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Abstract

In the age of big data, the analysis of data with accurate and efficient algorithms
has become indispensable. Algorithm analysis and portfolio-based algorithm se-
lection are important applications in order to find appropriate algorithms for an
unknown problem. The suitability of an algorithm depends on its performance, in
terms of prediction accuracy. However, experimental procedures with these algo-
rithms are often computational demanding. Thus, the prediction and modelling
of runtime are affecting algorithm selection. Therefore runtime becomes a perfor-
mance measure. It can be split into two parts: the training time, which indicates,
how long it takes to train an algorithm on a certain dataset; and the prediction
time, which indicates, how long it takes to perform a prediction. In this thesis,
runtime of machine learning algorithms is modelled separately for training and
prediction time. Besides dataset characteristics, the influence of the hyperparam-
eter values of an algorithm on runtime is analysed. The concept of meta-learning,
which is an approach to predict the suitability of an algorithm, are applied to
relate the dataset characteristics and the hyperparameter values of the algorithm
to runtime.

The empirical study considered 6 classification algorithms, 65 dataset from OpenML,
and 4 different regression models, with a focus on gradient boosting with component-
wise linear models. For comparing gradient boosting with smooth components, a
generalised linear model and random forest was used.

The experimental results demonstrate that the best prediction performance on
training data is achieved by random forest. Moreover, the prediction results of
all models are better than a commonly used baseline. The results for gradient
boosting algorithms advise using more sophisticated variable selection methods
in order to get sparser models. Overall, the concept of meta-learning is a valid
method to predict runtime. This encourages using this method to its full extent
for further developments, including methods to generalise prediction accuracy of
the regression methods for future instances.
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1 Introduction

In the past decade industrial and academic fields have changed focus from data
gathering to data analysis (Priya et al., 2011). Having collected 90% of the current
data in the last couple of years, the main challenge nowadays is analysing these
data. A central question arises from this task: Which algorithm out of a plethora of
algorithms should be used for a given problem instance? Answering this question
often requires costly empirical processes or deep expert knowledge, particularly, if
several problems need to be solved in one analysis (Priya et al., 2012).

The suitability of an algorithm for a distinct problem depends mostly on the algo-
rithm’s performance in terms of prediction accuracy. Besides, the computational
efficiency of an algorithm is increasingly taken into account. Thus, computational
efficiency – also referred to as runtime – becomes a performance measure, indi-
cating how long it will take to train a specific algorithm with its proprietary set
of parameters and how long it will take to perform a prediction. The reasons,
why runtime becomes essential for the decision on an appropriate algorithm, are
manifold.

These days, data-based decisions and data-driven optimisation of services for cus-
tomers play an increasingly important role to most companies. The speed, at
which data needs to be available, and at which analyses need to be implemented,
plays a crucial role for companies, for example, when the aim is to predict customer
behaviour in real-time. At the same time, companies try to keep expenditures for
computational resources minimal (Reif et al., 2011). But also academics, scientists
and data analysts are confronted with limited time and available resources.

Another important aspect arises from the need for resource and workload manage-
ment (also known as “scheduling”) in shared environments like high performance
clusters. In such an environment many different users implement their experi-
ments and analyses, and thus, available resources need to be shared fairly among
the users. This task is undertaken by a scheduler. It initially queues the pro-
duction jobs and executes, them whenever the requested resources are available.
These resources are specified by runtime and memory. Therefore, each user is
responsible to determine the resources of his production jobs in advance (Leibniz-
Rechenzentrum, 2015). Using a predicted runtime, enhances job scheduling and
avoids termination of jobs before completion. Moreover, overall execution time
can be minimised (Priya et al., 2011). In addition, predicting runtime facilitates
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CHAPTER 1. INTRODUCTION 2

planning of experiments and work in general.

Last but not least, there is also an environmental aspect behind runtime predic-
tion. Since trial-and-error experiments are time consuming, they consume a great
amount of energy, and thus, lead to high C02 emissions. Therefore, Al-Jarrah
et al. (2015) proposes the “sustainable data modelling”. This approach aims to
maximise learning learning accuracy, while minimising computational costs at the
same time.

In summary, the goal of every data mining project is to be as accurate and as
efficient as possible (Doan and Kalita, 2016). This implies finding appropriate
machine learning algorithms in terms of accuracy and efficiency with respect to the
problem that needs to be analysed. In practice, there is often a trade-off between
high prediction accuracy and low computational costs. Thus, a major goal in the
field of runtime analysis is to find an algorithm technique that chooses the best
algorithm in terms of high prediction accuracy and a small runtime for a given
problem. Hence, accuracy and runtime need to be predicted at the same time.
However, prediction of runtime with regression methods is still a young science
area, with its beginnings dating back to the mid 1990s (Hutter et al., 2014).

Priya et al. (2011) apply the approach of meta-learning by relating dataset char-
acteristics and the current machine state to the actual runtime. Runtime of 6
classification algorithms was assessed on 78 publicly available datasets. Four re-
gression models (linear regression, decision tree M5P, k-nearest neighbour, support
vector machine) were used to predict runtime and the prediction quality was eval-
uated using Leave-One-Out Cross Validation (LOOCV). Prediction performance
of the models was evaluated by comparing the mean absolute error (MAD) to a
commonly used baseline. The lowest MAD values were obtained for support vector
machines (SVM) and k-nearest neighbours (K-NN).

In a subsequent study Priya et al. (2012) further investigated SVMs for runtime
prediction. They optimised two SVMs, each with a different kernel, with a genetic
algorithm that performed joint Feature Subset Selection (FSS) and Parameter Op-
timisation (PO). With this method predictions improved significantly. A combina-
tion of both SVMs to one regression method performed similar to the genetically
evolved methods.

Another slightly different approach was chosen by Reif et al. (2011). Here, the
meta-learning approach was used to estimate the time needed for a grid search
over multiple parameters, because, in most applications, a time consuming search
for an optimal hyperparameter set precedes the actual modelling process. For
prediction of runtime different meta-features related to the dataset and algorithm
were assessed, and their influence analysed. In order to account for the performance
of the user’s computer, computation time of some meta-features was measured and
then stored together with the other meta-features in the meta-dataset.

The most recent research on runtime prediction comes from Doan and Kalita
(2016) and is structurally similar to Priya et al. (2011). This study was conducted
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using 50 datasets, 28 classification algorithms and 8 regression models for predict-
ing CPU-time. Meta-features that were used for the prediction model included
different dataset characteristics. The prediction performance of the regression
models were compared to each other by root mean squared error (RMSE), mean
absolute error (MAE) and MAD. The results demonstrate that multivariate adap-
tive regressions splines (MARS) is a good solution for predicting CPU-times.

Research from Hutter et al. (2014) includes a broad review on literature on runtime
research, as well as an investigation of random forests, neural networks, ridge re-
gression and newer methods like ridge regression with forward-backward selection
(SPORE-FoBa) and gaussian process regression for prediction of runtime. The
performance of the regression methods was assessed by 10-fold cross-validation
and calculating the RMSE. Additionally, new instance features for propositional
satisfiability (SAT), travelling salesperson (TSP) and mixed integer programming
(MIP) problems were investigated. The prediction methods and new features were
evaluated for 11 algorithms and 35 instances distributions spanning a wide range
of combinatorial problems (SAT, TPS, MIP). Among a series of results, they found
out that random forest is the best method for predicting new instances, as well as
for predicting new instances and new configurations. Hyperparameter optimisation
of the prediction models improved prediction accuracy slightly, but the computa-
tional costs were drastically higher, compared to the respective improvement of
performance.

In this thesis, runtime behaviour of six different classification algorithms is anal-
ysed. Since runtime depends on the dataset and the hyperparameter values of an
algorithm (Reif et al., 2011), dataset properties and the algorithm’s hyperparame-
ters are going to be the features used to predict runtime by using a meta-learning
approach. This includes three parts: 1) Measuring runtime of the 6 classifiers on
different datasets with different hyperparameter settings; 2) the generation of a
meta-dataset by merging the characteristics of the dataset, the hyperparameters of
the algorithm and the runtime and; 3) applying several regression methods to the
meta-dataset in order to predict runtime. Four regression modelling techniques
are described and compared to each other with a focus on gradient boosting with
component-wise linear models and gradient boosting with smooth effects. The
other regression methods include a generalised linear model and a random forest,
as a non-parametric approach.

The thesis is organised as follows: chapter 2 provides a short description of the six
classifiers, and an overview of the regression methods used, with a focus on model-
based boosting. Moreover, the concept of meta-learning is introduced. Chapter 3
gives a detailed description of the experimental approach. In chapter 4 the results
of this approach are presented. Chapter 5 summarises and discusses these results,
and provides an outlook for further research.



2 Theoretical Background

2.1 Classification algorithms

The aim of machine learning is to develop and employ techniques that identify
patterns and regularities in data, in order to extract useful information from that
data (Priya et al., 2011). Depending on the type of available data, machine learn-
ing is usually categorised into supervised and unsupervised learning. In supervised
learning, data consists of examples. Each example refers to one observation and
comprises the predictor vector (or input vector) and an associated response (or out-
put). A machine learning algorithm learns from that data and relates the response
to the predictors. Supervised learning aims to make predictions for future obser-
vations, based on the predictors, and to understand the underlying relationship
between response and predictors (inference). In contrast, unsupervised learning
uses a vector of predictors for each observation but no associated response (James
et al., 2015).

Supervised learning distinguishes between classification and regression problems.
Whenever the response is qualitative (categorical), taking values in k different
classes, this is denoted to be a classification problem. If the response variable is
quantitative, hence, is taking numerical values, it is a regression problem. Ac-
cordingly, classification algorithms (classifiers) solve classification problems and
regression algorithms (regressors) solve regression problems by predicting numer-
ical data (James et al., 2015).

For many algorithms the computational complexity is known. It is expressed with
the Big O notation, which is a formal way to express asymptotic behaviour of an
algorithm with respect to the number of inputs and its hyperparameters (Louppe,
2014). In these theoretical considerations, constant terms are neglected and the
practical benefit in the application of algorithms is often limited (Reif et al., 2011).

In this thesis, runtime of six classification algorithms was analysed and four regres-
sion methods were compared to each other. The following chapters provide a short
overview of the six classification algorithms and an introduction into model-based
boosting, which is the main regression method for analysing runtime in this thesis.
Whenever possible, computational complexity of the classifiers is specified.

4



CHAPTER 2. THEORETICAL BACKGROUND 5

2.1.1 Naive Bayes

The naive Bayes classifier is an effective and fast classification technique (Friedman
et al., 1997). It computes conditional a-posteriori probabilities for each class of
a categorical response variable by using the Bayes’ theorem (Tutz, 2012; Meyer
et al., 2015). The naive Bayes classifiers assumes independence of the predictor
variables for a given class, and is therefore called “naive”. Usually, this assumption
is not true in general real-world applications. However, the naive Bayes classifier is
a popular method for high-dimensional data and for multiclass prediction. Often
this classifier performs better than sophisticated alternatives (Hastie et al., 2016).
However, dealing with a categorical variable is problematic, if the test set includes
a category that was not observed in the training set. In this case, the classifiers
assigns a zero probability. This problem can be solved with smoothing techniques
like the Laplace estimation (Sunil, 2015).

In this thesis, naiveBayes from the R package e1071 (Meyer et al., 2015) is used
as an application for the naive Bayes classifier.

For the naive Bayes classifer, time complexity for training is essentially optimal.
It is O(np) with n being the number of instances in the training set, and p being
the number of features. Thus, time complexity is independent of the values the
features can take (Elkan, 1997).

2.1.2 Recursive Partitioning

The R package rpart (Therneau et al., 2015) provides recursive partitioning for
classification, regression and survival trees, and implements, in general, the concept
of classification and regression trees (CARTs), as described by Breiman et al.
(1998). The principle of the method is simple: the feature space is partitioned into
a set of rectangles such, that they are as homogeneous as possible with respect to
the response variable. On each rectangle a simple model is fitted (Hastie et al.,
2016).

The tree building process starts with partitioning the whole feature space (root
node) by a single variable and an associated split-point. The data is now separated
into two subsets (child nodes) and the process is recursively applied again. This
is repeated until some stopping criteria is met. Each partition of a node into two
child nodes is determined by one variable and one split point. The features and the
split-point that partitions a node is searched by exhaustive search: the algorithm
iterates over all features and all split-points to find the best feature and the best
split-point according to a split-criterion. Split-criteria can be approaches based on
test statistics or impurity measures, like the Gini index (Tutz, 2012).

Computational complexity of training a decision tree without pruning is O(np2)
(Elkan, 1997). Another specification of time complexity is made by Louppe (2014),
where the overall within-node complexity is O(pn log(n)).
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2.1.3 Random forest

Decision trees, as introduced in the preceding chapter, have some valuable ad-
vantages: they can easily be interpreted and visualised, can handle missing data
and can be applied on high-dimensional data. On the contrary, they are unstable,
meaning that a small change in data can lead to a totally different tree. Therefore,
their predictive accuracy is often inferior in comparison to other methods. This
can be overcome by aggregating many decision trees, which leads to methods like
bagging, random forest, and boosting.

A random forest is an ensemble method, which means that various predictors
are aggregated (Tutz, 2012). The prediction of random forests is based on a
combination of several decision trees, leading to as many predictions as there are
trees in the ensemble. The final prediction is obtained, for example, by majority
vote for the most common class among all predictions.

Time complexity of random forest, as proposed by Breiman (2001) is O(kn log(n))
(Louppe, 2014). In this thesis, R package ranger (Wright, 2016), a fast imple-
mentation of random forests for high-dimensional data is used. Besides analysing
the runtime behaviour of ranger, random forest is also used as regression model
for predicting runtime. For this purpose, the R package randomForest (Liaw and
Wiener, 2002) was employed.

2.1.4 Lasso and elastic-Net regularised generalised linear
models

glmnet (Friedman et al., 2010a) is a package that fits generalised linear models
that combine L1-norm and L2-norm penalisation. The following problem is solved
for different values of λ:

min
β0,β

1

N

N∑
i=1

wil(yi, β0 + βTxi) + λ[(1− α)‖β‖22/2 + α‖β‖1]

wil(y, β0+βTx) is the weighted negative log-likelihood contribution for observation
i and α is the elastic-net penalty. Setting α to one (the default) leads to lasso re-
gression, a regression model that is penalised with the L1-norm, thus, with the sum
of absolute coefficients. Hence, coefficient values are shrunken, and explanatory
variables that are minor to the response become zero. On the other hand, setting α
to zero creates the ridge regression model, a regression model that is penalised with
the L2-norm, which is the sum of squared coefficients. This also leads to shrinkage
of the coefficients of correlated predictors. But in contrast to lasso regression, the
coefficients of the explanatory variables with minor contribution to the response
get close to zero. The elastic-net penalty can combine penalisation with L1- and
L2-norm. Thus, coefficients can be shrunken effectively – as in ridge regression
– and at the same time some coefficients are set to zero – as in lasso regression
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(Brownlee, 2014). The parameter λ controls the overall strength of penalty. The
glmnet algorithm is fast and fits linear, logistic, multinomial, poisson, Cox re-
gression and multi response linear regression models. Regarding computational
complexity Friedman et al. (2010b) state, that computation is “roughly linear in
n, but grows faster than linear in p”.

2.1.5 Generalised boosting models

Gradient boosting, as it is implemented in the R package gbm Ridgeway (2015),
is a tree-based method. Particularly, gbm is an implementation and extension of
the AdaBoost algorithm of Freund and Schapire (1997) and the gradient boosting
machine of Friedman (2000). In the following brief description of the algorithm
the important hyperparameters of gbm are integrated whenever possible and high-
lighted by typewriter font. The algorithm is described in 2.1.

Similar to random forest, a defined number of trees (n.trees) are grown. But
instead of applying bagging, the trees in boosting are grown sequentially, and each
tree uses the information from the previously grown tree. The trees are built on
a subset of bag.fraction * n cases of the dataset and are fitted to the negative
gradient of the loss function, also called working response. The size of the tree is
determined by interaction.depth, which is the number of terminal nodes that
needs to be specified. Since interaction.depth is a small integer, only small trees
are built, which leads to slow improvements of the function estimate f̂ , when the
new decision tree is added to the fitted function (see step 2d of the algorithm 2.1).
Additionally, the shrinkage parameter slows down the process. The selection of
the shrinkage parameter λ depends on the task. Choosing small values for λ
might require specifying high values for n.tree. Moreover, finding an appropriate
number of trees should be assessed by cross-validation to prevent overfitting.

