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Abstract

The directive Solvency II harmonizes the insurance regulation in the European

Union. A central aspect of the regulatory framework is the calibration of the

Solvency Capital Requirement (SCR) as a capital buffer insurers and reinsurers

are required to hold. The SCR can be calculated based on a regulatory model.

The so called standard formula follows a modular approach where capital require-

ments for sub-risk elements are calculated and subsequently aggregated. Thus, the

standard formula requires two input parameters – capital requirements of risk ele-

ments and dependence measures between them. This thesis examines the scenario-

based approach to calibrate those input parameters for property risk and equity

risk, two sub-modules of the risk module market risk. The regulatory scenario-

based approach follows calibrations based on historical market data and includes

the application of rolling-window annualization. Unfortunately, this methodology

causes severe distortions in calibration results for both input parameters. In this

thesis alternative approaches to regulatory risk calibrations are examined. This

includes the application of Filtered Historical Simulation (FHS) to gather a suf-

ficient amount of historical data. Outcomes of empirical calculations based on

FHS annual returns imply, that the regulatory calibration approach is exposed to

overestimate equity as well as property risk while diversification effects might be

underestimated. Additionally, alternative approaches to determine the correlation

between risk elements are examined. This also includes the calibration of correla-

tion coefficients on a more granular level. Empirical investigations show, that the

assumption of perfect correlation within the equity category ”other equity” cannot

be verified. Diversification effects might mistakenly be neglected. For property

risk, the decision of no further breakdown into sub-categories can be supported.

Lastly, the choice of Value-at-Risk (VaR) as appropriate risk measure for Solvency

II risk calibrations is discussed since authorities of other regulatory frameworks

like Solvency II’s Swiss equivalent Swiss Solvency Test (SST) decided differently.
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Chapter 1

Introduction

1.1 Motivation

Solvency II is a supervisory framework for the insurance and reinsurance sector

with the purpose to reform and to harmonize insurance regulation throughout the

European Union (EU). The new directive is a project of the European Commission

which was initiated decades ago and became applicable as of the 1st of January

2016.

One of Solvency II’s main objectives is to ensure insurance and reinsurance compa-

nies are holding sufficient economic capital to fulfill their responsibilities towards

policyholders and beneficiaries. This capital buffer is referred to as Solvency Cap-

ital Requirement (SCR). A fundamental innovation of Solvency II in comparison

to former legacies, often referred to as Solvency I, is the risk-based calculation of

capital requirements. This implies that the calibration of the SCR is tailored to

an insurer’s or reinsurer’s individual risk structure [European Commission, 2007].

By definition, the SCR covers unexpected losses which will not be exceeded with

a probability of 99.5% and an assumed holding period of 12 month. For the cali-

bration of the SCR, insurance and reinsurance companies can either make use of

a formula provided by the regulator, develop their own internal model, or use a

mixture of both. The regulatory standard formula has a modular structure. Risks

insurance or reinsurance undertakings might be exposed to, are categorized into

risk modules which themselves comprise sub-risk elements. The overall SCR is

calculated by the calibration of capital requirements for those sub-risks and the

subsequent step-by-step aggregation to the highest level.

In 2015 more than three quarters of all insurance and reinsurance undertakings

under Solvency II indicated their intention to base SCR calculations on the stan-

dard formula – either completely or at least partially [KPMG, 2015]. Hence, a

1
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flawless calibration of the standard formula’s input parameters is of great impor-

tance to ensure sound risk management in the insurance and reinsurance sector

throughout the European Union.

During the development of Solvency II, a lot of time, effort and knowledge was put

into the design of the standard formula and the calibration of its input parameters.

Even though the final implementation of the Solvency II framework already took

place, this process is not concluded yet. The concept of Solvency II is designed

as a lively framework open for development and improvement rather than a rigid

legislation which is supposed to be applicable in its original form for the following

decades. To ensure resilient risk management, regulatory frameworks in general

need to be able to respond to economic developments in the concerning market.

Moreover, the Solvency II framework and specifically the standard formula might

still contain inconsistencies which require particular attention.

In the course of Solvency II’s go-live in January 2016, Gabriel Bernardino, Chair-

man of the insurance regulation authority (EIOPA) stated the following on this

matter:

”Now with Solvency II a modern, robust and proportionate super-

visory regime will be implemented. This is a huge step forward for en-

hanced policyholder protection and the single European insurance mar-

ket. However, this is not a time for complacency” [EIOPA, 2016b].

In fact, the insurance regulation authority EIOPA already scheduled additional

work on Solvency II for the time after its implementation. From regulatory side

it is declared that future work on Solvency II will specifically involve the review

of the SCR standard formula [EIOPA, 2016a].

The developments in the emergence of Solvency II have opened up discussions in

the academic world, too. A wide range of academic publications is concerned with

a variety of challenges and drawbacks concerning the regulatory framework its

calibrations. Some of them even contributed to the decisions and developments on

the regulatory side. On behalf of the role of academic research in the development

of regulatory frameworks Paul Embrechts stated that

”[...] academia has a crucial role to play in commenting officially

on proposed changes in the regulatory landscape. Second, when well-

documented, properly researched and effectively communicated, we may

have an influence on regulatory and industry practice”[Embrechts et al.,

2014, p. 2].
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1.2 Subjects and Aims

This thesis is concerned with calibration approaches, limitations and possible al-

ternatives regarding regulatory risk calibrations in Solvency II. Here, the focus is

on two specific risk elements – equity risk and property risk. Both are sub-risks

of the risk module market risk. Basically, the intentions behind this thesis can be

divided into three blocks.

1. Review of regulatory standard formula input parameter calibrations.

2. Outline of limitations regarding regulatory risk calibrations.

3. Introduction and analysis of alternative approaches.

The calculation of capital requirements occupies an important part of Solvency II.

The calibration of standard formula parameters is challenging for most of the risks,

an insurance or reinsurance company may face. The purpose of the first block is

to better understand the regulator’s approach to calibrate standard formula input

parameters specifically for the sub-risk modules equity and property. Methodolog-

ical descriptions and empirical reproductions aim to bring clarity about obstacles

the regulator had to overcome and decisions it had to take in consequence.

The second block comprises the outline of problems regarding SCR calibrations

based on the standard formula. This part aims to highlight severe consequences

of regulatory calibration procedures. This part of the thesis aims to reveal, how

regulatory decisions and simplifications throughout the calibration process of stan-

dard formula input parameters alter resulting capital requirements.

The third purpose of this thesis is to introduce alternative calibration approaches

which aim to avoid distortions the regulatory approach might cause. Empirical

analysis shows differences in calibration outcomes between the regulatory approach

and its alternatives.

1.3 Structure

In the second chapter basic statistical definitions are introduced. The focus is on

terms and concepts in the field of financial risk management. This contains the

introduction of certain risk measures, the concept of dependency and specific as-

pects of (financial) time series analysis. Also, the random sampling methodology

bootstrapping is explained.

The third chapter addresses the long-term project Solvency II. First, a general

description of the Solvency II directive and its additional components is given. In



Chapter 1. Introduction 4

the further course, the standard formula and is structure as well as the calibra-

tion of its input parameters is described. The last part of the chapter focuses on

structure and calibration of the market risk module and specifically its sub-risk

modules equity and property.

Chapter 4 is concerned with the stability of regulatory risk calibrations and possi-

ble alternatives to the regulatory approach. It provides the basis for the empirical

analysis comprised by this thesis. First, general concerns are discussed. Subse-

quently, specific parts of regulatory risk calibrations are questioned and alternative

approaches are introduced.

Chapter 5 contains the empirical part of this thesis. The first section introduces

the data used for the analysis. The following sections comprise main findings of

empirical investigations.

The final chapter summarizes the results and draws conclusions.

The appendix comprises additional concepts and proofs for the methodological

parts of this thesis as well as relevant plots and tables complementing the empiri-

cal analyses.



Chapter 2

Basic Definitions

Chapter 2 introduces basic terms and concepts used in this thesis. The first sec-

tion deals with the quantification of risk in general and introduces two important

risk measures. The second part is concerned with the concept of dependence.

Together, the two sections build the basis for the calibration of standard formula

input parameters. The third part of this chapter discusses selected areas of (fi-

nancial) time series analysis. The last section introduces the random sampling

methodology bootstrapping. Section 3 and Section 4 are important for the under-

standing of specific problems concerning regulatory calibration approaches as well

as the methodology of alternative approaches discussed in this paper.

2.1 Risk Measures

A central aspect of risk management is given by the quantification of risk. This

is accomplished by risk measures which have, among others, the purpose to de-

termine the amount of economic capital a financial institution is required to hold

against unexpected losses.

In a mathematical context, a future value of any financial position is represented

by the random variable X. Comparably, L = −X refers to the random variable

representing the financial position’s future loss. FL denotes the corresponding cu-

mulative distribution function, also referred to as loss distribution. A risk measure

is then given by the mapping ρ(L) of the random variable L1 to a real number.

Based on [McNeil et al., 2005], two important and well known risk measures are

introduced in the following.

1Note that the formal definitions given in this chapter are based on loss distributions. For
the empirical part of this thesis, risk measures are largely calibrated based on the historical
distribution of actual returns instead of losses. This results in a change of signs but does not
effect the understanding and interpretation of the risk measure in general.

5
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Value-at-Risk

The Value-at-Risk (VaR) describes the loss which will not be exceeded given a

certain probability (1−α). α is also referred to as confidence level. Formally, VaR

is given by

ρ(L) = V aRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α}

= inf{l ∈ R : FL(l) ≥ α}. (2.1)

V aRα is therefore represented by the α-quantil of the loss distribution FL.

Expected Shortfall

For a given confidence level α, the Expected Shortfall (ES) describes the expected

value of the loss given the loss is higher than the corresponding value of V aRα.

That is,

ρ(L) = ESα = E(L|L > V aRα). (2.2)

2.2 Correlation and Dependency

In a statistical environment, dependency describes the relationship between two

random variables. Several approaches are conceivable to determine the dependence

– but not all of them are suitable in any situation. In this section, two different

concepts will be introduced. Both are discussed in [Embrechts et al., 2003].

Linear Correlation

A well known method to measure the correlation between two random variables

X and Y is the (linear) correlation coefficient, also known as Pearson’s ρ. It is

given by

ρX,Y =
Cov(X, Y )

√

Var(X)Var(Y )
. (2.3)

ρX,Y can equal values between [-1,1]. If ρX,Y equals 0, the random variables X

and Y are independent. Nonetheless, the converse does not hold in general. This

is caused by a special property of linear correlation which solely covers the linear

part of dependency. Another pitfall is that linear correlation coefficients are only

defined for finite variances.
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Tail Dependence

Tail dependence coefficients measure the strength of dependence in the tails of

the bivariate distribution of a pair of random variables. They give an estimation

about extremal dependence, meaning the likelihood of a coincidental appearance

of extreme events. This is especially interesting for heavy-tailed distributions.

Other than linear correlation, tail dependence does not depend on the marginal

distribution of the two random variables but is rather based on their copula2.

It can be distinguished between the upper and the lower tail dependence coefficient.

With a given pair of continuous random variables X1 and X2 and their respective

marginal distributions FX1
and FX2

the latter is given by

λl(X1, X2) = lim
q→0+

P (X2 ≤ F−1
X2

(q)|X1 ≤ F−1
X1

(q))

= lim
q→0+

P (X2 ≤ F−1
X2

(q), X1 ≤ F−1
X1

(q))

P (X1 ≤ F−1
X1

(q))

= lim
q→0+

C(q, q)

q
(2.4)

with C(q, q) denoting the copula of the bivariate distribution of the random vari-

ables X1 and X2 and provided the limit λl ∈ [0, 1] exists. X1 and X2 exhibit lower

tail dependence if λl ∈ (0, 1]. If λl = 0, X1 and X2 are said to be asymptotically

independent.

2.3 Financial Time Series Analysis

Financial time series analysis is concerned with the development of assets over

time. In this section, selected concepts of this area will be introduced.

Returns

In most cases, it is more convenient to investigate price changes instead of the

prices itself. Those changes in price are referred to as returns. In general, it is

distinguished between discrete and continuous returns. Discrete returns can be

further divided into net returns and gross returns. In this thesis, we deal with

discrete net returns. Given an asset price Pt at time t, the k-period net return is

2For a short introduction to copulas refer to Annex A.
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given by

rkt =
Pt − Pt−k

Pt−k

. (2.5)

k refers to the length of period for example one day, one week or one year [Tsay,

2005].

Stationarity

The analysis of time series is often based on certain assumptions. The concept of

stationarity is basic in this context. It can be distinguished between strict and

weak stationarity. Strict stationarity is a very strong condition and hard to verify

whereas weak stationarity is a common and most often required assumption in

time series modeling. In order to be weakly stationary, a time series rt must fulfill

(a) E(rt) = µ ∀t and

(b) Cov(rt, rt−l) = γl.

In other words, a time series rt is weakly stationary if its mean µ is constant over

time and the covariance between rt and rt+l only depends on the lag l between

them rather then the values themselves.

Time series failing this property are often referred to as unit-root nonstationary

time series. A well known example for such a time series is the Random Walk,

that is

rt = rt−1 + at (2.6)

where at be a sequence of i.i.d. random variables with constant mean and variance,

further referred to as White Noise [Tsay, 2005].

ARMA-GARCH Models

The collection of tools for the analysis of financial time series includes a large

number of econometric models with different properties3. Examples are AutoRe-

gressive Moving Average (ARMA) models and Generalized AutoRegressive Con-

ditional Heteroscedastic (GARCH) models. The latter allows for volatile variances

over time. Both modes can be combined to ARMA(p,q)-GARCH(m,n) models.

3A detailed explanation of various time series models can for example be found in [Tsay,
2005]
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A time series rt follows an ARMA(p,q)-GARCH(m,n) model if it satisfies

rt = µt + at

= φ0 +

p
∑

i=1

φirt−i +

q
∑

j=1

ψjat−j + at (2.7)

with

at = σtǫt, σ2
t = α0 +

m∑

i=1

αia
2
t−i +

s∑

j=1

βjσ
2
t−j. (2.8)

zt is i.i.d. with constant variance 1. For the paramterts it holds α0 > 0, αi ≥ 1

∀i = 1, . . .m, βj ≥ 0 ∀j = 0, . . . s, φi ≥ 0 ∀i = 0, . . . p, ψj ≥ 0 ∀j = 0, . . . q

and
∑max(m,s)

i=1 (αi + βi) < 1. The last constraint ensures that the unconditional

variance of the innovation at is finite while the conditional variance evolves over

time [Tsay, 2005].

Information Criteria

Information criteria are used to estimate the order of an appropriate time series

model. Given a set of time series models with different orders, the information

criteria help to select one of them as an appropriate fit of the analyzed data. Two

well known criteria will be briefly introduced in the following. Both are discussed

in [Burnham and Anderson, 2004].

The Akaike Information Criterion (AIC) is a likelihood based criterion. The AIC

aims to minimize the distance between the model and the true value while using

as few parameters as possible on the same time. The criteria is given by

AIC = −2× log
(

L(θ̂|x1, . . . , xT )
)

+ 2×K (2.9)

withK denoting the number of parameters related to the order of the model. With

x1, . . . , xT denoting the observed data and θ̂ denoting the vector of estimated pa-

rameters, L(θ̂|x1, . . . , xT ) represents the likelihood function of θ̂. The first part of

Equation 2.9 evaluates the distance between the model and the truth and therefore

the goodness of fit of the model. The second part is referred to as the penalty

function of the criterion since it penalizes the model for each additional parameter

is uses.

The Bayesian Information Criterion (BIC) is closely related to the AIC. It can

be derived by

BIC = −2× ln
(

L(θ̂|x1, . . . , xT )
)

+ ln(T )×K (2.10)



Chapter 2 Basic Definitions 10

Equation 2.9 and equation2.10 show, that the definitions of AIC and BIC are

similar to each other. However, in comparison to Akaike’s criterion, the BIC

considered the sample size T of the observed data x1, . . . , xT in the penalty term

of the function.

2.4 Random Sampling: Bootstrapping

The resampling technique bootstrapping was introduced by [Efron, 1979]. Given

a random sample, bootstrapping aims to estimate the unknown distribution of

a prespecified random variable based on observed data. In other words, boot-

strapping can be used to determine parameters without making any parametric

assumptions about the distribution of the corresponding random variables.

Let X = (X1, X2, . . . , Xn) denote a random sample of size n with realizations

x = (x1, x2, . . . xn). Let the random variables follow an unspecified distribution F,

such that

Xi = xi, Xi
i.i.d
∼ F i = 1, 2, . . . , n.

Let R(F,X) denote some prespecified random variable depending on X and F .

Traditionally, R(F,X) represents a parameter of interest, e.g. the mean or the

Value-at-Risk of F . The goal of bootstrapping is to estimate the sampling dis-

tribution of the random variable R(F,X). The bootstrap methodology works as

follows

1. Construct a sample probability distribution F̂ by assigning a probability of
1
n
for each observed data point x1, x2 . . . xn.

