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The Kepler problem from a differential geometry point of view

Thomas S. Ligon

Abstract

This paper examines the Kepler 2-body problem as an example of the symplectic differential
geometric formulation of Hamiltonian mechanics. First, the foundations of symplectic
differential geometry and the conventional analysis of the Kepler problem are presented. Then,
the SO(4) and SO(3,1) symmetry of the problem and the conserved angular momentum and
Runge-Lenz vectors are discussed. The symmetry is also discussed globally, and the integral
curves of the Runge-Lenz vector are found.

Physics Faculty of the University of Munich, Theory Department, Chair of Prof. Dr. Fritz Bopp
June, 1973
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Fx flow of X (L.16.)
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Lxf Lie derivative (L.17.)
(X1 Lie bracket of vector fields (1.24.)
Qk(E) exterior k-forms on £ (1.28)
A alternation mapping (1.29)
A exterior product (1.31.)
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Lg left-invariant vector fields of ¢ (11.17.)
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Introduction

A physical theory has three aspects: 1) a physical scope, 2) a mathematical model, and 3) an
interpretation. Here, we consider the scope of non-relativistic motion of material bodies that
have been idealized as mass points. As a mathematical model, we choose Hamiltonian
dynamical systems on symplectic manifolds (definition: (I1.25.)). The (parametrized) integral
curves of a Hamiltonian vector field are interpreted as trajectories of the mass points. In
traditional text books of mechanics, the name “symplectic manifold” is not mentioned, but its
essential properties are already there. As such, classical mechanics can take advantage of a
relatively mature mathematical theory, with capabilities that exceed those of the traditional
formulation of mechanics.

In recent decades, symplectic differential geometry has gained interest among
mathematicians, as discussed in Abraham [1]. Among other things, the global and qualitative
properties of dynamic systems are investigated.

However, this abstract mathematical theory is also interesting for physicists, namely in
connection with quantum mechanics. The concept of quantization refers to the transition from
a classical mechanical description of a problem to a quantum mechanical description. That can
be formulated mathematically: Quantization is a functor from the category of symplectic
manifolds to the category of complex Hilbert spaces. For the mechanics of mass points, there
are rudiments of such a construction (cf. e.g. Kostant [9]), but they don’t yet suffice for a
comparison with experiments or with conventional methods of quantum mechanics. A loftier
goal would be to extend the scope to infinite-dimensional symplectic manifolds, and thus to
continuum mechanics and quantum field theory (cf. Segal [14]). Then we could hope to achieve
arigorous formulation of quantum field theory. This way, it might even be possible to solve
some of the current problems in quantum field theory.

This quantization technique is also being investigated by mathematicians, since it supplies
information about possible unitary representations of Lie groups [9].

Since symplectic differential geometry, which is relevant for physicists, is however an
abstract mathematical theory that is not well known, it appeared advisable to calculate a non-
trivial, concrete example. This was the motivation for this thesis, in which the Kepler 2-body
problem is presented in the language of symplectic differential geometry. Because of that, this
thesis contains especially many examples, including some that are not necessary or customary.

One reason for the recent interest in the Kepler problem is the investigation of “non-
symmetry” groups. Those are groups that contain the symmetry groups of the problem as
subgroups, and contain additional elements that do not leave H invariant. This is a situation
that is similar to hadron physics: a “broken” symmetry. We attempt to understand this
circumstance better on the basis of a known problem (the Kepler problem). Consequently, we
want to describe the dynamics on the basis of group theory. One problem is the fact that, in
general, it is possible to specify infinitely many groups that break symmetry. Non-symmetry
groups were described in terms of quantum mechanics by Bacry [2] and Bander and Itzykson
[3] and in terms of classical mechanics by Gyorgyi [6]. (Gyorgyi also provides a detailed
bibliography.)

In this thesis, we first present the mathematical foundation according to Abraham [1]. This
is followed by a discussion of the role played by a symplectic form in mechanics. After the
question of the reduction to fewer dimensions has been addressed, the Kepler problem is
formulated. The conventional analysis of the problem (conservation of momentum and angular
momentum, relative coordinates) is presented following Abraham [1].

The Kepler problem has a pronounced symmetry that has recently been discussed in
analogy to hadron physics [6]. This symmetry makes it possible to find the trajectories without
solving any differential equations (chapter VII.). Using Poisson brackets, it is easy to find a Lie
algebra for this symmetry. But that doesn’t tell us if there is also a global action of a group that
is associated with the Lie algebra. The answer to this question consists of finding the integral
curves of the corresponding vector fields. In chapter VIIL, this problem is reduced to a single
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differential equation and the existence of the integral curves is proven. For non-zero energy, the
integral curves are also determined in chapter [X. As far as | know, this is something new.

It is well known that conservation of angular momentum is a consequence of rotational
symmetry. But which transformation symmetry leads to conservation of the Runge-Lenz vector
(aphelion)? This question is also answered by the determination of the integral curves in
chapter IX,, but the transformation is not so straightforward as a rotation.

At this point [ would like to thank Manfred Schaaf for suggesting this topic, and for many
useful discussions.



Vi

The Kepler problem from a differential geometry point of view



The Kepler problem from a differential geometry point of view 1

|. Differential Geometry

In this chapter, some of the most important concepts and theorems of modern differential
geometry are presented according to Abraham [1], especially: manifold, tangent bundle, vector
field, integral curve, Lie derivative, and exterior derivative. Above all, it is intended to delineate
and establish the nomenclature needed to the subsequent material. We don’t include proofs.
The presentation is also very fragmentary, for example we don’t prove that the tangent bundle
of a manifold is a manifold itself. We refer to the text books by Abraham [1] and Dieudonné [4].
We would also like to point out that all concepts in this chapter can be defined on the basis
of the differentiable structure alone. We will encounter a special structure in the next chapter.

(11.) Definition. [1;(3.1.)] Let S be a set.

(1) Alocal chart is a bijection ¢ between a subset U of S and an open subspace of R", where n
may depend on @. Anatlas on S is a family A of local charts{(U;, @;)|i € I} such that

1)S =u{Ujlie N},

2) For two charts (Uy, ¢;) and (U;, ;) withU; N U; = @, p(U; N U;) is open inR™ and ¢; =
©;°p; 1|(pi(Ul- n UJ) and (pj_il are bijective and C* (i.e. differentiable arbitrarily often).

(if) Two atlases A, and A, are equivalent iff A, N A, is an atlas. A differentiable structure S on
S is an equivalence class of atlases on S. Ag :=U {A|A € §} is themaximal atlas ofS, and a local
chart(U, @) € Ags is called an admissible local chart.

(iii) A differentiable manifold is a pair (S, S) where S is a set and S is a differentiable structure
ons.

(1.2.) Definition. [1;(3.2.)] Let M be a differentiable manifold. A subsetA c M isopen iff for each
a € A there is an admissible local chart (U, ¢) such thata € U andU c A.

A differentiable manifold M is ann-manifold iff for everya € M there exists an admissible local
chart (U, @) such thata € U and ¢ (U) c R"™. (The dimension is constant.)

In this thesis, amanifold will always mean a Hausdorff differentiable manifold with a countable
base of the topology.

Remark. The customary definitions of manifold are not completely uniform. It is often required
for S to be a topological space and for the local charts to be homeomorphisms. Here, the
topology is induced by the local charts, but the result is the same. What we refer to as a
maximal atlas or a differentiable structure is often called atlas.

(1.3.) Definition. [1;(3.5.)] A submanifold of a manifold M is a subset B € M such that for every
b € B there is an admissible local chart (U, ¢) with the submanifold property, ie.

@:U > RFxR! and (U N B) = (U) n (R¥x{0}).

(I.4.) Definition. [1;(3.8)] Amap f:M — N where M and N are manifolds is called a
diffeomorphism ifff is bijective and f and f~* are of class C®. D(M) denotes the group of
diffeomorphisms.

Remark. A diffeomorphism is an isomorphism in the category of differentiable manifolds.

(L5.) Definition. [1,(5.1.)] Let M be a manifold andm € M. Acurve atmisaC* (ie. continuously
differentiable at least once) map c:1 - M from an open intervall € R withQ € [ andc(0) = m.
Let c1 and c2 be curves at m and (U, @) an admissible chart withm € U. Thenc, andc, are
tangent at m with respect to ¢ iff ¢ o c;and ¢ o c, are tangent at 0.

Remark. (I.5.) defines an equivalence relation which is independent of ¢ within a differentiable
structure. Then [c],, denotes an equivalence class of curves at m with representative c
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(1.6.) Definition. [1;(5.3.)] Let M be a manifold andm € M. Thetangent space of Mat m is the set
of equivalence classes of curves at m. T,,(M): = {[c];n|c is a curve at m}. T(M) = Upmem T (M)
is thetangent bundle of M.

The mappingty:TM — M defined by ty([c],,) = m is the tangent bundle projection of M.
Remark. T,,,(M) is a vector space in a canonical fashion.

(L.7.) Definition. [1;(5.6.)] Letf: M — N be aC* mapping. ThenTf:TM — TN defined by
Tf([clm) = [f ° clfm) is thetangent of £.

(1.8,) Theorem. [1;(5.7.)] Letf:M — N and g: N - K be C' mappings of manifolds. Then
(i)gef:M - K isCandT(gof)=TgoTf,

(ii) Ifh: M - M is the identity map, thenTh: TM — TM is the identity map;,

(iii) Iff: M — N is a diffeomorphism, thenTf:TM — TN is a bijection and (Tf)™1 = T(f~1).
Remark. In other words, T is a functor. We call it the tangent functor.

(1.9.) Definition. [1;(6.14.)] Let M be a manifold andty:TM — M its tangent bundle. The vector
bundle of tensors of contravariant order rand covariant order s is

TT (M) = TT(TM) =Upey TS (Tr) =Umen L™ <T;l, wir Ty Ty o, T ]Ri)

r times s times
where L'*S is the vector space of multilinear mappings, and Ty, is the dual vector space ofT,,.
TL (M) is called the cotangent bundle and is denoted by ty;: T*M — M.

Remark. For every point m € M, the customary tensor algebra is formed over T,,(M) and then
the union is taken over M.

(1.10.) Definition. [1;(6.15.)] Atensor field of type (}) on a manifold M is aC® section of T{ (M).
T (M) denotes the set of all C* sections, together with their structure as a real vector space.
F (M) denotes the set of C* mappings from M in R together with its ring structure:

(f + 9)(x) = f(x) + g(x), (c/H(x) = c(f (X)), (fg)(x) = f(x)g(x). Avector field on M is an
element of X' (M) = T3 (M). Acovector field, ordifferential 1-form, is an element of X*(M) =
7’ (M)

Remark. A vector field assigns a vector in T,,,(M) to every pointm € M.