Table 2.1: Boosting algorithm adopted from Hastie et al. (2016) and Ridgeway (2007)

Boosting algorithm as implemented in gbm

1. Initialize f̂(x) to be constant.

2. For b = 1, 2, . . . , n.trees apply:

a) Compute the negative gradient of the loss function as working response.

b) Randomly select bag.fraction * n cases from the dataset

c) Fit a tree f̂ b to the working response with k (= interaction.depth)
terminal nodes with the randomly selected observations from step b)

d) Update f̂ adding the new tree, that is shrunken with shrinkage

parameter λ: f̂(x) = f̂(x) + λf̂ b(x)

3. Output the boosted model:

f̂(x) =
∑n.trees

b=1 λf̂ b(x)
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Another approach of gradient boosting is model-based boosting, which is imple-
mented in the R package mboost (Hothorn et al., 2016). Since this is one of the
regression methods for prediction of runtime, a more detailed description of this
model is given in 2.2.1.

In boosting, n.trees decision trees are fitted and the computational complexity
of one decision tree is O(np2) (Elkan, 1997). Hence, computational complexity of
the gbm algorithm is O(Tnp2) with T being the number of trees.

2.1.6 Neural networks with a single hidden layer

A neural network is a regression method inspired by the information processing
in the human brain. One of the most popular representatives of neural networks
is the multi-layer perceptron (MLP) with one hidden layer. Figure 2.1 shows the
structure of the MLP.

Figure 2.1: Structure of a MLP. Adapted from Ng et al. (NA)

The three layers of the MLP (input layer L1, hidden layer L2, output layer L3)
are organised in a way that the outputs of every unit (or neuron, represented as a
circle) in one layer become the inputs for the units of the next layer. Each unit of
the hidden and output layers has an associated weight vector wi and a bias term
bi, and computes the function wTi ai+bi, with ai being the input vector of this unit.
For units in the hidden layer, an activation function hw,b, is applied in addition.
In summary, a MLP with one single hidden layer of k neurons and a single output
neuron computes for a given input x = [x1, . . . , xp]:

f̂(x) =

(
k∑
j=1

h(wTj x+ bj) · wh+1,j

)
+ bh+t

The weight terms and bias terms can be combined to a single weight vector which
is then used to reduce the prediction error (Hutter et al., 2014). The R package
nnet (W. N. Venables and B. D. Ripley, 2002), which is used in this thesis as an
application of neural networks, uses feed-forward propagation for this purpose.
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2.2 Regression methods for modelling run-
time

Four regression methods were used to model runtime: model-based boosting with
component-wise linear models, model-based boosting with smooth components, a
generalised linear model and random forest. Random forest on regression problems
do not differ greatly from random forest on classification problems, except for the
final prediction, which is obtained by averaging (Hastie et al., 2016). Therefore, the
description of the random forests in chapter 2.1.3 also applies for random forests
as regression methods. A description of the generalised linear model, one of the
most common models, shall not be within the scope of this thesis. The interested
reader is referred to Fahrmeir et al. (2009).

2.2.1 Model-based boosting

Model-based boosting, as implemented in the R package mboost (Hothorn et al.,
2016) optimises general risk functions. Boosting applies component-wise (pe-
nalised or unpenalised) least square estimates or regression trees as base-learners
for fitting potentially high-dimensional data. With boosting one can fit generalised
linear, additive and interaction models (Hothorn et al., 2010).

Data and model

Consider observations (yi, xi), i = 1, . . . , n with yi being the response and xTi being
the covariate vector, which can contain covariates of different types (continuous,
binary, categorical). In component-wise boosting for regression models a struc-
tured regression model is considered. In this model, the conditional expectation is
determined by E(y|x) = h(η(x)) with h being the (known) response function and
η(x) being the structured additive predictor of the form

η(x) = β0 +

p∑
j=1

fj(x) , (1)

where fj(x) are generic representations of modelling alternatives, which can be
linear, categorical, or smooth effects. Other alternatives include spatial, random
effects or tree stumps (Hofner et al., 2011). These modelling alternatives are
specified by base-learners (Hofner et al., 2014), which are described in more detail
in the subsection Base-learners of this chapter.

One regression model can combine all different kinds of effects. Moreover, com-
peting effects can be included into the model for one covariate. For example, a
linear and a smooth effect can be modelled for one covariate. Finally, the model
is the sum of all these effects.
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Principle

The component-wise boosting algorithm seeks the solution of the following opti-
misation problem (Hofner et al., 2014):

η∗ := argmin
f

EY,X

[
ρ
(
y, η(xT )

)]
, (2)

with ρ(y, η(xT )) being a suitable loss function, such as the negative log-likelihood
function or the L2-loss of the outcome distribution (Kneib et al., 2009). Hence
the optimisation problem is a minimisation problem, where the expected loss with
respect to the structured predictor η is minimised (Hofner et al., 2011). However, in
practice the expected loss is unknown, since one deals with realisations of random
variables and not the random variables themselves (Hofner et al., 2014). Therefore,
the expected loss is replaced by the empirical risk function (Hofner et al., 2011):

R := n−1
n∑
i=1

ρ(yi, ηi)) (3)

Boosting minimises this empirical risk R via functional gradient descent in a stage-
wise fashion.

Algorithm

To minimise the empirical risk R over η, the following algorithm is applied: First,
the base-learners need to be specified. It is possible to specify more than one
base-learner for each covariate to model competing effects of the covariate. Now
let J be the number of specified base-learners and m the number of iterations.

1. m = 0: Function estimates f [0] are initialized with some offset values. f [0] is
a vector of length n (Hofner et al., 2014).

2. m+ 1:

(a) Compute negative gradient of the loss function and evaluate it at the
estimate of the previous iterated η̂[m−1](xTi ), i = 1, . . . , n (Hofner et al.,
2011):

u
[m]
i = −∂ρ(yi, η)

∂η

∣∣∣∣∣
η=η̂[m−1](xi)

, i = 1, . . . , n (4)

The result is a negative gradient vector with n components
u[m] = (u

[m]
1 , . . . , u

[m]
n )′, also called the working response.

(b) The real-valued base-learners gj are fitted to this working response. In
other words, the negative gradient vector is estimated separately by the
base-learners:

u[m] = ĝ
[m]
j (xj) + εj, j = 1, . . . , J (5)
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The result is a least squares or a penalised squares estimation. Having
defined J base-learners, one receives J vectors of length n of predicted
values u[m] (Hofner et al., 2014).

(c) The base-learner that fits u[m] best according to RSS (residual sum of
squares) is selected (Hofner et al., 2011):

j∗ = argmin
1≤j≤J

n∑
i=1

(
u
[m]
i − gj(xi)

)2
(6)

(d) The current additive predictor η̂[m](·) = η̂[m−1](·) + ν · ĝ[m]
j∗ (·) and the

function estimate f̂
[m]
j∗ (·) = f̂

[m−1]
j∗ (·) + ν · ĝj∗(·) are updated, while all

other function estimates fj, j 6= j∗ remain unchanged. 0 ≤ ν ≤ 1 is a
real-valued step length factor. This step length factor yields that only
a fraction of the fitted values is added (Hofner et al., 2014).

3. Iterate steps 3 + 4 until the stopping criterion mstop is reached (Hofner et al.,
2014). For more information about mstop, which is the number of boosting
iterations, refer to subsection Early stopping strategy of this chapter.

Variable and model selection are a crucial elements of component-wise boosting
and take place in step 3c: In this step only the base-learner that best improves
the fit of the negative gradient of the loss-function is selected. If one base-learner
is specified for each covariate, only one covariate of relevance in terms of this
improvement is selected in this step (hence the name “component-wise boosting”).
Furthermore, if one specifies competing base-learners differing in their type of
modelling effects, this step also leads to model selection (Kneib et al., 2009).
If a base-learner was selected multiple times, then the final function estimate
fj, j ∈ 1, . . . J is the sum of each individual estimate ν · u[m−1], which is obtained
from those iterations, where the corresponding base-learner was selected (Hofner
et al., 2014). Variable and model selection is also supported by the early stopping
strategy, which is described in the respective subsection of this chapter. Step 3d,
where the estimate of the true negative gradient of the empirical risk u[m] is added
to the current estimate, leads to the fact, that the boosting-algorithm decends
along the gradient of the empirical risk R. Thus, the empirical risk is minimised
in a stage-wise fashion (Hofner et al., 2014).

Finally, we obtain an additive predictive function, the final boosting estimate:

f̂ = f̂1 + . . . , f̂p (7)

Base-learners

The base-learners specify the modelling alternatives for the functions fj(·) (1) of
the statistical model (Hofner et al., 2014). They are penalised or unpenalised least
square models, and their input is either a single covariate or a small subset of
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covariates. Aiming for variable selection, one base-learner should be specified for
each covariate. The estimates can be expressed as follows:

gj(x) = X(XTX + λK)−1XTu = Su (8)

with S being the hat-matrix, X being the design matrix and K the penalty matrix.
λ is the corresponding smoothing parameter, controlling the amount of penalisa-
tion. λ = 0 yields unpenalised least squares estimates, while λ > 0 yields penalised
least squares estimates. Modelling alternatives include, besides linear, categorical
and smooth effects, also spatial, random and many more effects. Subsequently, we
focus on the linear, categorical and smooth effects, since these effects are used for
modelling runtime. The linear base-learners cover – among others – continuous
and categorical effects. The smooth effects are expressed with P-Splines, which
are B-Splines with penalty differences (Kneib et al., 2009). For more details on
P-Splines and the estimation by the penalised least squares criterion refer to Eilers
and Marx (1996). In the mboost (Hothorn et al., 2016) package, the default setting
for the penalised least squares estimates is ridge penalty for continuous and un-
ordered categorical covariates, first order difference penalty for ordered categorical
covariates and second order difference penalty for P-spline base-learners.

Unbiased variable selection

For each variable and effect type, separate base-learners need to be specified. The
boosting procedure determines, whether these base-learners enter the model, and
whether the specified effect is of relevance. But variable and model selection can be
“seriously biased if the competing base-learners have different degrees of freedom”
(Hofner et al., 2011).

Variable selection bias may occur if there are competing categorical covariates
with different numbers of categories. The categorical covariate with the most
categories is more flexible and thus is preferred by the boosting process, when
using unpenalised least squares base-learners.

Model selection bias means that the smooth effects are favoured compared to
linear effects. To identify whether a covariate has a linear or smooth effect on the
response, a linear base-learner and a smooth base-learner needs to be specified.
Then the boosting process decides which effect is relevant. But since the smooth
effect offers more flexibility than the linear effect, and, moreover, incorporates the
linear effect, the smooth effect is always preferred by the algorithm. In order to
solve this bias, the competing effects need to be made comparable with respect to
their flexibility, which is measured by the degrees of freedom (df).

To prevent selection and model bias equal degrees of freedom should be specified
for all base-learners. Hence, degrees of freedom need to be set to one single free
parameter (df = 1). For categorical effects, this can be achieved by setting df = 1
for all base-learners, which leads to unpenalised least squares models. But for
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smooth effects df cannot be made arbitrarily small. For λ approaching infinity, a
polynomial of order d − 1 remains unpenalised when using a d-th order penalty.
Applying, for instance, second order differences, which is common in practice, a
linear effect (a polynomial of first order) remains unpenalised and therefore, df ≥ 2
for all λ (Hofner et al., 2011). However, it is possible to specify base-learners with
df = 1 by applying a reparametrisation of the model (Kneib et al., 2009). This is
also called P-spline decomposition. Thereby, the base-learner is decomposed into
a parametric part and a non-parametric part:

g(x) = gparam(x) + gsmooth, centered(x) (9)

The paramtric part gparam(x) captures the (d−1)th order polynomial that remains
unpenalised for λ approaching infinity. Kneib et al. (2009) recommends defining
separate base-learners for each of the lower-order polynomials: gparam(x) = β1x +
. . . + βd−1x

d−1. The non-parametric part gsmooth, centred(x) is the smooth deviation
from the polynomial. Thus the base-learner is a P-spline with centred effect and
df = 1. For second order differences one obtains (Hofner et al., 2014):

g(x) = β0 + β1x+ gsmooth, centered(x) (10)

Whenever the degrees of freedom of base-learners are made comparable by setting
df = 1 for all base-learners and by applying the P-spline decomposition, a sep-
arate base-learner for the intercept should be specified. Therefore, the intercept
needs to be excluded from the linear effects and the covariates need to be centred.
Otherwise, linear effects of base-learners would be forced through the origin with
no data lying there (Hofner et al., 2011).

In conclusion, penalisation is applied to reduce the selection bias for non-informative
covariates. Another useful effect of penalisation is the shrinkage of effects of the
influential covariates (Hofner et al., 2011).

Early stopping strategy

To prevent overfitting, the boosting algorithm should not be run until convergence.
Therefore, a stopping parametermstop, which is a tuning parameter, is used to spec-
ify the optimal number of boosting iterations (Hofner et al., 2014). The optimal
value of this stopping parameter is chosen by resampling approaches or AIC-based
techniques. The resampling approaches assess the appropriate number of boosting
iterations by comparing cross-validated out-of-bag (OOB) empirical risk estimates
for different stopping parameters (Hothorn et al., 2016). In practice mstop can
be obtained by bootstrap samples, k-fold cross-validation or subsampling, as is
implemented in the mboost package. The early stopping strategy together with a
small value of step-length ν leads to a small increase of the effect estimates. Hence,
with an optimal number of boosting iterations, the effect is shrunken such that
the predictive power of the model is maximal. Although this shrinkage technique
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leads to a slightly increased bias, it leads to better prediction accuracy because of
the reduced variance. Moreover, the early stopping strategy stabilises the effect
estimates and avoids multicollinearity (Hofner et al., 2014). As mentioned earlier,
it also supports the process of variable and model selection, since it leads to sparse
models (Hothorn et al., 2010).

2.3 Meta-learning

As proposed in publications by Hutter et al. (2014), Reif et al. (2011), Priya
et al. (2011), Priya et al. (2012) and Doan and Kalita (2016) the approach used
for modelling runtime applies the concept of meta-learning. Reif et al. (2011)
defines meta-learning as using “knowledge about already solved problem instances
to gain information about unknown problems regarding one ore multiple learning
schemes”. Therefore, meta-learning is often applied for predicting the suitability
or performance of classifiers for a given problem. Particularly, regression methods
(meta-regressors) for meta-learning predict quantitative performance values of a
classifier, such as accuracy or runtime, based on a given set of predictors. These
predictors are called meta-features, and they are typically properties of the dataset,
such as the number of instances and number of features. Other measures include
statistical, model-based, or landmarking features (Reif et al., 2011). Additionally,
the hyperparamters of an algorithm can also serve as meta-features.

In practice, regression methods predict, which classifier is best or fastest for an
unknown dataset, given the meta-features. The meta-learning approach usually
involves two steps (Priya et al., 2012): a) the generation of the meta-dataset by
extracting meta-features, such as the dataset characteristics and the algorithm’s
hyperparameters; b) the induction of a meta-learning model by applying a regres-
sion model to the meta-dataset.

Usually, performance of the meta-regressors is evaluated, by using Leave-one-
out cross-validation (LOOCV), 10-fold cross-validation or similar strategies (Priya
et al., 2011). The accuracy of the predictions is assessed with measures like the
mean absolute deviation (MAD) (Priya et al., 2011), the root mean squared error
(RMSE), the mean absolute error (MAE) (Doan and Kalita, 2016), the relative
absolute error (RAE) (Reif et al., 2011), and many more.



3 Methods

3.1 Data and data generating process

The main objective of this thesis is to model and predict the runtime of six dif-
ferent classification algorithms (gbm, glmnet, naiveBayes, nnet, ranger and rpart)
depending on their hyperparameter settings and the dataset characteristics. The
approach proposed in this thesis uses the concepts of meta-learning. The individual
steps are visualised in figure 3.1 and can be divided into two main parts:

1. The generation of the meta-data includes gathering meta-features, like the
dataset properties and the algorithm’s hyperparameter. Subsequently, the
target classifiers are trained on 65 different datasets with several randomly
drawn hyperparamter sets. This step is implemented by using the platform
OpenML, R packages mlr and batchtools and the LRZ cluster. The infor-
mation about the runtime is stored together with the characteristics of the
dataset and the hyperparameters to create the meta-data.

2. On the basis of the meta-data, one or more meta-regressors are induced
to model the relationship between the meta-features (predictors) and the
runtime (response). A separate regression model needs to be trained for
each target classifier.