2. Out of F̂ draw a random sample with replacement, such that

X∗

i = x∗i , X∗

i

i.i.d
∼ F̂ i = 1, 2, . . . , n.

The resulting sample is called bootstrap sample X∗ = (X∗

1 , X
∗

2 , . . . X
∗

n) with

realizations x∗ = (x∗1, x
∗

2, . . . x
∗

n).

3. Use the bootstrap sample approximate R(F,X) by the bootstrap estimate

θ = R(X∗, ˆ(F )).

4. Repeat step 2 and 3 T times to obtain T bootstrap samples x∗
1

, . . . , x∗
T

and

T bootstrap estimates θ1, . . . θT .
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Bootstrap confidence intervals

Step four results in T bootstrap estimates. Based on those, a bootstrap confidence

interval can be derived as follows

1. Order θ1, . . . θT . from the smallest value to the largest: θ(1), . . . θ(T ).

2. Choose a confidence level α and find the T (1− α
2
) and T (α

2
) estimate. Those

are referred to as θC1−α
2

and θCα
2

.

3. [θC1−α
2

, θCα
2

] is an (1− α) bootstrap confidence interval.
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Solvency II

3.1 Solvency II Directive

Solvency II is a project of the European Union (EU) with the purpose to reform

the previous insurance supervision law, often referred to as Solvency I, and to

enforce a harmonized EU insurance regulation. The legislation of Solvency II was

implemented in several stages. The basis of the regulation forms the EU Directive

2009/138/EC adopted in November 2009. This Solvency II directive is assigned to

Level 1. The development ot the Solvency II framework was technically advised by

the European Insurance and Occupational Pensions Authority (EIOPA), former

CEIOPS (Committee of European Insurance and Occupational Pensions Supervi-

sions)1. Between 2005 and 2009, CEIOPS/EIOPA conducted five field tests known

as Quantitative Impact Studies (QIS). Based on the outcomes of the five impact

studies and as requested by the European Commission (EC), CEIOPS/EIOPA

provided technical advise on implementing measures, known as Level 2 Advices.

On a third level, CEIOPS/EIOPA provided supervisory guidelines and recommen-

dations. The Solvency II directive came into force as of the 1st of January 2016.

The structure of Solvency II follows a three-pillar approach. Each pillar covers a

specific sector to assure sound risk management.

• Pillar I focuses on the quantitative topics. It specifies a Solvency Capital

Requirement (SCR) and a Minimum Capital Requirement (MCR) to ensure

the solvency of an insurance or reinsurance undertaking.

• Pillar II is concerned with qualitative requirements in insurance and rein-

surance companies. This part of Solvency II aims to assure the application,

1In the following, we will not distinguish between CEIOPS and EIOPA and will refer to both
as CEIOPS/EIOPA

12
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maintenance, and regulation of an efficient risk management system within

the companies.

• Pillar III deals with the transparency of companies in the insurance and

reinsurance sector. It contains requirements concerning the disclosure of risk

management towards the supervising regulator as well as the market.

Figure 3.1 visualizes the three pillars of Solvency II and shows their specific area

of risk management.

 

 

Pillar I 

 
Quantitative  

Requirements 

 

 

Measurement of 

assets, liabilities 

and capital 

 

SCR &  MCR 
 

 

 

Pillar II 

 
Governance & 

Supervision 

 

 

Effective risk 

management 
system 

 

 

Pillar III 

 
Disclosure & 

Transperancy  

 

 

Regulatory 

reporting 
requirements 

 

Solvency II Framework 

Figure 3.1: Structure of Solvency II: Three-pillar approach2.

[BaFin, 2016].

Pillar I includes one of the main aspects of the Solvency II framework – the calcu-

lation of the risk-based Solvency Capital Requirement (SCR). The purpose of the

SCR is to

2Figure 3.1 based on [Lloyds, 2010].
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”. . . reflect a level of eligible own funds that enables insurance and

reinsurance undertakings to absorb significant losses and that gives rea-

sonable assurance to policy holders and beneficiaries that payments will

be made as they fall due.’ [European Commission, 2009, p.13, Article

(62)].

The SCR calculations can be based either on an internally developed model, in

accordance to the standard formula provided by the regulator or by mixture of

both. This thesis will specifically focus on features and idiosyncrasies of the stan-

dard formula.

3.2 SCR Standard Formula

Based on the standard formula, the SCR is calculated by the sum of three parts,

the Basic Solvency Capital Requirement (Basic SCR), the capital requirement

covering operational risk and adjustments. The Basic SCR can be considered as

the main part of the overall Solvency Capital Requirement. It covers five types of

risks identified as risk modules:

1. non-life underwriting risk,

2. life underwriting risk,

3. health underwriting risk,

4. market risk,

5. credit risk.

In most cases, the five individual risk modules can be further divided into sub-

modules, which could possibly comprise sub-modules themselves. According to

[EIOPA, 2014], the overall structure of the standard formula can be summarized

as follows
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Figure 3.2: Segmentation of the standard formula in its risk modules and
sub-modules. [EIOPA, 2014].

The structure of the standard formula already implies its application. It follows a

modular approach and is applied in a stepwise, bottom-up manner. First capital

requirements are calculated for (sub-) modules of the lowest level. This is followed

by the stepwise aggregation of capital requirements. Consequently, on the highest

level, the standard formula is given by

SCRBasic =

√
√
√
√

5∑

i=1

5∑

j=1

ρi,j · SCRi · SCRj, (3.1)

where SCRi and SCRj represent the capital charges for the ith and jth risk module

and ρi,j the correlation between them. Since the Basic SCR comprises five risk

modules i and j can attain values between 1 and 5 on this level.

In case the risk module can be further divided, capital charges for sub-risks can

similarly be obtained by

SCRi =

√
√
√
√

ni∑

k=1

ni∑

l=1

ρk,l · SCRk · SCRl, (3.2)

where SCRi and SCRj respectively represent the capital charges for sub-module

i’s risk elements and ρk,l the correlation between them. k and l can attain values

between 1 and ni where ni denotes the number of risk elements comprised by risk
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module i. Independent from its aggregation level, the application of the standard

formula requires two input parameters:

• Capital charges for each sub-risk comprised by the considered risk module.

• Correlation coefficients describing the dependence of each possible combina-

tion of sub-risks comprised by the considered risk module.

3.2.1 Sub-risk Capital Requirements

Capital charges for sub-risks arise from the aggregation of their risk elements

according to equation 3.2. On the lowest level, meaning in case the concerning

risk is not further divided into sub-risks, the capital requirements are directly

linked to the 99.5% VaR associated with the concerning risk module. This is

constituted on the Solvency II Level 1 guidelines which demands that insurance

and reinsurance undertakings

”will still be in a position with a probability of at least 99.5%, to meet

their obligations to policyholders and beneficiaries over the following

twelve month.” [European Commission, 2009, p.13, Article (64)].

The regulatory approach to calibrate VaR depends on the structure and character-

istics of the individual risk modules. For many of them scenario-based approaches

are applied, meaning risk calibrations are directly based on historical data of rep-

resenting financial intstruments.

3.2.2 Correlation Coefficients

To aggregate capital charges of risk elements, a parameter estimating the correla-

tion between those elements is required. The most common and probably easiest

approach to measure dependence is the linear correlation coefficient also known as

Pearson correlation. However, linear correlation does not fully reflect the overall

dependence structure for each and every class of probability distributions. In those

cases, the use of linear correlation could lead to spurious aggregation results. Un-

fortunately, risks insurance and reinsurance undertakings are exposed to exhibit

characteristics distorting the aggregation results when using linear correlation as

a dependence measure. These include skewed probability distributions and the

existence of tail dependencies. CEIOPS/EIOPA is fully aware of this problem and

thus proposes the use tail correlation coefficients instead of Pearson correlation to



Chapter 3. Solvency II 17

measure the dependence between risks [CEIOPS, 2010c]. To obtain tail correlation

coefficients, CEIOPS/EIOPA discusses two different approaches.

VaR-implied correlation

The VaR-implied correlation approach3 is based on the inversion of the standard

formula. Let r1 and r2 denote the returns of two different assets4. Let rp denote

the portfolio return of an equally weighted5 combination of r1 and r2, meaning

rp = r1 + r2. Based on an inversion of the standard formula, the portfolio VaR is

given by

VaR(rp) =
√

VaR(r1)2 +VaR(r2)2 + 2ρr1,r2VaR(r1)VaR(r2)

and therefore

VaR(rp)
2 = VaR(r1)

2 +VaR(r2)
2 + 2ρr1,r2VaR(r1)VaR(r2) (3.3)

with ρr1,r2 denoting the correlation for the risk components r1 and r2. Based on

CEIOPS/EIOPA’s Level 2 Advice concerning Correlations, ρr1,r2 should be chosen

”in such way as to achieve the best approximation of the 99.5% VaR

for the aggregated capital requirement.” [CEIOPS, 2010c, p. 9, Article

3.15]

Thus, ρX1,X2
must be chosen in so as to minimize the so called aggregation error

given by

|VaR(rp)
2 − VaR(r1)

2 +VaR(r2)
2 + 2ρr1,r2VaR(r1)VaR(r2)| (3.4)

[CEIOPS, 2010c]. The minimization of aggregation error 3.4 is given by a trans-

formation of equation 3.3 such that

ρVaRr1,r2α
=

VaR(rp)
2 − VaR(r1)

2 +VaR(r2)
2

2VaR(r1)VaR(r2)
. (3.5)

3CEIOPS/EIOPA does not explicitly talk about VaR-implied correlation. However, in the
literature, the methodology described in its Level 2 Advice is often referred to this term. See for
example in [Mittnik, 2013].

4For the sake of simplicity, we assume that r1 and r2 are elliptically distribution with zero
expectation.

5Without loss of generality, we assume rp = w1r1 + w2r2 with w1, w2 = 0.5
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As a coefficient of correlation, ρVaRr1,r2α
is bounded in the interval [−1, 1]. This

constraint is not given in general. Since

ρVaRr1,r2α
≥ 1 ⇔ VaR(rp)

2 − VaR(r1)
2 − VaR(r2)

2 ≥ 2VaR(r1)VaR(r2)

⇔ VaR(r1)
2 ≥ 2VaR(r1)VaR(r2) + VaR(r1)

2 +VaR(r2)
2

⇔ VaR(r1)
2 ≥

(
VaR(r1) + VaR(r2)

)2

⇔ VaR(rp) ≥ VaR(r1) + VaR(r2)

and

ρVaRr1,r2α
≤ −1 ⇔ VaR(rp)

2 − VaR(r1)
2 − VaR(r2)

2 ≤ −2VaR(r1)VaR(r2)

⇔ VaR(r1)
2 ≤ −2VaR(r1)VaR(r2) + VaR(r1)

2 +VaR(r2)
2

⇔ VaR(r1)
2 ≥ (VaR(r1)− VaR(r2))

2

⇔ VaR(rp) ≤ |VaR(r1) + VaR(r2)|

a truncated version of equation 3.4 is given by

ρVaRr1,r2α
=







+1, if VaR(rp) ≥ VaR(r1) + VaR(r2)

−1, if VaR(rp) ≤ |VaR(r1) + VaR(r2)|
VaR(rp)2−VaR(r1)2+VaR(r2)2

2∗VaR(r1)VaR(r2)
otherwise.

(3.6)

Data-cutting correlation

Another approach is proposed by CEIOPS/EIOPA under the name of data-cutting

method. Associated with a given (1−α)% VaR or respectively a given α−quantile

cthe idea is to compute common Pearson correlations from joint tail observations

which comprise all those pairs of observations simultaneously falling below their

respective α quantile.

Let r1, r2 again denote risk components evoked by two different asset price changes.

Then the data cutting correlation coefficient denoted by ρDC
r1,r2α

is given by

ρDC
r1,r2α

= Corr(r1, r2|X1 < VaRα(r1), r2 < VaRα(r2)) (3.7)

[Mittnik, 2011]. Like capital requirements, tail correlation coefficients are calcu-

lated on the basis of historical market data of financial instruments for the majority

of risk categories.
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3.3 Market Risk

The Basic SCR is obtained by the aggregation of five risk modules. Figure 3.3

shows their average proportion. By far the largest of the five components of the

standard formula is represented by the risk module market risk.

Figure 3.3: Decomposition of the BSCR (diversified) [EIOPA, 2011].

Market risk itself comprises seven sub-modules. In the following, we will mainly

focus on two of those components - equity and property risk.
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Figure 3.4: The segmentation of the standard formula in its risk modules and
their sub-modules with a focus on the sub-modules of interest for this thesis6.
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3.3.1 Equity Risk

Equity risk is divided into two categories – ”global equity” and ”other equity”. The

category ”global equity” covers equities listed in European Economic Area (EEA)

countries or countries belonging to the Organization for Economic Cooperation and

Development (OECD). The equity category ”others” is more diverse and covers

several equity types. This includes non-listed equities or equities listed in countries

which are not EEA/OECD, private equities, hedge funds, commodities ant other

alternative financial instruments. In accordance with the standard formula, capital

charges for equity risk are derived by

SCRequity = SCR2
global + SCR2

other + ρglobal,other · SCR
2
global · SCR

2
other, (3.8)

where ρglobal,other denotes the correlation between the two equity categories and

SCR2
global, SCR

2
other the categories’ capital charges.

CEIOPS/EIOPA’s calibrations concerning the input parameters of equation 3.8

are based on the so called scenario-based approach. For the category ”global

equity” the regulator concludes a capital charge of −45%, also referred to as

stress factor or shock scenario. For the category ”other equities” a stress fac-

tor of −55% is proposed. For the correlation between the two equity categories,

CEIOPS/EIOPA proposes a correlation coefficient of 0.75 [CEIOPS, 2010a].

3.3.2 Property Risk

Like for the sub-risk module equity, standard formula input parameters for prop-

erty risk are derived on the basis of a scenario based approach. However, unlike

in the first case, the sub-risk module property is not further divided into sub-

categories. Thus, CEIOPS/EIOPA only derives a single shock scenario for the

sub-risk module property. The regulator’s analysis results in a stress factor of

−25%. The relinquishment of a breakdown into different property classes also re-

sults in the assumption of perfect correlation within the sub-risk module[CEIOPS,

2010b].
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Stability of Regulatory Risk

Calibrations and its Alternatives

The project of Solvency II not only comprises the development of the legal frame-

work itself but also numerous additional publications, studies, advices and discus-

sions. A crucial facet is given by five field tests where insurance and reinsurance

companies throughout the European Union were invited to test the quantitative

aspects of the Solvency II framework. Findings of those exercises were used to

develop advices on a second level, so called Level 2 Implementing Measures that

complete and implement the Solvency II Level 1 Framework Directive. There-

with, the development of the Solvency II framework incorporated lessons learned.

Nonetheless, parts of the final Solvency II Directive are controversially discussed

since the beginning of the project.

Criticism and comments are raised concerning various parts of the Solvency II

framework.[Pfeifer and Strassburger, 2008] as well as [Sandström, 2007] deal with

properties of individual risk distributions and their effect on the stability of the

standard formula. The underlying probability distributions of risks an insurance

or reinsurance undertaking is exposed to are not normal but rather skewed. Both

authors discuss the effect of neglecting those characteristics. They stress the need

to calibrate for skewness of risk distributions in order to maintain the standard

formula’s recommended level of confidence. However, it should be noted that the

findings of both authors attracted CEIOPS/EIOPA’s attention. Two years after

the two publications, CEIOPS/EIOPA revealed their Level 2 Advice which ad-

dresses in depth the calibration of correlation parameters. Based on the authors’

research, the regulator discusses certain characteristics shared by many risks rein-

surance and insurance undertakings are exposed to and proposes alternative cor-

relation approaches to calibrate for them [CEIOPS, 2010c].

21
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[Aria et al., 2010] point their criticism in a more specified direction. For the

scenario-based calibration approaches of certain risk-modules, the authors scruti-

nize the suitability of the corresponding representing market data. Similar con-

cerns are raised concerning the choice of representative indexes for the risk module

property. CEIOPS/EIOPA bases its analysis on historical data for the United

Kingdom (UK) property market. This choice has been argued from various sides.

UK property market are not considered to be able to cover the complexity and

diversity of property risk throughout the European market.

In the following we will mainly focus on two rather fundamental problems con-

cerning the regulatory calibration of standard formula input parameters – specif-

ically concerning equity and property risk. The first part is concerned with the

handling of historical data used for scenario-based calibration approaches. Sub-

sequently, several aspects concerning the aggregation of sub-risk module capital

requirements will be assessed. As an excursus, we will discuss the appropriate

choice of risk measures in regulatory frameworks.