(1.11.) Definition. [1,(6.16.)] For a diffeomorphism ¢: M — N andt € T;" (M) define
@'t = (Te)iotop™™

(1.12) Proposition. [1,(6.17.)]

@ "t € T (N);

@) o*: T (M) - T (N) is a linear isomorphism.

Remark. The isomorphism ¢: M — N induces an isomorphism ¢*: 7" (M) = T (N) in a
canonical way.

(1.13) Definition. [1;(7.1.)] Let M be a manifold andX € X (M). Anintegral curve of Xat m is a
curvec:l » M at m such thatX(c(l)) =c'(1) =Tc(A, 1) foreachA € 1. The image ofan
integral curve of X is thetrajectory of X.

Remark. ¢'(1) depends on the parametrization of the curve, not only on the trajectory. If A
denotes time, then ¢’(A) is the velocity.

(1.14.) Definition. [1;(7.10.)] Let M be a manifold, X a vector field on M, andDy c MXR the set of
(m, A) € MXR such that there is an integral curvec:1 - M of Xat m with A € I. The vector field
iscomplete iffDy = MXR.
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Remark. In other words, a vector field is complete if every integral curve can be continued on all
of R.

(1.15.) Proposition. [1;(7.12.)] Let M be a manifold and X € X (M). Then

(D) Dx > Mx{0};

(i) Dy is open in M XR;

(iii) there is a unique mapping Fy: Dy — M such that the mappingt — Fy(m,t) is an integral
curve of X at m for allm € M.

(116.) Definition. [1;(7.13.)] Let M be a manifold and X € X (M). Then the mapping Fx (1.15.) is
called the integral of X, and the curvet ~ Fx(m,t) is called the maximal integral curve of X at m.
If X is complete, Fy is called the flow of X.

Remark. “Flow” was called “Fluf3” in the original German language thesis, and is called “coulée”
in Dieudonné [4;(18.2.2.)]. For an appropriate choice of £ the mappingm = Fx(m,t) is a
diffeomorphism, and if Xis complete, {F(—, t)|t € R} is a one-parameter group of
diffeomorphisms. Since c: R — M|t + Fx(m, t) is an integral curve of Xat m, we regain Xvia
differentiation, due to (1.13.). This defines a bijection between complete vector fields and one-
parameter groups of diffeomorphisms.

(I.17)) Definition. [1;(8.1.)] Let f € F(M) so that
Tf:TM - TR = RXR

and

Tof = Tf|TmuM € L(T,,M,{f (m)}xR).

We can then definedf:M — T*M by df (m) = P, o T,,,f where Pz denotes the projection onto
the second factor. We calldf the differential off.

ForX € X(M), defineLyf:M = R byLyf(m) = df(m)(X(m)). We callLyf the Lie derivative of
f withrespectto X.

Remark. If {x;};c;is a system of coordinate functions of Mat m, then {dx;};¢; is a basis of T,;, (M).
(1.18) Proposition. [1,(8.2.)]

@ df € X*(M);

(i) Ly f € F(M).

(1.19,) Proposition. [1,(8.4.)]

(1) Lx: F(M) - F(M) is aderivation on the algebraF (M), i.e. Ly isR linear and forf, g €
F(M),Lx(fg) = (Lx(f)g + fLx(9),

(if) If c is a constant function, thenLyc = 0.

(1.20.) Proposition. [1;(8.5.)] For f,g € F(M) we haved(fg) = (df)g + f(dg) and, ifcis
constant, dc=0.

(1.21.) Proposition. [1;(8.9.)] The collection of operators Ly on F (M) forms a real vector space
and an F (M) module, with (fLy)(g) = f(Lxg) and is isomorphic to X (M) as a real vector space
and as an F (M) module. In particular, Ly = 0 iffX = 0, andLsx = fLy.

(1.22.) Theorem. [1,(8.10.)] The collection of all (R linear) derivations on F (M) forms a real
vector space isomorphic to X (M) as a real vector space. In particular, for each derivation @
there is a unique X € X (M) such that® = Ly.

Remark. Because of this isomorphism, it is possible, and for some applications advantageous, to
define the tangent space as the set of derivations of F(M). (Cf. e.g. Helgason, Differential
Geometry and Symmetric Spaces, Academic Press, New York (1962)).
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(1.23.) Proposition. [1;(8.11.)] LetX,Y € X' (M) be vector fields on M. Then
[Ly,Ly] = Ly o Ly — Ly o Ly is an (R linear) derivation on F (M).

(1.24) Definition. [1;(8.12.)] [X,Y] = LxY is the unique vector field such that Ljx y) = [Lx, Ly].
We call LyY the Lie derivative of Y'with respectto X, or the Lie bracket of Xand Y.

(1.25.) Proposition. [1;(8.13.)] The real vector space X (M), together with the composition [X,Y],
forms alie algebra. Thatis,

(1) [—,—) is R bilinear;
(i) [X,X] =0 forallX € X(M);
G [x,1v, 21 + [v, (2, X1] + [2,[X, Y]] = 0 forallX,Y,Z € X (M).

(1.26.) Definition. [1;(8.18.)] IfX € X (M) we letLy be the unique difterential operator onT (M)
such that it coincides withLx (1.17.) onF (M). and with Ly (1.24.) on X(M). Ly onT (M) is called
the Lie derivative with respect to X.

(1.27) Theorem. [1,;(8.21.)] Ift € T(M), Lyt = 0 ifft is constant along the integral curves of X.

(1.28,) Definition. [1;(9.1.)] Let E be a finite dimensional real vector space. Let*(E) = LX(E, R)
be the vector space of skew symmetric k multilinear maps of E in R. An element of Q% (E) is
called an exterior k-form on E.

(1.29.) Definition. [1;(9.2.)] The alternation mapping A: T (E) - T (E) is defined as
1
At = EZO’ES]( & ot

where Sy is the group of permutations of k and & is the sign of o.

(1.30.) Proposition. [1;(9.3.)] A is a linear mapping of T? (E) onto 0*(E), A|Q*(E) is the identity,
andAo-A=A.

(1.31,) Definition. [1;(9.4.)] Ifa € T? (E) and B € TP (E) define a\B € Q**'(E) by a\B =
A(a®pB). Fora € TY(E) = R, we puta\B = BAa = af.

(1.32.) Proposition. [1;(9.5.)] Fora € T (E) and B € T?(E), andy € T (E), we have
@) al\B = Aa\B = a\AB,

(ii) \ is bilinear;

Gii) ahB = (—1)* BAa;

(iv) aN(BAy) = (a\B)Ay.

(1.33.) Definition. [1;(9.18.)] We define

w*(M) = 0*(TM) =Upey 25 (T, M), 0¥ = 0*(ty): 0¥ (M) > M defined by

wk (1)) (x) = m forx € 0%(T,,M), and

w®(M) is the set of sections of ', Q°(M) = F(M), and Q*(M) = T,°(M) = X*(M).

Remark. This way, we have defined the exterior algebra at every T,,, M and then taken the union
over all m, just as we did for the tensor algebra.

(1.34.) Definition. [1,(10.3.)] Let Q(M) denote the direct sum of 2% (M), k = 0,1, ...,n, together
with its structure as an (infinite dimensional) real vector space and with the multiplication \
extended component-wise to Q(M). 2(M) is called the algebra of exterior differential forms on
M. Elements of 2% (M) are calledk forms. In particular, elements ofQ*(M) = X*(M) are called
1 forms.

(1.35.) Theorem. [1;(10.5.)] Let M be a manifold. Then there is a unique family of mappings
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d*(U): 0k (U) -» %1 (U),k = 0,1, ...,n, and U is open in M, which we denote by d, called the
exterior derivative on M, such that

(1) d is a \ antiderivation. 7hatis, d is R linear and

fora € Q¥(U), B € DY), d(aNB) = daNB + (—=1)kaNdp;
) Iff e F(U),df =df (117);

(iii)d od = 0 (thatisd**(U) o d*(U) = 0);

(v)d(a|V) = (da)|V forV c U openin M.

(1.36,) Definition, [1;(10.12.)] Let M be a manifold, X € X (M), andw € N***(M). Then we
defineiyw € T,2(M) byiyw(Xq, ..., X)) = (k + D (X, Xy, ..., Xp). Ifw € 0°(M), we putiyw = 0.
We calliyw theinner product of X and w.

(1.37.) Theorem. [1;(10.13.)] We haveiy: 0%¥(M) - 0¥~*(M),k = 1,...,n and, for
a € NF(M), B € 0' (M), f € 0°(M),

(1) iy Is a /\ antiderivation,
(D isxa = fixa,

(i) ixdf = Lxf;

(iv) Lya = ixda + diya,
(v)Lgxa = fLya + df Nixa.

(1.38,) Definition. [1,(10.16.)] We call v € 2%(M) closed iffdw = 0 and exact iff there is an

a € Q¥ "Y(M) such thatw = da.

(1.39.) Definition. [1;(9.14.)] Let E and F be vector spaces, ¢ € L(E,F), anda € T{ (F). Then we
define p,a € L%(E) by p.a(ey, ..., ex) = a(p(ey), ..., p(e,)).

(1.40.) Definition. [1;(10.7.)] Let M and N be manifolds, F: M — N aC® mapping, and

w € N*(N). Then we define F.w: M — w*(M) by F,w(m) = (T,,F), o w o F(m). (1.39.).

Remark. This way, a C* mapping of manifolds induces a corresponding mapping in the vector
bundle of exterior forms.
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lI. Symplectic Differential Geometry

In this chapter, we define the concept of a symplectic form, as well as the concepts that depend
on it. We define: symplectic manifold, Poisson bracket, Hamiltonian vector field, Hamiltonian
function, and Hamiltonian action of a Lie group on a manifold.

(IL.1.) Definition. [1;(14.1.)] Let M be a manifold and w € Q%(M) nondegenerate (ie.w(m) is a
nondegenerate tensor for allm € M ). Then we define

bX(M) - X*(M)|X = Xt =iy wand # X*(M) - X(M)|a = a?|#= 4"

Remark. b is a vector bundle isomorphism. The situation is similar to a Riemannian metric, but
instead of a symmetric tensor we have an asymmetric tensor.

