 18.430 �10.880 7.899

2Dhist (4) 963 13 35.150 10.110 �27.770 7.954

hist by WE (5) 963 9 34.860 9.403 �10.530 7.843

AIC: Akaike information criterion; BIC: Bayesian information criterion; PA: physical activity.

The models with different age combinations are fitted. We use the following short notations (a) 12–12, (b) 12–14, (c) 12–16, (d) 14–14, (e) 14–16 and

(f) 16–16, where the first number refers to the age of PA and weartime in the model, and the second number refers to the age of the response fat mass

and covariate height in the model. For example, (b) 12–14 has PA and weartime at age 12 and response fat mass and covariate height at age 14. All

models are compared to model ‘base’ (logð yiÞ ¼ xT
i 	þ fhðheightiÞ þ �i) which does not include a term for PA. The edf are the effective degrees of

freedom of the model, R2 is the adjusted R2. For AIC and BIC, the difference to the ‘base’ model is given. Parameters, adjusted R2, AIC and BIC

are estimated from the training data with sample size NT. The root mean squared prediction error (RMSPE) is in kg fat mass and estimated on the

validation data.
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which is often used in the literature. See also Augustin et al.20 with similar findings based on a subset of the
ALSPAC data. Studies have shown that there are differences in the output produced by different generations of
Actigraph accelerometer; see, for example, Ried-Larsen et al.37 and Grydeland et al.38 At 12 and 16 years, children
were wearing the AM7164 and at age 14, children were wearing either the AM7164 or the newer GT1M Actigraph.
Unfortunately, data on which type of accelerometer was worn by the children at age 14 were not available for this
analysis, and hence we could not further investigate this. Interestingly, the effects of models involving PA
measured at age 14, (d) 14–14 and (e) 14–16 are very similar to the effect estimated in the other models.

We can answer the four questions we posed in the introduction: There is evidence that the effect of PA is not
linear over the intensity range and that including the scalar summary statistic mean cpm in the model thus is not
adequate to capture the true underlying relationship between PA and fat mass. Specifically, there are significant
associations between increased fat mass and PA at different lower light intensity levels (300–1000 cpm) as the 95%
credible intervals of f(zj) did not include zero at these intensity levels. This intensity corresponds to light activities
such as slow walking (e.g. to shops) or general hanging out with friends, which again may be associated with
certain (eating) habits. In the prospective models (b, c, e) and the cross-sectional model at age 16 (f), we found that
increased PA intensity of 2400 cpm and higher is associated with decreased fat mass (Figure 5). For the two cross-
sectional models at age 12 and 14 (a, d), the confidence intervals are wider, but it appears that the decreasing effect
on log fat mass and PA starts at a higher intensity of around 4000 cpm. It is important to note that these results do
not imply causality as our data are observational. In fact, causal effects in both directions between PA and fat mass
are possible. In particular, adiposity may lead children to be less active.

For most age combinations (Table 1), there is little evidence to suggest that the effect of PA intensity varies by
gender (model (3)), or whether it happens on weekdays or on weekends (model (5)) or by time of day (model (4)).
For the age combinations (b) 12–14, the RMSPE of models (1), (3) and (4) are very close, and for the cross-
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Figure 5. The estimated functions f(pj) for all six models. (a) 12–12 fat mass, height and weartime and PA at age 12; (b) fat mass and

height at age 14 and PA and weartime at age 12; (c) 12–16 fat mass and heigth at age 16 and and PA and weartime at age 12; (d); 14–14

fat mass, height, weartime and PA at age 14; (e) 14–16 fat mass and height at age 16 and PA and weartime at age 14; (f) 16–16 fat mass,

height, weartime and PA at age 16. The grey dashed vertical lines are at 200, 800, 1400,. . ., 8000. The cut-points for light, moderate

and vigorous PA from Mattocks et al.1 estimated at 200, 3600, 6200 counts per minute are also shown as vertical lines.

cpm: counts per minute.
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sectional model at age 16 (f), model (5) has the lowest RMSPE. This is in contrast to Ness et al.23 where an
interaction between the effects of gender and MVPA was reported from an analysis of the ALSPAC data using a
cross-sectional model with both obesity and PA at age 12. These different results can be explained by the fact that
quite different models are fitted. In Ness et al.,23 the outcome variable is binary (obesity, yes/no). Here, we use the
log of fat mass as the outcome, since dichotomising fat mass into a binary obesity outcome and then using a
Bernoulli distribution with a logit link would lead to unnecessary loss of information. Our approach uses the
histogram of PA counts as a predictor. Figure 3 showed that the mean histograms are quite different between boys
and girls and our approach takes the shape of the PA intensity distribution into account. In Ness et al.,23 only
MVPA is used as a predictor, and the intensity distribution is not taken into account. The difference in estimates
for MVPA in Ness et al.23 for boys and girls may be due to the fact that the PA intensity distribution is different
for boys and girls and that the distribution of intensity has an effect on obesity.

