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Abstract: We propose an estimation approach to analyse correlated functional data, which are observed
on unequal grids or even sparsely. The model we use is a functional linear mixed model, a functional
analogue of the linear mixed model. Estimation is based on dimension reduction via functional principal
component analysis and on mixed model methodology. Our procedure allows the decomposition of the
variability in the data as well as the estimation of mean effects of interest, and borrows strength across
curves. Confidence bands for mean effects can be constructed conditionally on estimated principal
components. We provide R-code implementing our approach in an online appendix. The method is
motivated by and applied to data from speech production research.
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1 Introduction

Advancements in technology allow today’s scientists to collect an increasing amount
of data consisting of functional observations rather than single data points. Most
methods in functional data analysis (fda) (see, e.g., Ramsay and Silverman, 2005)
assume that observations are (a) independent and/or (b) observed at a typically large
number of the same (equidistant) observation points across curves.

Linguistic research is only one of the numerous fields in which the data often do not
meet these strong requirements. Our motivating data come from a speech production
study (Pouplier et al., 2014) on assimilation, the phenomenon that the articulation
of two consonants becomes more alike when they appear subsequently in spoken
language. The data consist of audio recordings of nine speakers repeating the same 16
target words, including the two consonants of interest, each five times. The recorded
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acoustic signals during the duration of the two consonants were summarized by the
phoneticians in a functional index over time (shown in Figure 1) varying between +1
and —1. Positive (negative) index values indicate proximity of the acoustic signal to
a reference signal for the first (second) consonant of the target word. Thus, without
assimilation, curves show a clear transition from strongly positive to strongly negative
values. Assimilation can result in an earlier onset of the second consonant and/or a
weakening of the first consonant, that is, smaller positive index values. In the extreme,
curves become quite flat and only negative index values remain, indicating that the
first consonant is dominated completely, possibly even replaced by the second. Due
to the repeated measurements for speakers and for target words, the data have a
crossed design structure. All recordings were taken with the same sampling rate, but
the speaking durations differed. The index curves were thus standardized to a [0,1]
time interval as changes relative to the length of the time interval (i.e., the duration
of the consonant combination) are of interest. This results in different numbers and
locations of the observation points between the observed curves.

We propose a model and an estimation approach that extend existing methods by
accounting for both (a) correlation between functional data and (b) irregular spacing
of—possibly very few—observation points per curve. The model is a functional ana-
logue of the linear mixed model (LMM), which is frequently used to analyse scalar
correlated data.

We use functional principal component analysis (FPCA; see, e.g., Ramsay and
Silverman, 20035) to extract the dominant modes of different sources of variation
in the data. The functional random effects are expanded in bases of eigenfunctions
of their respective auto-covariances, which we estimate beforehand using a novel
smooth method of moments approach represented as an additive, bivariate varying
coefficient model. FPCA is a key tool in fda as it yields a parsimonious representation
of the data. It is attractive as the eigenfunction bases are estimated from the data and
have optimal approximation properties for a fixed number of basis functions. It also
allows for an explicit decomposition of the variability in the data.

We propose two ways of predicting the eigenfunction weights. We either compute
them directly as empirical best linear unbiased predictors (EBLUPs) of the resulting
LMM or we alternatively embed our previously estimated eigenfunctions and - values
in the general framework of functional additive mixed models (FAMMs) introduced
by Scheipl et al. (2015). The first approach is straightforward and computationally
much more efficient; it does not require additional estimation steps as a plug-in
estimate is used, and is thus almost a by-product of the eigenfunction estimation. The
latter has the advantage that all model components are estimated/predicted in one
framework, allowing for approximate statistical inference conditional on the FPCA.

There is previous work on dependent functional data as well as on functional data
that is irregularly or sparsely observed, but with few exceptions noted below, existing
work has not addressed both issues simultaneously.

First, methods for dependent functional data differ in their generality and in their
restrictions on the sampling grid. Brumback and Rice (1998) consider a smoothing
spline-based method for nested or crossed curves, which are modelled as fixed effect
curves. They allow for missing observations in equal grids but do not consider any
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covariate effects. A Bayesian wavelet-based functional mixed model approach is in-
troduced by Morris et al. (2003) and extended by Morris and Carroll (2006), Morris
et al. (2006) and subsequent work by this group. While this approach is quite gen-
eral in the possible functional random effects structure, and fixed and random effects
are estimated within one framework allowing for full Bayesian inference, it assumes
regular and equal grids with at most a small proportion of missings and a reasonable
number of completely observed curves. Di et al. (2009), Greven et al. (2010) and Shou
et al. (2015) consider functional linear mixed models (FLMMSs) with a functional ran-
dom intercept (fRI), with a fRI and functional random slope, and with nested and
crossed fRIs, respectively. While following a similar approach to estimation of these
models, all three are restricted to data sampled on a fine grid, and fixed effects are es-
timated under an independence assumption, not allowing for the statistical inference
we provide. Di et al. (2014) extend the random intercept model of Di et al. (2009) to
sparse functional data; the correlation structure, however, remains less general than
ours and the estimation approach cannot easily be generalized to more complex struc-
tures. Also motivated by an application from linguistics, Aston et al. (2010) perform
an FPCA on all curves ignoring the correlation structure, and then use the functional
principal component (FPC) weights as the response variables in an LMM with random
effects for speakers and words. Only linear effects of scalar covariates are considered,
FPC bases are restricted to be the same for all latent processes, and it is assumed that
the data are sampled on a common grid. Brockhaus et al. (2015) propose a uni-
fied class for functional regression models including group-specific functional effects,
which are represented as linear array models, and are estimated using boosting. The
array structure requires common grids and boosting does not provide inference. Other
approaches concentrate specifically on spatially correlated functional data on equal
grids, for example, Staicu et al. (2010). Scheipl ez al. (2015) develop a flexible class
of functional response models, allowing for various functional random effects with
flexible correlation structures. Both spline-based and FPC-based representations are
considered, and densely as well as sparsely sampled data are allowed. In the case of the
FPC-based representation, they assume that appropriate FPC estimates are available.
Yet, the estimation of the auto-covariances is challenging for correlated functional
data with complex correlation structures, especially when observed on unequal grids,
and no estimation approach is currently available. We combine our newly proposed
FPC estimation with this general framework to obtain estimates, and approximate
point-wise confidence bands (CBs) for the mean and covariate effects. In addition to
providing an interpretable variance decomposition, our FPC-based approach reduces
computation time by orders of magnitude compared to the spline-based estimates
from Scheipl et al. (2015) (compare Section 5), allowing the analysis of realistically
sized data in practice. Estimation errors and CB coverage also compare favourably.
Second, a number of approaches allow for irregularly or sparsely sampled
functional data but assume that curves are independent. Guo (2002, 2004) first
introduces the term functional mixed effects models for his model. The model
does not capture between-function correlation as only curve-level random effect
functions are included, which are modelled using smoothing splines. The approach
is not restricted to regularly sampled grid data. Chen and Wang (2011) propose a
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spline-based approach that is suitable for sparsely sampled data, but similar to Guo
(2002, 2004), they only consider curve-level random effects. James et al. (2000), Yao
et al. (2005) and Peng and Paul (2009) among others propose FPCA approaches for
sparsely observed functional data with uncorrelated curves. For functional data with
independent curves, there is a direct relationship to the longitudinal data literature
as well, too extensive to cover here.