3.1.1 Collecting datasets from OpenML

All datasets were collected from OpenML, which is a platform to share results from
machine learning experiments in a standardised way with other users (Vanschoren
et al., 2014). The R package OpenML (Casalicchio et al., NA) integrates OpenML
into R and is available as development version from GitHub.
Currently, there are 19,608 datasets (status on 8 Aug. 2016, Casalicchio et al.
(NA)) available on the platform. In the scope of this thesis, the extent of datasets
was reduced to a reasonable amount. For this purpose, the selection process for
the datasets was first geared to a benchmark study from OpenML (available on
OpenML with tag: study 14), which analysed 127 datasets. Of these datasets those
with less than 500 features and fewer than 20 classes in the target were selected.

15
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Figure 3.1: Proposed meta-learning approach for modelling runtime of classification algorithms.
Diagram was modified and adapted from Priya et al. (2011)

Moreover, only datasets, where the target is a factor variable were chosen in order
to ensure that all the classifiers are able to be run on the selected datasets. Two
datasets were excluded since the farff.reader1 did not support those yet and three
were excluded because of a missing target description in the dataset description.
This selection process led to a total of 65 datasets, which are listed in table B.1.
A summary of the properties of these datasets are presented in table 3.1.

Table 3.1: Summary of the dataset characteristics. It shows the minimum (Min.), maximum
(Max.), median (Med.), mean, first and third quartile (1st Qu., 3rd Qu.) of the measures that
are used for characterising the datasets.

Min. 1st Qu. Med. Mean 3rd Qu. Max.

NumberOfInstances 500.00 930.00 2000.00 5822.00 5744.00 45310.00
NumberOfFeatures 5.00 11.50 23.00 48.59 49.75 300.00
NumberOfClasses 2.00 2.00 3.00 4.60 6.25 15.00
MajorityClassSize 80.00 285.50 720.50 3385.00 2292.00 33220.00

3.1.2 Construction and implementation of the experiments

The experiments to measure runtime were created with the package mlr (Bischl
et al., NA), which provides a framework for modelling, hyperparameter optimi-
sation, feature selection, pre- and post processing of data, resampling strategies,
benchmark studies and parallelisation.

mlr was used to create learners with varying sets of hyperparameters. A learner
is basically an interface for machine learning algorithms in R. In the constructor

1farff (Bischl and Bossek, NA) is the R package with which the arff files are passed.
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of the learner, it is possible to specify the hyperparameter set of the algorithm.
For the present experiments, these hyperparameter sets were generated randomly
for each of the six classification algorithms, respectively learners. Random se-
lection was applied not to all hyperparameters, but to those which are of main
importance for the algorithm’s performance and to those that were considered to
have an impact on runtime. A detailed description of these hyperparameters and
the hyperparameter search space is presented in table B.2. The reason for a ran-
dom selection of hyperparameters is, that it is usually not feasable to consider all
combinations of the hyperparameters in a hyperparameter set, especially, if the
hyperparameter is continuous. Moreover, with every extra dimension, i.e. addi-
tional hyperparameter, the volume increases exponentially. The solution on how to
search such metric spaces is an own research area and is widely discussed in Chávez
et al. (2001). Within the limits of this thesis, we decided to draw 10 ∗ dimension
samples from the hyperparameter search space for each classifier on each dataset.

With mlr’s resampling function, the dataset was split into a training and a test
set. The split rate was also chosen randomly within the hyperparameter set. Thus,
the split rate varies for each experiment. After splitting the dataset, the learner
was trained on the training set and predictions were made on the test set. Addi-
tionally, performance measures, like time needed for training (training time), time
needed for making predictions (prediction time) and the mean misclassification
error (mmce) were assessed. Training and prediction time are measured within
the function calls for modelling and predicting in mlr. These functions call the
R function system.time() and pass the real times (in seconds), that it took to
evaluate the committed expression, to mlr’s time measures.

In order to assess variability of time measurement on a single experiment2, each
experiment was repeated 10 times.

In summary, each classifier needed to be trained on 65 datasets, and on each dataset
the classifier needed to be run with 10 ∗ dimension different hyperparameter sets.
Additionally, each experiment should be repeated ten times. Altogether, this led
to 159,900 models that needed to be fitted in order to measure runtime. Therefore,
the experiments were run on the LRZ cluster, i.e. a batch computing environment.
The R package batchtools (Lang and Surmann, NA) provides a comprehensive
framework for working on a cluster.

In batchtools, experiments are created by defining the problems, algorithms,
as well as, problem and algorithm designs. The algorithm design refers to the
hyperparameter set of the learner. Subsequently, every design is combined with
every problem and every algorithm. In this way each classifier with its various
sets of hyperparameters is run on all defined problems. One such combination is
called experiment. Repeating an experiments creates several “jobs”. Jobs are not
submitted when they are created, instead the jobs and all information regarding the

2An experiment tags the entity of the problem, algorithm and their respective parameters
(Bischl et al., 2015).
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problems, algorithms and designs are filed and recorded in a registry. Submission
of jobs must be called explicitly.

Besides the API (application programming interface) for creating and submitting
jobs, batchtools offers an infrastructure to interact with a cluster, especially with
its scheduler (Bischl et al., 2015). In this context, resource requirements for each
job need to be specified. In order to obtain a valid and interpretable analysis all
jobs were run with the same requirements. To get results for every single job,
this implies setting the runtime limit according to the job, which takes the longest
time, and the memory limit according to the one, which requires the most memory.
However, this was not possible because of three reasons: Firstly, the user needs
to specify an appropriate segment of the cluster, each having their own resource
limits. Secondly, the maximum run time can be estimated by testing some jobs
on the greatest dataset locally. But since the runtime of a job, hence, the runtime
of an algorithm, depends not only on the number of instances of a dataset, this
estimation might be biased. Finally, setting a high general upper limit for runtime
and memory leads to long queue times for each job. Therefore, a trade-off between
an upper limit being as large as possible and a queue time being appropriate for
the schedule of this thesis needed to be determined. This led to following resource
requirements: a runtime limit of 1000 seconds and a memory limit of 2.2 GByte.
These limits were selected in dependence on the limits of the partition of the LRZ
Linux cluster, which was used for this analysis: serial processing was implemented
on the CoolMUC2 cluster, on partition serial mpp2 with 28-way Haswell-based
nodes.

3.2 Statistical analysis

Explorative analysis Explorative analysis in terms of summary statistics were
implemented on training time, prediction time, the total of training and prediction
time and the mean misclassification error.

The variability of runtime was analysed based on the 10 replications per experi-
ment. High variability in runtime measurements within an experiment (entity of
one classifier with one distinct set of hyperparameters and one specific dataset),
and a small average runtime, should lead to cautious interpretation of the models
for predicting runtime. Variability of the runtime measurements within the exper-
iments were assessed with the relative standard deviation (RSD) also known as
the coefficient of variation (cv):

cv =
s

x̄

Thus, the empirical standard deviation s is divided by the mean x̄. This measure
is scale-independent (Kohn, 2005) and is suitable to compare variability between
the classifiers.
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In addition to variability of runtime measurements, variability of prediction accu-
racy, which was measured by the mean misclassification error, was analysed.

Runtime modelling For runtime prediction meta-data was aggregated. Thereby,
the ten replications of one experiment were summarised by taking the average of
these replications. In table B.3 in the appendix the number of observations for the
meta-datasets of each classifier are presented before and after aggregating.

For each classification algorithm, runtime was modelled separately with four dif-
ferent regression models: gradient boosting with component-wise linear models
(glmboost), gradient boosting with smooth components (gamboost), a generalized
linear model (glm) and a random forest. The predictors of those models included:

• dataset characteristics

– NumberOfInstances: number of instances in the dataset

– NumberOfFeatures: number of features in the dataset

– NumberOfClasses: number of classes of the target of the dataset

– MajorityClassSize: size of the majority class of the dataset

• hyperparameters (For a more detailed description please refer to table B.2
in the appendix.)

– naiveBayes: no hyperparameters

– rpart: minsplit, minbucket, cp, maxdepth

– ranger: num.trees, replace, sample.fraction, mtry, respect.unordered.factors,
sub.sample.frac

– glmnet: alpha

– gbm: n.trees, interaction.depth, shrinkage, bag.fraction

– nnet: size, maxit, skip, decay

Responses that were modelled were training time and prediction time.

The accuracy of fit of the regression models were compared to each other with the
root mean squared error (RMSE) (Hyndman and Athanasopoulos, 2014)

RMSE =
√

(mean(yi − ŷi)2,

which is a scale-dependent error measure. yi is the observed runtime, while ŷi is the
predicted runtime. Lower values of RMSE indicate a better model fit. Moreover,
the relative absolute error (RAE) (Reif et al., 2011)

RAE =

∑N
i=1 |ŷi − yi|∑N
i=1 |ȳ − yi|
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was calculated for each regression method on each classifier. The absolute error
of the prediction method is divided by the absolute error of the prediction of
a baseline method, which is – in the present case – the average runtime of the
classifier. A RAE value greater than one indicates that predicting the average is
more precise than using the regression method.

In table B.6 summary statistics for runtimes are presented. It shows that the distri-
bution of the training time and the prediction time for all classifiers is right-skewed
and long-tailed. Therefore, the Gamma-Reg() family (Hothorn et al., 2016) for the
gradient boosting approaches was chosen. This family is suitable for non-negative
response variables and the implemented loss-function is the negative gamma log-
likelihood with logarithmic link function (Buehlmann and Hothorn, 2007). Corre-
spondingly, the Gamma(link = "log") family was chosen for the generalized linear
model (R Core Team, 2016). Since random forest is a non-parametric approach,
no distribution needed to be specified.

Furthermore, for the gradient boosting models a step-size (ν) of 0.3 was used to
reduce computing time. For the same reason, the offset value was set to zero.
The optimal number of boosting iterations (optimal mstop) was calculated by 10-
fold cross-validation and searched for on a grid from one to 100,000. Variable
and model selection were implemented by having several base-learners for each
covariate, which model the competing effects of a covariate.

To reduce model selection bias in gradient boosting with smooth components
(gamboost) the P-spline decomposition approach was used. This implied decom-
posing the smooth effect into an unpenalised polynomial and a smooth deviation
from this polynomial (Hofner et al., 2014). The latter being the non-parametric
smooth part of the decomposition, which is defined via the bols() function. More
specifically, these are P-splines with one degree of freedom and 20 knots. The
unpenalised polynomial corresponds to the parametric part and is specified via
the bbs() function. The type of effects specified in the bols() function included
linear and categorical effects. In the context of the P-spline decomposition, these
base-learners needed to be specified without intercept and a separate intercept
was defined. Thus, the boosting algorithm could explicitly choose and update the
intercept (Hofner et al., 2014). In case the model comprised categorical covariates,
penalised least squares for all parametric base-learners (bols()-learners) with one
degree of freedom (df = 1) need to be added to avoid variable selection bias.

In both boosting modelling approaches, the continuous covariates were centred, in
order to fasten risk minimisation and to avoid that the algorithm does not converge
to the “correct” solution (Hofner et al., 2011).

Variable selection in a generalized linear model glm was achieved with the step

function, which chooses the best model by AIC with a step-wise algorithm. Step-
wise search was performed in a backward-forward manner.

Results of glmboost and gamboost model are presented using partial effect plots.
The partial effects are obtained by summing the functional estimates of the mod-
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elling alternatives for each covariate that were included in the final model. The
modelling alternatives for glmboost included a linear, a quadratic, a square root
and a logarithmic effect. With respect to gamboost a linear and a smooth effect
for each covariate was fitted. The result is a dot chart, whose dots are linked to
each other by a line in order to visualise the shape of the resulting partial effect.

Furthermore, the estimated coefficients of glmboost and glm models on training
time and prediction time are tabulated together for each classifier.

Each random forest was fitted with the default settings of randomForest. Vari-
able importance was measured and is visualised with the help of variable impor-
tance plots. Thereby, two variable importance measures are presented: the mean
decrease in accuracy and the mean decrease in node impurity. The latter is only
visualised, but will not be interpreted. This is, firstly, because this measure prefers
variables with more categories, which is undesirable in cases, where the models has
categorical variables. Secondly, in case of correlated features, this measure decides
on one of the features as being important, while the others become unimportant,
but with no concrete preference of one over the others. Additionally, partial depen-
dence plots are used to illustrate the relationship between an individual covariate
and the predicted runtime obtained from the random forest model.

The data generating process and all statistical analyses were performed using the
statistical software R, version 3.3.0, and the R packages batchtools, version 0.1,
mlr, version 2.9, OpenML, version 1.0, mboost, version 2.6-0, randomForest, version
4.6-12, plyr, version 1.8.4. Both batchtools and OpenML are not released on
CRAN yet, the current development versions are available on GitHub. All charts
are produced using ggplot2, version 2.1.0., reshape, version 0.8.5, gridExtra,
version 2.2.1., and grid, version 3.3.0, or the plot()-function of the respective
model.



4 Results

4.1 Explorative Analysis

In this analysis, the runtime of five classification algorithms, each trained on 65
datasets, was evaluated. Overall 159,900 jobs were submitted, of which 1,133 were
erroneous (= 0.71%) and 2,156 expired (= 1.35%) because of exceeding wall time
or memory limit. These capped runtime observations were not considered in the
analysis. For more details on the erroneous and expired jobs, see table B.4 and
B.5.

The overall mean for training time is 13.364 seconds and for prediction time 0.317
seconds (table 4.1). On average, naiveBayes is the fastest algorithm in training

Table 4.1: Mean of training time, prediction time and total runtime of the five classifiers

Classifier Training Prediction Total

gbm 63.832 0.472 64.304
glmnet 2.173 0.062 2.235
naiveBayes 0.081 1.125 1.205
nnet 7.245 0.019 7.264
ranger 6.759 0.204 6.964
rpart 0.091 0.019 0.11

Total 13.364 0.317 13.680

(0.081 sec) but the slowest in prediction (1.125 seconds). rpart is the second
fastest in training, followed by glmnet (2.173 seconds) and ranger (6.759 sec-
onds). gbm has a comparably high training time of 63.832 seconds. Prediction
time is on average – except for naiveBayes – below one second. If training and
prediction time are considered together (total), then rpart is fastest on average,
followed by naiveBayes, glmnet, ranger, nnet and gbm. The boxplots in figure
4.1a and 4.1b demonstrate the distribution of training time and prediction time,
respectively, for the 6 classifiers on the 65 datasets. All classifiers present numer-
ous outliers, of which a great part are not shown in the plot, because they exceed
60 seconds for training time and 1.2 seconds for prediction time. The most de-

22
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Figure 4.1: Boxplots of the distribution of training and prediction time (a and b), and boxplots
of the distribution of the respective coefficient of variation (c and d) for each classifiers across
the 65 datasets.

viant training time of 1033.790 seconds was observed for a gbm (n.trees = 5000,
interaction.depth = 5, shrinkage = 0.007, bag.fraction = 0.831) on the
“mfeat-factors” dataset. With respect to prediction time the most deviant time
was 6.110 seconds for naiveBayes on the dataset “sylva agnostic”. From the box-
plots and the summary of statistical values of run times in B.6 we can infer that
the distribution for runtimes is right skewed. Therefore, all parametric predictions
models were run with assuming a gamma distribution.

The variability of runtime measurements was assessed by repeating an experiment
with the same set of hyperparameters on the same dataset ten times. It is measured
with the coefficient of variation (cv) to ensure comparability. Variability of training
time is higher than variability of prediction time. (Note the different y-scales in
figure 4.1(c) and 4.1(d).) On average, variability of training time is highest for
nnet and varies the most across the different datasets. The highest variability
observed was for glmnet, rpart and nnet (248, 264.9 and 277.5 respectively).
These values are not presented in the boxplots of 4.1(c), because values above 125
are not shown in the plot. The highest average variability in prediction time was
found for rpart (11.1) and ranger (7.953). The maximum value for prediction
time is 123.4 for ranger, which is not displayed in the boxplot of 4.1(d).
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To measure prediction accuracy the mean misclassification error (mmce) was as-
sessed on all jobs, but was missing on 140 jobs running classifier gbm. The mean of
the mmce of classifiers gbm, glmnet, nnet and rpart is below the overall average
(0.246), while the mmce of naiveBayes and rpart are above (0.3, and 0.38 respec-
tively). Figure 4.2 (a) and table B.6 demonstrate that the distribution of the mmce
is right-skewed for all learners except for rpart. This classifier has almost equally
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Figure 4.2: Boxplots of (a) the distribution of the mean misclassification error (mmce) and (b)
of its coefficient of variance (cv) for each classifier across the 65 datasets.

small, medium and high mmce rates. On 70 jobs the mmce exceeded a value of 0.9.
gbm and naiveBayes both showed these high mmce on dataset “sylva agnostic”
and rpart on “semeion”, while nnet showed them on seven different datasets.