4.1 Risk Calibrations based on Historical Data

The calibration of standard formula input parameters concerning equity and prop-

erty risk is subject to a scenario-based approach which includes analysis carried

out on historical market data. Risk measure calibrations on the basis of historical

data are referred to as Historical Simulation (HS). The determination of the his-

torical VaR follows a simple concept. First, the return series is ordered from the

lowest to the highest value. The (1 − α)n smallest observation then denotes the

(1 − α)% VaR, where n denotes the length of the historical time series [Li et al.,

n.d.].

4.1.1 Rolling-Window Annualization

Solvency II demands capital requirement calibrations subject to a 99.5% probabil-

ity of remaining solvent within a one year horizon. Therewith, VaR calibrations

are associated with a ”one in 200 years event”, meaning the likelihood of an in-

surer being ruined must not exceed one in 200 cases. Historical VaR calibrations

therefore require at least 200 years of historical data for each representing index.

However, in the majority of cases, annual data is not available in a sufficient

amount. To overcome this problem, CEIOPS/EIOPA proposes a methodology to

compute annual data out of data on a daily basis using 12-month rolling windows.
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A return computed by this methodology is further referred to as annualized return

and is given by

rannualizedi =
Pt − Pt−259

Pt−259

, t = 260, . . . , n. (4.1)

where Pt denotes the daily closing price of an asset at day t and n the number

of days where data is available. Similarly annualized returns can be calculated on

the basis of monthly data where

rannualizedi =
Pt − Pt−12

Pt−12

, t = 13, . . . , n. (4.2)

Here, Pt refers to monthly closing prices whereas n denotes the number of available

monthly data points. The rolling-window annualization results in almost as many

annualized returns as daily returns are available.

However, the annualization procedure implicates severe problems. The resulting

returns overlap to a large extent and hence share a lot of information. [Mittnik,

2011] analyzes consequences of this procedure in general and shows severe contor-

tions affecting the dependence structure of the return series over time as well as

across different assets. Thus, with regard to standard formula calibrations, both

input parameters are affected. The rolling-window annualization can imply highly

unstable VaR calibration results and simultaneously, it might severely distort the

correlation structures between risk modules.

CEIOPS/EIOPA was well aware of the problems arising from one-year rolling-

window returns. On this matter the regulator stated:

”There is a balance to be struck between an analysis based on the richest

possible set of relevant data and the possibility of distortion resulting

from autocorrelation” [CEIOPS, 2010a, p. 8, Article 3.12 ].

Nonetheless, CEIOPS/EIOPA decided to hazard the consequences in favor of the

method’s advantages.

”In this case, we have chosen to take a rolling one-year window in

order to make use of the greatest possible quantity of relevant data”

[CEIOPS, 2010a, p. 9, Article 3.12 ].

In the following, we will introduce a possible alternative to simulate a sufficient

amount of annualized data for scenario-based approaches to calibrate standard

formula input parameters.
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4.1.2 Filtered Historical Simulation

Rolling-window annualization is used to overcome the problem of too less data

history for VaR calibrations based on Historical Simulation (HS). Alternatively,

VaR calibrations could also carried out on the basis of an underlying model. How-

ever, this approach imposes assumptions about an underlying loss distribution and

is thus often referred to as parametric approach. Filtered Historical Simulation

(FHS) aims to overcome the limitations of both approaches. The methodology was

introduced by Giovanni Barone-Adessi in 1997 and is based on the combination of

parametric GARCH models and non-parametric historical simulation. Historical

data is filtered and subsequently used as basis for the simulation of future return

pathways.

The first step of the FHS is the removal of serial correlation and volatility clusters

from the data. This can be done by an ARMA(p,q)-GARCH(m,n) filter. A time

series rt following an ARMA(1,1)-GARCH(1,1) model1 is given by

rt = φ1rt−1 + ψ1ǫt−1 + ǫt (4.3)

σ2
t = α0 + α1ǫt−1 + βσ2

t−1. (4.4)

where σt represents the non constant variance of ǫt. Let s denote the available

amount of daily returns2. Estimating the parameters in equations 4.3 and 4.4

leads to

• a set of estimated returns of length s: {r̂1, r̂2, . . . , r̂s},

• a set of estimated volatility of length s: {σ̂1, σ̂2, . . . , σ̂s},

• a set of estimated residuals of length s: {ǫ̂1, ǫ̂2, . . . , ǫ̂s}.

The model residuals are standardized by the corresponding volatility with

ẑt =
ǫ̂t

σ̂t
, (4.5)

Leaving us with

• a set of standardized residuals of length s: {ẑ1, ẑ2, . . . , ẑs}.

1Without loss of generality we use an ARMA(1,1)-GARCH(1,1) with zero mean for exemplary
reasons.

2For simplicity, we assume the data to be available as a series of returns on a daily basis. As
we will see in the following chapter, another pattern is easily conceivable too.
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For the simulation of future returns, initial values for equation 4.3 and equation

4.4 need to be determined. It is reasonable, that the most recent data forecasts

the future better than data lying further in the past. Calling in mind that the

length of the available time series is denoted by s, initial values are determined as

follows

• initial volatility: σ∗

s = σ̂s

• initial residual: ǫ∗s = ǫ̂s

Let T denote the length of the future return path. Out of the set of standard-

ized residuals {ẑ1, ẑ2, . . . , ẑs}, T returns are drawn randomly with replacement,

resulting in

• a set of random standardized returns of length T : {z∗s+1, z
∗

s+2, . . . , z
∗

s+T} .

To obtain the innovation forecasts for periods t = (s + 1, s + 2, . . . s + T ), the

random standardized returns are scaled by the corresponding current volatility.

For each period t = s+ 1, s+ 2, . . . s+ T we iteratively calculate

σ2
t

∗

= α̂0 + α̂1ǫ
∗

t−1 + β̂1σ
2
t−1

∗

(4.6)

ǫ∗t = z∗t σ
∗

t (4.7)

Based on the results above, the pathway of future returns can be generated by

r∗t = rs+1 = φ̂1rs + ψ̂1ǫ
∗

s + ǫ∗s+1. (4.8)

for t = s+ 1 and

r∗t = φ̂1rt−1 + ψ̂1ǫ
∗

t−1 + ǫ∗t . (4.9)

for the following periods t = s+ 2, . . . s+ T .

To obtain a distribution of future returns, the proceeding described above is now

replicated K times3 resulting in a (KxT )-matrix including K pathways of T future

returns.









r∗1,1 r∗1,2 . . . r∗1T
r∗2,1 r∗2,2 . . . r∗2T
...

...
. . .

...

r∗K,1 r∗K,2 . . . r∗KT









(4.10)

[Barone Adesi et al., 1999].

3To obtain reliable results, K should be chosen as a large number.
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4.2 Aggregation of Capital Requirements

4.2.1 Choice of Correlation Coefficient

As described in Chapter 3, CEIOPS/EIOPA recognizes the insufficiency of the

common linear Pearson correlation to cover the correlation structure between fi-

nancial instruments. In its Level 2 Advice [CEIOPS, 2010c], the regulator proposes

the use of tail correlation coefficients instead of linear correlation concepts and ex-

plains two methodologies to calibrate them – the VaR-implied correlation and

the data-cutting correlation. However, CEIOPS/EIOPA does not further spec-

ify which of the two proposed methodologies is used in practice. Nonetheless, in

the calibration report belonging to the fifth Quantitative Impact Study (QIS5),

CEIOPS/EIOPSA states on this matter that

”[...] in view of the assumed tail dependence of market risks in stressed

situation the correlation analysis was based on ’cutting out’ adequate

subsets of data pairs in order to obtain a measure of the tail correlation

[...]” [CEIOPS, 2010d, p. 346, Article 3.1285].

This statement suggests, that CEIOPS/EIOPA decides upon tail correlation coef-

ficients obtained through the data cutting methodology concerning the risk module

market risk. However correlation calibration approaches concerning market risk’s

sub-module are not explicitly specified.

Assuming the calibration of data-cutting correlation coefficients CEIOPS/EIOPA

does not make a clear statement about the quantile used either. On this matter

it is solely revealed that

”[...] the overall correlation matrix should produce a level of stress

equivalent to a 99.5% VaR event, so each individual pair can be equiv-

alent to significantly less than a 99.5th percentile stress, but still should

be firmly in the tail. The analysis must be subject to sensitivities for

different percentiles, and should be taken as providing an indication of

the correct correlation.” [CEIOPS, 2010d, p. 367, Article 3.1385]

In general, the use of data cutting correlation coefficients contains problems. Per

definition, data-cutting correlation measures the dependency for the specific set of

joint tail observations meaning all those pairs of observations which simultaneously

fall below a certain predefined quantile. Even for large data histories this specific

set of joint tail observations can be extremely small. The correlation coefficient
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solely depends on a minority of data points and could lead to rather unstable esti-

mations of dependency between the two risks. Figure 4.1 illustrates the problem.

It shows a scatter plot of annualized returns extracted from two financial market

indexes4. VaRs for three different confidence levels are marked by red lines. The

respective lines for both indexes construct a box separating the observations the

data-cutting correlation coefficient calibration is based on. The plot shows that

the number of observations falling into the box of the 99.5% confidence level box

is particularly small.

Figure 4.1: Principle of the data-cutting approach to calibrate the correlation
coefficient between two risks.

A possible alternative to the data-cutting correlation approach is given by the

calibration of VaR-implied correlation coefficients. CEIOPS/EIOPA’s Level 2 Ad-

vice concerning correlation calibration shows that the regulator certainly considers

VaR-implied correlation estimates as possible alternative. However, there is no

sign for its actual application.

4In the further course of this thesis we will see, that these two indexes are used by CEIOP-
S/EIOPA to represent the sub-risk module equity.
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4.2.2 Granularity

The risk module market risk is subdivided into seven sub-risk modules where

some of them are further divided into several types or categories. However, in

most cases, CEIOPS/EIOPA relinquishes the use of a more granular analysis.

The sub-risk module equity is divided into two categories which are investigated

separately. The category ”other equity” comprises four different types of equities.

CEIOPS/EIOPA indeed analyzes all five representing indexes of equity risk empir-

ically and derives stress factors for all of them. Correlations between the category

”global equity” and the category ”other equity” are calibrated for each of the

four possible index combinations. However, zhe regulator only yields one stress

factor per equity category and one correlation parameter between ”global equity”

and ”other equity”. Any diversification effects within ”other equity” are thereby

neglected. CEIOPS/EIOPA again is well aware of this matter but is reluctant

towards a more granular analysis. It is stated that

”CEIOPS notes a potential diversification benefit between the other

equity types, but considers it to be low and difficult to calibrate, so

proposes that the standard formula contains no diversification bene-

fit within the other equity sub-module (an implicit correlation of 1).”

[CEIOPS, 2010a, p. 24, Article 3.66].

A similar attitude is adopted concerning the sub-risk module property. Analysis

is carried out for five types of property risk. Notwithstanding, concerning the

influence of property risk to the Basic Solvency Capital Requirement calculated

according to the standard formula, CEIOPS/EIOPA decides that

”No breakdown in different property classes is needed as the histori-

cal values at risk for the different classes do not diverge too much.”

[CEIOPS, 2010a, p. 24, Article 3.66].

The regulators decisions regarding the granularity of market risk’s sub-risk mod-

ules are arguable. The negligence of diversification effects at several points could

cause a distort picture of an insurance or reinsurance situation of risk exposure.

4.3 Excursus: Choice of Risk Measure

Solvency II risk calibrations are subject to the 99.5% Value-at-Risk risk measure.

In financial risk management, the VaR is a popular and widely used risk measure.
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Nonetheless its application is controversial and has been conceptually criticized

from various directions. In 2008, David Einhorn, manager of the Greenlight Cap-

ital Hedgefund described VaR as

”An airbag that works all the time, except when you have a car acci-

dent.” [Einhorn, 2008]

Among other professionals and risk managers, Einhorn accuses VaR to cause a

false sense of security. A popular alternative to the VaR is given by the Expected

Shortfall (ES) which gives an estimation about the size of loss, in case the VaR is

exceeded. On that account, ES is also referred to as Tail VaR (TVaR).

Arguments in favor of ES

The ES entails two popular advantages towards the VaR – ES is a coherent risk

measure and it is not only a measure of location.

The concept of coherence was introduced by [Artzner et al., 1999] and summarizes

four desirable properties of risk measures5.

Translation invariance: For all losses L and all constants a ∈ R it holds that

ρ(L+ a) = ρ(L) + l,

meaning adding or subtracting a deterministic amount l to a financial position

leading to loss L alters the capital required to buffer this loss by exactly the same

amount.

Positive homogeneity : For all losses L and every λ ≥ 0 it holds that

ρ(λL) = λρ(L),

meaning the scale of financial positions do not have an influence on the risk mea-

sure. For example the choice of currency has no influence on positive homogeneous

risk measures.

Monotonicity : For all losses L1, L2 with P (L1 ≤ L2) = 1 it holds that

ρ(L1) ≤ ρ(L2),

meaning financial positions alway leading to higher losses must result in higher

capital requirements.

5The interpretations of the properties described below are based on [Kriele and Wolf, 2012].
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Subadditivity : For all losses L1, L2, it holds that

ρ(L1 + L2) ≤ ρ(L1) + ρ(L2),

meaning the combination of financial positions lead to diversification effects. In

the financial world, diversification means the reduction of the overall risk of a

portfolio by investing in a variety of assets which are not perfectly correlated. A

loss of a financial position can be neutralized by a positive return or at least a less

severe loss of another [Kriele and Wolf, 2012].

The ES fulfills all four axiomes and can thus be considered as coherent risk mea-

sure. However, Appendix A shows that the VaR does fulfill the first three axioms.

However, a simple counterexample implies that VaR is not a subadditiv risk mea-

sure in general. Thus, VaR possibly neglects diversification effects.

Figure 4.2: Differences between the risk measures VaR and ES.

The second advantage of the ES towards the VaR is implied by its definition.

Theoretically, VaR is a quantile of a loss distribution, meaning VaR determines

the loss which will not be exceeded within a pre-specified probability and time

horizon. hus, VaR is a measure of location and does not consider the situation
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beyond this level whereas the ES gives an estimation about the size of this loss

[Acerbi, 2002]. This is illustrated by figure 4.2. The figure shows histograms of two

similar but not identical data sets6. They differ in their behavior in the left tail.

Nonetheless, the VaR is identical for both data sets. By contrast, ES considers

the tail behavior behind the VaR and is therefore more negative for the second

data set.

Arguments in favor of VaR

In the course of the scientific discourse regarding the suitability of certain risk

measures as well as their advantages towards others, the four desirable properties

of risk measures described above have been complemented by the so called axiom

of elicitabilty. As described in section 2.1, risk measures map random variables

or data vectors to a real number. Thus, risk measures are functionals of the

underlying data. In general, a functional is called elicitable if

”it can be defined as the minimizer of a suitable, strictly convex

scoring function.” [Embrechts et al., 2014, p. 17].

Those scoring functions can be used to compare competing forecasts and thus,

to backtest certain risk measures. It can be shown that VaR is an elicitable risk

measure whereas ES is not. The failure of the elicitability axiom is considered as

the reason for the difficulties on finding a suitable backtesting procedure for ES7.

On this behalf [Gneiting, 2011] stated that the lack of elicitability

”may provide a partial explanation for the lack of literature on the

evaluation of CVaR [ES] forecasts, as opposed to quantile or VaR fore-

casts[...]” [Gneiting, 2011, p. 11].

The absence of methodologies for the validation of ES forecast is a crucial disad-

vantage of ES compared to VaR and probably one of the main reasons to prefer

the latter.

A second problem concerning ES is its dependence on the existence of a finite first

moment. According to its definition, ES is based on the expected size of loss in

case VaR is exceeded. Thus, ES does only exist for probability distributions with

finite mean. However, this is not necessarily the case for probability distributions

in general. Especially particularly heavy-tailed distributions tend to an infinite

mean [Ghosh, 2012]. An example could be a Pareto distribution with α = 1.

6Data sets are simulated and comprise 100 observations each
7There is a controversial discussion about the dependence between a lack elicitability and

difficulties in the construction of backtesting procedures. Some articles consider the topic of
elicitability as irrelevant for the choice of risk measure (refer for example to [Acerbi and Szekely,
2014]).
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Regulatory practice

The advantages and disadvantages of both risk measures make room for discussions

concerning their suitability for risk calibrations as part of regulatory frameworks.

While Solvency II sticks to the use of VaR as a risk measure, its Swiss counter-

part Swiss Solvency Test (SST) introduced the use of ES instead [FOPI, 2004].

A similar decision was taken for the International regulatory framework for banks

(Basel III) developed by the Basel Commitee on Banking Supervision [BIS, 2010].