For an extensive overview and further references for functional regression ap-
proaches, including functional response regression, see Morris (2015).

The remainder of the article is organized as follows. Section 2 introduces the
general FLMM and presents an important special case which is used to analyse the
motivating linguistic data on assimilation. Section 3 develops our estimation frame-
work. Our method is evaluated in an application to the assimilation data and in
simulations in Sections 4 and 5, respectively. Section 6 closes with a discussion and
outlook. Theoretical results and supplementary material including estimation details
as well as additional results for application and simulations are available in the online
appendix, where we also provide R-code implementing our approach.

2 Functional linear mixed models

2.1 The general model
The general FLMM is given by

Yi(t) = w(t, x;) + 2 Ut) + Ei(¢) +&i(2), i=1,...,n, (2.1)

where Y;(¢) is the square-integrable functional response observed at arguments ¢ in
7, a closed interval in R, and # is the number of curves. (¢, x;) is a fixed main effect
surface dependent on a vector of known covariates x; of length p. To account for
the functional nature of the Y;(¢), the random effects of an LMM are replaced by a
vector-valued random process U(#). z; is a known covariate vector of length g. E;(¢) is
a curve-specific deviation in the form of a smooth residual curve. We assume that there
is a white noise measurement error denoted by &;() with variance o2 that captures
random uncorrelated variation within each curve. Note that if needed, the error
variance may also vary across t, o(t). We further assume that U(¢), E;(¢) and &;(t), i =
1, ..., n are zero-mean, square-integrable, mutually uncorrelated random processes,
which assures model identification. Therefore, each of the g components of U(t) has
an auto-covariance operator KYi(t,#'),j =1, ..., g, and cross-covariance operators
KYit(¢, t'), j,k =1,...,q, some of which might be zero for uncorrelated functional
random effects. E;(¢) has an auto-covariance operator Kf(¢, t') = Cov [E;(t), E;(¢)]. In
the following, mean, auto-covariances and thus also the eigenfunctions are assumed
to be smooth in ¢. For any given ¢, model (2.1) with our assumptions corresponds to
an LMM with general mean u(x;).

w(t, x;) is an additive function of ¢ and x;. For example, it can be constant in
t, u(t, x;) = n(x;), or additive in ¢ and x;, w(t, x;) = w1(t) + wa(x;). Another special
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case is when all x;1, ..., xj in x; act as index-varying coefﬁc1ents, w(t, x;) = folz)
filt)xa +...+ fp(t)x,p, w1th unknown smooth functions fo(-), ..., f5(:)

2.2 Special case: The FLMM for a crossed design

For our application in speech production research (Section 4), we use an FLMM with
a crossed design structure to account for correlation between measurements of the
same speaker and between measurements of the same target word.

Yin(t) = wu(t, xj) + Bi(t) + Ci(t) + Ejp(2) + e (2), (2.2)
with i =1, ..., (number of speakers), j =1,...,] (number of target words) and
h =1, ..., H;j (number of repetitions). Here, Yjy,(¢) 1s the hth index curve for speaker

i and target word j observed at time ¢. B;(¢) and C;(t) are fRIs for the speakers and tar-
get words, respectively. Curve-specific deviations are accommodated by the smooth
residual term Ej,(¢), which also captures interactions between speakers and target
words. Based on substantive considerations and the limited sample size, we decided
not to include an interaction effect separately. &;,(¢) is additional white noise measure-

ment error with variance 6. We denote the auto-covariance operators by KB(z, t') =
Cov [B;(t), Bi(t')], K¢(t, ') = Cov [C,(t), C,-(t’)] and KE(¢,¢') = Cov [E,-fh(t), E,-,-h(t’)],
i=1....Lj=1,....],h=1,....H;.