The resulting estimates of the coefficient function f(pj) for the best model (1) for each of the six different age
combinations (a-f) in Figure 5 clearly show that the effect of PA is not linear or constant over intensity, as would
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Figure 6. The 95% credible intervals for the percentage change in kg fat mass predicted for the best model (1) are shown with a

black dashed line for each of the six different age combinations (a-f). The red dotted line shows the 95% credible intervals for the

percentage change in kg fat mass predicted from model (2). Top: Scenario 1, predicted for a redistribution of 15-min activity evenly

into activities between moderate to vigorous. Bottom: Scenario 2, predicted for a redistribution of 15-min sedentary (0–100 cpm)

activity evenly into vigorous activities.
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be implied by the use of the common summary statistics mean cpm or MVPA. The f(pj) can be interpreted as a
weight in the approximation to the integral of the histogram (with the first bin removed). With sedentary activity
(counts 0 to 100 cpm) as a reference, the estimated weight function is positive in the range of the accelerometer
profile, which has an increasing contribution to fat mass, and negative in the range of accelerometer counts with a
decreasing contribution to fat mass. Compared to spending time in sedentary activity, time spent in activity with
intensity above 1400 cpm has a decreasing effect on log fat mass. Between 200 and 800 cpm, the effect of activity on
log fat mass is increasing.

Using the ‘best’ model (1), we investigate how much variability in log fat mass the separate terms explain in
Table 2. Overall, all models (1) have an adjusted R2 between 28% and 36%. It is interesting to see that the ranking
of effects changes with age. For the cross-sectional model at age 12, (a) 12–12 f ðheightÞ explains most of the
variability in model (1); for all other age combinations, (b)–(f) with the outcome log fat mass at ages 14 or 16,
gender is the most important term, and dropping gender, halves the adjusted R2. This has most likely to do with
physiological changes through adolescence where the percentage body fat of girls increases compared to boys.
Except for model (f), PA is the second most important predictor in terms of explaining variability.

Table 2. The effect of dropping each term in turn from model (1) for the six age combinations (a) to (f) is shown.

Age combination Model NT edf adjusted R2 �AIC �BIC RMSPE (kg)