During the development of the Solvency II framework, the topic concerning the

choice of risk measure was addressed at various points. In several official publica-

tions and protocols CEIOPS/EIOPA’s discussed the advantages and disadvantages

of ES and VaR and examined their suitability for the specific needs of Solvency

II8. In 2007 CEIOPS/EIOPA acknowledged the superiority of VaR in comparison

to ES in terms of the Solvency II framework and stated on this matter

However, CEIOPS recognizes that the Commission’s Amended Frame-

work for Consultation continues to support VaR as the risk measure for

the SCR, and that the decision on the appropriate risk measure should

not only be based on theoretical considerations, but also on practical is-

sues. Therefore, CEIOPS believes that the SCR, at least for an initial

implementation of Solvency II, should be based on VaR [...]. [CEIOPS,

2007, p. 16, paragraph 2.31].

8Most of them were published in 2006, refer for example to a publication of the European
Insurance and Occupational Pensions Commitee (EIOPC) [EIOPC, 2006]. EIOPC advises the
European Commission in terms of directives on insurance, reinsurance and occupational pensions.



Chapter 5

Empirical Analysis

The previous chapters paid close attention to the standard formula in general

and were specifically concerned with the structure and calibration of the sub-risk

modules equity and property. Chapter 3 described the modular structure of the

aggregation formula, explained regulatory approaches for the calibration of input

parameters and outlined CEIOPS/EIOPA’s results for parameters of equity and

property risk. Chapter 4 addressed stability problems of the standard formula and

discussed possible alternative approaches for its calibration.

In the empirical analysis discussed in this chapter we replicate CEIOPS/EIOPA’s

calibration approach aiming to reproduce the regulator’s results and decisions. In

a second step, we empirically investigate alternative risk calibration approaches

discussed in Chapter 4. The empirical analysis specifically refers to the sub-risk

modules equity risk and property risk and is carried out on authentic data, meaning

financial market indexes chosen by CEIOPS/EIOPA to represent the individual

risk modules1. In most cases, the empirical analysis described in this chapter is

carried out on two different data sets, both built upon the representing indexes.

The first data set includes approximately the same length of historical data as it

is used by CEIOPS/EIOPA. We will further refer to this set of observations as

”original data set”. The second data set simply includes additional, more up to

date data and is thus further referred to as ”recent data set”.

The empirical analysis discussed in this chapter is conducted with the numerical

computing environment [MATLAB, 2015].

1The majority of data is extracted from Bloomberg.

33
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5.1 Data

For scenario-based approaches like it is applied for equity and property risk calibra-

tions, CEIOPS/EIOPA carries out analysis on historical market data of financial

instruments. In the following, the representing indexes of both sub-risk modules

will be explained in more detail.

5.1.1 Equity Risk

The sub-risk module equity is divided into two categories. The category ”global eq-

uity” is represented by a single index while ”other equity” covers four equity types,

each represented by an individual index. Table 5.1 summarizes CEIOPS/EIOPA’s

choice of indexes representing equity risk. The coverage, initiation and affiliation

of each index will be described below.

Category Equity type Index

Global Global MSCI World Developed Price Equity Index

Other Private Equity LPX50 Total Return Index

Commodities S&P GSCI Total Return Index

Hedge Funds HFRX Global Hedge Fund Index

Emerging Markets MSCI Emerging Markets BRIC

Table 5.1: Indexes representing the two categories of the sub-risk module
equity.

Global equity

• The MSCI World Developed Price Equity Index is traded in US

Dollars and covers instruments across 23 Developed Market (DM) coun-

tries2. The MSCI World was constructed by the American financial services

provider Morgan Stanley Capital International (MSCI). To ensure up-to-

dateness it is reviewed quarterly and thus reflects changes in the underlying

equity markets to all times. The index was launched on March 31, 1986.

Data prior to the launch date is back-tested data [MSCI, 2016b]. We will

further refer to this index as MSCI World or sometimes simply as MSCI.

2Countries involved: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Ger-
many, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal,
Singapore, Spain, Sweden, Switzerland, UK, U.S.
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Other equity

• The LPX50 Total Return Index represents the equity type private equity

and comprises the 50 largest listed private equity companies given they fulfill

certain liquidity constraints. The index is constructed by the LPX Group, a

Swiss financial services provider and is designed with the purpose to ensure

tradability, transparency and investability [Group, 2016]. We will further

refer to this index as LPX50.

• The S&P GSCI Total Return Index represents the equity type com-

modities. It is designed to provide a benchmark for investment performance

on the commodity markets. It is calculated on a world production weighted

basis and comprises the most liquid physical commodity futures. The index

involves five sectors – agriculture, energy, livestock, industrial metals and

precious metals reflecting 24 commodity futures in total. The weight of each

commodity indicates its significance in the world economy given the index

preserves to be tradable. The index was initiated by Goldman Sachs and

has been calculated since 1969. Standard&Poors acquired the index from

Goldman Sachs in 2007 [Standard&Poors, 2012]. We will further refer to

this index as S&P GSCI or sometimes simply as S&P.

• The HFRX Global Hedge Fund Index3 represents the equity type hedge

funds and aims to reflect the overall composition of the hedge fund segment.

It comprises a combintation of all eligible hedge fund strategies weighted

according to their asset distribution in the segment. The index is constructed

by the Hedge Fund Research Inc. (HFR) [Hedge Fund Research, 2014]. We

will further refer to this index as HFRX.

• The MSCI Emerging Market BRIC Index represents the equity type

emerging markets. It is is traded in US Dollars and is designed to measure

the performance of the equity market in four countries – Brazil, Russia,

India, China. Like the MSCI World, the MSCI BRIC is constructed by the

American financial services provider MSCI. It is based on the same quality

standards to ensure global views across all market capitalization segments

of sector, style and size a well as to assure actuality. The MSCI BRIC was

launched on Dec 06, 2005. Data prior to the launch date is back-tested

data [MSCI., 2016a]. We will further refer to this index as MSCI BRIC or

sometimes simply as BRIC.

3In comparison to the other indexes, the HFRX is not extracted from Bloomberg but, after
registration, directly downloaded from the HFR website: https://www.hedgefundresearch.com/
family-indices/hfrx.
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Figure 5.1 shows daily historical prices of the five indexes described above starting

at their individual initiation4.

Figure 5.1: Monthly prices for representing indexes of equity risk.

For equity risk, CEIOPS/EIOPA bases its analysis on index data ending in 2009.

The regulator does not indicate an exact date. We therefore choose the year-end

of 2009 as end date for the ”original data set”. The more recent analysis is carried

out on data ending in September 2015. Table 5.2 summarizes the initiation date

of each index as well as the composition of both data sets.

Original Data Recent Data

Index Initiation End Length End Length

MSCI World 31.12.1971

31.12.2009

9914

28.09.2015

11412

LPX50 31.12.1993 4174 5672

S&P GSCI 01.01.1970 10436 11933

HFRX5 31.03.2003 1763 3260

MSCI BRIC 30.12.1994 3915 5412

Table 5.2: Data history of indexes representing equity risk.

4Note that the y-axis is log scaled in order to ensure a better visualization.
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5.1.2 Property Risk

Property risk is represented by index data extracted from the Investment Property

Databank (IPD). The index is provided by IPD Ltd. which was acquired by MSCI

in 2012. According to [CEIOPS, 2010b], it is the most widely used commercial

property index. The IPD indexes are produced for 17 European countries and 7

countries outside Europe in total. They measure total returns for directly held real

estate assets as well as for the four main market sectors retail, office, industrial

and residential. Depending on the country and its conditions, the results can be

more granular [IPD, 2012].

For most countries data are provided annually or quarterly. However, for the

UK market sector, monthly closing prices are available and therewith provide the

greatest pool of available data within the databank. CEIOPS/EIOPA therefore

decided to carry out analysis on the Monthly IPD UK Total Return Index.

The UK property market sector is represented by six individual indexes. How-

ever, CEIOPS/EIOPA only defines five categories to carry out individual analysis.

For the category ’commercial’ it is not automatically perceptible which UK IPD

index is used [CEIOPS, 2010b]. Table 5.3 summarized the five defined property

categories together with the six available UK IPD indexes.

Categories Index

All properties UK IPD UK Total Return ’All Property’

Offices UK excl. London city IPD UK Total Return ’Offices’

Offices London city IPD UK Total Return ’City Offices’

Retail UK IPD UK Total Return ’Retail’

Commercial UK
IPD UK Total Return ’Industry’

IPD UK Total Return ’Warehouse’

Table 5.3: Indexes representing the sub-risk module property.

All six indexes representing property risk were initiated simultaneously in Decem-

ber 1986. For regulatory analysis carried out on those indexes, CEIOPS/EIOPA

makes clear statements about the length as well as the end date of the data set.

Those specifications are however inconclusive. Two possible original data sets are

conceivable. Table 5.4 summarizes initiation date, end date and length of time

series for those two possible original data sets as well as the recent data.

5HFRX includes several missing values (66 for original data and 11 for recent data).



Chapter 5. Empirical Analysis 38

31.07.2008 31.12.2008 Recent Data Set

Index Initiation End Length End Length End Length

UK IPD 31.12.1986 31.12.2008 264 31.07.2008 259 29.02.2016 351

Table 5.4: Data history of indexes representing property risk.

Figure 5.2 shows the historical development of the six UK IPD indexes between

1986 and the beginning of 2016.

Figure 5.2: Monthly prices for representing indexes of property risk.

5.2 Replication of CEIOPS/EIOPA’s Approach

The first step of the empirical analysis described in this chapter is the replication

of CEIOPS/EIOPA’s approach to calibrate standard formula input parameters for

equity and property risk. To overcome the lack of sufficient annual returns, the

regulator applies one-year rolling-windows to transform daily prices into annual-

ized returns. For the first part of the analysis we base our calibrations on returns
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generated by the same technique. Histograms of the resulting rolling-window an-

nualized returns can be found in Appendix B.

5.2.1 Stress Scenarios

Equity risk

Although reporting only one stress factor per equity category in their Level 2

Advice, CEIOPS/EIOPA carries out analysis on each of the five indexes described

above. Table 5.5 summarizes the regulator’s results for VaR calibrations together

with the final proposed stress factors for the two categories and compares them

to the outcomes of our replication study carried out on both data sets described

above.

Regulator Replication

Empirical Final Original Data Recent Data

MSCI World −44.25% −45.00% −44.27% −43.88%

LPX50 −68.67%

−55.00%

−68.95% −67.50%

S&P GSCI −59.45% −59.66% −59.21%

HFRX −23.11% −23.18% −22.80%

MSCI BRIC −63.83% −63.90% −61.43%

Table 5.5: Replicative VaR calibrations for indexes representing equity risk.

The outcomes of the replicative analysis are very similar to the regulator’s results.

Minor differences between CEIOPS/EIOPA’s results and the replicative analysis

carried out on the original data set could result from small differences in the length

of data history since the regulator does not state the exact end date of the used

time series.

Property risk

For the sub-risk module property, CEIOPS/EIOPA intially carries out analysis on

6 indexes. As stated above, the regulator’s statements concerning the number of

observations and the end date are inconclusive. The replication study reveals, that

both conceivable data sets do not fit to the regulator’s empirical VaR calibrations

results. Via trial and error we find a data set where our outcomes of the replication

study fit well to CEIOPS/EIOPA’s results. Table 5.5 summarizes the calibration

results based on all three original data sets as well as recent data and compares

them to regulatory outcomes.
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Regulator Replication

Empirical Final 31.07.2008 31.12.2008 30.03.2009 Recent

All property −25.74%

−25%

−15.18% −2158% −25.72% −26.23%

Offices −25.93% −15.11% −22.50% −26.06% −26.56%

City Offices −30.03% −24.41% −27.27% −30.73% −30.68%

Retail −27.47% −16.20% −22.11% −27.30% −27.95%

Industry
−27.67%

−13.58% −19.17% −21.55% −21.86%

Warehouse −19.02% −23.84% −28.07% −28.30%

Table 5.6: Replicative VaR calibrations for indexes representing property risk.

According to the results in table 5.5 we assume that the category commercial is

represented by the index for warehouse. Replicative VaR calibrations fit signifi-

cantly better for this index in comparison to the index for industry.

5.2.2 Correlation

For the sub-risk module equity, CEIOPS/EIOPA proposes final stress factors for

two equity categories. The aggregation of those two categories requires a param-

eter measuring the correlation between them. Similar to the stress calibration,

regulatory analysis is carried out on all five indexes meaning CEIOPS/EIOPA

calibrates a correlation parameter between the MSCI World representing ”global

equity” and each index representing ”other equity”. However, only an ”average”

correlation coefficient is considered in its final Level 2 Advice. Table 5.7 shows the

results.

Global

Empirical Final

Other

LPX50 0.8359

0.75
S&P GSCI 0.4472

HFRX 0.7731

MSCI BRIC −0.5282

Table 5.7: Regulatory tail correlation coefficients between the MSCI World
representing ”global equity” and each of the representative indexes of the cate-

gory ”other equity”.
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In the following we replicate CEIOPS/EIOPA’s analysis on correlation within the

risk-module equity6.

Data-cutting correlation

As described in Chapter 3, CEIOPS/EIOPA reveals the use of the data-cutting

approach for the risk module market risk [CEIOPS, 2010d]. Figure 5.3 illustrates

the functionality of this approach. It shows scatter plots of each of the four

possible combinations of ”global equity” and ”other equity”. The red boxes in

the diagrams are composed of the VaR for the MSCI World and the VaR of the

respective representative for ”other equity” for a certain confidence interval, here

1 − α1 = 0.995, 1 − α2 = 0.95 and 1 − α3 = 0.9. The data points located in the

particular box illustrate the data ’cutted out’, meaning the data points considered

for the calibration of the data-cutting correlation coefficient estimate.

Figure 5.3: Relationship between the MSCI World and each representative of
”other equity” including data-cutting boxes for exemplary percentiles.

6Note that at this point of the study we focus on equity risk. For the sub-risk module property,
there is no further breakdown into sub-categories. Hence, CEIOPS/ EIOPA does not carry out
any analysis concerning correlation in this risk module.
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Assuming data-cutting correlation calibrations within equity risk, the regulator

does not disclose the confidence level, the calibrations are based on. We therefore

calibrate data-cutting correlation coefficients between the MSCI World and the

four indexes representing ”other equity” for various confidence levels. A range of

results for both data sets is summarized in table 5.8.

LPX50 S&P GSCI HFRX MSCI BRIC

1 − α Original Recent Original Recent Original Recent Original Recent

0.995 0.7758 0.8624 0.3253 0.2506 NaN NaN 0.0225 0.2722

0.99 0.7881 0.5974 0.2594 0.3894 NaN −0.1829 0.3437 0.34

0.98 0.6445 0.6225 0.2708 0.1475 −0.1829 −0.1655 0.1511 0.2352

0.97 0.5606 0.6445 −0.2696 −0.2675 −0.3448 0.3171 0.3473 0.5089

0.96 0.624 0.7999 −0.306 −0.2716 −0.1655 0.3934 0.5091 0.4088

0.95 0.7623 0.8739 −0.2457 −0.0946 0.0734 0.4864 0.4467 0.4395

0.90 0.9222 0.9386 0.4695 0.5071 0.4864 0.9199 0.7495 0.871

0.85 0.9334 0.9123 0.6126 0.668 0.8544 0.9587 0.8849 0.9122

0.80 0.9183 0.8815 0.6361 0.6245 0.9322 0.9514 0.9045 0.8798

Table 5.8: Data-cutting correlation coefficients for varying confidence levels
based on rolling-window annualized returns of indexes representing equity risk.

For most indexes the data-cutting correlation coefficients subject to the different

confidence levels vary widely. Table 5.8 also reveals, that we cannot calibrate

a data-cutting correlation coefficient for the HFRX when the confidence level is

particularly small. For those confidence levels we do not find enough observations

falling simultaneously below the confidence level. This could be reasoned by the

relatively short data history of the index.

Figure 5.4 graphically shows the behavior of the data-cutting correlation coeffi-

cients over varying confidence levels for each of the four indexes. The black dashed

line implies the correlation coefficient calibrated by CEIOPS/EIOPA.
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Figure 5.4: Behavior of data-cutting correlation estimates over varying confi-
dence levels based on annualized returns of indexes representing equity risk.

Except for the HFRX, there are only minor differences between original and recent.

The non-accordance for this index could again be explained by its short data

history and the resulting relative difference between the original and the recent

data set. For the MSCI BRIC we cannot find a match with CEIOPS/EIOPA’s

calibration result. For the remaining indexes there are matches. Nonetheless we

cannot identify a coincident confidence level for them.

VaR-implied correlation

In its Level 2 Advice, CEIOPS/EIOPA also takes the VaR-implied correlation

calibration methodology into consideration. Similar to the data-cutting analysis

we calibrate VaR-implied correlation coefficients over varying confidence levels and

for both data sets. Table 5.9 summarizes the results.