Also the variability of the mmce was measured by the coefficient of variation. It is
on average lowest for rpart, followed by ranger and naiveBayes (figure 4.2(b)).
The interquartile range of rpart’s cv is small (0 - 5.465), while it is greatest for
nnet (0 - 26.810). Maxima of gbm, glmnet, nnet and rpart are not presented in
the graph and are approximately 300 (see B.7 for a detailed summary).

4.2 Model results

The main intent of this thesis is to predict runtime with respect to the dataset
characteristics and the hyperparameters of the algorithm. Four different model ap-
proaches were used for prediction of runtime: gradient boosting with component-
wise linear models, gradient boosting with smooth components, generalized linear
model and random forest. Training time and prediction time were analysed sepa-
rately. The prediction accuracy of the regression models on the training data for
each classifier is shown in table 4.2 and 4.3. The first table presents the results
for the relative absolute error (RAE), the second table for the root mean squared
error (RMSE). The best values for each classifiers are highlighted. The RAE of all
four regression models on all classifiers is below one, indicating that the regression
models are more accurate than a commonly used baseline, the average runtime.
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Table 4.2: Relative absolute error of the four regression models for runtime predictions on
training data for each classifier. Boldface indicates the lowest RAE in each column, thus, for
each classifier.

naiveBayes rpart ranger glmnet gbm nnet

Training time

glmboost 0.407 0.332 0.578 0.417 0.275 0.637
gamboost 0.289 0.265 – 0.267 0.177 0.414
glm 0.412 0.335 – 0.430 0.108 0.628
randomForest 0.166 0.376 0.206 0.270 0.128 0.251

Prediction time

glmboost 0.369 0.750 0.199 0.769 0.220 0.693
gamboost 0.264 0.578 – 0.573 0.224 0.693
glm 0.222 0.760 0.196 0.773 0.137 0.693
randomForest 0.220 0.236 0.083 0.372 0.120 0.693

Table 4.3: Root mean squared error (RMSE) of the four regression models for runtime predic-
tions on training data for each classifier. Boldface indicates the best prediction accuracy in each
column, thus, for each classifier.

naiveBayes rpart ranger glmnet gbm nnet

Training time

glmboost 3.483 0.038 25.041 2.423 71.174 40.277
gamboost 3.540 0.031 – 1.704 39.849 28.037
glm 3.483 0.039 – 2.405 23.747 39.988
randomForest 0.025 0.044 10.121 1.862 24.786 16.914

Prediction time

glmboost 1.332 0.028 0.147 0.066 0.206 42.680
gamboost 1.000 0.022 – 0.046 0.220 42.677
glm 0.941 0.029 0.142 0.067 0.143 42.680
randomForest 0.764 0.009 0.062 0.033 0.121 42.676

A visual comparison of the model fits, thus, a visualisation of the results for the
RMSE, is demonstrated in figure 4.3. On the left observed training times are plot-
ted against predicted training times and on the right results for prediction time
are shown. Each row corresponds to a classifier. With respect to RMSE random
forests (green dots) present the best overall performance for modelling training
time, as well as, for modelling prediction time. Gamboost (blue dots) performs
second best for modelling training time and glm (black dots) for modelling pre-
diction time. Considering only the parametric approaches, the gamboost model
demonstrates the best model fit for training time. With respect to prediction time
gamboost and glm have the lowest RMSE values among the parametric models.
All regression models show a tendency to get increasingly inaccurate, the greater
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the observed runtime. glmboost and glm on training time tend to overestimate pre-
diction time for training times greater than 0.4 seconds for classifier naiveBayes

and rpart. For classifier gbm the glmboost overestimates training time for all ob-
served training times. With respect to classifiers ranger, glmnet and nnet the
training time is underestimated for values greater than 200 seconds, 20 seconds
and 275 seconds respectively. Notably, the meta-dataset for ranger has one ob-
servation, where observed training time was 50.552 seconds. The best prediction
for this observation was made by random forest (predicted training time: 18.682
seconds). However, the difference between the predicted and the observed value
is rather larger. Also particularly remarkable, are the model fits on ranger. glm-
boost (red dots) has a RMSE twice as high as random forest. With respect to
prediction time, the tendency to over or underestimate is not as distinct as it is
for training time. Model fits for classifier rpart and glmnet are not as accurate
as the model fits for the other classifiers. Estimated prediction time for glmnet is
underestimated starting from a value of 0.3 seconds. Prediction accuracy for nnet
is good, yet, for prediction times greater than 0.15 seconds all regression models
have the tendency to underestimate. However, there are some specific data points,
where true prediction time is 0.0778 seconds and the corresponding prediction is
five times larger than that value.

A summary on the variables that were excluded by either the boosting process or,
in case of glm, the step-selection, is demonstrated in table 4.4 for the parametric
models on training time and in table 4.5 for the parametric models on predic-
tion time. Additionally, the optimal number of boosting iterations mstop for the
boosting algorithms are tabulated. For rpart, glmnet and nnet an appropriate
value for mstop could not be found with a 10fold cross-validation on a grid search
from 1 to 100,000. A value near 100,000 indicates, that the search would have
been continued, if the grid search was extended to even larger upper boundaries.
Since the search for an appropriate mstop on grids of this size takes several hours,
no further search was implemented. However, this needs to be considered with
respect to the presented results. Particularly, the variable and model selection of
the models, where the appropriate mstop was not found, led not to sparser models.
Mostly, all variables were included in the final model, or only a few variables were
excluded.

Furthermore, results of the glm fit should be interpreted cautiously, when either the
glm algorithm itself, or the subsequent step-selection algorithm did not converge.
This applies to the glm model on training time for classifier glmnet, to the glm
model on prediction time for classifier gbm, and to the glm model on both runtimes
for classifier ranger. Moreover, there are no model result for gamboost for classifier
ranger. The model could neither be fitted on training time nor on prediction time,
since Cholesky factorisation failed.

In the following sub-chapters, the results of the regression methods modelling
the classifiers runtime are presented separately for each classifier. To stay within
the scope of this thesis, results of the best performing regression method and
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Figure 4.3: Quantitative comparison of the regression models’ prediction accuracy on training
data for each classifier. The straight line is the bisector of the coordinate axes. For a perfect fit
all data points lie on that line.
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results of glmboost, which is the method this thesis focused on, will be presented.
Additionally, results derived from the random forest fit are pointed out for those
classifiers, where random forest is not the best prediction method. In order to
keep the thesis complete, the appendix includes: the estimated coefficients of the
glmboost and the glm model in table B.8 to B.13. The results of the glmboost
model are visualised with partial effect plots for each covariate. The plots for all
six classifiers are shown from figure A.1 to A.12. The results of the gamboost
models are demonstrated in figure A.13 to A.22. These plots display the single
linear and the single smooth partial effect, as well as the combined partial effect.
The variable importance plots of random forest are shown in figure A.23 to A.34.
Additionally, partial dependency plots are demonstrated from figure A.35 to A.46.

Naive Bayes

Classifier naiveBayes has one hyperparameter, the laplace parameter. This was
set to one, in order to avoid errors due to zero probability values. Hence, the covari-
ates of the model are: NumberOfInstances, NumberOfFeatures, NumberOfClasses
and MajorityClassSize.

The glmboost model on training time has a RMSE of 3.483 and fits the data second
best, after random forest. The partial effect plots in figure A.1 demonstrate that
training time increases for an increasing NumberOfInstances and for an increasing
NumberOfFeatures. The increase in training time is, initially, very sharp for both
covariates. For NumberOfInstances it then passes into a clear linear increase. An
increase in predicted training time can also be noted for NumberOfClasses between
3 and 11 classes. For MajorityClassSize the increase in training time is also initially
sharp, but drops after a size of approximately 15,000.

The best model on training time as well as on prediction time is random forest
with respect to RMSE. The results of the variable importance measurements of
random forest are displayed in A.23 and A.24. In both models NumberOfFeatures
is the most important variable, followed by NumberOfInstances. The respective
partial dependence plots (see A.35) reveal a quasi linear relationship between the
estimated training time and NumberOfFeatures.

The results of glmboost on prediction time are presented in figure A.2. An in-
crease in the NumberOfInstances and NumberOfFeatures, results, initially, in a
sharp increase in prediction time, which soon flattens. The other two covariates
NumberOfClasses and MajorityClassSize have no influence on prediction time.

Recursive Partitioning

The implementation of a decision tree in R with rpart has several hyperparameters
that can be tuned. In this analysis the influence of the hyperparameters maxdepth,



CHAPTER 4. RESULTS 29

T
a
b
le

4
.4
:

R
es

u
lt

s
of

va
ri

ab
le

se
le

ct
io

n
:

ex
cl

u
d

ed
va

ri
a
b

le
s

fr
o
m

m
o
d

el
s

o
n

tr
a
in

in
g

ti
m

e.
V

a
ri

a
b

le
se

le
ct

io
n

w
a
s

o
b

ta
in

ed
d

u
e

to
b

o
o
st

in
g

(g
lm

b
o
o
st

an
d

ga
m

b
o
os

t)
or

st
ep

-w
is

e
se

le
ct

io
n

re
ga

rd
in

g
g
l
m

fo
r

ea
ch

cl
a
ss

ifi
er

.
A

d
d

it
io

n
a
ll

y,
th

e
n
u

m
b

er
o
f
b

o
o
st

in
g

it
er

a
ti

o
n

s
(m

s
to
p
)

o
f
th

e
b

o
o
st

in
g

a
lg

o
ri

th
m

s
is

ta
b

u
la

te
d

.

g
lm

b
o
o
st

g
a
m
b
o
o
st

g
lm

m
s
to

p
E
x
cl
u
d
ed

v
a
ri
a
b
le
s

m
s
to

p
E
x
cl
u
d
ed

v
a
ri
a
b
le
s

E
x
cl
u
d
ed

v
a
ri
a
b
le
s

n
a
iv
eB

a
y
es

5
1
7
7
8

–
4
6
5
2
4

–
N
u
m
b
er
O
fC

la
ss
es
^
2
,
N
u
m
b
er
O
fI
n
st
a
n
ce
s^
2

rp
a
rt

4
7
2
4
0

sq
rt
(m

a
x
d
ep

th
)

9
9
9
7
3

–
lo
g
(N

u
m
b
er
O
fI
n
st
a
n
ce
s)
,
N
u
m
b
er
O
fC

la
ss
es
,

N
u
m
b
er
O
fC

la
ss
es
^
2
,

lo
g
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,
m
in
b
u
ck
et
^
2
,

m
in
sp

li
t^
2
,
lo
g
(m

in
sp

li
t)
,
sq
rt
(m

a
x
d
ep

th
),

lo
g
(m

a
x
d
ep

th
)

ra
n
g
er

9
9
9
9
9

sq
rt
(N

u
m
b
er
O
fC

la
ss
es
),

sa
m
p
le
.f
ra
ct
io
n

–
N
o
re
su

lt
:
C
h
o
le
sk
y
fa
ct
o
ri
sa
ti
o
n
fa
il
ed

.
N
o
re
su

lt
:
s
t
e
p
(
)
co

u
ld

n
o
t
b
e
a
p
p
li
ed

si
n
ce

a
lg
o
ri
th

m
d
id

n
o
t
co

n
v
er
g
e.

g
lm

n
et

9
9
9
9
8

–
9
9
9
9
2

–
N
u
m
b
er
O
fI
n
st
a
n
ce
s^
2
,
M
a
jo
ri
ty
C
la
ss
S
iz
e^

2
,

lo
g
(a
lp
h
a
),

sq
rt
(a
lp
h
a
)

g
b
m

4
0

M
a
jo
ri
ty
C
la
ss
S
iz
e,

N
u
m
b
er
O
fC

la
ss
es
,

N
u
m
b
er
O
fI
n
st
a
n
ce
s,

N
u
m
b
er
O
fI
n
st
a
n
ce
s^
2
,

sq
rt
(N

u
m
b
er
O
fI
n
st
a
n
ce
s)
,

N
u
m
b
er
O
fF
ea

tu
re
s,

N
u
m
b
er
O
fF
ea

tu
re
s^
2
,

sq
rt
(N

u
m
b
er
O
fC

la
ss
es
),

M
a
jo
ri
ty
C
la
ss
S
iz
e^

2
,

sq
rt
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,

lo
g
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,
n
.t
re
es
,
n
.t
re
es
^
2
,

in
te
ra
ct
io
n
.d
ep

th
,
in
te
ra
ct
io
n
.d
ep

th
^
2
,

lo
g
(i
n
te
ra
ct
io
n
.d
ep

th
),

sh
ri
n
k
a
g
e,

sh
ri
n
k
a
g
e^

2
,
sq
rt
(s
h
ri
n
k
a
g
e)
,
lo
g
(s
h
ri
n
k
a
g
e)
,

b
a
g
.f
ra
ct
io
n
,
b
a
g
.f
ra
ct
io
n
^
2

2
1
2

sq
rt
(N

u
m
b
er
O
fI
n
st
a
n
ce
s)
,
sh

ri
n
k
a
g
e,

sq
rt
(s
h
ri
n
k
a
g
e)
,
b
a
g
.f
ra
ct
io
n
^
2

in
te
ra
ct
io
n
.d
ep

th
^
2
,
lo
g
(i
n
te
ra
ct
io
n
.d
ep

th
)

n
n
et

9
9
5
5
1

–
9
9
8
8
0

–
M
a
jo
ri
ty
C
la
ss
S
iz
e^

,
si
ze
,
lo
g
(m

a
x
it
)



CHAPTER 4. RESULTS 30

T
a
b
le

4
.5
:

R
es

u
lt

s
of

va
ri

ab
le

se
le

ct
io

n
:

ex
cl

u
d

ed
va

ri
a
b

le
s

fr
o
m

m
o
d

el
s

o
n

p
re

d
ic

ti
o
n

ti
m

e.
V

a
ri

a
b

le
se

le
ct

io
n

w
a
s

o
b

ta
in

ed
d

u
e

to
b

o
o
st

in
g

(g
lm

b
o
o
st

an
d

ga
m

b
o
os

t)
or

st
ep

-w
is

e
se

le
ct

io
n

re
ga

rd
in

g
gl

m
fo

r
ea

ch
cl

a
ss

ifi
er

.
A

d
d

it
io

n
a
ll

y,
th

e
n
u

m
b

er
o
f
b

o
o
st

in
g

it
er

a
ti

o
n

s
(m

s
to
p
)

o
f
th

e
b

o
o
st

in
g

a
lg

o
ri

th
m

s
is

ta
b

u
la

te
d

.

g
lm

b
o
o
st

g
a
m
b
o
o
st

g
lm

m
s
to

p
N
o
t
se
le
ct
ed

v
a
ri
a
b
le
s

m
s
to

p
N
o
t
se
le
ct
ed

v
a
ri
a
b
le
s

N
o
t
se
le
ct
ed

v
a
ri
a
b
le
s

n
a
iv
eB

a
y
es

2
0

N
u
m
b
er
O
fI
n
st
a
n
ce
s,

N
u
m
b
er
O
fI
n
st
a
n
ce
s^
2
,

N
u
m
b
er
O
fF
ea

tu
re
s^
2
,
N
u
m
b
er
O
fC

la
ss
es
,

N
u
m
b
er
O
fC

la
ss
es
^
2
,

sq
rt
(N

u
m
b
er
O
fC

la
ss
es
),

lo
g
(N

u
m
b
er
O
fC

la
ss
es
),

M
a
jo
ri
ty
C
la
ss
S
iz
e,

M
a
jo
ri
ty
C
la
ss
S
iz
e^

2
,

sq
rt
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,

lo
g
(M

a
jo
ri
ty
C
la
ss
S
iz
e)