(L2.) Theorem (Darboux). [1,(14.7.)] Let w be a nondegenerate 2-form on a Zn-manifold M.
Thendw = 0 iff there is a chart (U,p) at eachm € M such that p(m) = 0 and with
o) = (x, (W), ..., x, (W), y1 (W), ..., ¥y (W) we have w|U = Y7, dx; A dy;.

(IL.3.) Definition. [1,;(14.8.)] A symplectic form (or a symplectic structure ) on a manifold M is a
nondegenerate, closed 2-form w on M. Asymplectic manifold (M,w) is a manifold M together
with a symplectic form w on M. The charts characterized by the theorem of Darboux are called
symplectic charts and the component functions x;, y; are called canonical coordinates.

(IL.4.) Definition. [1,(14.9.)] Let (M,w) and (N,p) be symplectic manifolds. AC® mappingF:M —
N is called symplectic iffF.p = w (1.40.).

(L5.) Theorem. [1;(14.14.)] Let V be a manifold and M=T*V. Considerty,:M — V and

Tty:TM > TV. Forv €V leta, € Mbe points in M and w, points in TM in the fiber over a,,.
Define6,,: Ty M - R|wg, = a, o Tty (wy, )and 6y: ay, = 6,,. Then6y € X*(M) and w, = —d6,
is a symplectic form on M. —8, and w,, are called canonical forms on M.

Remark. Every manifold has a Riemannian metric, but not necessarily a symplectic form. The

theorem above shows that the cotangent bundle 7#/of every manifold "has a symplectic form
in a canonical way.

(L6.) Theorem. [1;(14.16.)] Let M be a manifold and : M — M a diffeomorphism. Then
@":T*M = T*M is a symplectic diffeomorphism onT*M with respect to the canonical
symplectic structure.

(IL.7.) Definition. [1;(14.23.)] Let (M,w) be a symplectic manifold andf,g € F(M). Then we
define X; € (df )¥ € X (M), and the Poisson bracket of fand g is the function

{f.g}= —innga).

(I1.8.) Proposition. [1,(14.24.)] Let (M,w) be a symplectic manifold andf,g € F(M). Then
{f,9} = —ixix, 0 = —Lx g = +Ly f.

(L9.) Corollary. [1;(14.25.)] For f, € F(M), the map g - {fy, g} is a derivation on F (M).
(I1.10.) Proposition. [1;(14.26.)] Let (M,w) be a symplectic manifold and f,g € F(M). Then
dif,g} = (df,dg} = ~[df* dg”]"

(IL.11.) Proposition. [1;(14.27.)] The real vector space F (M), together with the composition
{—,—}of(l7)is a Lie algebra.

(IL12,) Corollary. [1;(14.28)] X(r gy = —| X, X,].

(II.13.) Proposition. [1;(14.30.)] Let (M,w) and (N,p) be symplectic manifolds andF:M — N a
diffeomorphism. Then F is symplectic iff F preserves the Poisson bracket of all functions, i.e. for

allf,g € FM),F*{f,g} = {F*f,F*g}.
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Remark. A symplectic diffeomorphism is an isomorphism in the category of symplectic
differentiable manifolds. We recognize the concept of a canonical transformation. (Cf.
Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass. (1950), section 8-3 and 8-4.) A
transformation is called canonical when it preserves the form of the Hamilton equations, and
that is true exactly when the transformation preserves all Poisson brackets. Investigation of the
mathematical model of classical mechanics (in Hamiltonian formalism) is thus synonymous
with investigation of the category of symplectic manifolds.

(Il.14.) Proposition. [1;(14.31.)] Let (M,w) be a 2n-manifold and f,g € F(M). Let (U,p) be a
symplectic chart (cf (11.3.)). Then

—yn a_fa_g_a_fa_g)
{f' 'g} - i=1 (axi ayl- ay,- ax,- :

(IL.15.) Definition. [1,;(16.14.)] Let (M,w) be a symplectic manifold andX € X (M). Then X is

called globally Hamiltonian /ffthere is an H € F (M) such thatX = Xy = (dH) ?. His called a
Hamiltonian function for X.

(I.16.) Proposition. [1;(16.12.)] Let X be a locally Hamiltonian vector field on a symplectic
manifold (M,w) with a local Hamiltonian function H € F(M). Let (V,p),V < U, be a symplectic
chart withp(V) c R*" and p(v) = (q,(v), ..., ¢ (¥), p1(V), ..., po(¥)). Then a curve c(t) on Vis
an integral curve of X iff

da; ) —
d_qt (c(t)) = a_:ji (c(t)) fori=1,..,n,

and
dp; _ 0H .
T (c(t)) =~ (c(t)) fori=1,..,n.

(I.17.) Definition. [1,;(22.1.&22.3.)] A Lie group G is a manifold together with a group operation,
GXG — G|(g1,92) » 9192, which is a smooth mapping of manifolds. The identity element of G is
denoted by e.

Aleft translation by g € G is the mappingLy: G - G|g' — gg'. A vector field X on G is calledleft
invariant /ffLgX = X forall g € G.

The set of left invariant vector fields on G forms a Lie subalgebra of X (G), called the Lie algebra
of left invariant vector fields on G and denoted by L. The tangent space of G in the pointe T,G,
is isomorphic to G as a vector space. T,G, together with the Lie bracket induced by this
isomorphism, is called the Lie algebra of G and is denoted by £ ;.

(I.18,) Proposition. [1;(22.4.)] Let G be a Lie group and X € L;. Then X is complete.

(I.19.) Definition. [1,(22.5.)] Let Fx be the flow ofX € L;. ThenX v exp(tX) = Fx(e,t) is
called the exponential mapping.

(1.20.) Definition. [1,;(22.8.)] Let G be a Lie group and M a manifold. Anaction of Gon M is a
group homomorphism ®: G - D(M)such that the mapping

evgp:GXM - M|(g,m) » @(g)(m)

isC®.

(L21.) Definition. [1;(22.9.)] Let ®: G — D(M) be an action of G on M, x € €; andX € L; with
X(e) = x. LetFy:GXR — G be the flow of X. Then

Hy: MXR - M|(m,t) — CP(FX(e, t))(m) = ®(exp(tx))(m)

isaflowon M. LetYy € X (M) be the (unique) vector field such that Hy is the flow ofYy. Then
the Lie algebra homomorphism ®':£; — X (M)|x » Y, is called the infinitesimal generator of®
andY, is called the infinitesimal transformation of x.
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(L22) Definition. [1;(22.12.)] (i) Let @ be an action of a Lie group on a symplectic manifold M.
Then @ is called Hamiltonian iffd’ (€;) € X3 (M) = {X € X(M)|X is Hamiltonian}, ie. iff every
infinitesimal transformation of @ is globally Hamiltonian.

(ii) LetH € F(M) and ® a Hamiltonian action of G such that H is invariant under ®(g) for all
g € G. Then G is called a symmetry group of H under the action @.

(1.23.) Theorem. [1,(22.13.)] Let ®: G = D(M) be a Hamiltonian action on a symplectic
manifold M andH € F(M). Then H is invariant under @ iffLyH = 0 for all infinitesimal
transformationsY € ®'(€;). In this case, ifK € F(M) is a Hamiltonian for Y, orY = Xy =
(dk)?, then K is a constant of the motion (i.e. K is constant along the integral curves of Xy ).

(I1.24.) Definition. A dynamical system is a pair (M,X), where M is a differentiable manifold, and
X € X (M) is a vector field on M.

(IL.25,) Definition. A Hamiltonian dynamical system is a triple (M,w,H), where (M,w) is a
symplectic manifold and H € F(M). Since Xy = (dH)* € X (M), every Hamiltonian dynamical
system is a dynamical system.
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lll. The Significance of the Symplectic Form

In the last chapter, we saw that a symplectic form allows us to define a mapping

{—, -} FM)XF(M) - F(M) that creates a Lie algebra structure on F (M) in such a way that
the corresponding derivation {—, f}: F(M) — F(M) is the Lie derivative Ly, on F(M). This
mapping was called the Poisson bracket. Now, in this chapter, we want to consider the opposite
direction. We begin with another definition of the Poisson bracket, which was proposed by
Dirac [5] and discussed by Pauli [11] and Jost [7]. The chapter ends with a conjecture about the
reasons for the importance of the symplectic form in classical mechanics.

(111.1.) Definition. [7] A Poisson bracket is a mapping{—, —}: F(M)XF (M) - F(M) with the
following properties: for f, f1, f,g,h € F(M),c € R:

@{f.9}=—-g.f1€ FM),

D)1+ f2. 9} =19} +{f2 9}

O f1f2 9} = filfz, 93 + {f1, 9312

(@{f,c}=0,

@{f.{g. 13} +{g.{h 3} + {h{f, g}} = 0 Jacobi identity),

(D) the tensor field A € T2 (M) defined by A(df,dg) = {f, g} is nowhere degenerate.

Remark. The consistency of 4 in (f) depends on the other properties. The use of the same name
of Poisson bracket is justified by the following theorem.

(I.2.) Theorem. [7]
(1) A Poisson bracket (11l.1.) generates a closed symplectic form w.
(ii) The Poisson bracket defined by w (I1.7.) and by (I1l.1.) coincide.

Proof. (i) For the full proof, cf. Jost [7]. Among other things, it shows that the Jacobi identity is
fulfilled iff dw = 0, i.e. wis closed. Since A is nowhere degenerate, it induces a vector bundle
isomorphism #: X*(M) — X (M), and therefore a nowhere degenerate tensor field w € T2(M)
by means of w(df* dg*) = {f, g} that is antisymmetric because of (a).

(i) We have w(df* dg*) = w(Xr, X,) = iy, (= Xg) = iy, iy 0 = —ig iy o (cf. (1.1), (136.),
and (1.7.)). m

(1I1.3.) Theorem. A mapping {—, —}: F(M)XF (M) - F(M) is a Poisson bracket iff

(i) The vector space F (M) and the operation{—, —} form a real Lie algebra,

(ii){—, g} is a derivation on the associated algebraF (M), and

(iii) The tensor field A € Tj? (M) defined by A(df,dg) = {f, g} is nowhere degenerate.

Proof. “(I11.1.)=(111.3.)(i)” In (c), we take f; € R. Then we have {f, f,, g} = fi{f2, 9} + {f1, 9} />
but because of (d) and (a) we have {f;, g} = 0, and therefore {f; f>, 9} = fi{f2, g}. Asaresult,
and because of (b), {—, —} is R linear in the first argument. Because of (a), {—, —} is also R
bilinear. In (a), weset f = g. Then{f, f} = —{f,f}, andso{f,f} = Oforall f € F(M). (e)is
the Jacobi identity. As a result, the Poisson bracket is a Lie algebra.