(a) 12–12 model (1) 2918 13 31.2700 0.0000 0.0000 5.6740

-gender 2918 12 29.8600 �58.4800 �53.8400 5.7250

-m.obese 2918 12 29.0600 �91.7300 �86.2600 5.7470

-weartime 2918 12 31.1800 �3.1010 2.7690 5.6720

-
P

j f ð pj Þzið pj Þ 2918 8 25.0800 �246.7000 �217.4000 5.8950

-fhðheightiÞ 2918 9 15.1000 �612.5000 �587.5000 6.1560

(b) 12–14 model (1) 1736 12 28.0500 0.0000 0.0000 6.4420

-gender 1736 12 16.8100 �251.9000 �251.7000 6.9110

-m.obese 1736 11 25.7400 �53.8100 �48.0100 6.5230

weartime 1736 11 27.9500 �1.5480 3.7820 6.4540

-
P

j f ð pj Þzið pj Þ 1736 6 23.3300 �105.2000 �77.0000 6.6250

-fhðheightiÞ 1736 9 24.6200 �78.3600 �64.4100 6.6110

(c) 12–16 model (1) 2156 10 36.4700 0.0000 0.0000 7.4010

-gender 2156 13 16.4700 �592.8000 �608.5000 8.1270

-m.obese 2156 9 34.5200 �64.0000 �57.6100 7.5850

Weartime 2156 9 36.3600 �2.7200 3.2220 7.4010

-
P

j f ð pj Þzið pj Þ 2156 5 32.7300 �118.4000 �90.9900 7.5640

-fhðheightiÞ 2156 9 33.5600 �95.3400 �88.4800 7.5340

(d) 14–14 model (1) 1630 10 27.9000 0.0000 0.0000 6.9560

-gender 1630 12 15.4500 �262.0000 �273.4000 7.2830

-m.obese 1630 9 25.3700 �55.2000 �48.7500 7.0950

-weartime 1630 9 27.6600 �4.5150 0.9018 6.9220

-
P

j f ð pj Þzið pj Þ 1630 7 24.1800 �78.9700 �62.3000 7.0550

-fhðheightiÞ 1630 7 25.2300 �56.3800 �40.1300 7.1070

(e) 14–16 model (1) 1656 9 35.3400 0.0000 0.0000 7.8240

-gender 1656 13 15.1900 �453.1000 �474.9000 8.6350

-m.obese 1656 8 33.1000 �55.3200 �49.7000 8.0030

-weartime 1656 7 35.1700 �2.9810 3.7420 7.8060

-
P

j f ð pj Þzið pj Þ 1656 5 32.0900 �77.3400 �57.3100 7.8520

-fhðheightiÞ 1656 8 32.8200 �62.2900 �57.6700 7.9590

(f) 16–16 model (1) 963 8 34.8100 0.0000 0.0000 8.0110

-gender 963 9 13.4800 �273.6000 �278.9000 8.2790

-m.obese 963 9 33.0300 �26.9500 �32.1500 7.9400

-weartime 963 8 34.9700 2.7560 4.8210 7.9860

-
P

j f ð pj Þzið pj Þ 963 5 33.9400 �9.7500 5.2280 8.0480

-fhðheightiÞ 963 9 33.6500 �17.8600 �22.4800 7.9080

AIC: Akaike information criterion; BIC: Bayesian information criterion.

edf are the effective degrees of freedom of the model, R2 is the adjusted R2. Parameters, adjusted R2, AIC and BIC are estimated from the training data

with sample size NT. For AIC and BIC, the difference to the ‘base’ model is given. The root mean squared prediction error (RMSPE) is estimated in the

validation data.
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4.1 Predicting fat mass with a redistributed PA

Using the ‘best’ model (1), we predict the percentage change in fat mass when taking away 15min of sedentary
activity (0–100 cpm) per day and redistributing this time evenly at intensities considered as moderate to vigorous
(above 3600 cpm, scenario 1) and at intensities considered as vigorous (above 6200 cpm, scenario 2). We compare
these predictions with predictions from model (2), which assumes a linear effect of PA intensity. Model (2) is close
to the current state-of-the-art and models similar to this have often been used in the past; see, for example,
Riddoch et al.14 A comparison of confidence intervals from model (1) and model (2) shown in Figure 6 shows
that model (1) always gives higher predictions of the percentage reduction in fat mass than model (2). Scenario 2
achieves a higher reduction in fat mass than scenario 1. A redistributed PA at age 12 according to scenario 2
achieves a predicted mean reduction of 14.3% of fat mass at age 16 (combination c) with a 95% credible interval
between 12% and 17%.

5 Discussion

We introduce a novel modelling approach to model the effect of PA, as measured by accelerometer high-frequency
count data, on fat mass or other health outcomes. We expect that our approach will be useful for other data of
similar nature to the accelerometer time series. For example, our approach could be applied to investigate the
effect of daily pollution or temperature data on certain health outcomes. Our method can handle the challenges
encountered with accelerometer and other high-frequency count data, including time series that are highly spiky
and variable in nature, as well as of different lengths and with different patterns of missing values. The approach
treats the accelerometer data as a function of activity intensity rather than time and hence avoids registration of
accelerometer counts in time. It allows us to consider the entire distribution of accelerometer counts in the model
without any of the collinearity problems introduced when summaries of specific activity levels are used
simultaneously in the model. We show that leaving out the first histogram bin leads to the interpretation of the
effect of activity at a certain intensity compared to sedentary activity. This parametrisation of the functional
predictor in our model is similar in nature to the isotemporal substitution model,39 which estimates the effect
of replacing one PA type with another PA type for the same amount of time.

We show how additive multi-dimensional functional predictors derived from accelerometer profiles can be used
to check the assumptions intrinsically made by the use of commonly used single summary statistics of
accelerometer profiles as predictors for a specific health outcome. In fact, in Section 4, we have shown that for
the ALSPAC data, the commonly made assumptions about the effect of PA on log fat mass are not valid. We have
also demonstrated how our approach can be used to answer specific questions about the effect of PA intensity on a
particular outcome.