5
6
1

–

rp
a
rt

9
9
9
9
7

m
a
x
d
ep

th
9
9
9
6
4

–
N
u
m
b
er
O
fI
n
st
a
n
ce
s^
2
,

lo
g
(N

u
m
b
er
O
fI
n
st
a
n
ce
s)
,
m
in
sp

li
t,

m
in
b
u
ck
et
,
m
in
b
u
ck
et
^
2
,
cp

,
cp

^
2
,
sq
rt
(c
p
),

lo
g
(c
p
),

m
a
x
d
ep

th
,
m
a
x
d
ep

th
^
2
,

lo
g
(m

a
x
d
ep

th
)

ra
n
g
er

9
9
1
1
7

sa
m
p
le
.f
ra
ct
io
n

–
N
o
re
su

lt
:
C
h
o
le
sk
y
fa
ct
o
ri
sa
ti
o
n
fa
il
ed

.
sq
rt
(N

u
m
b
er
O
fI
n
st
a
n
ce
s)
,

sa
m
p
le
.f
ra
ct
io
n
^
2
,
lo
g
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,

sa
m
p
le
.f
ra
ct
io
n
^
2
,
lo
g
(s
a
m
p
le
.f
ra
ct
io
n
),

n
u
m
.t
re
es
,
re
p
la
ce
,

g
lm

n
et

9
9
3
9
4

–
1
0
0
0
0
0

–
N
u
m
b
er
O
fI
n
st
a
n
ce
s^
2
,

lo
g
(N

u
m
b
er
O
fF
ea

tu
re
s)
,

sq
rt
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,
a
lp
h
a
,
a
lp
h
a
^
2

g
b
m

4
5

N
u
m
b
er
O
fI
n
st
a
n
ce
s,

N
u
m
b
er
O
fI
n
st
a
n
ce
s^
2
,

N
u
m
b
er
O
fF
ea

tu
re
s,

N
u
m
b
er
O
fF
ea

tu
re
s^
2
,

sq
rt
(N

u
m
b
er
O
fF
ea

tu
re
s)
,

lo
g
(N

u
m
b
er
O
fF
ea

tu
re
s)
,
N
u
m
b
er
O
fC

la
ss
es
,

N
u
m
b
er
O
fC

la
ss
es
^
2
,

sq
rt
(N

u
m
b
er
O
fC

la
ss
es
),

M
a
jo
ri
ty
C
la
ss
S
iz
e,

lo
g
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,
n
.t
re
es
^
2
,

in
te
ra
ct
io
n
.d
ep

th
,
in
te
ra
ct
io
n
.d
ep

th
^
2
,

sh
ri
n
k
a
g
e,

sh
ri
n
k
a
g
e^

2
,
sq
rt
(s
h
ri
n
k
a
g
e)
,

lo
g
(s
h
ri
n
k
a
g
e)
,
b
a
g
.f
ra
ct
io
n
,
b
a
g
.f
ra
ct
io
n
^
2
,

sq
rt
(b

a
g
.f
ra
ct
io
n
),

lo
g
(b

a
g
.f
ra
ct
io
n
)

1
0
0
6

in
te
rc
ep

t
N
u
m
b
er
O
fI
n
st
a
n
ce
s^
2
,

sq
rt
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,

lo
g
(M

a
jo
ri
ty
C
la
ss
S
iz
e)
,
in
te
ra
ct
io
n
.d
ep

th
,

in
te
ra
ct
io
n
.d
ep

th
^
2
,
sq
rt
(i
n
te
ra
ct
io
n
.d
ep

th
),

sh
ri
n
k
a
g
e,

sh
ri
n
k
a
g
e^

2
,
sq
rt
(s
h
ri
n
k
a
g
e)
,

lo
g
(s
h
ri
n
k
a
g
e)
,
lo
g
(b

a
g
.f
ra
ct
io
n
)

n
n
et

9
7
5
9
5

sk
ip

1
0
0
0
0
0

–
sq
rt
(N

u
m
b
er
O
fI
n
st
a
n
ce
s)
,

M
a
jo
ri
ty
C
la
ss
S
iz
e^

2
,
lo
g
(s
iz
e)
,
m
a
x
it
^
2
,

lo
g
(m

a
x
it
),

sq
rt
(m

a
x
it
),

d
ec
a
y
^
2



CHAPTER 4. RESULTS 31

minsplit, minbucket and cp, as well as the characteristics of the dataset on
runtime were analysed.

The results of gamboost on training time, the model with the lowest RMSE, are
visualised in A.15. The linear partial effects, indicate that training time increases
for NumberOfInstances, NumberOfFeatures, NumberOfClasses and hyperparame-
ter minsplit, while it decreases for MajorityClassSize, minbucket, and cp. Com-
bining the linear effect with the smooth effect, results in partial effect plots, which
are quite rough.

A clearer picture of the partial effects, however, can be obtained from the results of
the glmboost model plotted in A.3. The effect of NumberOfInstances, NumberOf-
Features and MajorityClassSize on training time is predominately the combination
of a logarithmic and a square root effect. Training time increases linearly with the
number of classes, while it decreases quadratically for an increase in the depth of
a tree (maxdepth). A negative quadratic effect can also be observed for the com-
plexity parameter (cp) for values of cp greater than approximately 0.0125. The
effect of minsplit and minbucket on training time is approximately quadratic,
except for values of these hyperparameter that are near zero.

In terms of the variable importance measures obtained from the random forest
fit, the four most important variables are the dataset characteristics (left side of
figure A.25 and A.26), independently of the response variable. With respect to
the associated partial dependence plots (figure A.37), there is a monotonically
increasing relationship between the NumberOfFeatures, NumberOfInstances and
MajorityClassSize and the predicted training time. With respect to prediction
time (figure A.38), a monotonically increasing relationship can only be observed
for NumberOfFeatures and NumberOfInstances. The rest of the predictors do not
correlate with the predicted runtime.

The only effect that was excluded by the boosting process of glmboost on pre-
diction time was the linear effect of maxdepth. However, most of the estimated
coefficients tabulated in B.9 have values below 0.0005. Since the coefficients are
rounded to the third decimal place for clarity, an effect of 0 is tabulated for values
below 0.0005. This concerns almost all quadratic effects, and the linear effects
for MajorityClassSize, NumberOfInstances, minsplit and minbucket. The corre-
sponding partial effects are displayed in A.4. The shape of the partial effect for
NumberOfInstances and maxdepth are similar and are a combination of a relevant
logarithmic and a square root effect. First, prediction time increases, sharply –
in case of NumberOfInstances, plateaus for a short distance and slightly drops
down for more than 20,000 instances or a tree depth greater than 15. The par-
tial effect for NumberOfFeatures is approximately logarithmic. An increase in
NumberOfClasses leads to a linear decrease in prediction time. Prediction time
of MajorityClassSize is shortest for an approximate size of 10,000. Class sizes
that are smaller or greater yield a greater prediction time. For small values of
minsplit and minbucket prediction time can be very short or quite long. Values
of complexity parameter cp greater than approximately 0.02 result in a smaller
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estimated prediction time.

Random forest

Runtime was also analysed for an R implementation of random forest called
ranger, which is stated to be a “fast implementation of random forests” (Wright,
2016). The following hyperparameters of ranger were analysed regarding their
influence on runtime: num.trees, mtry, sample.fraction, respect.unordered
factors and replace.

When fitting a random forest on training time, the most important variable is
respect.unordered.factors, followed by the dataset characteristics (left side of
figure A.27). When fitting it on prediction time, the most important variable is
num.trees, also followed by the dataset characteristics (left side of figure A.28).
But values of mean decrease in accuracy are already quite low for NumberOfFea-
tures and NumberOfClasses. This is also demonstrated in the partial dependence
plots of figure A.40, where an approximate linear relationship between num.trees,
NumberOfInstances and MajorityClassSize and the estimated prediction time can
be assumed, while the other covariates do not have an influence.

The partial effects, obtained from glmboost on training time, for NumberOfIn-
stances, num.trees, sample.fraction and mtry are predominantly a combina-
tion of a logarithmic and a square root effect (see figure A.5). This means, that
after an initial, sharp increase in training time, for small values of these covariates,
the training time stabilises or slightly continues to grow, after reaching the highest
point. The partial effect of NumberOfClasses is the sum of an estimated coefficient
of -0.154 for the linear, of 0.013 for the quadratic and of 0.489 for the logarithmic
effect (see table B.10). Altogether, however, this leads to an almost linear shape
for the combined effect. The estimated coefficient for sampling with replacement
(replace = TRUE) is -0.1. This implies, that sampling with replacement changes
training time by a factor of exp(−0.1) = 0.905, with all other predictors unchanged.
If respect.unordered.factors is set to TRUE training time increases by a factor
of 2.028, with all other predictors held constant.

The results for the glmboost model on prediction time are tabulated in table B.10
and illustrated in figure A.6. For the covariates NumberOfInstances, num.trees
and sample.fractions the shape of the effects are quite similar. While the effect
of MajorityClassSize has an approximately positive linear effect on training time,
it has a negative quadratic effect on prediction time, with the highest outcome
for 9 classes. Also for mtry the effect on runtime reverses: for training time an
increase in mtry, leads to an increase in estimated training time, while an increase
of mtry for values greater than 200 leads to a decrease in prediction time. If
respect.unordered.factors is set to TRUE, the on average expected prediction
time increases by a factor of 1.038, given all other covariates remain constant. For
replace = TRUE prediction time changes by a factor of 0.992.



CHAPTER 4. RESULTS 33

Generalized linear model with lasso or elastic-net regularisation

As representative for generalised linear models, runtime of glmnet was analysed.
The analysed covariates include the characteristics of the dataset and alpha, which
is a hyperparameter of glmnet controlling the elastic-net penalty.

The gamboost model presents the best performance in terms of prediction accu-
racy, when modelling training time. The final model contained all effects of all
covariates1. The smooth effects of the covariates are quite rough, leading also to
rough combined partial effects (see A.17). If the fluctuations are not taken into
account, training time increases with the NumberOfInstances, NumberOfFeatures,
NumberOfClasses and alpha. Regarding MajorityClassSize no trend on training
time can be suggested as the curve fluctuates greatly. The partial effect of alpha
on training time, firstly, increases linearly. Then it fluctuates on a high level until
it finally drops.

The results for glmboost on training time reveal similar trends for NumberOfIn-
stances, NumberOfFeatures and NumberOfClasses. For MajorityClassSize a nega-
tive, linear effect can be determined: an increasing size of the majority class, results
in a decrease of training time. Hyperparameter alpha has a positive influence on
the predicted training time, after an initial small drop.

The glmboost model on prediction time did not exclude any variable in the boost-
ing process and has a mstop value near the upper boundary of the searched grid.
The combined partial effects displayed in A.8 demonstrate a shape for the effect of
NumberOfInstances on prediction time, that results from a sum of a square root
effect of 0.072 and a logarithmic effect of -0.468 (see B.11 for the estimated coeffi-
cients). The shape for NumberOfFeatures is a parabola with a negative sign, with
the highest point for about 200 features. Regarding NumberOfClasses the effect
on estimated prediction time is a combination of all effects. From 2 to 4 classes
prediction time increases, from 4 to 8 classes it plateaus and then it increases
again. Except for small values of alpha, where prediction time could be either
low or high, increasing values of alpha do not have an effect on the estimated
prediction time.

The least important variables for the random forest fit on training time as well as
on prediction time is alpha. On the contrary, the dataset characteristics, headed
by NumberOfFeatures and followed by NumberOfClasses, MajorityClassSize and
NumberOfInstances, are important variables (see left side of figure A.29 and A.30).

Generalised boosted regression modelling

For classifier gbm, a boosting algorithm, the influence of the characteristics of the
dataset and the influence of four of its hyperparameters on runtime were analysed.

1Note, that mstop is 99,992 and variable selection probably did not occur, because the appro-
priate mstop was not found yet.
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These hyperparameters include: the number of trees (n.trees), the size of the
tree (interaction.depth), the learning-rate (shrinkage), and the fraction of the
training set on which the next tree in the expansion is fitted (bag.fraction).

The best fit with respect to RMSE for modelling training time was achieved by a
glm. The final model after stepwise variable selection included all variables except
for the quadratic and logarithmic effect of interaction.depth, the quadratic
effect of bag.fraction and the square root effects of NumberOfInstances and
shrinkage. The model results are tabulated in table B.12 and visualised in figure
4.4. The only estimated coefficient greater than 0.0005 for NumberOfInstances is
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Figure 4.4: Combined functional estimates of glm modelling training time.

the estimate for the logarithmic effect. Moreover, the shape of the effects of Num-
berOfFeatures, NumberOfClasses, n.trees and bag.fraction resemble the shape
of the effect for NumberOfInstances, indicating that the estimate for the logarith-
mic effect has a strong influence here. Function estimates for interaction.depth
are approximately linear and negative quadratic for shrinkage. The effect for
MajorityClassSize is a combination of a small positive square root effect and a
negative logarithmic effect. This implies, that after an initial drop for very small
class sizes, the estimated training time increases until it reaches its peak for a size
of about 5,000. For majority classes greater than that, the estimated training time
decreases monotonically.
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Comparing the results of the glm to glmboost visually (compare figure 4.4 to A.9),
demonstrates that the shape of the effects are approximately the same for the mod-
elling approaches for covariates included in both models. However, the estimated
coefficients that contribute to that shape differ in their orders of magnitude (for
the estimated coefficients refer to B.12), and sometimes even coefficients from dif-
ferent modelling alternatives lead to an approximately similar shape. The boosting
process of glmboost excluded all modelling alternatives for MajorityClassSize and
shrinkage, while the glm attributes a approximately negative, linear effect for
MajorityClassSize for values greater than 5,000, and a negative, quadratic effect
of shrinkage on training time.

The boosting process of glmboost on prediction time also excluded all modelling
alternatives for shrinkage from the final model. Hence, shrinkage has no influ-
ence on runtime when using the glmboost modelling approach. Moreover, Num-
berOfFeatures and bag.fraction have no influence on the prediction time of gbm.
Otherwise, function estimates for the model on training time and the model on
prediction time differ only slightly. The only relevant function estimate for Ma-
jorityClassSize, which was excluded by glmboost on training time, is a negative
square root effect, i.e. for an increasing MajorityClassSize prediction time drops.

The RMSE of random forest on training time is the second lowest. The results
of variable importance measurements are shown in figure A.31. With respect
to mean decrease in accuracy the most important variable is n.trees, followed
by NumberOfInstances, interaction.depth and bag.fraction. Hence, for run-
time behaviour of the classifier gbm its hyperparameters do play an important
role. The corresponding partial dependency plots (figure A.43) show that the
relationship between predicted training time and n.trees, NumberOfFeatures,
interaction.depth, bag.fraction and NumberOfClasses is approximately lin-
ear, while it seems to be logarithmic for NumberOfInstances and constant for Ma-
jorityClassSize and shrinkage. If we compare these results to the results obtained
from the fit of random forest on prediction time, the most important variables are
n.trees, NumberOfClasses, NumberOfInstances and interaction.depth. This
indicates, that interaction.depth and n.trees are important for modelling
training time and prediction time.

Single-hidden layer neural network

One of many implementations of neural networks is nnet, a single-hidden layer
neural network. In this runtime analysis the effect of the characteristics of the
dataset and four algorithm specific hyperparameters were investigated. The latter
include the number of units in the hidden layer (size), whether or not to add a
skip-layer connection (skip), the regularisation parameter (decay) and the max-
imum number of iterations (maxit). Note, that the logarithmic effect for decay
needed to be omitted, since there were zero values for this covariate.

Again random forest demonstrates the best fit among all four regression methods,
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both on training time and prediction time. The results of variable importance
measurements of random forest on training time are presented in A.33. Both
importance measures agree on the most important variable: NumberOfFeatures.
With respect to mean decrease in accuracy, the other three most important vari-
ables are MajorityClassSize, skip and NumberOfInstances. Comparing this to
the results obtained on prediction time (see left side of figure A.34), shows that
NumberOfFeatures is also the most important variable for modelling prediction
time. Furthermore, the other characteristics of the dataset have a major impact
on prediction time.

The results of the analysis with glmboost are shown in figure A.11 for training
time and in figure A.12 for prediction time. The function estimate of the logarith-
mic modelling alternative for NumberOfInstances, NumberOfFeatures and maxit

dominates the influence on training time, leading to an approximately logarithmic
partial effect of these covariates on training time. Training time increases linearly
with an increasing size, hence, an increasing number of units in the layer. Time
also increases for an increasing NumberOfClasses, but not linearly. In contrast,
training time decreases linearly with increasing MajorityClassSize. Allowing for
skip-layer connections, changes training time by a factor of 0.963, with all other
covariates held constant.