“(II1.1.)=(I11.3.)(ii)” As above, {—, g} is R bilinear, and because of (c) it is a derivation on F(M).
“(111.1.) =(111.3.)(iii)” This is just (f).

“(I11.3.)=(I11.1.) (1)” Because of R bilinearity, (b) holds. Also, because of the Lie algebra
property,

0={+g9.f+9}=U+9.f}+{f+9.9 = f1+{g.f3+{f.9}+{9.9} ={9.f} +
{f.9} = {f, g9} = —{g,f} so (a) holds as well. (c) holds because {—, g} is a derivation on F(M).
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Because of R bilinearity, {f, >, g} = fi{f>, g} for f; € R. Then, because of the derivation
property (¢) {f1,g9} = 0 for f; € R, so (d) holds as well. Since {—, —} is a Lie algebra, (e) also
holds, and (f) is nothing other than (iii). m

So we see that the symplectic form is equivalent to the Poisson bracket. In addition, it is
known that classical mechanics can be formulated “coordinate free” via Poisson brackets
(“equations of motion in Poisson bracket form”). We have also seen that the Poisson bracket is
nothing other than a Lie algebra structure and a derivation on the algebra of functions F(M).
The real-valued functions F (M) also have an important physical meaning: they are exactly the
observables in mechanics. In terms of the symplectic form, and in particular via the mapping
(d-)"FM) - X(M)|f » (df)f = Xy, the observables generate local diffeomorphisms (and
sometimes global groups of diffeomorphisms). So we recognize the symplectic form (and the
Poisson bracket) as a possibility to represent classical mechanics “coordinate free”, whereas the
meaning of the observables as generators of transformations is emphasized.



The Kepler problem from a differential geometry point of view 11

V. Reduction to a Smaller Dimension

One way to simplify a dynamical system is to reduce its dimension. The first theorem of this
chapter provides conditions that make it possible to find a submanifold to which the system can
be reduced without any loss of information. The second theorem provides a condition under
which the reduction leads to a Hamiltonian dynamic system.

If the functions in theorem (IV.1.) generate a symmetry group (I11.22.), then the theorem is
an example for using a symmetry to simplify the problem. When the reduced system is
Hamiltonian as well, it can be interpreted as “equivalent” to another mechanical problem.

(V.1.) Theorem. [4;(16.8.9.)] Let Y be a differentiable manifold, and (f;),<i<ra finite series of
functions inF(M). LetX ={x € Y|f;(x) =0 forall1 <i <r}. Assume that, foreveryx € X,
the differentials (d, f;)1<i<r are linearly independent covectors inT,(Y)*. Then

(1) X is a closed submanifold of Y, and for every x € X, T,,(X) is in the kernel of every d.. f;.
(ii) We havedim,(X) = dim,(Y) —r.

Remark. This theorem allows us, first without regard for the symplectic form, to reduce the
manifold, if we have functions as described above, and {f;, H} = 0. Because of (1.27.) and (I1.8.),
the trajectories of H are contained in the submanifold. The trajectory is thus contained in the
surface of constant f;, and, in particular, because {H, H} = 0, in the surface of constant energy.

(IV.2.) Theorem. Let (M,w) be a symplectic manifold and N a submanifold of M. Then (N, w|N) is
a symplectic manifold iff w|N is not degenerate.

Proof. Because of (I1.3.), we need to check if ¢| Nis (i) antisymmetrical and (ii) closed. (i) If ¢|NV
were not antisymmetrical, there would be X;, X, € X (N) with w(X;,X3) # —w(X,, X;1). But,
since X(N) ¢ X (M), wwould not be antisymmetrical, which is a contradiction.

(ii) According to Abraham [1;(10.9.)], d is natural with respect to mappings, i.e. fora C*
mapping F: N - M and w € Q%(M), F,w € Q¥(N) (cf.1.40.) and F,(dw) = d(F,w). Fora
submanifold N € M and i: N - M the (C®) inclusion, we have i,(dw) = d(i,w) = (dw)|N =
d(w|N),sodw =0 = d(w|N) =0, i.e. wis closed = w|N is closed. m
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V. The Kepler Problem and First Reduction

In this chapter, we formulate the Kepler problem in the language of symplectic differential
geometry. Then we perform the customary “reduction to an equivalent 1-body problem”, i.e. we
move to relative coordinates.

(V.1.) Technical Lemma. Let M = T*R" with the canonical symplectic structure (IL.5.). Then we
choose q;,p;,i = 1, ...,n as canonical coordinates (Il.3.). Theq;'s are the coordinates of R™,
which exist globally. Since M = T*R™ = R"XR", thep;'s also exist globally. With that, we have

w = Yi=,dq; Adp;.

(i) LetX € X(M) withX: M - TM|(q,p) » (q,p;x,y). Then
X=x-dp—-1y-dq.

(ii) Leta € X*(M) witha = x' -dq +y' - dp. Then

a*:M - TM|(q,p) = (q.p; ¥, —X).

Proof. (i) According to (I1.1.), we have X* = iyw = w(X,-) = ¥ ,(dq; Adp))(X,—) =
Yi=1(dq;®dp; — dp;®dq) (X, —) = Xi~(x;dp; — y;dq;) =x-dp — y - dq.

(ii) That is just (i) in the reverse direction. m

(V.2.) Definition. [1;(32.1.)] Model I for the (2-body) Kepler problem is the system (M, w, u, H*),
with
M =T*W,W = R3xR3\4,4 = {(q,q)|q € R3} with the canonical symplectic form w,
due Ru>0,and
(iii) H* € F(M) defined by
_ Ipll? + Ip’ll? 1
2u 2 llg—4'll
whereq,q' € R3,p,p’ € R3, and||—|| is the Euclidean norm in R3.

H*(q,q',p.p")

Remark. 4is removed from Mso that H* is in F(M). Xy« is not complete for all m € M, since
the integral curve can run through 4 (collision).

(V.3.) Proposition (Conservation of linear momentum). [1,(32.2.)] In Model I, the components of
p + p’ are constants of the motion.

Proof. We consider the group G = (R3, +) with the action @ (11.20.) on W, defined by

®(r)| (q,q9) » (q+1,q9' +1r). disinvariant under @. Since @is a diffeomorphism, the
induced action on M is a symplectic diffeomorphism @* with @*(r) = &(r)*|(q,q',p,p’) »
(q+1,q +r,pp'). Now we consider a generator of the group (0,7y) € ¢; (as aset, £; is T,G,
cf. (I.17.)). The corresponding left invariant vector field on Gis X € L;. X(r) = (r,1(). The
flow of Xis Fyx(t,r) = r +try. The flow on Minduced by @is Hx(t,q,q',p,p") =

(q +tro,q' +try,p,p"). The corresponding vector field (infinitesimal transformation, cf.
(I.21.)) is Yx(q, 9", p, ") = (q.q',p,P', 79,7, 0,0). According to (V.1.) we then have

Y¢ = (=0) - dq + (=0)-dq' + (r¢) - dp + (ro) - dp’ =1 (dp + dp') = d((ro) - (p + P").

This gives us Yy = (d(rg - p + ¢ - p'))*, so that every infinitesimal transformation is
Hamiltonian, and thus according to (I1.22.) @* is Hamiltonian. H is obviously invariant under
®*, and, since ry - p + r( * p' is a Hamiltonian function for Yy, according to (11.23.), 7y - (p + p")
is a constant of the motion. As a result, p + p’ is a constant of the motion. m

(V.4.) Definition.

~._ ua+q

e (coordinates relative to the center of mass)
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q' = q — q' (relative coordinates).

Remark. This gives us

dg =-'-dq + ﬁdq’,
dq’' =dq—dq’,

p = pdq,

p' =dq,
p=(u+1)dq,
p=-11d7,

where p + 1 is the total mass and ﬁ is the reduced mass.

(V.5.) Lemma.
D = p + p’ and is called the momentum relative to the center of mass,
P = ﬁ (p — up") and is called therelative momentum,
=aq+ L"”
=49+ 749,
A 1/
9=9-.79
=t 5.5
P=, P tD,
R -~
p =P P,
Py i O S ) B> 1
2u 2 lg=q'll  2(u+1) =~ 2p/(+1) G

Proof. This is a straightforward calculation. m
Remark. Since p = p + p’ is a constant of the motion, /and

H = H— 5112 _ prii> 1
2(p+1)  2p/(u+1) gl

have the same integral curves with respect to p’ and q'. This leads us to Model II (VI.1.).

Remark. The transition from Model I to Model Il reduces the dimension of the model by 6. This
transition is only partially an example of a reduction due to the three constants of the motion
and theorem (IV.1.). In fact, we have a decoupling: the new Hamilton equations are

< B

9= u+1’
p=0,

<y _ p!
b= Wy
=7 __ ,q,

P =igr

As aresult, § and p are decoupled from g’ and p’. The phase space is
M = M; XM, with M; = R3xXR3, M, = (R3\{0})xR3,H € F(M),H = H; + H, with

_ _lpi?
2(u+1)

1



14 The Kepler problem from a differential geometry point of view

_ iz 1
27 2p/(ur) 1N

Now, H; (resp. H;) is constant on M, (resp. M;). We have thus reduced the dimension by three,
since p = 0. In addition, we have ignored three dimensions (coordinates relative to the center
of mass), since they are trivial (¢ = :—:1). This reduction of the dimension by 6 results in a

Hamiltonian dynamic system (Model II), which we can interpret as the equivalent 1-body
problem.
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VI. Stepwise Reduction

We begin by presenting the second model for the Kepler problem; it will also be used in the
following chapters as a basis. Model Il is equivalent to a 1-body problem and has a 6-
dimensional phase space. Based on certain constants of the motion, the problem will be
reduced stepwise. The rotational symmetry allows a reduction to 4 dimensions. Due to the
conservation of another vector, we can reduce the problem to a 2-dimensional symplectic
manifold, Model IV. In this 2-dimensional manifold, we determine the equation for the
trajectory.

The reduction based on conservation of angular momentum is customary and is instructive,
because it shows how the motion is constrained by the symmetry. In this case, there are three
independent constants of the motion, but the problem is only reduced by two dimensions. The
final reduction, to the 2-dimensional model 1V, is not customary. This reduction, together with
theorem (VI.15.), in which we find the equation for the trajectory, serves as a further example of
a reduction and of the method of differential geometry.

(VIL.1.) Definition. [1,(32.4.)]Model 1l for the Kepler problem is the triple (M,u, H) with
()M =T*U,U = R3\{0},
({ueRu>0,

(i) H € F (M) defined by H(q,p) ="23" ~ .