LPX50 S&P GSCI HFRX MSCI BRIC

α Original Recent Original Recent Original Recent Original Recent

0.995 1 1 0.831 0.8249 1 1 1 1

0.99 1 1 0.7759 0.8259 1 1 1 1

0.98 1 1 0.6221 0.5426 1 1 1 1

0.97 1 1 0.2509 0.1024 1 1 1 1

0.96 1 1 −0.0985 −0.2024 1 1 1 0.7551

0.95 1 1 −0.1275 −0.293 1 1 0.9487 0.6311

0.90 1 1 −0.5226 −0.3491 1 −0.0452 0.5485 0.355

0.85 1 1 −0.7641 −0.6205 1 0.2679 0.5491 1

0.80 1 1 −0.9559 −0.9645 1 1 1 1

Table 5.9: VaR-implied correlation coefficients for varying confidence levels
based on rolling-window annualized returns of indexes representing equity risk.
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For the LPX50, the VaR-implied correlation is constantly 1. The HFRX and the

MSCI BRIC exhibit perfect correlations for numerous confidence levels, too. The

results for the S&P GSCI vary extremely.

Figure 5.5 illustrates the result in comparison to CEIOPS/EIOPA’s calibration

result, again visualized by a dashed black line.

Figure 5.5: Behavior of VaR-implied correlation estimates over varying confi-
dence levels based on annualized returns of indexes representing equity risk.

Figure 5.5 reveals that for the data used by the regulator, only the S&P GSCI

exhibits a match with CEIOPS/EIOPA’s empirical correlation coefficient.

Pearson Correlation

As discussed at several points, CEIOPS/EIOPA acknowledges the insufficiency

of common linear correlation coefficients to fully reflect the dependence structure

between risks. However, for the sake of completeness, we additionally calibrate the

Pearson correlation coefficient between the MSCI World and the representative

indexes of ”other equity”. Table 5.10 shows the results for both data sets in

comparison to regulatory (tail) correlation calibration results.
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Regulator Replication

Empirical Adjusted ”Original Data” ”Recent Data”

LPX50 0.8359

0.75

0.7502 0.7680

S&P GSCI 0.4472 0.0653 0.0825

HFRX 0.7731 0.9664 0.9433

MSCI BRIC −0.5282 0.6950 0.6660

Table 5.10: Linear Pearson correlation coefficients between ”global equity”
and each representing index of the equity category other.

The Pearson correlation coefficient between the LPX50 and the MSCI world is close

to the result CEIOPS/EIOPA obtained. The others however differ considerably.

5.3 VaR based on FHS Annual Returns

Chapter 4 explained the possibility of severe distortions caused by the use of

rolling-window annualized returns as basis for historical risk calibrations. The

chapter also introduced Filtered Historical Simulation (FHS) as an alternative sim-

ulation approach. In this part of the empirical study we examine the application

of FHS to gather a sufficient amount of annual data as basis for risk calibrations

concerning the sub-risk modules equity and property. Our analysis is carried out

according to a variation of the FHS approach described by [Barone Adesi et al.,

1999]. The algorithm is given by

1. Transform daily prices of indexes representing equity risk into weekly7 re-

turns by

rt =
Pwt+1

− Pwt

Pwt

, t = 1, . . . , s− 1 (5.1)

where Pwt denotes the closing price of the last trading day in week t and

s refers to the amount of weeks available in the data. Respectively, for

property risk transform monthly prices into monthly returns by

rt =
Pt+1 − Pt

Pt

, t = 1, . . . , s− 1 (5.2)

Here, Pt denotes the closing price of month t while s represents the length

of the concerning price index.

7Weekly returns are chosen since those returns ca be aggregated to yearly data more easily
as it would be the case with weekly returns.
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2. Fit ARMA(p,q)-GARCH(1,1) models with p,q ∈ {0, 1, 2} to each return

series. Choose the best model via AIC/BIC criteria8.

3. On the basis of the standardized model residuals randomly with replacement

draw 100,000 subsets of length 52 and use them to generate pathways of

future returns.

4. For each path aggregate pathways to future non-overlapping annual returns

via

r∗annj =

p
∑

i=1

(r∗j,i + 1)− 1 j = 1, . . . 100000

with p = 52 for indexes representing equity risk and p = 12 for representa-

tives of property risk.

5. On the basis of the set of future non-overlapping annual returns build boot-

strap samples and calibrate 95% bootstrap confidence intervals of estimates

for the 99.5% VaR.

5.3.1 Calibration Results

According to the algorithm described above we carried out analysis on all indexes

representing equity risk and property risk. For equity risk, we analyze the original

as well as th recent data. For property risk, we limit the analysis to recent data9.

For each index, ARMA-GARCH models are fitted with two different assumptions

concerning the distribution of ǫt.

Equity risk

For each of the two data sets we choose the best models via AIC/BIC criteria, one

of them referring to the best model assuming normal distribution for ǫt while the

other represents the best model assuming student-t distributed ǫt. VaR calibration

results based on FHS annual returns obtained from those models are summarized

in table 5.11.

8In case AIC/BIC criteria are inconclusive, choose in favor of the model with lower order.
9Results for the original data set appear to be highly unstable. Adding or excluding a minor

number of observations to the investigated data set changed the result to a high degree.
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Index Data ǫt Model 95% CI for VaR99.5 AIC BIC

MSCI

Original
∼ N (0, 0) [−41.28%,−39.32%] −1.0248 −1.0225

∼ t (0, 0) [−40.33%,−38.85%] −1.0322 −1.0294

Recent
∼ N (0, 0) [−43.38%,−41.48%] −1.1755 −1.1732

∼ t (0, 0) [−40.82%,−39.26%] −1.1842 −1.1813

LPX50

Original
∼ N (1, 2) [−81.91%,−79.40%] −3.7951 −3.7668

∼ t (1, 2) [−80.71%,−78.04%] −3.8354 −3.8023

Recent
∼ N (0, 0) [−74.51%,−71.09%] −5.1414 −5.1212

∼ t (2, 0) [−67.96%,−65.65%] −5.2209 −5.1857

S&P

Original
∼ N (0, 0) [−48.68%,−47.14%] −9.8338 −9.8112

∼ t (0, 0) [−49.87%,−48.38%] −9.866 −9.8378

Recent
∼ N (0, 0) [−44.01%,−42.19%] −1.1194 −1.1171

∼ t (0, 0) [−45.05%,−43.19%] −1.1244 −1.1215

HFRX

Original
∼ N (0, 0) [−14.97%,−13.89%] −2.5596 −2.5442

∼ t (1, 1) [−25.76%,−24.39%] −2.597 −2.5699

Recent
∼ N (1, 1) [−20.80%,−20.01%] −4.8823 −4.8554

∼ t (1, 1) [−22, 00%,−21.43%] −4.9375 −4.9062

BRIC

Original
∼ N (0, 0) [−64.18%,−61.93%] −2.9551 −2.9365

∼ t (0, 0) [−68.33%,−65.76%] −2.987 −2.9645

Recent
∼ N (2, 0) [−61.34%,−59.64%] −4.248 −4.2281

∼ t (0, 0) [−68.04%,−65.86%] −4.2985 −4.2636

Table 5.11: Results for VaR calibrations based on annual returns obtained
through filtered historical simulation for sub-risk module equity.

Again based on AIC/BIC criteria, we decide between the model assuming a normal

distribution for ǫt and the model based on the assumption of student-t distributed

ǫt. For all indexes representing equity risk, models assuming student-t distribution

for ǫt appear to be the preferred models. In table 5.12 we compare the final

model with CEIOPS/EIOPA’s results for empirical VaR calibrations as well as

our replication results.
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FHS Rolling Window

Index Data 95% CI for VaR99.5 Replication Regulator

MSCI
Original [−40.05%,−38.57%] −44.27%

−44.25%
Recent [−40.42%,−38.74%] −43.81%

LPX50
Original [−80.71%,−78.04%] −68.96%

−68.67%
Recent [−67.96%,−65.65%] −67.50%

S&P GSCI
Original [−49.87%,−48.38%] −59.66%

−59.45%
Recent [−45.05%,−43.19%] −59.21%

HFRX
Original [−25.76%,−24.39%] −23.10%

−23.11%
Recent [−22.00%,−21.43%] −22.72%

BRIC
Original [−68.33%,−65.76%] −61.96%

−63.83%
Recent [−68.04%,−65.86%] −61.43%

Table 5.12: VaR calibration results based on FHS annual returns vs. original
and replicative results for calculations on the basis of rolling-window annual

returns for indexes representing equity risk.

For the MSCI World and the S&P GSCI, the calibration results unequivocally

imply an overestimation of risk by CEIOPS/EIOPA’s approach. The same applies

to the recent data sets of the LPX50 and the HFRX. However, the MSCI BRIC as

well as the original data of the LPX50 exhibit more negative results for calibrations

based on FHS annual returns.

Property risk

Table 5.13 summarizes VaR calibration results for the best models fitted to indexes

representing property risk.
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Index Data ǫt Model 95% CI for VaR99.5 AIC BIC

All prop. Recent
∼ N (2, 2) [−6.72%,−6.06%] −2.9621 −2.9312

∼ t (1, 1) [−9.16%,−8.11%] −2.9963 −2.9693

Offices Recent
∼ N (1, 1) [−10.58%,−9.51%] −2.8384 −2.8153

∼ t (1, 1) [−10.53%,−9.25%] −2.8733 −2.8463

City off. Recent
∼ N (2, 2) [−9.29%,−8.51%] −2.3912 −2.3603

∼ t (1, 1) [−7.41%,−6.67%] −2.4555 −2.4285

Retail Recent
∼ N (1, 1) [−6.95%,−6.36%] −2.9046 −2.8815

∼ t (1, 1) [−6.50%,−5.93%] −2.9285 −2.9015

Warehouse Recent
∼ N (1, 1) [−5.17%,−4.54%] −2.6579 −2.6347

∼ t (1, 1) [−7.31%,−6.49%] −2.7194 −2.6924

Table 5.13: Results for VaR calibrations based on annual returns obtained
through filtered historical simulation for sub-risk module property

Here, too, the assumption of student-t distribution is superior to models assum-

ing normal distribution for ǫt. Table 5.14 compares the VaR calibration results

based on FHS annual returns obtained through the preferred models to CEIOP-

S/EIOPA’s empirical calibration results.

FHS Rolling Window

Index Data 95% CI for VaR99.5 Replication Regulator

All prop. Recent [−9.16%,−8.11%] −25.74% −26.23%

Offices Recent [−10.53%,−9.25%] −25.93% 26.56%

City off. Recent [−7.41%,−6.67%] −30.03% −30.68%

Retail Recent [−6.50%,−5.93%] −27.47% −27.95%

Warehouse Recent [−7.31%,−6.49%] −27.67% −28.30%

Table 5.14: VaR calibration results based on FHS annual returns vs. original
and replicative results for calculations on the basis of rolling-window annual

returns for indexes representing property risk.

VaR calibrations based on FHS annual returns clearly reveal an overestimation

of risk by the regulatory rolling-window approach. We obtain deviations from

CEIOPS/EIOPA’s empirical results accounting to 15 to 20 percent.
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5.3.2 Diagnostics and Limitations

For property risk, we renounced the reporting of outcomes obtained from analysis

carried out on the original data sets. Calibration results reacted extremely volatile

to minor changes in the length of time series. The recent data behaves more

stable. However, since the UK IPD Property Index is only provided on a monthly

basis, both data sets have a relatively short data history. Indexes representing

equity risk are daily available and therewith exhibit a longer history. However,

in comparison to the other four representatives of equity risk, the time series for

HFRX is significantly shorter.

Besides problems concerning the amount of historical observations, the indexes

analyzed in this study exhibit some characteristics which complicate profound

analyses and conclusions. In this section we will look into the sample moments of

weekly as well as FHS annual returns for each index. Further, we will discuss two

difficulties encountered in the course of fitting ARMA(p,q)-GARCH(1,1) models.

Moments

The first four sample moments are given by mean, standard deviation, skewness

and kurtosis. Skewness measures the asymmetry of the data around the sample

mean. Kurtosis looks into the tails of the distribution and measures the sample’s

outlier-sensibility. The skewness of a normal distribution is zero while its kurtosis

is 3. Table 5.15 summarizes the four described moments of weekly returns in

comparison to FHS annual returns for indexes representing equity risk.

Equity: Original Data

Index Return Mean Standard Deviation Skewness Kurtosis

MSCI
weekly 0.0014 0.0204 −0.7268 11.368

FHS 0.0693 0.1613 0.0765 4.4537

LPX
weekly 0.0015 0.0326 −1.0481 12.7299

FHS 0.0792 0.3068 0.6517 7.249

S&P
weekly 0.0022 0.026 −0.4489 6.7476

FHS 0.1227 0.2492 0.9405 8.3531

HFRX
weekly 0.0004 0.0075 −2.3527 15.52

FHS 0.0422 0.0861 −0.786 6.0586

BRIC
weekly 0.0023 0.0403 −0.3957 7.1007

FHS 0.1523 0.3189 0.3685 4.5555

Table 5.15: Mean, standard deviation, skewness and kurtosis for for weekly as
well as FHS annual returns of indexes representing equity risk: Original data.
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Equity: Recent Data

Index Return Mean Standard Deviation Skewness Kurtosis

MSCI
weekly 0.0014 0.0204 −0.6929 10.4743

FHS 0.0658 0.1618 0.074 4.3494

LPX
weekly 0.002 0.031 −1.0058 12.2782

FHS 0.0792 0.3068 0.6517 7.249

S&P
weekly 0.0017 0.0259 −0.4588 6.4825

FHS 0.0926 0.2103 0.6276 6.6992

HFRX
weekly 0.0003 0.0065 −2.1576 15.455

FHS 0.0056 0.0704 −0.4629 4.131

BRIC
weekly 0.0014 0.0375 −0.338 7.3336

FHS 0.0742 0.2772 0.4489 4.5882

Table 5.16: Mean, standard deviation, skewness and kurtosis for for weekly
as well as FHS annual returns of indexes representing equity risk: Recent data.

Table 5.15 and table 5.16 imply that FHS annual returns are ”more normal” than

weekly returns. For the majority of indexes, the skewness of FHS annual returns

is closer to zero than it is for weekly data. Also, the kurtosis reduces for almost all

indexes when moving from weekly to FHS annual returns. An exception is solely

given by the S&P GSCI. Here, skewness and kurtosis are slightly higher for FHS

annual returns.

Moments of monthly returns in comparison FHS annual returns for indexes rep-

resenting property risk are shown in table 5.17. The moments summarized in

table 5.17 do not generally imply a ”normalization” of data when moving from

weekly to FHS annual returns. The results for skewness are diverse. Some in-

dexes exhibit a decrease in skewness while others seem to become more skew.

The kurtosis increases for all five indexes and literally explodes for warehouse and

all property. Remembering the course of the time series illustrated in figure 5.2,

a possible explanation could be the short data history in combination with the

extreme variations of prices within a short time period.
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Property: Recent Data

Index Return Mean Standard Deviation Skewness Kurtosis

All property
weekly 0.0074 0.0107 −1.7173 10.1969

FHS 0.0474 0.1058 4.6851 152.086

Offices
weekly 0.0073 0.0119 −1.3619 7.8432

FHS 0.0536 0.0982 1.2397 22.681

City Offices
weekly 0.006 0.0157 −1.5011 8.7655

FHS 0.104 0.0616 0.8828 10.5438

Retail
weekly 0.0069 0.0109 −1.7716 11.5282

FHS 0.0354 0.089 2.4166 46.4059

Warehouse
weekly 0.0088 0.013 −1.3066 9.3049

FHS 0.0883 0.0562 10.4302 906.1114

Table 5.17: The first four moments mean, standard deviation, skewness and
kurtosis for weekly as well as FHS annual returns of indexes property risk.

iGARCH effects

Per model definition, the parameters of ARMA-GARCH models are required to

meet specific conditions. One of them requires the sum of the ARCH and GARCH

parameters to be less than 1, that is
∑max(m,s)

i=1 (αi+βi) < 1. If the condition is not

fulfilled, the unconditional variance of the innovation at approaches infinity. Weak

stationarity is not longer given. The phenomenon of the GARCH parameters

summing up to 1 is called integrated GARCH (iGARCH) effect. Those iGARCH

effects are likely to have spuriously impact on volatility forecasts [Franke et al.,

2015].

Table 5.18 gives an overview of iGARCH effects detected10 for ARMA-GARCH

fits of data representing equity risk. The table shows, that models fitted for the

LPX50 cumulatively exhibit iGARCH effects when assuming normal distribution

for ǫt. The remaining models seem to be free of those effects.