2.3 Irregularly and sparsely sampled functional data

Let us now assume that for our general model (2.1), we have observed 7 curves on
observation points {t;1, ..., t;p,} € T,i = 1, ..., n. The number and the location of the
observation points are allowed to differ from curve to curve. In the extreme, only one
point may be observed for a curve. Moreover, the observation points of a curve do
not have to be equally spaced. We denote realizations of the functional response Y;(t)
at point t;; by y;;,,j =1, ..., D;. Accordingly, we denote realizations of the response

in model (2.2) by yjp, Wlth t € {tipts---» tihpy, -

3 Estimation

We base our estimation on FPCA, which provides the dimension reduction so
important for functional data and allows an explicit decomposition of the variability.
Compared to other basis approaches, for example, using splines, FPCA has the
advantage that the eigenbases are optimal in the sense of giving the best approxima-
tion for a given number of basis functions, and thus typically small numbers of basis
functions give good approximations. To pool information across observations, which
is particularly important in the case of irregularly or sparsely sampled functional
data, we use smoothing of the auto-covariances of U(t) and E;(¢), cf. Yao et al. (2005)
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for non-correlated sparse functional data. Previous approaches for smoothing the
auto-covariances are restricted to less complex correlation structures or data sampled
on an equal, fine grid. We apply eigen decompositions of the auto-covariances based
on Mercer’s theorem (Mercer, 1909). The eigenfunctions, also known as FPCs,
describe the main modes of variation of processes U(t) and E;(¢), and the eigenvalues
quantify the amount of variability explained by the corresponding FPCs. The
eigenfunction weights, or FPC weights, give insight into the individual structure of
each grouping level and can be used in further analyses, for example, classification.
The four main steps of our estimation procedure are outlined as follows:

Step 1 We estimate the mean w(t, x;) using penalized splines based on a working
independence assumption.

Step 2 We use a smooth method of moments estimator based on the centred curves
to estimate the auto-covariances of the functional random effects.

Step 3 We conduct an eigen decomposition of each estimated auto-covariance
matrix evaluated on a pre-specified, fine grid. Using the Karhunen-
Loéve (KL) expansion (Loéve, 1945; Karhunen, 1947), we represent the
functional random effects in truncated bases of eigenfunctions.

Step 4 We propose two ways of predicting the random basis weights.

Step 1, Step 3 and the first option for Step 4 are analogous to the estimation proposed
in Di et al. (2009), Greven et al. (2010) and Shou et al. (2015) for functional data
sampled on an equal, fine grid and in Di et al. (2014) for a simpler model. Step 2
is new and leads to a new combination with the FAMM approach of Scheipl et al.
(2015) in the second option for Step 4. For simplicity, we focus in the remainder of
this section, where we describe the four steps in detail, on model (2.2).

3.1 Step 1: Estimation of the mean function

We estimate the mean u(t, x;3,) based on the working independence assumption
Y (£) = w(t, xj) + € (2), (3.1)

with independent and identically distributed (i.i.d.) Gaussian random Variables
8,'7;,( ). Model (3.1) is an additive model with additive mean pu(z, x;,) = fo(z)
Zk:l fe(t)xjpe. We represent the unknown, smooth functions fi(-) using B- sphnes,
and control the trade-off between goodness of fit and smoothness by adding a differ-
ence penalty (so-called P-splines; Eilers and Marx, 1996). Using the penalized splines
approximation of model (3.1) allows us to represent the model as a scalar LMM,
which has the advantage that the smoothing parameter can be estimated as a vari-
ance component ratio using restricted maximum likelihood (REML; Patterson and
Thompson, 1971; cf. Ruppert et al., 2003, sec. 4.9). We centre the data using the
estimated mean (¢, x;;,) and obtain ¥;, := ;5 — iL(2, xj5). For more general mean
models than varying coefficient models, see Wood et al. (2015).
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3.2 Step 2: Estimation of the auto-covariances

We estimate the auto-covariances using a smooth method of moments estimator.
Whereas for data sampled on an equal, fine grid, estimation can be done point-wise,
this is not possible for irregularly or sparsely sampled data, which makes the
estimation of the auto-covariances more challenging and requires a new approach.
We exploit the fact that for centred data, the expectation of the cross products
corresponds to the auto-covariance, which can be decomposed as follows:

E[?,-,-h(t)Y,,;,,( )] Cov [Y (t),i/,-/lvh,(t')] (3.2)
= KB(t,1)8;7 + K(t, )8 + [KE(2, ¥) + 0784 ] 88 Sy

with 8, equal to one if x = x” and zero otherwise. We propose to see (3.2) as an
additive, bivariate varying coefficient model, in which the auto-covariances are the
unknown smooth bivariate functions to be estimated, while &;z, 8, 8;78;8,, and
8ii8jSpiy 81 represent the covariates. Under a working assumption of independence
and homoscedastic variance of the cross products, we can use each empirical product
YintYiiwe for which at least i =7 or j = to obtain smooth estimates of K®(z,¢'),
KC(t,t') and KE(t,t'), and an estimate of the error variance o2. The total number
of products ¥ji,:yijpr used for the estimation of the auto-covariances is of order

O(®*(1/I +1/])), with © being the total number of observation points.

We use bivariate tensor product P-splines (see, e.g., Wood, 2006, sec. 4.1.8) for
the estimation of the auto-covariances, where low rank margmal bases for each tt
are combined in order to obtain smooth functions of the two covariates. Let ® denote
the Kronecker product. Then, given the appropriate ordering of the parameter vec-
tor, the part of the design matrix corresponding to KX(t,¢'), X € {B, C, E}, is given by
the respective indicator matrix multiplied entry-wise by (MF ® 1)) - (Ljx ® M}),
where MX and M\ denote the corresponding marginal spline design matrices of rank

FX for covariate t and ¢/, and Tpx = (1,...,1)" of length FX. A smoothness penalty
is introduced in order to avoid over-fitting. To account for the natural symmetry of
the auto-covariances, we choose an isotropic penalty with a penalty matrix of the
form S,y = S; ® Sy, where S; and S, represent the respective marginal penalty matri-
ces for t and #'. For reasons of model complexity and computational feasibility, we
use marginal B-spline bases combined with marginal difference penalties. In principle,
other bases or smoothing techniques are possible, which also applies to the estimation
of the mean in Step 1. We take advantage of the mixed model representation of model
(3.2) for the estimation of the tensor product basis coefficients and the smoothing pa-
rameter using REML. During the estimation, strength is borrowed across all curves.
This can be extremely advantageous for sparse functional data when some curves only
have very few measurements, and smoothing of curves would be infeasible. In prac-
tice, negative estimated values of o2 are set to zero for the final estimate. Symmetry of
the auto-covariances is ensured through the model apart from numerical inaccuracies.
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For the practical implementation of Step 1 and Step 2, we build on existing soft-
ware and use R-function (R Development Core Team, 2014) bam, implemented in the
R-package mgcv (Wood, 2011) which is especially designed for large data sets. Avoid-
ing the construction of the complete design matrix leads to a low memory footprint,
and the possibility of parallelization gives a considerable speed-up in computation
time. For further details, see Wood et al. (2015).