Remark. 1 now refers to the reduced mass.

(VI.2.) Theorem (Conservation of angular momentum). [1,;(32.5.)] In Model I, the following
quantities are constants of the motion:

(L1, Ly, L3) = (q203 — q3P2, 4301 — q1P3, 1P2 — q2P1)
withq = (q1,92,q3) and p = (p1, 02, P3)-

Proof. We consider the Lie group G = SO(3) of rotations in R3. The point {0} is invariant, and
the action of Gon R3\{0} is the restriction of the above. This induces a symplectic action on
T*(R3\{0}) (cf. (11.6.)), that consists of rotations in q space U and the same rotations in p space.
We consider for the moment the one-parameter subgroup of rotations about the g5 axis, with
action @*. Then we have, explicitly,

®*|(q,p) » (g, cos@ +q,sinb,q, cosO —q, sinb, g3, p; cos B + p, sin B, p, cos O — p; sin b, p3).

The infinitesimal transformation on M is then Y(q, p) = (q,P; 92, —41,0, p2, —p1,0). Then we
have Y" = q1dp, + p2dq, — q2dp; — p1dq, = d(q1P2 — q2P1), SO we have

Y = (d(q1p2 — q2p1))%, so @* is Hamiltonian, with Hamilton function q;p, — q,p; = Ls. The
other components are analogous. m

(V1.3.) Lemma. The three covectors dL, dL, and dLj are linearly independent forL # 0.

Proof.0 = ¢ - dL = (cxq) - dp — (cXp) - dq = cXq and cxXp = 0. Since q # 0, we have three
possibilities:

(Dp=0,cll q=L =0 = collision trajectory.
2)p+#0,clig,cllp=ql p=L=0= collision trajectory.
B)p #0,ck q= c=0 = linearly independent. m

(VI4.) Lemma. Let (L4, L,, L3) be defined as in (VI.2.). Then
@) {Li, Lj} = L, with (i,j, k) a cyclic permutation of (1,2,3),

(i) IfL; and Lj, for i # j, are constants of the motion, then Ly, for i # j,j # k,k # i isalso a
constant of the motion.
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Proof. (i) According to (I11.4.) we have e.g.

n

0L, 0L 0L, 0L
{L1'L2}:Z( L _2__— Z)ZQ1P2—QZP1:L3

= aq; dp; a_piaqi

(i) Because of the Jacobi identity (11.11.), we have {{Ly, L,}, H} + {{L,, H}, L1} + {{H, L.}, L,} = 0.
Since L, and L, are constants of the motion, {L,, H} = {H,L,} = 0, and so

{Ly,H}Y = {{Ly, L}, H} = 0. m

Remark. Starting from the three-dimensional group SO(3), we have identified three constants of
the motion (in contrast to the remark in Abraham [1], pg 191, stating that SO(3) is two-
dimensional.). The fact that the three angular momentum functions are not independent with
respect to the Poisson bracket does not disturb the reduction. According to (IV.1.), it is still
possible to reduce by three dimensions. However, the reduction by three dimensions cannot
lead to a symplectic manifold. (A 2-form on a manifold of uneven dimension would necessarily
be degenerate!) That would lead to a loss of all benefits of a symplectic structure, so it appears
as inappropriate to reduce by three dimensions. We will now see that a reduction by two
dimensions can be useful.

(VI5.) Lemma.q-L=p-L=0.
Proof. We just need to substitute g - L = ¥>_, q;L; = 0, and similarly for p.

Remark. This shows that the trajectories of Hlie within a plane that is perpendicular to L, both
in q space and in p space. Since we have seen in (VI.2.) that a rotation in q space and the same
rotation in p space is a symplectic diffeomorphism, we can assume without loss of generality
that L is oriented in the g3 (resp. p3) direction. This leads us to Model III.

(VI1.6.) Definition. [1,(32.6.)]Model 11l for the Kepler problem is the triple (M,u, H) with
()M = T*(R*\{0}), with the canonical symplectic form w, andL = qp; — q;p1 # 0,
(iueR,u>0,

2
(ifi) H € F(M) defined by H(q,p) = % — ”qi”, where ||- || is the Euclidean norm on R?.

Remark. We can interpret Model III as an equivalent 2-dimensional problem.
In order to make a further reduction possible, we make use of a vector 4, the full meaning
of which will become apparent in chapter VIII.

(VL.7.) Definition. In Model 11, we define

L = q1p2 — q2p1

q 1 )
Ay = ot~ [pi(a p) — qillplP)i = 1,2
(VL8.) Lemma.

M{L,H} = 0,{4, H} = 0.

(if)dA, and d A, are linearly independent almost everywhere.

(iii) dA; = (”Zﬁg - %%) dgy + (T2 + 222 dq, + (222) dp, + (222022 dp,,

da, = (752 +222) dg, + (”‘fw - ”7) dq, + (BEZERY) dp, 4 (224) dp,,

Note. There is a typographical error in the original version, where the sign in the second term
for dA; in (iii) is wrong. We have corrected it here (more details in the supplementary
information).
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Proof. The claims follow directly from the corresponding definitions.
(VL9.) Definition. Ay ‘= A(m),where m € M is the corresponding initial condition.

Remark. Because of (IV.1.), A™1(4,) is a 2-dimensional submanifold of M. We want to see if
A~1(Ap) is also symplectic. Because of (IV.2.), we only need to check if w|A™1(4,) is
degenerate.

(VL10,) Lemma. Let X be a vector field on A~*(Ay) withX|(q,p) » (q,D, %1, %3, X3,%4). Then
X3 = Y31X1 + V32X, and
X4 = Va1X1 + VazXo, with

_ KB (4192 _ Di1D2
V31 =7 ,

[TEE

2 2

Il(—‘h 1

= - T+_)

Va2 = L \jGis ™ zu)

ror =)

L AN TEREP Y
v :g(—qlqz P1P2)
AN TTERP A

Proof. Since X is a vector field on A~1(4y), it is in the kernel of dA4; and dA, (cf. (IV.2.)), i.e.
dA;(X) = dA,(X) = 0. The result follows, after a long calculation, from this and formula (VI1.8.)
(iii). m

(VL11,) Lemma. w|A~1(4,y) = (%) dq, N dq,, so itis nondegenerate forH # 0.

Proof. Let X,Y be vector fields on A1 (4,). Then we have

w(X,Y) = x1Y3 + X2Ya — X3Y1 — X4Y2,

w(X,Y) = x1(y311 + ¥32)2) + X2(Yary1 + Vazy2) — Y1(¥31%1 + ¥32%2) — Ya(Yar X1 + Vazx2)
w(X,Y)=(¥a1 — ¥32) (x2y1 — x1¥2),

wX,Y) = () Geoys = 11y,) =

w|A"1(4g) = (%) dq, Adq,. m

(VL12,) Definition. Model IV for the Kepler problem is the pair (A~1(Ay),H’) with

(i) A~1(Ay) is the symplectic submanifold of M in Model III (VI.6.) defined by (VI.7.) and (VI.9.)
and symplectic form w|A™(Ap).

(iH' € F(A™1(4p)),H' :== H|A™1(Ay) with H defined in (VL6.).

-(ll4]12-1)
2(q141+q242—lqll)’

1 —I|IL 2
Proof. (q14: + 24, — llqll) = = [(q - p)* — llqll?lIpI1?] = 5,

(VIL13) Lemma. H' =

u
A7 — 1= 2L e QaiPen)
u 2||L||1 2(q141+9242-lq1)
(VI.14.) Definition.
o Q1A1+q24;
O = Tqnnan
sin(p — A2A1—q142

lqlllall
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(VI.15.) Theorem.
(LY { =l sing
@Wq= (ullqll) (1—||A|| cosq))’
sy . IIL]|
(D¢ = Lar

@i llqll =

const.
1-||Al| cos ¢”

0H _ +(llAlI2-1)(A,— (A, — H
Proof. 2 = (IAllI*-1) (42 QZ/llqzll) _ _—(42—a/llalD :
9q;  2(q141+q242-1lql)) (q141+q242-lq]l)

. [ILIy 0H —|IL|l (A2—q2/llall)
= Hl=|—)— =
! {Ql: } (#H) 94> ( u ) (q1A1+a242-lqll)’

. — (LIl 6_H: +|IL|| (A1—q4/llqll)
Gz = {az H} = (MH) 94, ( u )(q1A1+quz—IIqII'

- 9191+929 [IL]] —||A[l sin
lq = f2fitazde - (L) ( 2)

lall ullall) \1-llAlcos ¢

. . q1A2—q2A1  (q1A2+q2A1)q ( [[L]] ) , [IL]|
Sin = COS = — = COS = = .
(s @) PP = T laman lallZlIA] ulalz) 3P = P T Ui
allall _ llall _ ~llalllAllsing _ dligll _ +Alld(cos p)
dp @  1-lAlcose  llall  1-lAllcose’

const.

In||q|| = —In(1 — ||A = ||| = —<omst__

llqll (1 —llAllcos ) + const. = llall = 7o

Remark. Theorem (VI.15.) (iii) is an equation for the trajectory of H in q space. The trajectory in
the whole phase space of Model II follows from the definitions of Modell IV and Model III. We
will discuss the trajectories of H and the integral curves of H in more detail in the next chapter,
where they are found using a different method.
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VII. Calculation of the Trajectories of H via a Single Reduction

This chapter is based on Model II (VI.1.). We have already shown that the angular momentum
vector L is a constant of the motion (VI.2.). However, there is another vector, the Runge-Lenz
vector A, that is invariant under the action of A Because of L - M = 0, not all six components of
these two vectors are independent. In fact, the rank of the mapping y¥: M - R®|(q,p) =~ (L,A) is
equal to 5, as can be seen from (IV.1.) and (VII.4.). This means that it is possible to reduce the 6-
dimensional problem to one dimension without solving a differential equation. The trajectories
of H are thus determined by purely algebraic means. One additional step provides the integral
curves of A, i.e. the time dependence.

(VIL1.) Definition. [2,3,6]

(A= A _ pTXL. A is called the Runge-Lenz vector.

llall

s M= [
(ii) ForH # 0: M = 2|H|A'

(VIL2.) Proposition.

A = ai , vilap)-aqilpl?

7

gl n

lal? = 1+ 5Ll
L-A=L-M=0,

—u
IMII? + |IL||* = oH for H <0,

+u
IMI = ILI2 = 2 for H >0,

Proof. The claims follow directly from the corresponding definitions. m

(VIL.3,) Definition.