The partial effect plots of NumberOfInstances and NumberOfFeatures, derived
from glmboost on prediction time, show a similar shape: after an initial increase
of estimated prediction time, training time slowly drops down again for more
than 25,000 instances, and more than 200 features respectively. NumberOfClasses
and MajorityClassSize overall have a negative effect on estimated prediction time.
However, the decrease of prediction time for increasing covariate values is not
linear, and the shape demonstrated here, results from the sum of the estimated
coefficients. The estimated prediction time has its peak for size = 1, which refers
to one unit in the hidden layer, and then drops down for two units, increases until
a second peak for 6 and 7 units is reached. Then prediction time drops down again
for more than 7 units. Function estimates of decay and maxit result in a similar
shape of the effect. After a sharp increase in training time for small values of
the respective covariates, the increase slows down, plateaus and drops for values
greater than 0.5 for decay and 500 for maxit. Setting skip = TRUE leads to a
change by a factor of 0.924, with all other variables held constant.



5 Conclusion

A major goal of every machine learning project is to be as accurate and efficient as
possible (Doan and Kalita, 2016). This implies, the selection of one or a couple of
appropriate machine learning algorithms in terms of accuracy and computational
efficiency for a given set of problems. Hence, prediction of runtime plays a cru-
cial role in various fields of application of machine learning algorithms. The main
objective of this thesis was to analyse and model runtime behaviour of different
classification algorithms. For this purpose, a meta-learning approach was applied.
Since runtime depends on the characteristics of the dataset and the hyperparame-
ters of the classifier, meta-features concerning the dataset characteristics and the
hyperparameters were used to create the meta-data for the regression model. Four
different regression models (glmboost, gamboost, glm and randomForest) were
compared, with a focus on gradient boosting with component-wise linear models.

The experiments included modelling runtime of six classifiers (naiveBayes, rpart,
ranger, glmnet, gbm and nnet), which were run on 65 OpenML datasets, with
four different regression methods. The goodness-of-fit of the regression models was
assessed using two measures: RAE and RMSE.

With RAE, the four regression methods were compared to the average runtime.
All regression models had a RAE below one, which indicates, that it is more precise
to use the regression method than the average runtime in all cases.

The RMSE is a commonly used evaluation metric for regression problems and was
compared between the four regression models. Random fores clearly outperformed
the other regression models, having the lowest RMSE in all models on prediction
time. Moreover, it performed best in all models on training time, except for models
regarding classifiers glmnet and gbm. Also Hutter et al. (2014) found random
forest to be the best prediction model, when comparing model performance of
random forest against ridge regression methods, neural networks and gaussian
process regression. Hutter et al. (2014) attribute the high performance of random
forests on highly heterogeneous data to the fact that tree-based methods model
different parts of the data differently. However, Hutter et al. (2014) did not assess
the quality of prediction on training data, but evaluated model performance by
using 10-fold cross-validation. In order to generalise predictive performance to new
cases, strategies like cross-validation and bootstrap need to be implemented (Zou
et al., 2012), since an evaluation only on training data easily leads to overoptimistic

37
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and overfitted models (Saed, 2016). Therefore, future work should evaluate model
performance of the four regression methods used in this thesis. With packages
like mlr (Bischl et al., NA) or caret (Kuhn et al., 2016) the implementation is
greatly supported. However, since models like gamboost are only partly or not yet
included in these packages, one should consider some more time for setting up the
evaluation.

To interpret the results of randomForest, variable importance was measured. The
results indicate, which variables are most important, and can be used as a tool
to reduce the number of variables for future regression methods on runtime. Re-
gardless of the response variable, NumberOfInstances and NumberOfFeatures are
among the four most important variables in all models, except for three cases.
Most of the algorithm’s hyperparameters are not among the three most important
variables. Exceptions include ranger’s respect.unordered.factors and gbm’s
n.trees for models on training time. With respect to models on prediction time,
it is ranger’s num.trees.

Another approach to identify suitable meta-features – as proposed by Reif et al.
(2011) and Priya et al. (2011), is to calculate the Pearson product moment corre-
lation coefficient of the actual runtime and the predicted runtime for different sets
of meta-features or single meta-features.

Descriptive analysis of the runtimes demonstrated that the distribution of run-
time was extremely right-skewed with wide ranges of values, which makes it more
difficult to predict runtime (Priya et al., 2011). Assuming that the dataset charac-
teristics have a major influence on runtime, the reason for the skewness of runtime
can be found in the right-skewed distribution of the meta-features relating to the
dataset characteristics. Analysis and modelling would benefit from a more bal-
anced selection of datasets.

The interpretation of the parametric models, which include several modelling alter-
natives for one covariate, was done by describing partial effect plots. The demon-
strated effects for glmboost were in most cases the sum of the functional estimates
of all modelling alternatives, and for gamboost rough curves, resulting from rough
function estimates for the smooth component. This is partly, because the property
of the boosting algorithms to select models and variables did in most cases not
lead to sparser models. Secondly, this is because the search for an optimal mstop

often was not successful on a grid from 1 to 100,000. In this context Mayr et al.
(2012) states, that the ability of the boosting algorithm to find sparser and more
interpretable models with good prediction accuracy in a fully data driven manner
is limited. The problem is selecting the optimal stopping iteration mstop. Com-
monly, the algorithm is run to a large mstop and the optimal number of boosting
iterations is assessed based on a information criteria (e.g. AIC) or resampling
strategies, with the latter being applied in the present experiments. This tends to
stop the model too late, which results in large models, and can lead to substantial
overfitting. To overcome this problem, Mayr et al. (2012) introduced a new se-
quential stopping rule, which is fully data-driven and frees the user from defining
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an upper boundary for the search grid. Another approach for more stable variable
and model selection is to apply stability selection, a function that comes with the
mboost package (Hothorn et al., 2016).

In addition to the dataset characteristics and the algorithm’s hyperparameters,
future work on runtime analysis, should include statistical, information theo-
retic, model-based, landmarking and time-based meta-features. Time-bsaed meta-
features are calculated in order to take the user’s machine into account. Besides
time-based meta-features, one could also use measures that are related to the cur-
rent state of the computational environment, as proposed by Priya et al. (2011).
These measures are, for example the current free memory and the current CPU
idle in the machine.

In the experimental setup for this thesis each classification algorithm was ter-
minated after a captime of 1,000 seconds. This leads to observations that are
terminated before finishing. Hutter et al. (2014) name those observations capped
runtime observations. In this thesis capped observations were excluded from anal-
ysis, while Hutter et al. (2014) treated capped observations as if they have finished
at captime. But there are alternatives to these approaches: one can also consider
these observations as right-censored data and build regression models with cen-
sored data. Hutter et al. (2014) mentions some methods that could be considered
for modelling censored data: gaussian processes, random forest for censored data
and non-parametric kaplan meier estimators.

Altogether, future work should analyse runtime by using the meta-learning ap-
proach. The influence of traditional and more sophisticated meta-features with
respect to dataset characteristics, the algorithm’s hyperparameters and the status
of the user’s machine should be analysed. Moreover, the classification algorithms
should be run on a balanced selection of datasets. Before modelling runtime, so-
phisticated variable selection methods should be applied in order to get sparse
and interpretable models. Prediction of runtime with regression methods should
be evaluated with cross-validation or bootstrap strategies and appropriate perfor-
mance metrics. Besides, the already investigated regression methods, new methods
could be analysed and compared, especially those that are able to model right cen-
sored data. Additionally, interaction terms between the covariates should also be
taken into account.

However, the approach of this thesis and the suggestion for future work only refers
to modelling runtime. It would be very interesting to model the algorithm’s run-
time and prediction accuracy at the same time, since in applications one searches
for the most accurate and most efficient algorithm to solve a specific problem.
Central questions in these investigations might be whether a trade-off between ac-
curacy and efficiency needs to be accepted, or if there are algorithms that provide
both: accuracy and efficiency.
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Figure A.1: Partial effects of the covariates obtained from glmboost on training time for
classifier naiveBayes. The partial effects are obtained by summing the functional estimates of
the modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.2: Partial effects of the covariates obtained from glmboost on prediction time for
classifier naiveBayes. The partial effects are obtained by summing the functional estimates of
the modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.3: Partial effects of the covariates obtained from glmboost on training time for
classifier rpart. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.

−1

0

1

2

0 10000 20000 30000 40000
Number of instances

P
ar

ita
l e

ffe
ct

−1

0

1

2

0 100 200 300
Number of features

P
ar

ita
l e

ffe
ct

−0.3
−0.2
−0.1

0.0
0.1

4 8 12
Number of classes

P
ar

ita
l e

ffe
ct

−0.50

−0.25

0.00

0 10000 20000 30000
Majority class size

P
ar

ita
l e

ffe
ct

−0.08

−0.04

0.00

0 10 20 30
maxdepth

P
ar

ita
l e

ffe
ct

−0.50
−0.25

0.00
0.25
0.50

0 5000 10000 15000
minsplit

P
ar

ita
l e

ffe
ct

−0.2

−0.1

0.0

0 5000 10000 15000 20000
minbucket

P
ar

ita
l e

ffe
ct

−0.06
−0.04
−0.02

0.00
0.02

0.000 0.025 0.050 0.075 0.100
cp

P
ar

ita
l e

ffe
ct

Figure A.4: Partial effects of the covariates obtained from glmboost on prediction time for
classifier rpart. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.5: Partial effects of the covariates obtained from glmboost on training time for
classifier ranger. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.6: Partial effects of the covariates obtained from glmboost on prediction time for
classifier ranger. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.7: Partial effects of the covariates obtained from glmboost on training time for
classifier glmnet. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.

−0.5
0.0
0.5
1.0
1.5
2.0
2.5

0 10000 20000 30000 40000
Number of instances

P
ar

ita
l e

ffe
ct

0.0

0.5

1.0

1.5

0 100 200 300
Number of features

P
ar

ita
l e

ffe
ct

0.0

0.4

0.8

4 8 12
Number of classes

P
ar

ita
l e

ffe
ct

−1.5

−1.0

−0.5

0.0

0 10000 20000 30000
Majority class size

P
ar

ita
l e

ffe
ct

−0.6

−0.4

−0.2

0.0

0.00 0.25 0.50 0.75 1.00
alpha

P
ar

ita
l e

ffe
ct

Figure A.8: Partial effects of the covariates obtained from glmboost on prediction time for
classifier glmnet. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.9: Partial effects of the covariates obtained from glmboost on training time for
classifier gbm. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.10: Partial effects of the covariates obtained from glmboost on prediction time for
classifier gbm. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.11: Partial effects of the covariates obtained from glmboost on training time for
classifier nnet. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.12: Partial effects of the covariates obtained from glmboost on prediction time for
classifier nnet. The partial effects are obtained by summing the functional estimates of the
modelling alternatives (linear, quadratic, square root, logarithmic) for each covariate.
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Figure A.13: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on training time for
the naiveBayes classifier.
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Figure A.14: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on prediction time
for the naiveBayes classifier.
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Figure A.15: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on training time for
the rpart classifier.
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Figure A.16: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on prediction time
for the rpart classifier.
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Figure A.17: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on training time for
the glmnet classifier.
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Figure A.18: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on prediction time
for the glmnet classifier.
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Figure A.19: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect(right) for each covariate of the gamboost model on training time for
the gbm classifier.
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Figure A.20: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on prediction time
for the gbm classifier.
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Figure A.21: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on training time for
the nnet classifier.
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Figure A.22: Linear partial effect (left), smooth partial effect (center) and sum of the linear
and smooth partial effect (right) for each covariate of the gamboost model on prediction time
for the nnet classifier.
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Figure A.23: Variable importance plot of randomForest modelling training time for classifier
naiveBayes.
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Figure A.24: Variable importance plot of randomForest modelling prediction time for classifier
naiveBayes.
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Figure A.25: Variable importance plot of randomForest modelling training time for classifier
rpart.
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Figure A.26: Variable importance plot of randomForest modelling prediction time for classifier
rpart.
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Figure A.27: Variable importance plot of randomForest modelling training time for classifier
ranger.

respect.unordered.factors
replace
sample.fraction
mtry
NumberOfClasses
NumberOfFeatures
MajorityClassSize
NumberOfInstances
num.trees

0 20 40 60
%IncMSE

respect.unordered.factors
replace
NumberOfClasses
mtry
NumberOfFeatures
sample.fraction
num.trees
MajorityClassSize
NumberOfInstances

0 200 400
IncNodePurity

Figure A.28: Variable importance plot of randomForest modelling prediction time for classifier
ranger.
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Figure A.29: Variable importance plot of randomForest modelling training time for classifier
glmnet.
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Figure A.30: Variable importance plot of randomForest modelling prediction time for classifier
glmnet.
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Figure A.31: Variable importance plot of randomForest modelling training time for classifier
gbm.
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Figure A.32: Variable importance plot of randomForest modelling prediction time for classifier
gbm.
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Figure A.33: Variable importance plot of randomForest modelling training time for classifier
nnet.
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Figure A.34: Variable importance plot of randomForest modelling prediction time for classifier
nnet.
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Figure A.35: Partial dependence plot of randomForest modelling training time for classifier
naiveBayes.
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Figure A.36: Partial dependence plot of randomForest prediction time for classifier
naiveBayes.
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Figure A.37: Partial dependence plot of randomForest modelling training time for classifier
rpart.
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Figure A.38: Partial dependence plot of randomForest modelling prediction time for classifier
rpart.
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Figure A.39: Partial dependence plot of randomForest modelling training time for classifier
ranger.
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Figure A.40: Partial dependence plot of randomForest modelling prediction time for classifier
ranger.
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Figure A.41: Partial dependence plot of randomForest modelling training time for classifier
glmnet.
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Figure A.42: Partial dependence plot of randomForest modelling prediction time for classifier
glmnet.
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Figure A.43: Partial dependence plot of randomForest modelling training time for classifier
gbm.
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Figure A.44: Partial dependence plot of randomForest modelling prediction time for classifier
gbm.
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Figure A.45: Partial dependence plot of randomForest modelling training time for classifier
nnet.
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B Tables

Table B.1: Collection of the 65 datasets from OpenML. Values are dataset id (did), name of
the dataset (name), number of instances (#instances), number of features (#features), number
of classes (#classes) and majority class size (Maj.).

did Name #Instances #Features #classes Maj.

1554 autoUniv-au7-500 500 13 5 192
478 collins 500 24 15 80

1063 kc2 522 22 2 415
1467 climate-model-

simulation-crashes
540 21 2 494

335 monks-problems-3 554 7 2 288
333 monks-problems-1 556 7 2 278

1510 wdbc 569 31 2 357
377 synthetic control 600 62 6 100
334 monks-problems-2 601 7 2 395
11 balance-scale 625 5 3 288

1553 autoUniv-au7-700 700 13 3 245
1464 blood-transfusion-

service-center
748 5 2 570

1549 autoUniv-au6-750 750 41 8 165
37 diabetes 768 9 2 500

469 analcatdata dmft 797 5 6 155
458 analcatdata authorship 841 71 4 317
54 vehicle 846 19 4 218
50 tic-tac-toe 958 10 2 626

307 vowel 990 13 11 90
31 credit-g 1000 21 2 700

1547 autoUniv-au1-1000 1000 21 2 741
1555 autoUniv-au6-1000 1000 41 8 240
1494 qsar-biodeg 1055 42 2 699
1552 autoUniv-au7-1100 1100 13 5 305
1068 pc1 1109 22 2 1032
1049 pc4 1458 38 2 1280

23 cmc 1473 10 3 629

67
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did Name #Instances #Features #classes Maj.

1050 pc3 1563 38 2 1403
1501 semeion 1593 257 10 162

21 car 1728 7 4 1210
1504 steel-plates-fault 1941 34 2 1268

18 mfeat-morphological 2000 7 10 200
22 mfeat-zernike 2000 48 10 200
16 mfeat-karhunen 2000 65 10 200
14 mfeat-fourier 2000 77 10 200
12 mfeat-factors 2000 217 10 200
20 mfeat-pixel 2000 241 10 200

1067 kc1 2109 22 2 1783
1466 cardiotocography 2126 36 10 579

36 segment 2310 20 7 330
312 scene 2407 300 2 1976

1548 autoUniv-au4-2500 2500 101 3 1173
46 splice 3190 62 3 1655
3 kr-vs-kp 3196 37 2 1669

1043 ada agnostic 4562 49 2 3430
44 spambase 4601 58 2 2788

1570 wilt 4839 6 2 4578
60 waveform-5000 5000 41 3 1692

1489 phoneme 5404 6 2 3818
1497 wall-robot-

navigation
5456 25 4 2205

28 optdigits 5620 65 10 572
1475 first-order-theorem-

proving
6118 52 6 2554

182 satimage 6430 37 6 1531
1116 musk 6598 170 2 5581
4538 GesturePhaseSegmentation 9873 33 5 2950

Processed
375 JapaneseVowels 9961 15 9 1614
32 pendigits 10992 17 10 1144

4534 PhishingWebsites 11055 31 2 6157
1036 sylva agnostic 14395 217 2 13509
1471 eeg-eye-state 14980 15 2 8257
1046 mozilla4 15545 6 2 10437
1120 MagicTelescope 19020 12 2 12332
4135 Amazon employee access 32769 10 2 30872
1220 Click prediction small 39948 12 2 33220
151 electricity 45312 9 2 26075
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Table B.2: Investigated classifiers and their hyperparameters, that were selected randomly, in order to create many different hyperparameter
sets. Columns present the R name of the classification algorithm, the name of the hyperparameter, a short description of the hyperparameter
(adopted from the manuals of the respective R packages), and the hyperparameter search space. Note, that classifier naiveBayes is not
tabulated, since its only hyperparameter laplace was set to one for all experiments.