10Affected models identified by [MATLAB, 2015].
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Equity: Original Data Equity: Recent Data

MSCI LPX S&P HFRX BRIC MSCI LPX S&P HFRX BRIC

nv t nv t nv t nv t nv t nv t nv t nv t nv t nv t

(0,0) - - x - - - - - - - - - x - - - - - - -

(0,1) - - x - - - - - - - - - x - - - - - - -

(0,2) - - x - - - - - - - - - - - - - - - - -

(1,0) - - x - - - - - - - - - x - - - - - - -

(1,1) - - x - - - - - - - - - x - - - - - - -

(1,2) - - x - - - - - - - - - x - - - - - - -

(2,0) - - - - - - - - - - - - x - - - - - - -

(2,1) - - x - - - - - - - - - - - - - - - - -

(2,2) - - x - - - - - - - - - x - - - - - - -

Table 5.18: Present iGARCH effects for ARMA(p,q)-GARCH(1,1) models
fitted for indexes representing the sub-risk module equity.

Table 5.19 shows the same reports for ARMA(p,q)-GARCH(1,1) fitted to indexes

representing the sub-risk module property.

Property: Recent Data

All prop. Offices City off. Retail Wareh.

nv t nv t nv t nv t nv t

(0, 0) x x x x x x x x x x

(0, 1) x - x x - x x x x -

(0, 2) x x x x - x x x x x

(1, 0) x x x x - x - - x x

(1, 1) x x - x - - - x x -

(1, 2) x - x x x - - x - x

(2, 0) x x - - - - - x - x

(2, 1) - - x - x x - x - x

(2, 2) x x x x x x - x x -

Table 5.19: Present iGARCH effects for ARMA(p,q)-GARCH(1,1) models
fitted for indexes representing the sub-risk module property.

According to table 5.19 the majority of models is affected by iGARCH effects.

This includes most of the models chosen as best fits.

Pole-zero cancellation

Both models chosen for the original data of the LPX50 exhibit so called pole-zero



Chapter 5. Empirical Analysis 54

cancellation. To understand this phenomenon, consider an ARMA(1,1) model11

given by

yt = φ1yt−1 + ψ1ǫt−1 + ǫt. (5.3)

With the help of a lag operator L defined by Lyt = yt−1, yt can be written as

yt =
1 + φ1yt

1 + ψ1ǫt
ǫt. (5.4)

If φ1 = −ψ1, yt reduces to a white noise given by

yt = ǫt. (5.5)

Thus, the ARMA(1,2) model reduces to an ARMA(0,0) [Verbeek, 2001]. This

effect is referred to as pole-zero cancellation.

For the original data of the LPX50 we chose ARMA(1,1) models for both assump-

tions concerning the distribution of ǫt. With φ1 = 0.768521 and ψ1 = −0762193

assuming normal distribution for ǫt and φ1 = 0.781838 and ψ1 = −0.780076 as-

suming student-t distributed ǫt, both best models exhibit pole-zero cancellation.

Allowing for this effect, the models reduce to ARMA(0,1) models.

Table 5.20 compares VaR calibration results for the final model with the outcomes

for the reduced model. For the sake of completeness, the results for the unaffected

recent data set is included.

FHS Rolling Window

Index Data Model 95% CI for VaR99.5 Replication Regulator

LPX50
Original

(1, 1) [−80.71%,−78.04%]
−68.96%

−68.67%(0, 0) [−69.13%,−66.22%]

Recent (1, 2) [−67.96%,−65.65%] −67.50%

Table 5.20: Comparison between VaR calibration results of final model and
calibration outcomes of the reduced model when allowing for pole-zero canella-

tion.

Allowing for pole-zero cancellation, VaR calibrations based on FHS anual returns

would rather imply an overestimation of risk by the regulatory approach.

11For exemplary purposes, we assume the constant parameter φ0 equals zero.
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5.4 Correlation based on FHS Annual Returns

[Mittnik, 2011] clearly showed, that the application of rolling-windows not only

affects results of VaR calibrations. It also distorts the dependence structure be-

tween risks. In this section, we analyze the correlation between the two equity

categories ”global equity” and ”other equity” based on annual returns obtained

via FHS. To simulate FHS annual returns suitable for correlation calibrations, we

use a slightly modified FHS algorithm12.

1. Transform daily prices into weekly returns.

2. Fit ARMA(p,q)-GARCH(1,1) models with p,q ∈ {0, 1, 2} to each return

series. Choose the best model via AIC/BIC criteria13.

3. Simultaneously, randomly with replacement draw pairs of residuals com-

posed of a residual of time t from the best model for the MSCI World and

a residual of the same time t from the best model for one of the indexes

representing ”other equity”. Based on the resulting 100, 000 subsets of pairs

with length 52 generate 100,000 pathways of pairs of future returns.

4. Aggregate the pathways to non-overlapping pairs of annual returns.

5. Build bootstrap samples and calibrate the 95% bootstrap confidence interval

for the correlation coefficient bootstrap estimate.

Based on annual FHS data obtained via the algorithm above, we calibrate 95%

bootstrap confidence intervals for correlation coefficients based on the data-cutting

approach, the VaR-implied correlation approach and Pearson correlation.

Data-cutting correlation

Table 5.21 and table 5.22 show the results for bootstrap confidence intervals of

correlation coefficients obtained via the data-cutting approach. Again, analysis is

carried out on original data as well as the recent data set.

12For familiar reasons, we again focus on equity risk. The algorithm is accordingly tailored to
characteristics of data representing this risk module.

13The best models are obviously the same as in the previous FHS study for VaR calibrations,
since we use the same data.



Chapter 5. Empirical Analysis 56

Original Data

1 − α LPX50 S&P GSCI HFRX BRIC

0.995 [−0.0017, 0.3232] [−0.9735, 0.9990] [−0.1132, 0.2266] [−0.0792, 0.2925]

0.99 [0.1870, 0.3648] [−0.3867, 0.3983] [0.0551, 0.2652] [0.0398, 0.2852]

0.98 [0.2631, 0.3938] [−0.1389, 0.2194] [0.1063, 0.2732] [0.1411, 0.2911]

0.97 [0.3026, 0.4047] [−0.2088, 0.0943] [0.1728, 0.2969] [0.1804, 0.3068]

0.96 [0.3084, 0.4035] [−0.1295, 0.1100] [0.2371, 0.3437] [0.1862, 0.2900]

0.95 [0.3307, 0.4150] [−0.0696, 0.1165] [0.2612, 0.3458] [0.2034, 0.2991]

0.90 [0.4198, 0.4757] [−0.0181, 0.0869] [0.3408, 0.4025] [0.2839, 0.3398]

0.85 [0.4549, 0.4935] [0.0191, 0.0879] [0.3863, 0.4333] [0.3061, 0.3526]

0.80 [0.4647, 0.5003] [0.0420, 0.1073] [0.4134, 0.4573] [0.3190, 0.3651]

Table 5.21: 95% bootstrap confidence intervals for data-cutting correlation
coefficients between ”global equity” and ”other equity” based on FHS annual

returns of original data.

Recent Data

1 − α LPX50 S&P GSCI HFRX BRIC

0.995 [0.0536, 0.3828] [−0.4511, 0.9416] [0.0618, 0.3486] [0.1037, 0.5131]

0.99 [0.1929, 0.3976] [−0.1413, 0.6725] [0.2038, 0.4298] [0.1709, 0.4383]

0.98 [0.3288, 0.4666] [−0.1127, 0.4167] [0.2913, 0.4328] [0.2395, 0.4031]

0.97 [0.3406, 0.4552] [−0.1024, 0.2268] [0.3094, 0.4191] [0.2925, 0.4047]

0.96 [0.3585, 0.4594] [−0.0652, 0.2073] [0.3360, 0.4277] [0.2715, 0.3736]

0.95 [0.3598, 0.4539] [−0.0669, 0.1574] [0.3571, 0.4420] [0.2754, 0.3683]

0.90 [0.4237, 0.4902] [0.0062, 0.1125] [0.4433, 0.4981] [0.3272, 0.3933]

0.85 [0.4543, 0.5024] [0.0590, 0.1396] [0.4964, 0.5374] [0.3604, 0.4143]

0.80 [0.4823, 0.5238] [0.0480, 0.1085] [0.5324, 0.5658] [0.3703, 0.4147]

Table 5.22: 95% bootstrap confidence intervals for data-cutting correlation
coefficients between ”global equity” and ”other equity” based on FHS annual

returns of recent data.

For small confidence levels α the 95% bootstrap confidence interval are conspicu-

ously wide, implying rather unstable data-cutting correlation coefficients for the

bootstrap samples. This is specifically noticeable for original data of the S&P

GSCI and (1 − α) = 0.995. The 95% bootstrap confidence interval almost spans

the interval of possible values for correlation coefficients.

Figure 5.6 illustrates the course of the data-cutting correlation coefficients with

varying confidence levels and compares them to the corresponding data-cutting
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correlation coefficients calibrated on the basis of rolling-window annualized re-

turns. For the visualization in figure 5.6, we used the median data-cutting cor-

relation coefficient bootstrap estimate. CEIOPS/EIOPA’s calibration results are

indicated by a dashed black line.
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Figure 5.6: Data-cutting correlation based on FHS annual returns in compar-
ison to results of calibrations based on rolling-window annual returns.

Except for the MSCI BRIC, the median correlation coefficient estimates are clearly

below the regulator’s correlation calibration outcome. Also, the course of the

median data-cutting correlation coefficients based on FHS annual data seems to

be more stable in comparison to coefficients calibrated on the basis of rolling-

window annualized returns. Nonetheless, the width of the bootstrap confidence

intervals should be kept in mind.

VaR-implied correlation

Table 5.23 contains the 95% bootstrap confidence intervals for VaR-implied cor-

relation analysis carried out on FHS annual returns.

Original Data

1 − α LPX50 S&P GSCI HFRX BRIC

0.995 [0.6484, 0.7272] [−0.1354,−0.0750] [0.6058, 0.7197] [0.4884, 0.5672]

0.99 [0.6825, 0.7435] [−0.1154,−0.0628] [0.6209, 0.7126] [0.5483, 0.6093]

0.98 [0.6201, 0.6781] [−0.1119,−0.0746] [0.6586, 0.7308] [0.5217, 0.5809]

0.97 [0.6145, 0.6617] [−0.1256,−0.0912] [0.6483, 0.7088] [0.5238, 0.5709]

0.96 [0.6179, 0.6575] [−0.1387,−0.0992] [0.6899, 0.7429] [0.5239, 0.5693]

0.95 [0.6254, 0.6653] [−0.1552,−0.1158] [0.7054, 0.7623] [0.5240, 0.5709]

0.90 [0.6025, 0.6449] [−0.2513,−0.2111] [0.6907, 0.7544] [0.5142, 0.5614]

0.85 [0.5491, 0.5955] [−0.4120,−0.3665] [0.6564, 0.7233] [0.4814, 0.5355]

0.80 [0.4467, 0.5202] [−0.6598,−0.6064] [0.5023, 0.6380] [0.3783, 0.4485]

Table 5.23: 95% bootstrap confidence intervals for VaR-implied correlation
coefficients between ”global equity” and ”other equity” based on FHS annual

returns of original data.
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Recent Data

1 − α LPX50 S&P GSCI HFRX BRIC

0.995 [0.6549, 0.7448] [−0.0387, 0.0193] [0.6623, 0.7366] [0.599, 0.6723]

0.99 [0.6804, 0.7461] [−0.0070, 0.0551] [0.7605, 0.8370] [0.5985, 0.6580]

0.98 [0.6664, 0.7214] [−0.0034, 0.0392] [0.8045, 0.8577] [0.6035, 0.6583]

0.97 [0.6767, 0.7307] [−0.0121, 0.0345] [0.7981, 0.8498] [0.5944, 0.6406]

0.96 [0.6640, 0.7099] [−0.0244, 0.0166] [0.7971, 0.8513] [0.5930, 0.6428]

0.95 [0.6489, 0.7018] [−0.0526,−0.0103] [0.7637, 0.8127] [0.581, 0.6199]

0.90 [0.6294, 0.6723] [−0.1386,−0.1010] [0.8052, 0.8500] [0.5807, 0.6207]

0.85 [0.5680, 0.6225] [−0.2591,−0.2108] [0.7900, 0.8398] [0.5626, 0.6093]

0.80 [0.5045, 0.5645] [−0.4876,−0.4281] [0.7693, 0.8228] [0.4755, 0.5338]

Table 5.24: 95% bootstrap confidence intervals for VaR-implied correlation
coefficients between ”global equity” and ”other equity” based on FHS annual

returns of recent data.

In comparison to the bootstrap confidence intervals for the data-cutting approach,

the span of bootstrap confidence intervals for VaR-implied correlation coefficient

estimates are considerably lower. The size of the bootstrap confidence interval

seems to be approximately constant over varying confidence levels.

Again, we visualize the course of the median VaR-implied correlation coefficient es-

timates with varying confidence levels and compare them to the regulator’s results

as well as VaR-implied correlation calibration outcomes based on rolling-window

annualized returns. Figure 5.7 shows the results.
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Figure 5.7: VaR-implied correlation based on FHS annual returns in compar-
ison to results of calibrations based on rolling-window annual returns.

For the VaR-implied correlation approach too, the course of the median correlation

coefficient estimate seems to be more stable than results for calibrations based on

rolling-window annualized returns. Correlations for the LPX50 as well as the S&P

GSCI are considerably lower than the regulator’s result.
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Pearson correlation

For the sake of completeness, table 5.25 compares linear Pearson correlation coef-

ficient estimates based on FHS annual returns with calibration results on the basis

of rolling-window annual returns as well as CEIOPS/EIOPA’s empirical outcomes.

Index Data FHS annual Annualized Regulator

LPX
Original [0.6113, 0.6240] 0.7502

0.8359
Recent [0.6767, 0.6852] 0.7680

S&P GSCI
Original [0.0951, 0.1075] 0.0653

0.4472
Recent [0.1446, 0.1568] 0.0825

HFRX
Original [0.7611, 0.7670] 0.9664

0.7731
Recent [0.8071, 0.8114] 0.9433

BRIC
Original [0.6166, 0.6247] 0.6950

−52.82
Recent [0.6433, 0.6504] 0.6660

Table 5.25: 95% bootstrap confidence intervals for linear Perason correlation
coefficient estimates in comparison to regulatory outcomes as well as results for

calibrations based on rolling-window annual returns.

For most indexes, the results using FHS annual returns seem to be lower than

the corresponding outcomes of calibrations based on rolling-window annualized

returns. Repeatedly, we cannot find a match with regulatory results.

In summary, the VaR-implied correlation approach as well as the data-cutting cor-

relation approach based on FHS annual returns exhibits results considerably dif-

ferent form CEIOPS/EIOPA’s outcomes. In fact, our results imply, that CEIOP-

S/EIOPA’s proposed correlation of 0.75 between ”global equity” and ”other eq-

uity” might be too close to ”1”.

The course of the median correlation coefficient estimates seems to be more sta-

ble for calibrations based on FHS annual returns than rolling-window annualized

returns. However, for the data-cutting approach, the width of the 95% boot-

strap confidence intervals for particularly low confidence intervals should be kept

in mind. Since per definition data-cutting correlation subject to small confidence

intervals rely on a particularly small set of observations, the large variation of cal-

ibration results for the different bootstrap samples is not astonishing. This again

implies the superiority of VaR-implied correlation towards data-cutting correlation

estimates.
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We also carried out correlation analysis on the basis of daily returns. Similar

to calibrations based on FHS annual returns, the course of VaR-implied and data-

cutting correlation coefficients seems to be more stable over varying confidence

levels than the corresponding coefficients based on rolling-window annualized re-

turns. The values of the correlation coefficients based on daily returns are similar

to the median outcomes obtained on the basis of FHS annual returns. However,

they tend to be slightly closer to 1. For plots and tables of calibration results

based on daily returns refer to Annex B.

5.5 Diversification within sub-risk modules

CEIOPS/EIOPA analyzes the correlation between the MSCI World as representa-

tive of the equity category ”global equity” and each of the four indexes representing

the category ”other equity”. However, the regulator proposes a single ”averaged”

correlation coefficient of 0.75 between the two categories. Correlation within the

category ”other equity” is not analyzed at all. Diversification benefits within this

category are thereby neglected. For property risk, there is no further breakdown

into sub-categories. Analyses concerning correlation within this risk module are

therefor relinquished.

In this part of our study, we analyze the regulator’s decisions concerning corre-

lations within property risk and within the equity category ”other equity”. We

calibrate Pearson correlations as well as VaR-implied correlations based on daily

returns14.

5.5.1 Equity Risk

Pearson correlation

Table 5.26 contains linear Pearson correlation coefficients based on daily returns

for all possible combinations of the four indexes representing the equity category

”other equity”. Table 5.26 and table 5.27 show the results for calibrations carried

on the original and recent data set.

14The use of annual FHS results for this part of analysis is conceivable, too
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Original data: Daily

Index LPX S&P GSCI HFRX BRIC

LPX 1 0.1857 0.5734 0.5114

S&P GSCI 1 0.3384 0.2264

HFRX 1 0.6606

BRIC 1

Table 5.26: Linear perason correlation coefficients within ”other equity” based
on the original data set.