. _ A ,
(i) 8 = cos™! (llq‘|1|-||A||)’ with

@) q-p=—qll*lpl* — ILI*?,
o qA
(111) q) = nar

_ q(Ix4)

(M) 4L =y ar
. pA
(V) D)= nar’
, __ p(LxA)
(VDPL = \ar

Remark. &is the angle between q and 4 in configuration space. Because of

ILII> = L- L = (gxp) - (gxp) = llqll*lpll* — (q - p)?,

the angle between p and A is determined up to the sign, which is defined by (ii). Because of

. L A LxA
L- A = 0, we have an orthonormal basis: TR ”L”>_<”A”, and becauseofq-L=p-L =0,
L
(LIl

A

LxA
we have q = (0) mar @)

+ (qy)
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(VIL.4.) Theorem.

R
@ llqll = u(1-|1A|| cos 6)’

. _ —|ILlljAll sin 6
()P = aicos oy
IL]|? cos 6
7ii _
(D) 1 = = = G Al cos 0)
||L||2 sin @

(V) 4L = = = alcos 6y

(V)pll = LIl Slne

(vi)py = T (1Al = cos 6).

Proof. The derivation is a direct calculation from the definitions. For example, let’s calculate

lqll.
q.A:||q||_lq.(pr):||q||_1L.(qx,,):||q||_W:cose: 1 __ I
p P 1Al ZiAllal

L%

B e _

ulall

Remark. From the Poisson bracket relationships in (VIL.2.), we can deduce that L; and 4; (resp.
L; and M;) are constants of the motion for H = 0 (resp. for H # 0). With that, we have specified
q and p in (VII1.4.) in terms of the parameter 6, and therefore found a 1-dimensional
submanifold that must contain the trajectory of H, and is thus identical with it. The trajectory is
also equal to (L, A)~1(Lg, Ap) according to (IV.1.). From the trajectory equations in (VIL.4.), we
can see that the trajectories, projected on the configuration space (q space), are ellipses (resp.
parabolas resp. hyperbolas) for H < 0 (resp. H = 0 resp. H > 0). In p space, the trajectories are
circles (resp. arcs) for H < 0 (resp. for H = 0). This also shows us the geometrical meaning of
the Runge-Lenz vector A: A points in the direction of the aphelion and has a length equal to the
numerical excentricity.

In order to determine the integral curves of H, we need to find the correct parametrization,
i.e. we need to express the angle &in terms of the time ¢

The derivation of (VIL.4.) does not depend on the fact that L and 4 are constants. The
formulas for q and p are still correct, when L and A are not constants, for example along the
trajectories of M;, which we will investigate in the next chapter.

(VIL5.) Lemma. Letc: R - M|t - (q,p) be an integral curve of H and 6 defined as in (VIL.3.).
Then

()% = 5 (1= 1|All cos 6)2,

LB de
@t === iareos o

Proof. For g, we have the Hamilton equation:

dq" OH _pi_ dq ae _n [IL]|? d cos @ de -1
- {q"' } - ap" U =0 do dt (H(t)) ( )d9 (1—||A||cos 9) (dt) (IILII) sin6.

%(1—”(:)”5(:905 9) - (1—||_AS||i::1095 0)2 = (HL”Z) ((1 ||_AS||1::10959)2)( ) (llLIl) sing =

ae _
dt ||L||3

(1 — ||A|| cos 8)2.

The other cases are analogous. m
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Remark. (VIL.5.) (ii) can be integrated directly (cf. Ryshik and Gradstein [13], page 105,106), but
we will abstain from that, since the results are a bit unmanageable. Instead, we will define
another angle.

(VIL.6.) Definition.

siny = J1-]lA|?2sin @
T 1-lAllcos 8 ’

COS U = —||A|| +cos 6
T 1-||A||cos 8"

Remark. u is called the excentric anomaly and is the angle between A4 and the intersection of the
ordinate of g with a circle drawn around the ellipse:

0.5

-1 0.5 0 0.5 1

Figure 1. [1,Figure 33.2] S is the center, R and T are the foci, 8 is the angle between q and A in
configuration space (VIL.3.), and u is called the excentric anomaly (V/1.6.).

(VIL.7.) Lemma.
All+cosu
cos § = JAltcost ’
1+||A]| cosu
, V1-|lA]]? sinu
sin§ = AP sinu ’
1+||A|| cosu

(1-n41*)

1-llAllcosu = 1+||4]| cos u’
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Proof. This follows directly from (VIL.6.). m

(VIL8.) Theorem. Letc: R — M|t — (q,p) be an integral curve of H and u defined as in (VIL6.)
3

withu = 0 fort = 0. Thent = —%l (u + ||A4]| sinuw).

(1-14112)3/2
Al|+cosu
Proof. cos § = JAltcost
1+||Al| cosu
(%) d(cos ) _ —(1—|IAl|?) sinun
dt  (1+||Allcosw)? *
d(cos9) . dae
———~ = —sinf—>=
dt dt

_ . _ 2 2
aleost) _ _ _E_sing (1 — [IA]l COSQ)Z:—L(‘“ "Allzsmu)( GoIA Y,

a LR ILE 1+l cosw ) \1+]All cos u
(+%) d(cos ) ___u (1—||A||2)5/Zsinu
dt L3 (1+]|Al|cosu)3 *
3/2
_ o du _ p (1-1Al11%)
() =00 === alcosu
dt =—MP 1 4 1Al coswydu = —EP __qcu + |1A] sinw) =
pn(1-||A[12)3/2 pr(1-]A|[2)3/2
_ IIL|I® ,
t (u+ [|A]| sinu). m

T ou(1-llAl2)3/2
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VIII. Discussion of the Symmetry and Trajectories of M

In the last chapter, we saw that there are two vectors, L and 4, that are constants of the motion.
It is well-known that conservation of L is related to rotational symmetry (cf. (VL.2.)). The six
components of L and 4 (resp. L and M) for H = 0 (resp. H # 0) form a closed Lie algebra. Now
the question arises: Is there a corresponding global, Hamiltonian action of a group? And if so,
how can we describe the action that is related to the conservation of A resp. M? For this
purpose, we will search for the integral curves of A; resp. M;.

The differential equations are complicated, and we didn’t find a direct solution to them.
Because of that, we attempted to make use of symmetry. Some functions of L and M that are
constant along the integral curves of M; are easy to find (VIIL.5.). However, among them, only
four are independent. If there were five independent and constant functions of L and M, then,
because of L - M = 0, all six components of L and M would be constant. However, that not the
case, since {M;, M,} = M3 # 0. Other constants were not found. So it wasn’t possible, as in the
previous chapter, to solve the problem via reduction alone. A reduction to a smaller dimension
as in (VIII.2.) seems to make the problem more complicated.

However, it is possible (cf. (VIIL.6.)), to express all components of L and M as functions of
the integral curve parameter s. Because of (VII.4.), it is then possible to express the integral
curves of M; as functions of #and s. The dependence 8(s)is not known here, but the problem is
reduced to a single, ordinary differential equation of first order (VIIL.8.). That proves the
existence of the integral curves of A, for all #(VIIL.9.). Since the integral curves are expressed
as a function of sand g, but 8(s) is unknown, it is not possible to specify the trajectories here
either.

(VIII.1.) Theorem.

(1) For all H:

{q1,41} = (1/1)(qzp2 + q3p3),

{az2, A1} = (/W (q2p1 — 2q1P2),

{q3, A1} = (/W) (qsp1 — 2q1P3),

{p1, A1} = W/NqlP)(—a2* — 43 + (/) (2* + p3?),
{r2, A1} = (1/11911*)(q102) + (1/ 1) (=p1p2),

{ps, A1} = (1/11q11*)(q193) + (/1) (—=p1p3),
(if) ForH # 0:

- A 1

{q1, M} = i\/g |H|~3/2 (;—Zl —H (;) (q2p2 + Q3P3)>I
— A 1

(@M} = + \[E |H|~3/2 (—fj —H(3) @pi - 2q1p2)>,

— 4 |®yg1-3/2(APs _ (1 _
{q3, M} = i\/;”ﬂ < 2 H (M) (q3p1 ZQ1P3)>,

=+ B |-3/2 AL, Q1 N —42°—q3” 1 2 2

{pl;Ml} —\ﬁlHl _ 2 ( ”q”3) H ”q”3 + (M) (pZ + P3 ) ’
— u -3/2 ﬁ 42 N q19> 1\,

P2, Mi} = £ GG Cige) —H (||q||3 +(3)¢ p1p2)>]'

(s M1} =+ \/E HI7/2 15 - i) — H (ﬁ +(5) (—mm))],

with + sign forH < 0 and - sign forH > 0.
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Proof. For H < 0:
{xj,Mi}z{xj, \/g(—H)‘l/ZAi}z \/gAi (=3) (=H)3/2 (=D, H} + \/g(—H)_l/z{xj,Ai}
(M) = [ (1) = (4,

and similarly for H > 0. Substitution of{xj, H} and {xj, Al-} from (I11.14.) yields the result. m

Remark. Because of the properties of the Poisson bracket, we have

q; = (%) ={q;, M} = Ly, 4i (cf. (I1.16.) and (I1.8.)). As a result, these are the differential

equations for an integral curve of M; and of A;.

(VIIL.2.) Lemma. ForH # 0, the integral curvesc:R — M|s — (q,p) of M, are determined by the
following differential equations:

r— 4 B gmsez P i _H (4
i = £ [SIH12 (B gy — 2 (14 4, + 20, )]

= ) 4 oy (G2 (29
() = Jovor ()" [ + 10) (2) (2 + 4+ 2a) + (22200

1

lal
independent, and three of them are constant, namely L;, H,and A4,. As a result, we need to find

1
Ilal
follows directly, after a long calculation, from the definitions for L, H,and 4, and from (VIIL.1.).
[ ]

Proof. We can introduce six new coordinates: q,, py, ( ) ,L1,H,and A;. These six functions are

the differential equations for q;,p; and ( ) as functions of these six new coordinates. That

Remark. This lemma serves only as an example, and is not used in the following material.
(VIIL.3.) Theorem. LetH, A;, M; be defined as in (VI.1.) and (VIII.1.). Then:
(1) For all H and (ij,k) = cyclic permutation of (1,2,3):

{H,L;} =0,
{Li Lj} = L,
{H,A} =0,
{LiAj} = Ay,
{Li,A;} =0,

{4, Aj} = (=2H /W)Ly,
(ii) ForH < 0:
My, Mj} = Ly,

(=9, (59
()59}

(iii) ForH > 0:
{M;, M} = —Ly,

(5

0.
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(iv) ForH = 0:
{4, 4;}=0.
Proof. It follows directly from the definitions. m

(VIII.4.) Corollary. ForH # 0 (resp.H = 0), L and M (resp.L and A) form the following Lie
algebras:

(1) ForH < 0: Lie algebra of 0(4) andSU(2)xSU(2),
(if) ForH > 0: Lie algebra of0(3,1),
(iii) ForH = 0: Lie algebra of10(3) = R3 & 0(3) =Euclidean group in three dimensions.