3.3 Step 3: Eigen decompositions of estimated auto-covariances

Based on Mercer’s Theorem, the eigen decompositions of the auto-covariances are

Z (#), X € {B, C, E},
k=1

where, V¥ > vX > ... > 0 are the respective eigenvalues, k € N. The corresponding

eigenfunctions {¢3, k € N}, X € {B, C, E}, form an orthonormal basis in the Hilbert

space L*[7] with respect to the L?-scalar product (f, g) = [ f(¢)g(t) d ¢. In practice, the
smooth auto-covariances are evaluated on an equally spaced dense grid {#1,...,tp}
of pre-specified length D. The resulting matrices are in the following denoted as
K = [Kx(td, td/)]dd , X € {B, C, E}. We conduct an eigen decomposition of
each estimated auto- covarlance matrix yielding estimated eigenvectors and eigen-
values. Rescaling is necessary to ensure that the approximated eigenfunctions are
orthonormal with respect to the L?-scalar product. Negative estimated eigenvalues
are trimmed to zero to guarantee positive semi-definiteness.

Truncation of the FPCs: While in theory, there is an infinite number of eigen-
functions, dimension reduction achieved by the selection of the number of FPCs
for each random process is necessary in practice. This truncation has a theoretical
justification and can be seen as a form of penalization (see, e.g., Di et al., 2009; Peng
and Paul, 2009). Among the multiple proposals in the literature (see for an overview
Greven et al., 2010), we base our choice on the proportion of variance explained.
This allows us to quantify the contribution of the random processes to the variation
in the observed data. It is based on the variance decomposition of the response

—/Var[Yl,h( )]dt=2vf+2v,§+2v£+azlﬂ.

k=1 k=1 k=1

The sums Y ;2 , v¥, X € {B, C, E}, quantify the relative importance of each of the
three random processes. We choose principal components of decreasing importance
until a pre-specified level of explained variation is reached.

Approximation of the functional random processes: Based on the truncation,
we use KL expansions to obtain parsimonious basis representations for the random
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Pprocesses
NE N¢
1)~ ) EpdR(t), Gl = ) Erdp(t), Ep(t) Z%k
k=1 k=1

Note that in the case of irregularly or sparsely sampled data, the observation points ¢
also depend on 7, j and b, which we omit throughout this article for better readability.
For the same reason, we do not emphasize that the truncation lags and eigenfunctions

are estimated. By construction, the basis weights Si, SI. and Sybk are uncorrelated

random variables with zero mean and variance v?, keN, X e{B,C,E}.

For prediction of the FPC weights, we first linearly interpolate the chosen eigen-
functions such that they are available on the original observation points. Due to
the smoothness of all model components, this leads to a small error which could be
further decreased, if desirable, by further increasing the number of grid points D.

See Online Appendlx B for further details, including the rescaling of the FPCs, and
Online Appendix A for the derivation of the variance decomposition.

3.4 Step 4: Prediction of the basis weights

The basis weights for a centred random process X;(t) are often represented as the
scalar product of X;(¢) and the respective FPC. Estimation is more complicated for
dependent functional data contaminated with additional measurement error as the
weights belonging to the different basis expansions cannot be separated, and ignoring
the measurement error leads to biased predictions. Moreover, numerical integration
would not work (well) for irregularly or sparsely sampled data.

These considerations motivate our two proposals for the prediction of the basis
weights. The first is straightforward and computationally very efficient. It is almost a
by-product of the FPC estimation, taking only a few seconds for our large phonetics
data. It generalizes the conditional expectations introduced by Yao et al. (2005).
The second involves higher computational costs but has the advantage that the
mean is re-estimated in the same framework, allowing for approximate statistical
inference, for example, for the construction of point-wise CBs conditional on the
FPCA. Depending on the sample size of the data and the main question of interest,
one or the other may be preferred. Further details for both, such as concrete matrix
forms, can be found in Online Appendix A.

Prediction of the basis weights as EBLUPs: Using the truncated KL expansions of
the random processes, we can approximate model (2.2) by

NB NC¢ NF
Yin(t) & ult, xjp) + ) ERGR() + D ELdi (¢ +ngk+wm (3.3)
k=1 k=1
for the discrete observation points ¢ € {£j1, ..., Zjup,,}. The resulting model (3.3) is

a scalar LMM in which the random effects correspond to the basis weights (Di et al.,
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2009). The basis weights are directly predicted as EBLUPs without fitting model (3.3),
plugging in the previously estimated components, as derived in the following. Note
that without normality assumption, the predictors remain best linear predictors.
Let Y denote the stacked centred response vector of length ®. Let LX € {I, ], n}
and NX e {NB, N¢, N} denote the levels of the grouping variable and the trunca-

a

tion lag for process X, X € {B, C, E}, respectively. We define & = (&BT, £C7, §ET) ,
T

with £X = (’g‘f L )L(XT> being the stacked vector of the basis weights of length

LXNX. Thus, & is a vector of length 91 := IN® + JNC + nNE. & is the joint © x N
design matrix of the form & = [&B|<i>c|<i>E], where <i>B, & and &" are the respec-

tive design matrices containing the rescaled FPC estimates evaluated on the original

observation points. G denotes the estimated covariance matrix of &. It is a diago-
nal matrix with elements corresponding to the estimated eigenvalues of the random
processes.