Name Parameter Description Range

rpart maxdepth Depth of the final tree (0 = root
node).

1 – 30

minsplit Minimum number of observations
needed in a node in order to split
the node.

max(1, dminsplit*sub.sample.frac*ne),
minsplit ∈ [0, 0.5]

minbucket Minimum number of observations
in any terminal node.

max(1, dminbucket*sub.sample.frac*ne),
minbucket ∈ [0, 0.5]

cp Complexity parameter. Any split
that does not decrease the overall
lack of fit by a factor of cp is not
attempted.

10−4 – 10−1

ranger num.tress Number of trees. 1 – 1,000

mtry Number of variables to possibly
split at in each node.

max(1, dmtry*pe), mtry ∈ [0,1]

sample.fraction Fraction of observations to sam-
ple.

max(sample.fraction, 1/n),
sample.fraction ∈ [0,1]

replace Whether to sample with replace-
ment.

TRUE/FALSE

d e: floor function, n: Number of instances, p: Number of features
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Name Parameter Description Range

glmnet alpha Elasticnet mixing parameter. 0 – 1

gbm n.trees Number of trees. Equivalent
to the number of iterations and
number of basis functions in the
expansion

500 – 10,000

interaction.depth Maximum depth of variable inter-
actions.

1 – 5

bag.fraction Fraction of training set observa-
tions for the next tree in the ex-
pansion.

0 – 1

shrinkage Learning rate or step-size reduc-
tion. Is applied to each tree in
the expansion.

10−4 – 10−1

nnet size Number of units in the hidden
layer.

1 – 10

decay Parameter for regularisation. 0.00001 – 1.0

maxit Maximum number of iterations. 2 – 1,000

skip Whether to add skip-layer con-
nections.

TRUE/FALSE
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Table B.3: Number of samples in the meta-datasets used within the evaluation for the dif-
ferent target classifiers. Tabulated are the number of samples when all replications are taken
into account and after summarising replications of one experiment. The ten replications were
summarised by taking the mean across the ten replications. However, if jobs were erroneous or
terminated before finishing, the mean across the remaining non-erroneous replication was taken.

All replications After summarising replications

ranger 39037 3842
rpart 33150 3315
gbm 31449 3150

glmnet 13440 1344
naiveBayes 7150 715

nnet 32385 3240
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Table B.4: Number and types of errors with the name of the dataset, where the error occurred.
The tabulated error message represents an excerpt of the message output by R.

did name #cl p n #error classifier error message

20 mfeat-
pixel

10 241 2000 10 nnet Too many (4267) weights.

50 tic-tac-
toe

2 10 958 10 ranger User interrupt or internal error.

1116 musk 2 170 6598 320 ranger Too many levels in unordered
categorical variable.

1063 kc2 2 22 522 10 ranger User interrupt or internal error.

1554 autoUniv-
au7-500

5 13 500 10 ranger User interrupt or internal error.

4135 Amazon
employee

2 10 32769 257 ranger Too many levels in unordered
categorical variable.

access 510 gbm gbm does not handle categorical
variables with more than 1024
levels.

5 ranger Error in getCacheURI.

1 ranger Error in parseHeader. Invalid
column specification line found
in ARFF reader.

did: dataset id, #: Number of, cl: classes, p: Number of features, n: Number of instances

Table B.5: Number of jobs expiring due to exceeding memory or time limit in total and with
respect to the classifiers.

Classifier Memory Time

gbm 1027 164
glmnet 210 0
nnet 660 95

Total 1897 259
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Table B.6: Minimum (Min.), maximum (Max.), median, mean, 1st and 3rd quartile (1st Qu.
and 3rd Qu.) of training time, prediction time, total runtime and mean misclassification error
(mmce) with respect to the six classifiers.

Classifier Min. 1st Qu. Median Mean 3rd Qu. Max.

Training time

gbm 0.010 2.696 12.217 63.832 58.815 1033.790
glmnet 0.009 0.181 0.487 2.173 1.932 52.073
naiveBayes 0.002 0.011 0.037 0.080 0.116 0.866
nnet 0.003 0.110 0.639 7.245 3.132 1019.450
ranger 0.004 0.153 0.581 6.759 3.081 733.927
rpart 0.003 0.014 0.040 0.091 0.127 1.054

Prediction time

gbm 0.001 0.060 0.195 0.472 0.554 7.597
glmnet 0.013 0.018 0.033 0.062 0.055 0.837
naiveBayes 0.011 0.085 0.329 1.125 1.256 26.110
nnet 0.001 0.004 0.007 0.019 0.016 0.293
ranger 0.001 0.018 0.050 0.204 0.148 7.159
rpart 0.001 0.003 0.005 0.019 0.015 0.235

Total runtime

gbm 0.012 2.786 12.480 64.300 59.430 1035.000
glmnet 0.024 0.211 0.536 2.235 2.001 52.490
naiveBayes 0.015 0.096 0.400 1.205 1.370 26.600
nnet 0.005 0.118 0.656 7.264 3.170 1020.000
ranger 0.005 0.185 0.654 6.964 3.297 734.000
rpart 0.005 0.018 0.083 0.110 0.158 1.131

mmce

gbm 0.000 0.047 0.135 0.197 0.264 0.909
glmnet 0.000 0.054 0.143 0.210 0.268 0.888
naiveBayes 0.000 0.134 0.247 0.299 0.406 0.937
nnet 0.000 0.062 0.158 0.242 0.344 0.988
ranger 0.000 0.044 0.104 0.176 0.233 0.879
rpart 0.000 0.180 0.321 0.383 0.584 0.900



APPENDIX B. TABLES 74

Table B.7: Minimum (Min.), maximum (Max.), median, mean, 1st and 3rd quartile (1st Qu.
and 3rd Qu.) of variability, assessed by the coefficient of variation, for training time, prediction
time and the mean misclassification error (mmce) with respect to the six classifiers.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Training time

gbm 0.128 1.857 2.730 3.065 3.664 58.050
glmnet 0.895 3.705 5.569 12.910 11.370 248.000
naiveBayes 0.000 4.682 6.295 6.770 8.474 21.520
nnet 0.678 9.140 16.560 29.550 32.110 277.500
ranger 0.000 2.578 3.594 5.035 5.118 103.500
rpart 0.000 4.947 6.308 14.400 8.076 264.900

Prediction time

gbm 0.000 1.947 2.975 3.405 4.028 76.840
glmnet 1.133 3.386 4.438 4.904 5.635 65.330
naiveBayes 0.958 2.637 3.381 3.700 4.479 18.180
nnet 0.000 5.360 8.108 8.886 11.230 111.600
ranger 0.000 4.129 5.458 7.953 7.458 123.400
rpart 0.000 6.908 10.310 11.100 14.640 106.700

mmce

gbm 0.000 3.689 7.523 15.550 15.310 316.200
glmnet 0.000 3.548 6.383 14.920 12.210 316.200
naiveBayes 0.714 3.769 6.562 9.825 10.470 108.800
nnet 0.000 5.246 11.730 22.650 26.810 316.200
ranger 0.000 4.129 5.458 7.953 7.458 123.400
rpart 0.000 0.000 2.038 4.881 5.465 316.200



APPENDIX B. TABLES 75

Table B.8: Estimated coefficients for each modelling alternative of the covariates for the glm-
boost and glm model with respect to target classifier naiveBayes. Estimates for responses
training time and prediction time are presented.

Training time Prediction time

glmboost glm glmboost glm

(Intercept) −11.539 −18.604 *** −8.606 −10.616 ***

NumberOfInstances 0.000 0.000 ** 0.000 *
NumberOfInstances^2 0.000 0.000 *
sqrt(NumberOfInstances)−0.047 −0.041 *** 0.006 −0.014 *
log(NumberOfInstances) 1.064 1.017 *** 0.748 0.822 ***

NumberOfFeatures −0.083 −0.088 *** −0.002 −0.028 ***
NumberOfFeatures^2 0.000 0.000 *** 0.000 ***
sqrt(NumberOfFeatures) 1.685 1.793 *** 0.064 0.617 ***
log(NumberOfFeatures) −1.242 −1.373 ** 0.657

NumberOfClasses 0.483 −0.886 ** 0.480 ***
NumberOfClasses^2 −0.017 −0.014 ***
sqrt(NumberOfClasses) 0.211 9.173 ** −0.984 *
log(NumberOfClasses) −1.302 −5.249 **

MajorityClassSize 0.000 0.000 ** 0.000 **
MajorityClassSize^2 0.000 0.000 . 0.000 **
sqrt(MajorityClassSize) 0.075 0.073 *** −0.019 *
log(MajorityClassSize) −0.401 −0.398 * 0.394 ***

Signif. codes: *** < 0.001, **: < 0.01, *: < 0.05, .: < 0.1, ’ ’: > 0.1
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Table B.9: Estimated coefficients for each modelling alternative of the covariates for the glm-
boost and glm model with respect to target classifier rpart. Estimates for responses training
time and prediction time are presented.

Training time Prediction time

glmboost glm glmboost glm
(Intercept) −5.918 −6.076 *** −11.645 −52.330 ***

NumberOfInstances 0.000 0.000 *** 0.000 0.000 ***
NumberOfInstances^2 0.000 0.000 *** 0.000
sqrt(NumberOfInstances) 0.043 0.057 *** 0.041 0.054 ***
log(NumberOfInstances) 0.124 0.110

NumberOfFeatures −0.070 −0.075 *** 0.040 0.075 ***
NumberOfFeatures^2 0.000 0.000 *** 0.000 0.000 ***
sqrt(NumberOfFeatures) 1.646 1.748 *** −0.784 −1.421 ***
log(NumberOfFeatures) −1.785 −1.905 *** 1.671 2.356 ***

NumberOfClasses 0.150 −0.204 −8.010 **
NumberOfClasses^2 −0.004 0.008 0.110 **
sqrt(NumberOfClasses) 0.022 0.649 *** −0.004 49.561 **
log(NumberOfClasses) −0.416 −0.563 *** 0.287 −20.868 .

MajorityClassSize 0.000 0.000 ** 0.000 0.001 ***
MajorityClassSize^2 0.000 0.000 * 0.000 0.000 *
sqrt(MajorityClassSize) 0.026 0.018 *** −0.074 −0.108 ***
log(MajorityClassSize) −0.062 0.623 0.942 ***

maxdepth 0.016 0.008
maxdepth^2 −0.001 0.000 * 0.000
sqrt(maxdepth) 0.036 0.024 0
log(maxdepth) −0.037 0.016

minsplit 0.000 0.000 0.000
minsplit^2 0.000 0.000 0.000 .
sqrt(minsplit) 0.003 0.004 . −0.010 −0.011 **
log(minsplit) 0.013 0.118 0.134 ***

minbucket 0.000 0.000 * 0.000
minbucket^2 0.000 0.000
sqrt(minbucket) −0.011 −0.013 ** −0.005 −0.005
log(minbucket) 0.060 0.071 ** 0.063 0.066 *

cp 35.923 37.641 ** −9.008
cp^2 −174.398 −182.115 ** 20.877
sqrt(cp) −8.242 −8.681 ** 2.736
log(cp) 0.075 0.080 * −0.030

Signif. codes: *** < 0.001, **: < 0.01, *: < 0.05, .: < 0.1, ’ ’: > 0.1
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Table B.10: Estimated coefficients for each modelling alternative of the covariates for the
glmboost and glm model with respect to target classifier ranger. Estimates for responses training
time and prediction time are presented. The results for the glm model on training time are model
results without variable selection and need to be interpreted considering that the algorithm did
not converge. The results for glm on prediction time also need to be interpreted considering the
algorithm did not converge during variable selection.

Training time Prediction time

glmboost glm glmboost glm
(Intercept) −8.711 88.164 *** −11.000 10.674 .

NumberOfInstances 0.000 0.001 *** 0.000 0.000 ***
NumberOfInstances^2 0.000 0.000 *** 0.000 0.000 ***
sqrt(NumberOfInstances)−0.015 −0.237 *** 0.003
log(NumberOfInstances) 1.564 3.193 *** 0.626 0.630 ***

NumberOfFeatures −0.009 0.041 * −0.044 −0.057 ***
NumberOfFeatures^2 0.000 0.000 0.000 0.000 ***
sqrt(NumberOfFeatures) −0.079 −1.010 ** 0.783 0.999 ***
log(NumberOfFeatures) 0.289 1.352 ** −0.753 −0.971 ***

NumberOfClasses −0.154 19.088 *** 0.089 4.272 ***
NumberOfClasses^2 0.013 0.228 *** −0.006 −0.060 ***
sqrt(NumberOfClasses) −125.603 *** −26.677 ***
log(NumberOfClasses) 0.489 55.916 *** 0.237 11.692 ***

MajorityClassSize −0.001 −0.002 *** 0.000 0.000 ***
MajorityClassSize^2 0.000 0.000 *** 0.000 0.000 ***
sqrt(MajorityClassSize) 0.233 0.388 *** 0.019 0.030 ***
log(MajorityClassSize) −2.548 −3.322 *** 0.094

num.trees 0.001 −0.003 0.001
num.trees^2 0.000 0.000 0.000 0.000 ***
sqrt(num.trees) 0.053 0.184 0.100 0.127 ***
log(num.trees) 0.571 0.306 −0.062 −0.113 **

sample.fraction 2.777 −0.771 ***
sample.fraction^2 −0.865 0.086 −0.221
sqrt(sample.fraction) 3.778 6.670 * 0.503 1.431 ***
log(sample.fraction) 0.009 −0.177 0.064

mtry 0.003 −0.006 0.017 0.023 ***
mtry^2 0.000 0.000 0.000 0.000 ***
sqrt(mtry) 0.069 0.253 −0.261 −0.334 ***
log(mtry) 0.366 0.173 0.186 0.240 ***

replaceTRUE −0.100 −0.091 * −0.008

respect.unordered.-
factorsTRUE

0.707 0.558 *** 0.038 0.038 *

Signif. codes: *** < 0.001, **: < 0.01, *: < 0.05, .: < 0.1, ’ ’: > 0.1
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Table B.11: Estimated coefficients for each modelling alternative of the covariates for the
glmboost and glm model with respect to target classifier glmnet. Estimates for responses training
time and prediction time are presented. The results for the glm model on training time need to
be interpreted considering that the algorithm for the model and the variable selection did not
converge.

Training time Prediction time

glmboost glm glmboost glm
(Intercept) −12.895 166.700 *** 0.698 74.889 ***

NumberOfInstances 0.000 0.000 ** 0.000 0.000 ***
NumberOfInstances^2 0.000 0.000
sqrt(NumberOfInstances)−0.110 −0.035 *** 0.072 0.076 ***
log(NumberOfInstances) 2.524 1.394 *** −0.468 −0.560 ***

NumberOfFeatures 0.059 0.075 *** 0.077 0.071 ***
NumberOfFeatures^2 0.000 0.000 ** 0.000 0.000 ***
sqrt(NumberOfFeatures) −1.079 −1.655 *** −0.722 −0.653 ***
log(NumberOfFeatures) 1.742 2.754 *** 0.050

NumberOfClasses −0.196 33.702 *** −0.457 13.871 ***
NumberOfClasses^2 0.028 −0.416 *** 0.026 −0.159 ***
sqrt(NumberOfClasses) −6.214 −221.663 *** −2.117 −93.450 ***
log(NumberOfClasses) 7.177 99.599 *** 3.334 42.486 ***

MajorityClassSize 0.000 0.000 *** 0.000 0.000 ***
MajorityClassSize^2 0.000 0.000 0.000 ***
sqrt(MajorityClassSize) 0.008 0.033 *** −0.029
log(MajorityClassSize) −0.210 −0.262 * 0.402 0.204 **

alpha 0.996 1.042 *** 1.964
alpha^2 −0.694 −0.635 ** −0.611
sqrt(alpha) 0.535 −3.064 −0.742 .
log(alpha) −0.096 0.350 0.188 .