The model results are robust to changes in the number of bins. We selected the number of bins that minimised the
prediction error (RMSPE). When the number of bins was increased further, model results became unstable. The
histograms of PA are highly skewed with a spike at the first bin, but since we do not use the first bin in order to
achieve model identifiability, this is not a problem. We obtained very similar results from an analysis where we
transform the scale of the counts by raising them to the power of 0.35. On this scale, an even spacing of bin widths
results in a more uniform distribution, which is also more conducive to graphical display. Another possible
transformation would be to use the logarithm. We decided to not transform the accelerometer counts in our
main analysis in order to make the interpretation of results more straightforward. As model 1 contains model 2
with a linear effect function for the histogram as a special case, this also enables us to check whether the common
modelling approach using the scalar summary statistic mean cpm is adequate.

Masse et al.40 report on a sensitivity analysis comparing different processing protocols and conclude that the
decision rules used to process accelerometer data have an impact on outcome variables and sample size. The
processing protocol defines the length of a block of zeros for assuming non-weartime – resulting in setting those
zeros to missing values. Here, changing block size from 10 zeros to 60 zeros to assess non-weartime makes little
difference in the estimates. The analysis with 60 block zeros produces more or less the same graph as in Figure 5.

Our new functional modelling approach for accelerometer data opens the door to investigating many further
questions of interest in the future. In particular, it would be interesting to develop a longitudinal model that allows
the modelling of all visits simultaneously, although further work would be needed to investigate the optimal lag
structure and possible collinearity when including more than one lag at a time. It would also be of interest to
investigate whether the functional summaries can be used to classify individuals into groups with a similar activity
pattern. Since there is evidence from many physiological studies that certain frequency patterns of PA at certain levels
are beneficial, it would be of interest to confirm these findings with our modelling approach. Our method has potential
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to be useful for exploring such patterns. Applying our approach to other outcomes and/or high-frequency count data
would also be of interest. The strength and shape of the relationship between PA and health outcome may differ by
outcome. In particular, we might expect to see different effects for the health outcomes blood pressure41 or depression.42

Instead of the histogram, we could have used the kernel density estimate as a summary function. Repeating the
analysis using kernel density estimates as a summary function gave similar answers. Both the histogram and the
kernel density estimate summarise the distribution, with the kernel density estimate being smoother but also
requiring user input, as the degree of smoothness has to be decided on by choosing a window width.

In ALSPAC, PA levels were measured for a relatively short time, a maximum of seven days, and we assume that
the measurements reflect the individuals’ typical activity pattern. There are some exceptions as water based
activities cannot be measured by the accelerometers used and some activities, such as cycling, are not well
measured. The counts during water-based activities are filtered out as non-weartime and set to missing. Ness
et al.23 showed that the cross-sectional association between PA and fat mass at age 12 was not affected if the
analyses was repeated including only children who did not report swimming and cycling in the week of
measurement. Given this evidence and the large sample size, we assume that these exceptions are negligible.
The reliability and representativeness of accelerometer measurements is also supported by results from a
repeated measures analysis,43 with individuals having repeats of wearing accelerometers. This study showed
that the intra class coefficient (ICC) was moderately high for certain scalar summaries.

Although typical relative frequencies at high intensity levels are low, the time spent at the most intense levels of
activity is very important. The estimates of f(xj) are negative and have overall the highest absolute values in that range,
implying that apparently spending a certain number of minutes at the most intensive range of activity compared to
spending time in sedentary activity is associated with the highest reduction of fat mass. This has implications regarding
the effectiveness of public health interventions. Figure 6 shows that the potential benefit of redistributing 15min of
time per day from sedentary to moderate to vigorous activity is substantial (scenario 1) and a redistribution of time
from sedentary to vigorous activity (scenario 2) has an even higher impact. An estimated mean reduction of 14.3% in
fat mass at age 16 using model (1) with a credible interval of 12%–17% when 15min of time per day spent in
sedentary activity at age 12 is redistributed to vigorous activity is a modest yet clinically relevant effect. Redistributing
say, 60min, according to scenario 2 would be associated with a more substantial fat reduction. These predictions also
show how our model can be used to investigate potential changes regarding PA. See also the approach of Mekary
et al.39 which allows similar investigations for questionnaire based PA data. In summary, our approach allows the
investigation of the effect of PA intensity on a particular outcome in detail. It also allows the investigation of potential
effects of a PA intervention and to optimise the impact of an intervention. This has implications regarding the
effectiveness of public health interventions and PA intervention studies.

6 Supplementary material

The supplementary material (available at: http://smm.sagepub.com/) covers pre-processing of the accelerometer
data and R example code.
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