The EBLUP for the basis weights in model (2.2) in the usual form (see Online

Appendix A) requires the inversion of the estimated covariance matrix of Y, which
is of dimension ® x ®. This can be computationally demanding for large numbers
of observation points. Furthermore, when 6% & 0, the covariance becomes singular.
Transformations with the Woodbury formula yield the more favourable form

P= (G 16'0) &7, (3.4)

for which the inversion is simplified to that of an 91 x 9t matrix which has full rank

when either 62 is positive or when &' & has full rank. In practice, when neither of
these requirements is met, the Moore-Penrose generalized inverse is used. Note that
when 6% = 0, the EBLUP simplifies to the least-squares estimator.

This computationally efficient way of predicting & can be used when the focus is
not on inference for covariate effects or when the data are large and the computa-
tional resources are limited. One drawback is, however, that the mean is estimated
using a working independence assumption. This may not be statistically efficient
and does not directly provide valid statistical inference. This motivates our second
proposal.

Prediction of the basis weights using FAMMSs: The second option uses the fact
that model (3.3) together with the distribution of the basis weights implied by the
KL expansion falls into the general framework of a FAMM (Scheipl et al., 2015)
using suitable marginal bases and penalties. We combine our FPC estimation with
the FAMM idea, and write model (3.3) using estimated eigenfunctions and -values as

p
Y = Z <\I;/§ ® ]l;—k> . \I!’fOk + Z (‘I’;( ® ]ll—l\—p() : (]IZX ® ‘I’f{)‘;'x + &, (3.5)
k=0 Xe{B,C,E}
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with & ~ MO, O’ZIQ). Y is the stacked uncentred response vector of length ©, and
the mean is re-estimated with W* denoting an inflated vector of length © of covariate
values. W¥ of dimension ® x F* comprises the evaluations of F* spline basis functions
on the D time points #;,. 8% is a coefficient vector of length F*. For the functional
random effects, \Iléf denotes an inflated ® x LX matrix of grouping indicators.

The ® x NX matrix WX comprises the evaluations of the NX respective estimated
eigenfunctions on the original observation points. Adding penalties of the form

£X T (Inx ® PX) & with P} = diag (37, ..., f);fzx)_l corresponds to the distributional
assumption ‘g‘f ~ N(O, diag (Ul e NX)), I=1,...L%, X € (B, C, E}, implied by

the KL expansions under Gaussianity. This set-up using linear combinations of
the above tensor product bases with an appropriate penalty falls naturally into the
framework of a FAMM, and was in fact discussed in Scheipl et al. (2015) without,
however, providing an approach to the estimation of the eigenfunctions and -values
needed in WX and PX. Model (3.5) is a scalar additive LMM, which allows to take
advantage of established methods for estimation and for statistical inference (for
more details, see Scheipl et al., 2015). Re-estimation of the mean in one framework
with the basis weights, particularly allows us to construct point-wise CBs for the
mean and for covariate effects. Note that the inference is conditional on the estimated
FPCA, that is, it accounts neither for the uncertainty in the estimated eigenfunctions
and -values nor for the truncation, which may lead to an underestimation of the
variability. (Compare, however, the good coverage in our simulations in Section 5.2).
In practice, we use function pffr that Scheipl et al. (2015) provide in the R-package
refundDevel (Crainiceanu et al., 2014). A constraint on the functional random effects
assures that they are centred. In "addition to the parsimonious basis of eigenfunctions,
this approach has the advantage of not necessitating the estimation of any smoothing
parameters for the random processes, as the variances of the random weights have
already been estimated and the smoothing parameter can be set to one. These two
features lead to a drastic decrease in computational cost compared to spline-based
prediction of the random processes, as is shown in our simulations in Section 5.
The estimation quality can be further improved, if desirable, by applying the four
estimation steps iteratively. Several possibilities are described in Online Appendix B,
where further details on the estimation and implementation can also be found.

4 Application to the speech production research data

4.1 Background and scientific questions

In linguistics, the term assimilation refers to the common phenomenon whereby a
consonant becomes phonetically more like an adjacent, usually following consonant.
Assimilation commonly occurs in English phrases such as ‘Paris show’ in which the
word-final /s/-sound is, in fluent speech, pronounced very similar to the following,
word-initial /sh/-sound (Pouplier et al., 2011). Assimilation patterns are conditioned
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by a complex interaction of perceptual, articulatory and language-specific factors,
and are therefore a central research topic in the speech sciences. In order to investigate
assimilation in German, Pouplier et al. (2014) obtained audio recordings of [ =9
speakers reading the same | = 16 target words, each five times. Due to the recording
errors, for some combinations, only four repetitions are included in the data, that is,
H;; € {4, 5}. The authors concentrated on variation in assimilation patterns for the
consonants /s/, /sh/ as a function of their order (/s#sh/ versus /sh#s/, where # denotes
a word boundary), syllable stress and vowel context. Target words consisted of bisyl-
labic noun-noun compounds. In half of the target words, consonant /s/ is followed by
word-initial /sh/, such as in the word ‘Callas-Schimmel’. The other half contains the
sequence /shi#s/, for example, ‘Gulasch-Symbol’. In the following, we will refer to the
syllables containing the consonants of interest as final and initial target syllables (and
correspondingly to final and initial target consonants). The time interval in which the
consonants of interest appear in the utterance was cut out manually from the audio
recording for each repetition and the resulting time-varying acoustic signal was
summarized in a functional index over time, varying between +1 and —1. Reference
patterns for both the consonants were used to construct the index such that it ranges
for both orders from +1 for sounds close to the reference for the first consonant of
the sequence to —1 for sounds close to the reference for the second consonant of
the sequence (for more details, see Pouplier et al. (2011) and Online Appendix C for
data pre-processing). The resulting index curves are displayed in Figure 1.