(VIIL5.) Theorem. ForH # 0 (resp.H = 0), letc: R = M be an integral curve of M, (resp.A4).
Then the following functions are constant along c:

(i) For all H:

Li,A1,H, LM, + Ly M3,

(if) ForH < 0:

L3 + M2,13% + M2, MyM5 — LyLs,
(iif) ForH > 0:

L5 — M3, L5 — M3, My M5 + LyLs,
(iv) ForH = 0:

Ay, Ay, A3, Ly, H.

Proof. Because of (1.27.) and (I1.8.), we need to calculate the Poisson brackets, for example in
case (ii):

{M;M3 — LyL3, My} = Mp{M3, My} + M3{M;, M} — Lo{L3, My} — L3{L,,M;} =
M;(Ly) + M3(—L3) — Ly(My) — L3(—=M3) = 0. m

(VIIL.6.) Theorem. ForH # 0 (resp.H = 0), letc:R = M|s - (q,p) be an integral curve of M,
(resp. A, ). Then

(i) ForH < 0:

L, = +C; cos(s — ay),

Lz = +Cycos(s — ay),

M, = —C, sin(s — ay),

M3 = +C; sin(s — ay),

(LXM); = (C?/2)sin2(s — a;) + (C2/2)sin2(s — ay),
(if) ForH > 0:

L, = +C5cosh(s — a3),

Ly = +C4cosh(s — ay),

M, = +C, sinh(s — ay),

Mz = —Cg sinh(s — a3),

(LXM), = (=C2/2)sinh2(s — a3) — (C?/2)sinh2(s — a,),
(iii) ForH = 0:

Ly = —Ass + Cs,
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L3 = +A25 + C6I
(LxA); = —(A% + A%)s — A,Ce + A3Cs,
where(Cy, ..., Cg, 4, ..., a4 € R are the integration constants.

Note. There is a typographical error in the original version, where the sign in the expressions for
(LxM); is wrong. We have corrected it here (more details in the supplementary information).

Proof. (i) Because of (I1.8.), we have % = Ly, L2 = {L,,M,} = —M3, and so
L =—Msand M§ = +L, = L, + iM; = C;ei~%) =
L, = Cycos(s —ay), Mz = +C; sin(s — ay).
(ii) Here we have:
b =—Mzand Mj = —L, = L, + M3 = C3¢~ %), L, — My = C3e*(57%),
(iii) Since A5 = {A3,A,} = 0, Az is constant. L), = {L,,A;} = —A3 > L, = —A3s + Cs. m
(VIIL.7.) Lemma. With the prerequisites of (VIIL.6.), we have:

(i) ForH < 0:
aliM|| _ —(MaL3—MsLp) _ +(LXM),
ds Ml mi7
d||L|| _ t(MaL3—M3ls) _ —(LxM)
ds [IL]| ey -
(if) ForH > 0:
dlMl _ —xm),

ds m|~
dliLl _ —@x),

ds ey’
(iii) ForH = 0:
dliLl _ —(xA),

ds IIL]|
Proof. For example, for H < 0: dltlil\:” = lei/”ldlldl\zll 2||M||{||M||2 M} =

(1/2MI)({MF, M1} + {M3, My} + {M5,M,}) =
(1/2|IM[)(2M{M3, M} + 2M3{M3, M;}) = (1/[IM||)(=M,L3 + M3L;). m

(VIIL.8,) Theorem. ForH + 0 (resp.H = 0), letc: R - M|s ~ (q,p) be an integral curve of M,
(resp. A, ) and 8 defined as in (VIL.3.). Then:

(i) ForH # 0:
ae _ —U>My 1My 2(LxM)1
as [4H|H|||M||2||L||3] + cosd L/zw H||M||||L||3] + cos® [2H||L||3] + 5”“9[ 2|H LI
. +(LxXM)4
schosG[ L ]
(i) ForH = 0:

% = (A,/IILID(1 = cosB)? + (1/|IL]||*)(LXA),sin8(2 — cosh).

Proof. Because of (VII.4.), we can express q and p as functions of M, L, and 6. Because of
(VIIL.6.), M and L can be expressed as functions of s. Then the differential equation for 8(s)
follows from (VIIL.1.). The proof is analogous to (VIL.5.). Here, we use the equation for p,
because it is the simplest. We sketch the proof for H # 0:
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dpy _ 4 (—# ; ) i dliLll K"
— =—(=sinb | = —= 9——0059—
ds  ds\|IL| ILIZ ds LIl ds

With (VIIL.7.), we then have:

d
(%) % = ( ) (LXM),sinf — mcos@ —S

On the other hand, we have

d d (pM dp M am ‘M dM
ﬂ:_(" ) do M 4 p dM_ pM M.,
ds M| ds M| " |M| ds |M|? ds

b dM _ u
Ml s ”M” {M,M,} = (”M”) (¥(pxL),) = ( 1 ”q”) (”M”) with the upper sign for H < 0

and the lower sign for H > 0. This implies

L (I ) F L (LxM),. From (VIILL) we get:

ds ds |IM]| llqll/ \lIMI| M2

s, M _ _qM U ( -M; aai |, lIplPM; P1p||) N

ds |IM||  2Hllql]3 2lH| \[IM]lllqll "~ llqll® uliM| u

any _ TP ( ) T Uq1 qM H ( +My q14) P1p||)
ds [IM]2 L Ml 2HlIql13 2|HI \IM[lliqll ~ llqll u

Now, we use (VII.4.) and (VIL.2.) and the expression

1 .
q1 q" (”M”) 1 + ql(m)(LXM)l, and arrive at

Pn My 2 b My uAMy
= cos@[ —] cos 9[ —] cos 9[ ]
C) % TETTEE 21 Himne) TR

2u(LXM), 2 u(LXM) u(LxM)
schosG[ ’ZIHI TR + sinfcos 9[—|L”3 ]+ sin6 [—ILII3 ]

A comparison of (*) and (**) yields the result. m

(VIIL.9.) Theorem. ForH # 0 (resp.H = 0) letL, # 0 # M, (resp.L, # 0). Then

(i) For alls,, 0, € R, there is an integral curve of (VIIL.8,) (i) and (VIIL.8.) (ii) with0(s,) = 6.
(if) ForH # 0 (resp. H = 0) there are global integral curves of M, (resp. A, ).

Proof. (i) With the help of (VIIL6.), we can see that the functions in (VIII.8.) are continuous and

bounded everywhere. Therefore, the existence theorem of Peano (cf. Kamke [8], page 126)
holds.

(ii) In (VIL.4.), g and p were expressed as functions of M, L, and 6. In (VIIL.6.), M and L were
expressed as functions of s. Because of (VIIL.8.) and (VIIL.9.) (i), the desired function 8(s) exists.
With that, we have q and p as functions of the integral curve parameter s. m
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IX. Stereographic Projection and global SO(4) (resp. SO(3,1))
Symmetry

In the case of quantum mechanics, by using a stereographic projection in momentum space (p
space), it is possible to construct a representation of the group SO(4) as a symmetry group in
the Hilbert space of the hydrogen atom (cf. Bander and Itzykson [3]). This method goes back to
Fock. In his discussion of compactification of the phase space, Moser [10] provides a classical
mechanical analog of this projection. He maps the hyper surface of constant energy of phase
space onto a sub-bundle of the tangent bundle of the sphere S3. When restricted to momentum
space, this mapping is also a stereographic projection. The image space thus has a special
symmetry property. We make use of that, for H < 0 (resp. for H > 0), in order to map the
energy surface onto a sub-bundle of the tangent bundle of a sphere (resp. of a hyperboloid).
This makes it possible to solve the differential equations for the integral curves of M; for H # 0.
We didn’t find the corresponding solution for H = 0.

(IX.1.) Definition.
(i) ForH = Hy < 0:

£ = llpll?+2Hop
O 7 Ipli2-2Hop

£ = -2, /=2Houpi
, = o\ 2Mopr

llpll2—2Hop *
—./—2H,
Mo = °(q p),

_ ||P||2—2H0M _ (@p)
Nk = (—2“ )Qk “ Pk,
(if) ForH = Hy > 0:
£ = llpll?+2Hop

O 7 Ipliz—2How

£, = —2./2Ho Pk

k= IpIZ—2Hou’
1/ZH

no=—7——(q"p),

_ IIpIIZ—ZHou (q p)
Mk = —( » )q + = Dk

Remark. For H = H, > 0, we have ||p||? — 2Hou = 21/||ql] > 0. As aresult, &, = 1 and the
transformation is on the upper piece of the hyperboloid.

(X.2.) Corollary.

(i) ForH = Hy < 0:

P = —/=2Hon (1&;’ )

qx =(1/=2Ho) (. (1 = §o) + ExMo),
(if) ForH = Hy > 0:

DPr = ++/2Hou (5")

1-%o
qx =(1/2Ho) M (1 — $o) + $kMo)-
(X.3,) Corollary.

(i) ForH = Hy < 0:
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1+
IpII? = (~2How) (1722),
1 _ -2Hg
lgll — 1-&’

Ay = &m0 — oM

&’ + i &’ =1
§oMo + Xi=1 8k = 0,
no® + X1’ = 1,
(if) ForH = Hy > 0:

IplI? = (~2How) (1222),

1 -2H,
gl 1-&”

Ay = $on1 — $1Mo,

S0 —Xhaa &’ =1,
§oMo = k=1 kM = 0,
0% = Y=’ = —1.

Remark. For H < 0, the &s form a 3-dimensional sphere 3 ¢ R*, and for H > 0 a hyperboloid.
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In both cases, the s are tangential to this hypersurface, and fulfill one additional condition. As a

result, the energy surface is mapped onto a 5-dimensional subspace of R® that has a canonical
action of the group SO(4) resp. SO(3,1). The fact that this is a tangent space could be used to
transport the symplectic structure. However, we won’t pursue this possibility, because it
appears to be very complicated. Instead, we will translate the differential equations for an

integral curve of M, directly.