Recent Data: Daily

Index LPX S&P GSCI HFRX BRIC

LPX 1 0.2311 0.6277 0.5253

S&P GSCI 1 0.3695 0.2648

HFRX 1 0.6467

BRIC 1

Table 5.27: Linear perason correlation coefficients within ”other equity” based
on the recent data set.

The results shown in the tables above imply a dependence pattern contrary to

CEIOPS/EIOPA’s assumption of perfect correlation within the category ”other

equity”. For almost all pairs of indexes and both data sets, linear correlation is

below 65%. According to linear correlation coefficients, the presence of diversifi-

cation effects is likely.

VaR-implied correlation

Next, we consider VaR-implied tail correlations between each possible pair of the

four indexes15. Table 5.28 summarizes the results.

15Note that at this point, we carry out analysis solely for the recent data sets. Analysis
regarding Pearson correlations within ”other equity” as well as previous analysis concerning
VaR-implied correlations based on non-annualized data showed that the difference between those
two data sets is negligible for this part of the study.
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LPX

1 − α S&P HFRX BRIC

0.995 0.6363 1 0.5775

0.99 0.4819 1 0.7166

0.98 0.3553 1 0.6032

0.97 0.3766 1 0.4894

0.96 0.3586 1 0.5819

0.95 0.348 1 0.5238

0.9 0.4272 1 0.5137

0.85 0.5191 0.9556 0.4664

0.8 0.5487 0.9982 0.5222

S&P

1 − α HFRX BRIC

0.995 1 0.5817

0.99 1 0.4364

0.98 1 0.4404

0.97 1 0.4238

0.96 1 0.4561

0.95 1 0.5078

0.9 1 0.4489

0.85 1 0.4715

0.8 1 0.599

HFRX

1 − α BRIC

0.995 0.93875

0.99 1

0.98 0.53965

0.97 0.42351

0.96 0.24361

0.95 0.17306

0.9 0.19029

0.85 0.30163

0.8 0.46722

Table 5.28: VaR-implied tail correlation coefficients within ”other equity” for
varying confidence levels based on the recent data set.

The results for VaR-implied correlations within ”other-equities” confirm the im-

pression implied by results for Pearson correlation calibrations. Except for pairs

involving the HFRX, correlations are clearly different from 1.

In summary, assuming perfect correlation within the sub-risk module equity seems

inexplicable. Our empirical study implies that diversification effects are likely

to exist within this module. With the relinquishment of correlation calibrations

within the equity category, those benefits are neglected.

5.5.2 Property

Pearson correlation

Table 5.29 and table 5.30 show linear Pearson correlation calibration results for

dependencies within the sub-risk module property. For this part of the study,

we carry out additional analysis on the original data set of indexes representing

property risk.
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Original data: Monthly

Index All prop. Offices City Off. Retail Warehouse

All prop. 1 0.9619 0.7927 0.9673 0.9000

Offices 1 0.8550 0.8689 0.8035

City Off. 1 0.7103 0.6683

Retail 1 0.9315

Warehouse 1

Table 5.29: Linear pearson correlation coefficients within property risk based
on the original data set.

Recent data: Monthly

Index All prop. Offices City off. Retail Warehouse

All prop. 1 0.9590 0.7887 0.9643 0.8946

Offices 1 0.8572 0.8575 0.7822

City Off. 1 0.6965 0.6393

Retail 1 0.9368

Warehouse 1

Table 5.30: Linear Pearson correlation coefficients within property risk based
on the recent data set.

For indexes representing property risk, linear correlation coefficients are close to

1 for almost all of the index combinations. Differences between the two data sets

are small and thus negligible.

VaR-implied correlation

Table 5.31 shows the results for VaR-implied tail correlation coefficient calibrations

carried out on recent data for property risk.
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All property

α Offices City off Retail Warehouse

0.995 1 0.8397 1 1

0.99 1 0.5349 0.9049 0.9106

0.98 0.9756 0.2796 1 0.939

0.97 1 1 0.8471 0.8361

0.96 0.9588 0.7944 1 0.5843

0.95 0.7713 0.9555 1 1

0.9 0.8746 1 0.6266 −0.2759

0.85 1 0.7872 1 1

0.8 1 −1 0.9354 1

Offices

α City off. Retail Wareh.

0.995 0.8976 1 1

0.99 0.5644 1 0.9483

0.98 0.4067 0.9638 1

0.97 1 1 0.7593

0.96 1 1 0.78

0.95 1 0.7457 0.9651

0.9 0.8765 0.3689 −1

0.85 1 1 −0.9886

0.8 1 0.3014 1

City offices

α Retail Wareh.

0.995 0.8849 0.8169

0.99 0.6144 0.6427

0.98 0.3144 0.393

0.97 0.3961 1

0.96 1 0.6029

0.95 1 0.9461

0.9 1 −1

0.85 1 1

0.8 −1 −1

Retail

α Wareh.

0.995 0.8169

0.99 0.6427

0.98 0.393

0.97 1

0.96 0.6029

0.95 0.9461

0.9 −1

0.85 1

0.8 −1

Table 5.31: VaR-implied tail correlation coefficients within property risk for
varying confidence levels based on the recent data set.

The results for VaR-implied correlation coefficients within property risk are di-

verse. Overall, the results again imply a correlation of 1 ore close to 1. However,

for some index combinations and specific confidence levels there are a couple of

outliers reaching up to −1. Nonetheless, those outliers do not necessarily imply

a ”wrong” regulatory decision concerning the allowance of diversification effects

within the sub-risk module equity but rather leave room for doubts concerning the

choice of historical data representing property risk or respectively their length of

history.
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Conclusion and Outlook

The Solvency II framework was fully implemented with the beginning of 2016.

However, its development is not completed yet. Additional regulatory work on

Solvency II is already scheduled. This includes to a large extent the review of

Solvency Capital Requirement calculations based on the standard formula.

This thesis discussed the regulatory approach to calibrate standard formula pa-

rameters for the sub-risk modules equity and property risk. The main focus was

on the consequences of CEIOPS/EIOPA’s unfortunate decision to confront the

problem of too short data histories with the use of rolling-window annual returns.

[Mittnik, 2011] clearly showed, that this calibration methodology has severe falsify-

ing impact on the calibration results for both standard formula input parameters.

In the empirical part of this thesis, CEIOPS/EIOPA’s calibrations concerning

standard formula input parameters for equity risk and property risk were repli-

cated. The stress factors obtained by the regulator’s empirical analysis could be

unequivocally confirmed for both risk modules. However, regarding the correla-

tion coefficients between representatives of the equity category ”other equity” and

the index representing ”global equity” we could not obtain a clear match with

CEIOPS/EIOPA’s empirical result.

In a second step, we used a slightly modified version of the Filtered Historical Sim-

ulation methodology to circumvent the need of rolling-windows to transform daily

or respectively monthly prices into annual returns. We analyzed representing in-

dexes of both sub-risk modules. In general, the analysis implied an overestimation

of risk for calibrations foll regulatory approach, meaning VaR calibrations based

on rolling-window annualized returns. Especially for property risk, we obtained

substantially less negative results for VaR calibrations based on FHS annual re-

turns. For equity risk, the results were more diverse. For most of the indexes

calibrations annual returns obtained through FHS resulted in a similar or lower

67
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risk than proposed by the regulator. However, the MSCI BRIC as representative

of the equity type emerging markets revealed rather higher risk than it is implied

by CEIOPS/EIOPA.

Analysis concerning the aggregation of the categories ”global equity” and ”other

equity” implied that the proposed correlation of 0.75 might be too close to 1.

Although CEIOPS/EIOPA’s approach concerning calibration approaches has not

been fully determined, our analysis showed, that the VaR-implied correlation ap-

proach is superior to the data-cutting method. Also, analysis carried out on rolling-

window annualized returns possibly underestimates diversification benefits.

Lastly, the presence of diversification effects within the category ”other equity”

as well as the sub-risk module property was investigated. For property risk,

CEIOPS/EIOPA’s decision to neglect diversification within the sub-risk module

could be supported. However, indexes representing ”other equity” exhibit cor-

relations which are unequivocally different from 1. According to our analysis,

diversification benefits within the category are indeed present.

At several points, results of the empirical analysis implied that short data histories

might cause unstable calibration results. Time series representing property risk

are particularly short. In order to obtain more reliable calibration results, their

replacement might be considered.

Solvency II pursues the maintenance of sound risk management within the insur-

ance an reinsurance sector – in the present as well as in future. Along with many

others, this thesis indicated, that the calibration of the standard formula input

parameters still exhibits room for improvements. Parts of regulatory calibration

approaches might overestimate certain risks while present diversification effects

are neglected. This clearly impacts the amount of capital and insurer is required

to hold under Solvency II to a large degree. In order to prevent disadvantages

against insurance or reinsurance companies being reliant on the regulatory model,

those aspects should be taken into consideration when reviewing the SCR standard

formula.
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Methodical Appendix

A.1 Copulas

The concept of copulas allows us to extend the measure of dependence beyond the

concept of correlation. With a given set of random variables (X1, . . . Xn), the idea

behind the approach is extract every information about their dependence struc-

ture out of their joint distribution function F .

Let U = (U1 . . . Ud) be a d-dimensional random vector and Uj its standard-

uniformly distributed margins on the interval [0, 1]. Then the d-dimensional dis-

tribution function CU : [0, 1]d → [0, 1] is called copula. The importance and of

copulas and their meaning concerning the measurement of dependence is summa-

rized in (Sklar’s Theorem).

Theorem A.1. Let X1, . . . Xd be random variables with respective probability

distribution function FX1
, . . . FXd

. Let FX denote the joint probability distribution

function. Then there is a Copula C : [0, 1]d → [0, 1] such that ∀x1, . . . xn ∈

[−∞,∞]

F (x1 . . . xn) = C(FX1
(x1), . . . FXd

(xd)) (A.1)

If the marginal distributions FX1
, . . . FXd

are all continuous, the copula is unique

[McNeil et al., 2005]. In this case it also holds

C(u1, . . . , ud) = (F−1
X1

(u1), . . . F
−1
Xd

(ud)), u1, . . . , un ∈ [0, 1] (A.2)

where F−1
X1
. . . F−1

Xn
denote the inverse distribution functions of FX1

. . . FXn
[Schmidt

and Stadtmüller, 2006].
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A.2 Properties of VaR

VaR is translation invariant: ∀a ∈ R it holds that V aRα(X+a) = V aRα(L)+a.

Proof.

V aRα(L+ a) = inf{l ∈ R : FL+a(l) ≥ α}

= inf{l ∈ R : P (L+ a ≤ l) ≥ α}

= inf{l ∈ R : P (L ≤ l − a
︸︷︷︸

:=y

) ≥ α}

= inf{y + a ∈ R : P (L ≤ y) ≥ α}

= a+ inf{y ∈ R : P (L ≤ y) ≥ α}

= a+ inf{y ∈ R : FL(y) ≥ α}

= a+ V aRα(L)

VaR is positive homogen: ∀λ ≥ 0 it holds that ρ(λL) = λρ(L).

Proof. First consider λ = 0 :

V aRα(λL) = V aRα(0)

= inf{l ∈ R : F0(l) ≥ α}

= inf{l ∈ R : P (O ≤ l) ≥ α}

= 0 = 0 ∗ V aRα(L).

Now consider λ > 0 :

V aRα(λL) = inf{l ∈ R : FλL(l) ≥ α}

= inf{l ∈ R : P (λL ≤ l) ≥ α}

= inf{l ∈ R : P (L ≤
1

λ
l

︸︷︷︸

=:y

) ≥ α}

= inf{λy ∈ R : P (L ≤ y) ≥ α}

= λinf{y ∈ R : FL(y)α}

= λV aRα(L)
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VaR is monoton: ∀L1, L2 with P (L1 ≤ L2) = 1 it holds that V aRα(L1) ≤

V aRα(L2).

Proof. We know that Fl(L) ≤ FY (l) since it holds L ≤ Y with probability 1.

V aRα(L) = inf{l ∈ R : FL(l) ≥ α}

≤ inf{l ∈ R : FY (l) ≥ α} = V aRα(Y )

VaR is not sub-additiv: V aR(L1 +L2) ≤ V aR(L1) + V aR(L2) does not hold in

general.

Proof. Counterelample: Let L1, L2 be two identically distributed rvs with

Li =







1, with P (Li = 1) = 0.5

0, with P (Li = 0) = 0.5
i = 1, 2.

Now, choose α = 0.3. Then

V aRα(Li) = inf{l ∈ R : FLi
(l) ≥ 0.3} = 0.

Now consider the sum of L1 + L2. It holds

L1 + L2 =







2, with P (L1 + L2 = 2) = 1
4

1, with P (L1 + L2 = 1) = 1
2

0, with P (L1 + L2 = 0) = 1
4

i = 1, 2.

V aRα(L1 + L2) = inf{l ∈ R : FL1+L2
(l) ≥ 0.3} = 1

since

P (L1 + L2 < 0) =
1

4
≤ 0.3 and (L1 + L2 ≤ 1) =

3

4
> 0.3.

Thus

V aRα(L1 + L2) 6= V aRα(L1) + V aRα(L1) = 0 + 0 = 0,

and therefore VaR is not subadditiv in general.
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B.1 Histograms of annualized returns

Equity
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Figure B.1: Histograms for indexes representing equity risk.

Property
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Figure B.2: Histograms for indexes representing property risk.

B.2 Returns

Equity
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Figure B.3: Weekly Returns of indexes representing equity risk.

Property
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Figure B.4: Monthly Returns of indexes representing property risk.

B.3 FHS Results

Equity

MSCI World Original Data MSCI World Recent Data

(p,q)1 ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ t

(0, 0) [−41.28%,−39.32%] [−40.33%,−38.85%] [−42.33%,−40.59%] [−40.42%,−38.74%]
(0, 1) [−41.6%,−39.6%] [−40.7%,−39.2%] [−42.75%,−40.92%] [−40.91%,−39.26%]
(0, 2) [−42.66%,−40.92%] [−42.17%,−40.57%] [−43.27%,−41.62%] [−41.49%,−39.8%]
(1, 0) [−41.61%,−39.61%] [−40.75%,−39.27%] [−42.77%,−40.94%] [−40.93%,−39.29%]
(1, 1) [−41.29%,−39.27%] [−40.35%,−38.87%] [−43.37%,−41.58%] [−42.06%,−40.4%]
(1, 2) [−43.4%,−41.39%] [−43.37%,−41.75%] [−42.78%,−40.96%] [−42.17%,−40.34%]
(2, 0) [−42.76%,−40.96%] [−42.38%,−40.74%] [−43.3%,−41.68%] [−41.65%,−39.9%]
(2, 1) [−43.38%,−41.35%] [−43.32%,−41.75%] [−43.46%,−41.78%] [−42.17%,−40.36%]
(2, 2) [−42.97%,−40.84%] [−43.08%,−41.55%] [−43.38%,−41.73%] [−40.68%,−39.23%]

Table B.1: 95% bootstrap confidence intervals for 99.5% VaR of MSCI World
Data after FHS.

LPX50 Original Data LPX50 Recent Data

(p,q) ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ N

(0, 0) [−72.86%,−69.36%] [−68.12%,−65.02%] [−74.51%,−71.09%] [−65.25%,−62.95%]
(0, 1) [−73.67%,−70.42%] [−69.13%,−66.22%] [−74.99%,−71.66%] [−65.44%,−62.98%]
(0, 2) [−77.35%,−74.19%] [−73.17%,−70.22%] [−75.58%,−72.45%] [−67.18%,−64.94%]
(1, 0) [−74.14%,−70.89%] [−69.65%,−66.68%] [−75.09%,−71.78%] [−65.46%,−63.02%]
(1, 1) [−81.71%,−79.08%] [−80.54%,−77.59%] [−79.55%,−76.92%] [−63.27%,−61.03%]
(1, 2) [−81.91%,−79.4%] [−80.71%,−78.04%] [−79.14%,−76.43%] [−73.77%,−71.58%]
(2, 0) [−78.46%,−75.63%] [−74.97%,−71.93%] [−76.14%,−72.88%] [−67.96%,−65.65%]
(2, 1) [−82.02%,−79.66%] [−80.95%,−78.18%] [−79.13%,−76.39%] [−73.6%,−71.38%]
(2, 2) [−81.83%,−79.14%] [−80.69%,−78.01%] [−78.63%,−76.04%] [−73.23%,−71.01%]

Table B.2: 95% bootstrap confidence intervals for 99.5% VaR of LPX50 Data
after FHS.
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S&P GSCI Original Data S&P GSCI Recent Data

(p,q) ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ t

(0, 0) [−48.68%,−47.14%] [−49.87%,−48.38%] [−44.01%,−42.19%] [−45.05%,−43.19%]
(0, 1) [−48.67%,−47.13%] [−50.08%,−48.65%] [−44.21%,−42.43%] [−45.83%,−44%]
(0, 2) [−50.31%,−48.66%] [−51.9%,−50.34%] [−44.92%,−43.14%] [−46.74%,−44.64%]
(1, 0) [−48.66%,−47.12%] [−50.12%,−48.65%] [−44.22%,−42.46%] [−45.9%,−44.15%]
(1, 1) [−52.41%,−50.82%] [−58.54%,−56.97%] [−48%,−46.1%] [−57.07%,−55.8%]
(1, 2) [−52.23%,−50.84%] [−54.45%,−53.07%] [−46.15%,−44.59%] [−57.11%,−55.81%]
(2, 0) [−50.45%,−48.77%] [−52.12%,−50.61%] [−45.12%,−43.3%] [−46.93%,−44.92%]
(2, 1) [−52.33%,−50.87%] [−54.65%,−53.37%] [−46.38%,−44.81%] [−57.11%,−55.81%]
(2, 2) [−51.25%,−49.62%] [−53.31%,−51.78%] [−44.63%,−42.87%] [−56.85%,−55.6%]

Table B.3: 95% bootstrap confidence intervals for 99.5% VaR of S&P GSCI
Data after FHS.