Curves for order /s#sh/ Curves for order /shi#s/
» CallasSchimmel |- » S GulaschSimpel 5
KuerbisSchalmei GarmischSalat
L KolossGillette i
e GebissSchalmei e
GebissSchale
= =
8 o | 8 o |
S o S o
] s
> x
(<5 ()
2, 2.,
T T
GouacheSymbol
GemischSalat
GemischSalbe
@ & o P
00 02 04 06 08 10 00 02 04 06 08 10
normalized time (t) normalized time (t)

Figure 1 Index curves of the consonant assimilation data over time. Left [right]: Curves of order /s#sh/
[/sh#s/]. Positive values approaching +1 indicate a reference /s/ [/sh/] acoustic pattern, while negative
values approaching —1 indicate a reference /sh/ [/s/] acoustic pattern.

A special focus lies on the asymmetry arising from the order of the consonants.
We investigate under which conditions (order, syllable stress, vowel context) the
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two consonants assimilate, and whether assimilation is symmetric with respect
to the orders /s#sh/and /sh#s/. A common approach is to extract curve values at
pre-defined points on the time axis (e.g., 25%, 50%, 75%) which are subsequently
used in multivariate methods (e.g., Pouplier et al., 2011). Such analyses fail to
capture the continuous dynamic change characteristic of speech signals. Applying
our fda-based method allows us to take into consideration the temporal dynamics
and to account for the complex correlation structure in the data which arises from the
repeated measurements of speakers and of target words. Moreover, we can quantify
the effect of covariates and interactions and obtain a variance decomposition.

All utterances were recorded with the same sampling rate (32 768 Hz) and then
standardized to a [0,1] interval as the speaking rate, and hence the target consonant
duration, differs across experiments. After standardization, measurements are un-
equally spaced for different curves. In some data settings, registration can be used
to account for variation in time. For this application, however, registration cannot
replace the standardization of the time interval as different transition speeds between
the two consonants are part of the research question of interest and thus a change
relative to the length of the time interval is of interest. Registration would remove the
main source of information on the assimilation process and flat curves, arising from
(near) complete assimilation, would render registration problematic.

4.2 A model for the consonant assimilation data

In order to account for the repeated measurements of speakers and target words, we
fit an FLMM with crossed fRIs, model (2.2), to the consonant assimilation data. The
number of measurements per curve D;j, ranges from 22 to 57 with a median of 34.
During estimation, we truncate the numbers of FPCs using a pre-specified proportion
of explained variance of 0.95. The equidistant grid on which the auto-covariances
are evaluated is of length D = 100. We use cubic B-splines with third order difference
penalties for the estimation of the mean effects and as marginal basis functions for the
estimation of the auto-covariances. We predict the FPC weights using both options.
As CBs for the covariate and interaction effects are of interest here, the focus lies on
the second approach using the FAMM framework.

Covariate effects: We consider four dummy-coded covariates: consonant order
(order), stress of the final (stress1) and of the initial (stress2) target syllable, which
can be strong or weak and vowel context (vowel), which refers to the vowels immedi-
ately adjacent to the target consonants and is either of the form ia or ai, for example,
Callas-Schimmel. Moreover, we include the interactions of the consonant order with
each of the other three covariates. All covariates enter the mean as varying coefficients,

w(t, xj) = fo(t) + fi(2) - order; + fo(t) - stressl; + f3(t) - stress2; (4.1)
+ fa(t) - vowel, + f5(t) - order; - stresslj + f4(t) - order; - stress2;
+ f7(t) - order; - vowel;.
Thus, in total, eight covariates characterize the 16 target words.
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4.3 Application results

Our estimation yields two and three FPCs for the fRI for speakers and for the smooth
error, respectively. No FPC is chosen for the fRI for target words. It is likely that
the eight covariate and interaction effects describe the target words sufficiently, as
confirmed by obtaining one FPC for the fRI for target words in the model without
covariate effects. Most variability (67.29%) is explained by the three chosen FPCs for
the curve-specific deviation which also captures interactions between speakers and
target words. The two chosen FPCs for speakers explain 20.45% of the estimated
variability.

The left panel of Figure 2 shows the effect of covariate order (f;), which has the
largest effect on the index trajectories. Covariate order is dummy-coded with reference
category /s#sh/. Thus, the mean curves of target words with order /sh#s/ are pulled
towards the ideal reference /sh/ during the first consonant and differ slightly from
the ideal /s/ during the second consonant compared to order /s#sh/. We conclude that
there is an asymmetry of consonant assimilation with respect to the consonant order
and that /s/ is more affected by the assimilation than /sh/. These results are consistent
with the results for English obtained by Pouplier et al. (2011).

Moreover, we find that assimilation is stronger for target words with unstressed
final syllables (f»), especially for order /s#sh/ (fs). Changing the stress of the initial
syllable only has an effect for order /shi#s/ (fs). This means that in both final and
initial position, stress effects are evident during /s/ but not during /sh/. For order
/s#sh/, the vowel context mainly affects the transition between the two consonants
(f4). The first consonant is closer to the ideal reference value in the ai compared to
the ia condition, yet the second consonant is pulled away from its reference value.

explains 13.16%

f(1)
0.0

00 02 04 06 08 10 00 02 04 068 08 10
normalized time (t) normalized time (t)

Figure 2 Left: Effect of covariate order (red solid line) with point-wise confidence bands (dashed lines).
Right: Mean function (solid line) and the effect of adding (4) and subtracting (—) a suitable multiple (2,/3%)
of the first FPC for speakers.
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Changing the vowel context does not affect order /sh#s/ beyond edge-effects (f7). This
shows that word-final /s/, but not /sh/ is affected by the vowel condition.

In the right panel of Figure 2, we show the effect of adding (+) and subtracting (—) a
suitable multiple of the first FPC for speakers to the overall mean (solid line) obtained
by setting all covariates to 0.5. The interpretation is straightforward: speakers with a
negative weight for the first FPC distinguish better between the two consonants. The
estimates for the basis weights can be used for further analysis. Further application
results including plots for all mean effects can be found in Online Appendix C.