Signif. codes: *** < 0.001, **: < 0.01, *: < 0.05, .: < 0.1, ’ ’: > 0.1
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Table B.12: Estimated coefficients for each modelling alternative of the covariates for the glm-
boost and glm model with respect to target classifier gbm. Estimates for responses training time
and prediction time are presented. The results for glm on prediction time need to b interpreted
considering that the algorithm did not converge during variable selection.

Training time Prediction time

glmboost glm glmboost glm
(Intercept) −15.413 19.599 *** −13.248 19.108 ***

NumberOfInstances 0.000 *** 0.000 ***
NumberOfInstances^2 0.000 ***
sqrt(NumberOfInstances) 0.003 0.018 ***
log(NumberOfInstances) 1.087 0.927 *** 0.893 0.746 ***

NumberOfFeatures −0.036 *** −0.030 ***
NumberOfFeatures^2 0.000 *** 0.000 ***
sqrt(NumberOfFeatures) 0.099 0.786 *** 0.552 ***
log(NumberOfFeatures) 0.448 −0.265 ** −0.631 ***

NumberOfClasses 7.244 *** 6.281 ***
NumberOfClasses^2 −0.006 −0.079 *** −0.058 ***
sqrt(NumberOfClasses) −51.568 *** −47.114 ***
log(NumberOfClasses) 1.627 26.113 *** 1.186 24.647 ***

MajorityClassSize 0.000 ** 0.000 ***
MajorityClassSize^2 0.000 0.000 0.000 ***
sqrt(MajorityClassSize) 0.013 ** −0.006
log(MajorityClassSize) −0.103 **

n.trees 0.000 . 0.000 0.000 **
n.trees^2 0.000 0.000 **
sqrt(n.trees) 0.020 −0.023 * 0.017 −0.066 ***
log(n.trees) 0.440 1.200 *** 0.324 1.446 ***

interaction.depth −0.303 ***
interaction.depth^2
sqrt(interaction.depth) 0.323 1.884 *** 0.000
log(interaction.depth) 0.666 0.629 0.457 ***

bag.fraction −2.907 *** −2.990 ***
bag.fraction^2 1.110 ***
sqrt(bag.fraction) 0.621 5.652 *** 2.292 ***
log(bag.fraction) 0.222 −0.163 ***

shrinkage 1.434
shrinkage^2 −14.062
sqrt(shrinkage)
log(shrinkage) −0.011 *

Signif. codes: *** < 0.001, **: < 0.01, *: < 0.05, .: < 0.1, ’ ’: > 0.1
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Table B.13: Estimated coefficients for each modelling alternative of the covariates for the
glmboost and glm model with respect to target classifier nnet. Estimates for responses training
time and prediction time are presented.

Training time Prediction time

glmboost glm glmboost glm
(Intercept) −21.657 49.786 *** −10.594 −33.784 *

NumberOfInstances 0.001 0.001 *** 0.000 0.000 ***
NumberOfInstances^2 0.000 0.000 *** 0.000 0.000 ***
sqrt(NumberOfInstances)−0.125 −0.138 *** −0.006
log(NumberOfInstances) 2.729 2.701 *** 0.382 0.347 ***

NumberOfFeatures 0.050 0.071 *** 0.063 0.079 ***
NumberOfFeatures^2 0.000 0.000 *** 0.000 0.000 ***
sqrt(NumberOfFeatures) −0.297 −0.783 * 1.056 −1.328 ***
log(NumberOfFeatures) 0.488 1.136 ** 1.739 2.021 ***

NumberOfClasses −1.005 12.889 *** 0.257 −4.212 .
NumberOfClasses^2 0.043 −0.137 *** −0.008 0.048
sqrt(NumberOfClasses) −0.440 −89.178 *** 0.032 28.961 .
log(NumberOfClasses) 3.535 41.725 *** −1.166 −13.749 *

MajorityClassSize 0.000 0.000 *** 0.000 0.000 ***
MajorityClassSize^2 0.000 0.000
sqrt(MajorityClassSize) −0.004 0.032 *** −0.056 −0.055 ***
log(MajorityClassSize) −0.127 −0.362 *** 0.487 0.487 ***

size 0.420 0.137 0.012
size^2 −0.018 −0.010 * −0.008 −0.001
sqrt(size) 0.220 2.437 *** 0.010 0.022 .
log(size) −0.341 −1.112 * −0.245

decay −2.656 −2.591 ** −1.105 −1.101 ***
decay^2 0.921 0.915 . 0.023
sqrt(decay) 1.956 1.873 ** 1.380 1.412 ***

maxit −0.001 −0.006 *** −0.001
maxit^2 0.000 0.000 * 0.000
sqrt(maxit) 0.050 0.238 *** 0.002
log(maxit) 0.361 0.043

skipTRUE −0.038 −0.079 *

Signif. codes: *** < 0.001, **: < 0.01, *: < 0.05, .: < 0.1, ’ ’: > 0.1



6 Structure of the repository

The empirical study of this thesis was implemented by using R. All associated R
scripts are available from:

https://github.com/MariaErdmann/Bachelor-Thesis-Runtime-Prediction.

A description of this repository on GitHub is given below:

1. MariaErdmann/Bachelor-Thesis-Runtime-Prediction/: contains all scripts
and objects for generating the meta-dataset

• datasets.R: creates class.dsets.RData, a data.frame object with
the dataset characteristics of the 65 datasets.

• definitions.R: script for the definition of the learner’s hyperparameter
set.

• experiments.R: batchtools set up. Creates registries for each dataset
and jobs for each learner with a random hyperparameter set.

• .batchtools conf.R: batchtools configuration file for submitting jobs
on the lrz cluster.

• lmu lrz new.tmpl: template for submitting jobs on the lrz cluster.

• checkSingleResults.R: checks and collects the results of the registries
individually.

• createResultDataframe.R: checks and collects the results of all reg-
istries in Results/finalresults.RData.

• createExceededData.R: creates only expired jobs.RData, a
data.frame object with jobs that were terminated due to exceeding
time or memory limits.

• createDataframesForPred.R: creates meta-datasets for each classi-
fier.
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2. MariaErdmann/Bachelor-Thesis-Runtime-Prediction/Results/: contains all
scripts and objects for modelling runtime.

• SingleResults/: contains results from the individual registries, which
are data.frames produced by checkSingleResults.R.

• ErrorsForEachTask/: contains erroneous results from the individual
registries, which are data.frames produced by checkSingleResults.R.

• DatasetForAnalysis/: contains all meta-datasets for each classifier nec-
essary for analysis. These are produced by createDataframesFor-
Pred.R.

• AnalysisOnServer/: contains all scripts for runtime prediction with the
gradient boosting models. Since search for the optimal mstop requires
a high computational effort, these scripts were run on the server of the
statistical department. To run scripts locally in order to test them, the
grid argument of the cvrisk function should be changed to 1:500.

• ServerResults/: contains objects of class cvrisk of the glmboost and
gamboost models, which is a matrix containing estimates of the em-
pirical risk for a varying number of bootstrap iterations. Furthermore,
some objects of the class glmboost and gamboost are uploaded. Model-
objects greater than 25 MB cannot be uploaded, which applies for the
bigger part of the objects.

• formulas.R: creates the formulas used for modelling with glmboost,
gamboost and glm.

• helperFunctions.R: contains several helper functions for creating con-
densed meta-datasets, creating summary statistics, creating model for-
mulas, generating specific ggplots, calculating RAE and RMSE.

• gbmAnalysis.R, glmnetAnalysis.R, naiveBayesAnalysis.R, nnet-
Analysis.R, rangerAnalysis.R, rpartAnalysis.R: scripts for the
analysis of the regression models separately for each classifier.
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Chávez, E., Navarro, G., Baeza-Yates, R., et al. (2001). Searching in metric spaces.
ACM Computing Surveys, 33(3):273–321.

Doan, T. and Kalita, J. (2016). Predicting run time of classification algorithms
using meta-learning. International Journal of Machine Learning and Cybernet-
ics.

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and
penalties. Statistical Science, 11:89–121.

83

https://github.com/mlr-org/mlr
http://machinelearningmastery.com/penalized-regression-in-r/
https://github.com/openml/openml-r
https://github.com/openml/openml-r


BIBLIOGRAPHY 84

Elkan, C. (1997). Naive bayesian learning. Retrieved 22 June 2016
from http://www4.cs.umanitoba.ca/∼jacky/Teaching/Courses/COMP
4360-MachineLearning/Additional Information/elkan-naive-bayesian-learning.
pdf.

Fahrmeir, L., Kneib, T., and Lang, S. (2009). Regression. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139.

Friedman, J., Hastie, T., and Tibshirani, R. (2010a). Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical Software,
33(1):1–22.

Friedman, J., Hastie, T., and Tibshirani, R. (2010b). Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical Software,
33(1):1–22.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29:1189–1232.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classifiers.
Machine Learning, 29(2/3):131–163.

Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2016). The elements of
statistical learning: Data mining, inference, and prediction. Springer series in
statistics. Springer, New York, NY, second edition, corrected at 11th printing
edition.

Hofner, B., Hothorn, T., Kneib, T., et al. (2011). A framework for unbiased model
selection based on boosting. Journal of Computational and Graphical Statistics,
20(4):956–971.

Hofner, B., Mayr, A., and Robinzonov, N. (2014). Model-based boosting in R:
A hands-on tutorial using the R package mboost. Computational Statistics,
29:3–35.

Hothorn, T., Buehlmann, P., Kneib, T., et al. (2010). Model-based boosting 2.0.
Journal of Machine Learning Research, 11:2109–2113.

Hothorn, T., Buehlmann, P., Kneib, T., et al. (2016). mboost: Model-Based Boost-
ing. R package version R package version 2.6-0. http://CRAN.R-project.org/
package=mboost.

Hutter, F., Xu, L., Hoos, H. H., et al. (2014). Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79–111.

Hyndman, R. J. and Athanasopoulos, G. (April 2014). Forecasting: Principles and
practice. OTexts, S.l., print edition edition.

http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/COMP_4360-MachineLearning/Additional_Information/elkan-naive-bayesian-learning.pdf
http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/COMP_4360-MachineLearning/Additional_Information/elkan-naive-bayesian-learning.pdf
http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/COMP_4360-MachineLearning/Additional_Information/elkan-naive-bayesian-learning.pdf
http://CRAN.R-project.org/package=mboost
http://CRAN.R-project.org/package=mboost


BIBLIOGRAPHY 85

James, G., Witten, D., Hastie, T., et al. (2015). An introduction to statistical
learning: With applications in R. Springer texts in statistics. Springer, New
York, NY, corr. at 6. printing edition.

Kneib, T., Hothorn, T., and Tutz, G. (2009). Variable selection and model choice
in geoadditive regression models. Biometrics, 65(2):626–634.

Kohn, W. (2005). Statistik: Datenanalyse und Wahrscheinlichkeitsrechnung.
Statistik und ihre Anwendungen. Springer-Verlag Berlin Heidelberg, Berlin, Hei-
delberg.

Kuhn, M. et al. (2016). caret: Classification and Regression Training. R package
version 6.0-71. https://CRAN.R-project.org/package=caret.

Lang, M. and Surmann, D. (NA). batchtools: Tools for Computation on Batch
Systems. R package version 0.1. https://github.com/mllg/batchtools.

Leibniz-Rechenzentrum (18.05.2015). Job processing on the lrz clusters. Re-
trieved 9 Aug. 2016 from http://www.lrz.de/services/compute/linux-cluster/
batch serial/limits/.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest.
R News, 2(3):18–22.

Louppe, G. (2014). Understanding random forests. From theory to pratice. Phd
dissertation, University of Liège, Liège.

Mayr, A., Hofner, B., and Schmid, M. (2012). The importance of knowing when to
stop. a sequential stopping rule for component-wise gradient boosting. Methods
of information in medicine, 51(2):178–186.

Meyer, D., Dimitriadou, E., Hornik, K., et al. (2015). e1071: Misc Functions of
the Department of Statistics, Probability Theory Group (Formerly: E1071), TU
Wien. R package version 1.6-7. https://CRAN.R-project.org/package=e1071.

Ng, A., Ngiam, J., Foo, C. Y., et al. (NA). Multi-layer neural network.
Retreived 20 Aug. 2016 from http://ufldl.stanford.edu/tutorial/supervised/
MultiLayerNeuralNetworks/.

Priya, R., de Souza, B. F., Rossi, A. L. D., et al. (2011). Predicting execution
time of machine learning tasks using metalearning. In 2011 World Congress on
Information and Communication Technologies (WICT), pages 1193–1198.

Priya, R., de Souza, B. F., Rossi, A. L. D., et al. (2012). Using genetic algorithms to
improve prediction of execution times of ml tasks. In Hutchison, D., Kanade, T.,
Kittler, J., et al., editors, Hybrid Artificial Intelligent Systems, volume 7208 of
Lecture Notes in Computer Science, pages 196–207. Springer Berlin Heidelberg,
Berlin, Heidelberg.

R Core Team (2016). R: A Language and Environment for Statistical Computing.
Vienna, Austria. https://www.R-project.org/.

https://CRAN.R-project.org/package=caret
https://github.com/mllg/batchtools
http://www.lrz.de/services/compute/linux-cluster/batch_serial/limits/
http://www.lrz.de/services/compute/linux-cluster/batch_serial/limits/
https://CRAN.R-project.org/package=e1071
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
https://www.R-project.org/


BIBLIOGRAPHY 86

Reif, M., Shafait, F., and Dengel, A. (2011). Prediction of classifier training time
including parameter optimization. In Hutchison, D., Kanade, T., and Kittler,
J., editors, KI 2011: Advances in Artificial Intelligence, volume 7006 of Lecture
Notes in Computer Science, pages 260–271. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package.

Ridgeway, G. (2015). gbm: Generalized Boosted Regression Models. R package
version 2.1.1. https://CRAN.R-project.org/package=gbm.

Saed, S. (2016). Model evaluation. Retrieved 26 Aug. 2016 from http://www.
saedsayad.com/model evaluation.htm.

Sunil, R. (13.07.2015). 6 easy steps to learn naive bayes algorithm (with code in
python). Retrieved on 19 Aug. 2016 from https://www.analyticsvidhya.com/
blog/2015/09/naive-bayes-explained/.

Therneau, T., Atkinson, B., and Ripley, B. (2015). rpart: Recursive Partitioning
and Regression Trees. R package version 4.1-10. https://CRAN.R-project.org/
package=rpart.

Tutz, G. (2012). Regression for categorical data. Cambridge series in statistical
and probabilistic mathematics. Cambridge University Press, Cambridge.

Vanschoren, J., van Rijn, J. N., Bischl, B., et al. (2014). OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–
60.

W. N. Venables and B. D. Ripley (2002). Modern Applied Statistics with S.
Springer, New York, fourth edition.

Wright, M. N. (2016). ranger: A Fast Implementation of Random Forests. R
package version 0.4.0. https://CRAN.R-project.org/package=ranger.

Zou, K. H., Liu, A., and Bandos, A. I. (2012). Statistical evaluation of diagnostic
performance: Topis in ROC analysis. Chapman & Hall/CRC biostatistics series.
CRC Press, Boca Raton, Fla.

https://CRAN.R-project.org/package=gbm
http://www.saedsayad.com/model_evaluation.htm
http://www.saedsayad.com/model_evaluation.htm
https://www.analyticsvidhya.com/blog/2015/09/naive-bayes-explained/
https://www.analyticsvidhya.com/blog/2015/09/naive-bayes-explained/
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=ranger

	Introduction
	Theoretical Background
	Classification algorithms
	Naive Bayes
	Recursive Partitioning
	Random forest
	Lasso and elastic-Net regularised generalised linear models
	Generalised boosting models
	Neural networks with a single hidden layer

	Regression methods for modelling runtime
	Model-based boosting

	Meta-learning

	Methods
	Data and data generating process
	Collecting datasets from OpenML
	Construction and implementation of the experiments

	Statistical analysis

	Results
	Explorative Analysis
	Model results

	Conclusion
	Appendices
	Graphs
	Tables
	Structure of the repository