(IX4.) Theorem. Letc: R — M|s — (q,p) be an integral curve of M, and&;,n; defined as in

(IX.1.). Then:
(i) ForH < 0:

§o = +& — 1o (17115 ) =+& — Moo,

§1=—%—Mm (ITE ) ==& — MiMo’,

1_50) = 171}0 = +n1+ &m0,
)

= —1no + &M,

(ii) ForH > 0:

o =—%1— 1o (171—20) ==& + 7070,
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&= =S —m (%) = ~& +mumo,

& =~y (1’“50) +1210,

£ = 3 (1’7 =) = sy,

mo ==t = 4o (1) = 122 = 1 + &omo),
m= =m0 =& (1) = =m0 + &mo’

np = —% (1 L) = +&mo),

N3 =—&3 (1_150) = +&3m0'-

Proof. In each case, the proof consists of a direct application of the definitions and a lengthy
calculation. We will sketch the proof for £ and H < 0.

g o _2@P) 20 p)Ipll” + 2Hou) _ 2(p - p')(=4Hoi)
" lIpllz — 2Hopu (Ipll* — 2Hop)? (Ipll> = 2How)*
Because of (VIII.1.), we have:
" — _ -3/2 p1_ q1(qp)

llall  llqli®

Now we apply (IX.2.) and (IX.3.), and get:
(P P = —2Hou(1/(1 = §0)*)(§1(1 = &) — Mo7y), and

$o =1/ =&))(&1—&oé1 —non1)- m

(IX.5.) Theorem. Letc: R — M|s — (q,p) be an integral curve of M, and&;,n; defined as in
(IX.1.). Then:

(i) ForH < 0:

& +i& = Be Scos(ng + a),

$2 = Bycos(no + az),

$3 = Bzcos(no + a3),

No + iny = Be Ssin(n, + a),

N2 = Bysin(no + @),

N3 = Bssin(no + a3),

no = (1/2)[Be™ % sin(ny + @) + Be** sin(ny + @)],

B,a € C andB,, B3, a,, a3 € R are the integration constants, with

(D1 = ||B|I’sin(no + a)sin(ng + @) + Bysin* (o + a,) + B3*sin?(no + a),

(2)1 = ||B|I*cos(mo + a)cos(no + @) + B,*cos* (1o + az) + Bs*cos? (o + a3),

= 2 = ||B||? cosh(2Ima) + BZ + B,

(3)0 = ||B||* + B5 + B3 + 2||B||?>B3 cos(2Rea — 2a,) + 2||B||?B? cos(2Rea — 2a3)
+2B2B3 cos(2ay — 2a3),

Ay = (=1/2)||B||? sinh(2Ima).
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(if) ForH > 0:
$o + 1 = Boe *cosh(no + ao),
§o — §1 = Bie*Scosh(no + ay),
$2 = Bycosh(ng + az),
$3 = Bzcosh(no + az),
Mo + M1 = Boe *sinh(no + ao),
Mo — M1 = Bye™sinh(no + ay),
N2 = Bysinh(no + a3),
N3 = Bzsinh(no + a3),
no = (1/2)[Boe™* sinh(no + @) + Bie™* sinh(no + a1)],
By, B4, B3, B3, g, @1, a5, a3 € R are the integration constants, with
(1)1 = ByBycosh(ny + ap)cosh(ny + a1) — By2cosh?(ng + ay) — Bz*cosh?(ny + a3),
(2)1 = —ByBysinh(ny + ag)sinh(ng + a;) + By%sinh?(ny + ;) + B3%sinh?(ny + a3),
= 2 = ByB;cosh(ay, — a;) — B — B3,
(3)0 = BZB? — Bf — B —2B,B,B? cosh(ay + a; — 2a,)
—2ByBB% cosh(ay + a; — 2a3) + BiB5cosh(2a, — 2as),
Ay = (1/2)ByB; sinh(ay — ay).

Note. There is a typographical error in the original version. For H < 0 and H > 0, in the
expressions (1) and (2), the n, was missing. We have corrected it here (more details in the
supplementary information).

Proof. The formulas for §;,n; are the solutions of the differential equations given in (IX.4.), and
the additional conditions on the integration constants follow from the additional conditions in
(IX.3.). m

Remark. Because of §; > 1 and &5 — £ > 1, we have &, + & = 0. Then (IX.5.) (ii) leads to B, >
0and B, = 0.

(IX.6.) Theorem. ForH < 0 andH > 0, the implicit equationn, = ny(s) in (IX.5.) has exactly one
solution.

Proof. For H < 0, the equation is:

No = (1/2)[Be_i5 sin(ny + @) + Be ™ sin(n, + c?)]. For fixed s, we will search for the
intersection of the two functions that are on the left and the right of the equality sign. The left
side is the straight line through zero with a slope of +1, and the right side is a periodic, bounded
function of 5. Therefore, there is at least one intersection. The uniqueness stems from the fact
that the slope of the function on the right side is always < 1. If we denote this slope with S, the
we have:

S = (1/2)[86‘“ cos(ny + a) + Be™™ cos(ny + c?)] =

IBlI?cos(no + 6’{)COS(UO +a) + ||B||2C0.S(T)o + @)cos(ny + a)
+B%e725cos%(ny + a) + B2et?Scos?(n, + @)

§% = (1/D[2C0 + &) (& — &) + o +i&)* + (G —i§)*] =& < 1.
(ii) For H > 0, the equation is:

S2 = (1/4)

)
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no = (1/2)[Bye* sinh(ny + ay) + Bie*s sinh(ny + a;)]. This time, the right side is a function
that behaves like e "0 (resp. -e ~°) for ny > 0 (resp.ny < 0), since By = 0and B; = 0. Asa
result, there is at least one intersection. The uniqueness stems from the fact that the slope of
the function on the right side is always > 1. If we denote this slope with .5, the we have:

S = (1/2)[Bye S cosh(ny + ay) + Bie™s cosh(n, + ay)].

2 = (1/4) B3e~?Scosh?(ng + @) + B?et?Scosh?(n, + ag)
+2B,B; cosh(ny + ay) cosh(ny + a;)

S2=1/D[Co+E)*+ (o —8)* +2 + &) — D] =& = 1.

In both cases, the slope can only have a value of 1 at isolated points, since the function is
analytical. m

(IX.7.) Definition.
ForH < 0:

’

Y= _IZA_H(q ’ p)/
Xg = (IIqII pll* OSI,[) + ’ (q p)sinp,
x = [ liglipy costp + (L — 4228 iy,

lallipl? .
¥o = (q-p)cosp — |4 (ML _ 1) 5iny,

u
(q-p)
Vi = | (= BEE) cosyp — (lqlipy) siny.
ForH > 0:
2H
Y= 7@ p)

xg = (nqu-upn2 oshw \/7((1 p)sinhip,

5= [ lallp costup -+ (1~ 22 sinhy

llall

u (llal-lipl? .
Yo = (q-p)coship — | (T — 1) sinhy,
Yie = = \[% (”‘{ﬁ - %) coship — (llqllpi) sinhap.

Note. We have included the case of negative energy, using the definition from a later publication
(Ligon and Schaaf, 1976).

(IX.8.) Corollary.
ForH < 0:
Poxi=1,
Yi-oXiyi =0,
oyl = _%'

ForH > 0:
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2 3 2 _
X — di=Xxi =1,

XoYo — 2211 xy; =0,
u

2_y3 2 _ _ K
Yo i=1Yi 20

Proof. This is a long but elementary calculation. m
(IX.9.) Theorem.
(1) ForH < 0, along an integral curve of M, :

Xo==X1, Yo =—Yu

X1 =+xo,  y1=+Yo

x; =0, y2 =0,

x5 =0, y3 = 0.

(if) ForH < 0, along an integral curve of L, :
X9 =0, yo =0,

x1 =0, y1=0,

Xy = —X3, Y2 = —V3,

X3 =+, y3 =+,
(i) ForH > 0, along an integral curve of M, :
Xo = X1, Yo = Y1,

X=+x, Y=+

x; =0, y2 =0,

x3=0, y3 =0.

(ii) ForH > 0, along an integral curve of L :
xp =0, Yo =0,

x1 =0, y1=0,

Xy = —X3, Y2 = Y3,

X3 =+x, Y3 =ty
Proof. The proof is analogous to (IX.4.), and just as long.

Remark. The analogous equations for M,, M3, L,, and L5 are obtained via cyclic permutation of
the indices. Then, this set of equations is immediately integrable, and provide the canonical
action of SO(4).
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X. Concluding Remarks

The first substantial part of this investigation of the Kepler problem was the search for the
integral curves of the Hamiltonian function H. This was achieved most elegantly by utilizing the
“maximal” symmetry of the problem. With this symmetry, it is possible to find the trajectories
of Hvia a very simple method. The symmetry is related to the conservation of angular
momentum and of the Runge-Lenz vector, which form a Lie algebra with the Poisson bracket.

The second part was a closer investigation of the symmetry. We searched for the
transformation that is related to the conservation of the Runge-Lenz vector, i.e. we searched for
the integral curves of M. It was not possible to solve this problem the same way as the first one,
but the utilization of the symmetry was essential. The energy surface was mapped to a space
that has an especially simple action of the desired group. This “simplest”, or “canonical” action
of SO(4) on T; (53) was, however, not the action of SO(4) that has the functions L and M as its
Lie algebra. However, the differential equations for the integral curves of M that are transferred
by this transformation were easy to solve. One deviation from the “canonical” action of SO(4) is
the “frequency” o, which is defined by a transcendental equation.

The quantum-mechanical case (hydrogen atom) is in many ways analogous to the classical
mechanical problem, and has been discussed, e.g. by Bander and Itzykson [3]. The Runge-Lenz
vector is defined as a hermitic operator and provides, with its commutation relations, a
representation of the same Lie algebra as in the classical case. This procedure, which goes back
to Fock, defines a stereographic projection in momentum space. The resulting Schrodinger
equation is then, for H < 0, invariant under SO(4) in an obvious way. The sphere S3 that
appears in the stereographic projection as image space has a canonical action of the group
SO(4) (rotation of the sphere), which generates a unitary representation of the group SO(4). It
has also been shown that the self-adjoint operators that serve as infinitesimal generators of this
representation are precisely the operators of the angular momentum and the Runge-Lenz
vector. The existence of such a representation of the group is closely related to the existence of
a global action of the group in the classical case (cf. Kostant [9;(2.10.1)]. That is an application
of “Kostantification”, a functor from the category of Hamiltonian systems with Poisson bracket
Lie algebra in the category of Hilbert spaces and linear operators with Lie algebra of
commutation relations.
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