5 Simulations

5.1 Simulation designs

We conduct extensive simulation studies to investigate the performance of our
method. The data generating processes can be divided into two main groups: (a) data
that mimics the irregularly sampled consonant assimilation data and (b) sparsely
sampled data with a higher number of observations per grouping level but fewer
observations per curve. For all settings, we generate 200 data sets.
Application-based simulation scenarios: We consider two application-based
scenarios, one with an fRI for speakers and covariate mean effects (fRI scenario)
and another with crossed fRIs for speakers and for target words, respectively, but
no covariate mean effects (crossed-fRIs scenario). We generate the data based on the
estimates of model (2.2) for our consonant assimilation data with pu(z, x;3,) corre-
sponding to Section (4.1) and to a simple smooth intercept u(¢), respectively. The data
analysis yields two FPCs for the fRI for the speakers and three FPCs for the smooth
error term. For the crossed-fRIs scenario, we additionally obtain one FPC for the fRI
for the target words. The FPC weights and the measurement errors are independently
drawn from normal distributions with zero mean and with the respective estimated
variances. To assess the effect of model misspecification, we conduct additional sim-
ulations of the crossed-fRI scenario, using FPC weights drawn from a mixture of two
normals, with equal probability from either N(y/vy/2, vi/2) or N(—/v/2, vp/2) as
in Yao et al. (2005). We obtain very similar results to the corresponding results for
normal weights, and the curves can be reconstructed equally well. More details on the
data generation can be found in Sections 4.3, 5.2 and in Online Appendices C and D.
Sparse simulation scenario: In order to investigate the estimation performance in
the sparse case, we additionally generate data with crossed fRIs as in model (2.2)
consisting of observations that are sparsely sampled on [0,1]. The number of
observation points per curve is drawn from the discrete uniform distribution
U{3,10}. For B;(t) and C;(¢), we choose I =] =40 replications each with each
combination observed H;; =3 times. We use two FPCs each to generate the
underlying process. Eigenvalues are generated as v =2/k,k=1,2, X € {B, C, E}.
We choose normalized Legendre polynomials adapted to the interval [0, 1] as FPCs
for B;(t) and C;(t). For the smooth error Ej,(¢), we choose a basis of sine and cosine
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functions. See Online Appendix D for details. The FPC weights and the measurement
errors are independently drawn from the normal distributions N0, v;) and N0, o2),
respectively. No covariates are included in the mean function wu(#) = sin(¢) + ¢t. We
set the error variance to o> = 0.05.

For all scenarios, we centre the FPC weights such that the weights of each grouping
variable also empirically have zero mean. Moreover, we decorrelate the basis weights
belonging to one grouping variable and assure that the empirical variance corresponds
to the respective eigenvalue. This is done to obtain data that meet the requirements of
our model. It allows us to separate the effect of unfavourably drawn weights and of
the estimation performance. This adjustment gains importance for small sample sizes
I, ] and z and also when the true eigenvalues are high. Note that in practice, we do not
have centred and decorrelated FPC weights, and thus estimates for small sample sizes
will reflect the distribution in the sample rather than that in the population. To assess
the impact of this procedure, we also compare our results to those of simulations
using the original (non-centred and non-decorrelated) FPC weights, which can be
found in Online Appendix D.

We fix the number of FPCs in order to separate the effect of the truncation from
the estimation quality. We use five marginal basis functions each for the estimation
of the auto-covariances and eight basis functions for the estimation of the mean.
We predict the FPC weights as EBLUPs for all scenarios, and additionally compare
with the computationally more expensive FAMM prediction (FPC-FAMM) for the
fRI scenario with covariates.

We compare our FPC-based approach to a spline basis representation of the func-
tional random effects (using eight basis functions) within the FAMM framework of
Scheipl et al. (2015) (spline-FAMM). To the best of our knowledge, the work of
Scheipl et al. (2015) is the only competitor to our approach as all other methods are
either restricted to equal, fine grids or do not allow for a crossed structure. Due to
the high computational costs of Scheipl et al. (2015), we restrict our comparison to
the fRI scenario, in which we can compare estimation quality and CBs coverage for
covariate effects.

5.2 Simulation results

We focus our discussion on the FPC-based results for the application-based scenario
with crossed fRIs and compare with the other settings and estimation approaches.
We use root relative mean squared errors (rrMSE) as measures of goodness of fit

: . 2 : :
which are of the general form \/ (true-estimated)”/true. For the simulations of the

fRI scenario with covariate effects, we additionally evaluate the average point-wise
and the simultaneous coverage of the point-wise CBs. The complete results for all
simulations as well as rrMSE definitions for scalars, vectors and functions are given
in Online Appendix D.

Simulation results for the crossed-fRIs scenario: Figure 3 shows the true and
estimated FPCs of the two fRIs as well as of the smooth error term. As expected, the
better the FPCs are estimated, the more independent levels are there for the corre-
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sponding grouping variable which can enter the estimation of the auto-covariance.
The FPCs of the smooth error term (707 levels) are estimated best, followed by the
FPC of the fRI for target words (16 levels). Most variability in the estimates is found
for the FPCs of the fRI for speakers due to the small number of speakers (I = 9), but
the main features of the curves are still recovered relatively well. We obtain similar
results for the fRI scenario. The number and complexity of the FPCs also play an
important role for the estimation quality, as can be seen from the results for the
sparse scenario, where the first FPC of B;(¢) (40 levels) is estimated better than the
first FPC of Ejj(z) (4800 levels). The latter has a more complex form, difficult to

capture with five basis functions.

Table 1 lists the rrMSEs averaged over 200 simulation runs for all model compo-
nents. It shows that the mean function is reconstructed very well, which is also the case
in the sparse scenario. The covariate effects for the fRI scenario are discussed below.
The auto-covariances and their eigenvalues have similar low average rrMSEs for both
application-based scenarios. For the sparse scenario, the eigenvalues are estimated
even better with average rrMSEs between 0.02 and 0.05. For the auto-covariances
for the sparse scenario, we obtain average rrMSEs of 0.06 for each of the crossed fRIs
and an average of 0.14 for the smooth error which is due to the complex eigenfunc-
tions mentioned above. The error variance has similar low average rrMSEs for the
two application-based scenarios. For the sparse scenario, the average rrMSE is higher,
which is due to the estimation inaccuracies in the auto-covariance of the smooth error.

Table 1 rrMSEs averaged over 200 simulation runs for all model components by random process. Rows
1-3: Number of grouping levels LX and average rrMSE for B;(t), C;(t) and Ej;(t) and their covariance
decompositions. Last row: Average rrMSEs for Yju(t), u(t, x;), and o2.

P T T
B 9 0.26 0.15 0.18 0.15 0.34 0.18 0.35 0.22
C 16 0.32 0.05 0.31 0.12 0.13
E 707 0.06 0.02 0.03 0.02 0.04 0.08 0.03 0.17 0.19 0.26 0.19
Y 0.10 0.02 0.09

The prediction quality of the basis weights clearly depends on the estimation qual-
ity of the FPCs and of the eigenvalues, as well as of the error variance, as evident from
equation (3.4). Also important for the prediction of the basis weights is the number
of curves with the given weight entering the prediction. Thus, the basis weights of
C;(t) are better predicted than those of Ej;(t). As expected, basis weights of FPCs that
explain more variability are predicted better. Similar results can be found for the fRI
and for the sparse scenario.

For all scenarios, we obtain good results for the functional random effects as well
as for the functional response. The rrMSEs for the functional response are lowest,
which is due to the fact that even if the FPC bases are not perfectly estimated, they can
still serve as a good empirical basis. Thus, the data can be reconstructed very well.

We found considerably more outliers of the relative errors for the sparse scenario
than for the other two scenarios, which is most probably due to an unfavourable
distribution of the few observation points across the curves in a few data sets.
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Overall, we can conclude that all components are estimated well and especially
for the functional response we obtain very small rrMSEs across all simulations.

Comparison of the different estimation results for the fRI scenario: We find that
the functional random processes and the functional response are estimated equally
well for the two options of the basis weights prediction. The functional response is
again estimated very well with an average rrMSE of 0.09 for both EBLUP and FPC-
FAMM estimation. The spline-FAMM results are considerably worse for the random
processes (almost three (smooth error) and almost seven (fRI) times higher average

rrMSEs), which results from the fact that the constraint ZIL:Xl X)(t)=0,X € {B,E},is
not fulfilled and parts are shifted between terms. The functional response is recovered
reasonably well, but has a more than 1.5 times higher average rrMSE than the EBLUP
and FPC-FAMM estimates. Note that due to high computation times (see below), we
only consider 100 simulation runs for the spline-FAMM simulation.

For the covariate effects, the FPC-FAMM estimation gives better results than
the estimation under an independence assumption (between 1 and 1.28 times lower
average rrMSEs) and considerably better results than the spline-FAMM estimation
(between 2.8 and six times lower average rrMSEs). In spite of ignoring the variability
of the estimated FPCA, the average point-wise coverage of the point-wise CBs is
very good for most effects for FPC-FAMM (between 91.18% and 95.54%) and
the simultaneous coverage is reasonable. Both are considerably better than the
spline-FAMM alternative (point-wise coverage between 35.12% and 41.67%). The
coverage for the latter would most probably improve by increasing the number of
spline basis functions which is, however, limited by the high computation time.

Computation times: Our simulations show that the FPC-based approach has clear
advantages in terms of computational complexity, despite the computational cost of
the auto-covariance estimation. We compare times for one simulation run of the fRI
scenario for each estimation option obtained under the same conditions (without
parallelization in function bam that would speed up the estimation). The study was
run on a 64 Bit Linux platform with 660 Gb of RAM memory. The FPC-based
approach with the basis weights predicted as EBLUPs took 1.6 hours, and predicting
the basis weights using FPC-FAMM took slightly more than six hours longer. The
spline-FAMM took by far the longest with a duration of 10 days which is due to the
two extra smoothing parameters each for the fRI and the smooth error which have to
be estimated. Moreover, using FPCs reduces the number of necessary basis functions.
To assess the feasibility to apply our approach in practice on a desktop PC, we also
ran our real data analysis on a 64 Bit Windows PC with 64 Gb of RAM. Without
parallelization, the FPC-based estimation and EBLUP computation took two hours
and the FPC-FAMM an additional 20 hours.

6 Discussion and outlook

We propose an FPC-based estimation approach for FLMMs that is particularly suited
to irregularly or sparsely sampled observations. To pool information, we smooth both
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the mean and auto-covariance functions. We propose and compare two options for
the prediction of the FPC weights and obtain conditional point-wise CBs for the
functional covariate effects. Our simulations show that our method reliably recovers
the features of interest. The parsimonious representation of the functional random
effects in bases of eigenfunctions outperforms the spline-based alternative of Scheipl
et al. (2015) with which we compare, both in terms of error rates and coverage as
well as in terms of computation time. To the best of our knowledge, there is no
other competitor to our approach as all other methods are either restricted to regular
grid data or simpler correlation structures. In our application to speech production
data, we show that our method allows conclusions to be drawn about the asymmetry
of consonant assimilation to an extent which is not achievable using conventional
methods with data reduction.

Building on existing methods for our estimation approach allows us to take
advantage of robust, flexible algorithms with a high functionality. The computational
efficiency, however, could potentially be improved by exploiting the special struc-
ture of our model. In future work, we plan to improve the estimation of the
auto-covariances in order to better account for their symmetry and positive
semi-definiteness and for the fact that the cross products in model (3.2) are not
homoscedastic. Moreover, it would be interesting to compare the different options
for iterative estimation in detail.

The construction of point-wise and simultaneous CBs that account for the
variability of the estimated FPC decomposition is beyond the scope of this work, but
would be of interest. For uncorrelated functions, Goldsmith et al. (2013) propose
bootstrap-based corrected CBs for densely and sparsely sampled functional data.
However, it remains an open question how to extend their non-parametric bootstrap
to our correlated curves, and computational cost is another issue.
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