HFRX Original Data HFRX Recent Data

(p,q) ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ N

(0, 0) [−14.97%,−13.89%] [−16.41%,−15.31%] [−14.37%,−13.73%] [−13.98%,−13.37%]
(0, 1) [−16.28%,−15.38%] [−17.66%,−16.56%] [−15.23%,−14.58%] [−15.38%,−14.78%]
(0, 2) [−17.66%,−16.64%] [−19.58%,−18.3%] [−17.84%,−17.16%] [−17.44%,−16.7%]
(1, 0) [−16.85%,−16.12%] [−18.6%,−17.33%] [−16.99%,−16.25%] [−16.08%,−15.48%]
(1, 1) [−21.06%,−20%] [−25.76%,−24.39%] [−20.8%,−20.01%] [−22%,−21.43%]
(1, 2) [−20.98%,−19.77%] [−25.15%,−23.91%] [−20.53%,−19.74%] [−21.95%,−21.29%]
(2, 0) [−19.03%,−17.99%] [−21.53%,−20.36%] [−19.24%,−18.44%] [−18.64%,−17.94%]
(2, 1) [−21.03%,−19.85%] [−25.39%,−24.14%] [−20.45%,−19.69%] [−21.88%,−21.19%]
(2, 2) [−21.54%,−20.33%] [−26.59%,−25.08%] [−21.2%,−20.49%] [−22.73%,−22.04%]

Table B.4: 95% bootstrap confidence intervals for 99.5% VaR of HFRX Data
after FHS.

MSCI BRIC Original Data MSCI BRIC Recent Data

(p,q) ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ t

(0, 0) [−64.18%,−61.93%] [−68.33%,−65.76%] [−61.34%,−59.64%] [−62.44%,−60.74%]
(0, 1) [−65.47%,−63.33%] [−69.78%,−67.64%] [−62.66%,−61.06%] [−64%,−62.07%]
(0, 2) [−67.6%,−65.65%] [−73.67%,−72.01%] [−65.25%,−63.37%] [−66.87%,−64.72%]
(1, 0) [−65.79%,−63.67%] [−70.24%,−68.32%] [−63.1%,−61.34%] [−64.48%,−62.49%]
(1, 1) [−70.79%,−69.01%] [−78.33%,−76.44%] [−68.61%,−66.89%] [−70.63%,−68.77%]
(1, 2) [−66.31%,−64.19%] [−71.72%,−69.59%] [−68.66%,−66.96%] [−64.77%,−62.87%]
(2, 0) [−68.46%,−66.53%] [−75.82%,−73.61%] [−66.11%,−64.22%] [−68.04%,−65.86%]
(2, 1) [−67.02%,−64.81%] [−72.88%,−70.68%] [−64.14%,−62.33%] [−65.71%,−63.83%]
(2, 2) [−71.51%,−69.69%] [−79.08%,−77.45%] [−68.02%,−66.29%] [−70.46%,−68.86%]

Table B.5: 95% bootstrap confidence intervals for 99.5% VaR of MSCI BRIC
Data after FHS.
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Property

(p,q) ǫt ∼ N ǫt ∼ t

All
Property

(0, 0) [4.58%, 4.95%] [4.58%, 4.91%]
(0, 1) [2.54%, 2.89%] [1.79%, 2.20%]
(0, 2) [−0.62%,−0.01%] [−1.53%,−0.71%]
(1, 0) [−10.65%,−9.52%] [−13.98%,−12.93%]
(1, 1) [−6.20%,−5.52%] [−9.16%,−8.11%]
(1, 2) [−6.44%,−5.63%] [−9.21%,−8.11%]
(2, 0) [−7.91%,−7.04%] [−10.15%,−9.24%]
(2, 1) [−9.84%,−8.87%] [−9.13%,−8.04%]
(2, 2) [−6.72%,−6.06%] [−7.90%,−7.09%]

Table B.6: 95% bootstrap confidence intervals for 99.5% VaR of All Property
Data after FHS.

(p,q) ǫt ∼ N ǫt ∼ t

Offices

(0, 0) [2.21%, 2.69%] [2.08%, 2.58%]
(0, 1) [−0.02%, 0.65%] [−0.14%, 0.55%]
(0, 2) [−3.74%,−3.00%] [−3.46%,−2.70%]
(1, 0) [−14.78%,−13.59%] [−13.77%,−12.45%]
(1, 1) [−10.58%,−9.51%] [−10.53%,−9.25%]
(1, 2) [−10.35%,−9.24%] [−10.55%,−9.23%]
(2, 0) [−13.22%,−11.90%] [−12.15%,−10.65%]
(2, 1) [−10.55%,−9.35%] [−10.52%,−9.25%]
(2, 2) [−9.87%,−8.75%] [−9.74%,−8.53%]

Table B.7: 95% bootstrap confidence intervals for 99.5% VaR of Offices Data
after FHS.

(p,q) ǫt ∼ N ǫt ∼ t

City
offices

(0, 0) [−00.04%,+00.48%] [−01.23%,−00.50%]
(0, 1) [−02.95%,−02.38%] [−03.51%,−02.95%]
(0, 2) [−04.42%,−03.78%] [−05.15%,−04.42%]
(1, 0) [−10.82%,−10.12%] [−10.78%,−09.99%]
(1, 1) [−10.10%,−09.25%] [−07.41%,−06.67%]
(1, 2) [−09.88%,−09.04%] [−07.33%,−06.61%]
(2, 0) [−11.88%,−11.09%] [−09.83%,−09.08%]
(2, 1) [−10.73%,−09.87%] [−07.32%,−06.61%]
(2, 2) [−09.29%,−08.51%] [−07.20%,−06.39%]

Table B.8: 95% bootstrap confidence intervals for 99.5% VaR of City Offices
Data after FHS.
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(p,q) ǫt ∼ N ǫt ∼ t

Retail

(0, 0) [2.56%, 2.99%] [2.57%, 2.99%]
(0, 1) [2.38%, 2.68%] [1.44%, 1.86%]
(0, 2) [−0.03%, 0.37%] [−0.36%, 0.17%]
(1, 0) [−8.70%,−7.97%] [−8.94%,−8.17%]
(1, 1) [−6.95%,−6.36%] [−6.50%,−5.93%]
(1, 2) [−4.22%,−3.84%] [−6.59%,−6.00%]
(2, 0) [−7.49%,−6.87%] [−6.86%,−6.29%]
(2, 1) [−6.99%,−6.37%] [−6.53%,−5.91%]
(2, 2) [−6.29%,−5.72%] [−6.30%,−5.74%]

Table B.9: 95% bootstrap confidence intervals for 99.5% VaR of Retail Data
after FHS.

(p,q) ǫt ∼ N ǫt ∼ t

Warehouse

(0, 0) [04.06%, 04.44%] [03.90%, 04.23%]
(0, 1) [02.62%, 03.11%] [02.13%, 02.64%]
(0, 2) [01.42%, 01.94%] [00.29%, 00.84%]
(1, 0) [−06.10%,−05.38%] [−08.99%,−08.05%]
(1, 1) [−05.17%,−04.54%] [−07.31%,−06.49%]
(1, 2) [−05.24%,−04.64%] [−07.32%,−06.36%]
(2, 0) [−05.51%,−04.87%] [−08.03%,−07.15%]
(2, 1) [−05.24%,−04.61%] [−07.22%,−06.44%]
(2, 2) [−05.29%,−04.70%] [−05.95%,−05.14%]

Table B.10: 95% bootstrap confidence intervals for 99.5% VaR of Industrial
Data after FHS.
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B.4 AIC and BIC Criteria

Equity

MSCI Original Data MSCI Recent Data

ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC AIC BIC AIC BIC

(0, 0) −1.0248 −1.0225 −1.0322 −1.0294 −1.1755 −1.1732 −1.18420 −1.1813
(0, 1) −1.0246 −1.0218 −1.0321 −1.0287 −1.1753 −1.1725 −1.1840 −1.1805
(0, 2) −1.0245 −1.0212 −1.0321 −1.0282 −1.1753 −1.1718 −1.1840 −1.18
(1, 0) −1.0246 −1.0218 −1.0321 −1.02870 −1.1753 −1.1725 −1.184 −1.1805
(1, 1) −1.0244 −1.0211 −1.0319 −1.0279 −1.1753 −1.1719 −1.1838 −1.1798
(1, 2) −1.0244 −1.0205 −1.0321 −1.0276 −1.1751 −1.1711 −1.1839 −1.1793
(2, 0) −1.0245 −1.0212 −1.0321 −1.0282 −1.1753 −1.1718 −1.1840 −1.18
(2, 1) −1.0244 −1.0205 −1.0321 −1.0276 −1.1751 −1.1711 −1.1839 −1.1793
(2, 2) −1.0243 −1.0198 −1.0318 −1.0268 −1.1749 −1.1703 −1.1837 −1.1785

×1.0e+ 04 for all values

Table B.11: AIC/BIC for the MSCI World.

LPX50 Original Data LPX50 Recent Data

ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC AIC BIC AIC BIC

(0, 0) −3.7832 −3.7643 −3.8199 −3.7963 −5.1414 −5.1212 −5.2105 −5.1853
(0, 1) −3.7827 −3.7591 −3.8197 −3.7913 −5.1396 −5.1144 −5.2085 −5.1783
(0, 2) −3.7872 −3.7589 −3.8259 −3.7928 −5.1467 −5.1165 −5.2202 −5.185
(1, 0) −3.783 −3.7594 −3.8201 −3.7917 −5.1396 −5.1144 −5.2085 −5.1783
(1, 1) −3.7951 −3.7633 −3.8372 −3.8023 −5.1485 −5.1183 −5.2117 −5.1765
(1, 2) −3.7964 −3.7668 −3.8354 −3.7994 −5.1509 −5.1157 −5.2239 −5.1836
(2, 0) −3.7888 −3.7605 −3.8279 −3.7948 −5.1476 −5.1174 −5.2209 −5.1857
(2, 1) −3.7963 −3.7632 −3.8371 −3.7993 −5.1512 −5.116 −5.2246 −5.1843
(2, 2) −3.7944 −3.7566 −3.8352 −3.7927 −5.15 −5.1097 −5.2241 −5.1788

×1.0e+ 03 for all values

Table B.12: AIC/BIC for the LPX50.
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S&P GSCI Original Data S&P GSCI Recent Data

ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC AIC BIC AIC BIC

(0, 0) −9.8338 −9.8112 −9.8660 −9.8378 −1.1194 −1.1171 −1.1244 −1.1215
(0, 1) −9.8318 −9.8036 −9.8642 −9.8304 −1.1193 −1.1164 −1.1243 −1.1208
(0, 2) −9.8325 −9.7987 −9.866 −9.8261 −1.1194 −1.1159 −1.1245 −1.1204
(1, 0) −9.8318 −9.8036 −9.8643 −9.8304 −1.1193 −1.1164 −1.1243 −1.1208
(1, 1) −9.8323 −9.7984 −9.8683 −9.8288 −1.1195 −1.1160 −1.125 −1.121
(1, 2) −9.8330 −9.7935 −9.8666 −9.8215 −1.1195 −1.1154 −1.1248 −1.1202
(2, 0) −9.8325 −9.7986 −9.8658 −9.8263 −1.1194 −1.1160 −1.1245 −1.1205
(2, 1) −9.8328 −9.7933 −9.8665 −9.8213 −1.1195 −1.1154 −1.1248 −1.1202
(2, 2) −9.8330 −9.7879 −9.8658 −9.815 −1.1196 −1.115 −1.1249 −1.1197

×1.0e+ 03 for original data
×1.0e+ 04 for recent data

Table B.13: AIC/BIC for the S&P GSCI.

HFRX Original Data HFRX Recent Data

ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC AIC BIC AIC BIC

(0, 0) −2.5596 −2.5442 −2.5857 −2.5664 −4.8662 −4.8483 −4.9181 −4.8957
(0, 1) −2.5606 −2.5413 −2.5871 −2.5640 −4.8490 −4.8266 −4.9252 −4.8983
(0, 2) −2.5623 −2.5392 −2.5903 −2.5633 −4.8801 −4.8532 −4.9329 −4.9015
(1, 0) −2.536 −2.5167 −2.5883 −2.5651 −4.8771 −4.8547 −4.9275 −4.9006
(1, 1) −2.5651 −2.5420 −2.597 −2.5699 −4.8823 −4.8554 −4.9375 −4.9062
(1, 2) −2.5637 −2.5367 −2.5960 −2.5651 −4.8804 −4.8490 −4.9355 −4.8997
(2, 0) −2.5639 −2.5407 −2.5931 −2.566 −4.8818 −4.8549 −4.9348 −4.9035
(2, 1) −2.5637 −2.5367 −2.5961 −2.5652 −4.8804 −4.8491 −4.9356 −4.8997
(2, 2) −2.5632 −2.5323 −2.5962 −2.5614 −4.8803 −4.8444 −4.9375 −4.8971

×1.0e+ 03 for all values

Table B.14: AIC/BIC for the HFRX.
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MSCI BRIC Original Data MSCI BRIC Recent Data

ǫt ∼ N ǫt ∼ t ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC AIC BIC AIC BIC

(0, 0) −2.9551 −2.9365 −2.9870 −2.9645 −4.2480 −4.2281 −4.2864 −4.2615
(0, 1) −2.9552 −2.9319 −2.9874 −2.9594 −4.2493 −4.2244 −4.2878 −4.2578
(0, 2) −2.9572 −2.9292 −2.9947 −2.9620 −4.2552 −4.2252 −4.2975 −4.2626
(1, 0) −2.9555 −2.9322 −2.988 −2.96 −4.25 −4.225 −4.2885 −4.2586
(1, 1) −2.9608 −2.9328 −2.9972 −2.9645 −4.2566 −4.2267 −4.2981 −4.2632
(1, 2) −2.9571 −2.9245 −2.9949 −2.9576 −4.2547 −4.2197 −4.2954 −4.2555
(2, 0) −2.9577 −2.9298 −2.9962 −2.9636 −4.2557 −4.2258 −4.2985 −4.2636
(2, 1) −2.9574 −2.9248 −2.9959 −2.9587 −4.2538 −4.2189 −4.2971 −4.2572
(2, 2) −2.9574 −2.9201 −2.9992 −2.9573 −4.2547 −4.2148 −4.3010 −4.2561

×1.0e+ 03 for all values

Table B.15: AIC/BIC for the MSCI BRIC.

Property

ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC

All
Property

(0, 0) −2.581 −2.5656 −2.5804 −2.5611
(0, 1) −2.7351 −2.7158 −2.7309 −2.7078
(0, 2) −2.7809 −2.7578 −2.8032 −2.7762
(1, 0) −2.9274 −2.9081 −2.9823 −2.9591
(1, 1) −2.9539 −2.9307 −2.9963 −2.9693
(1, 2) −2.953 −2.9260 −2.9951 −2.9642
(2, 0) −2.9493 −2.9262 −2.9940 −2.9670
(2, 1) −2.9467 −2.9197 −2.9945 −2.9636
(2, 2) −2.9621 −2.9312 −2.9931 −2.9584

×1.0e+ 03 for all values

Table B.16: AIC/BIC for all property.
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ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC

Offices

(0, 0) −2.4430 −2.4276 −2.4443 −2.425
(0, 1) −2.6148 −2.5955 −2.6356 −2.6125
(0, 2) −2.6754 −2.6522 −2.6952 −2.6682
(1, 0) −2.8239 −2.8046 −2.8599 −2.8367
(1, 1) −2.8411 −2.8179 −2.8762 −2.8492
(1, 2) −2.8394 −2.8123 −2.8742 −2.8433
(2, 0) −2.8338 −2.8107 −2.8718 −2.8448
(2, 1) −2.8391 −2.8121 −2.8742 −2.8433
(2, 2) −2.8420 −2.8111 −2.8783 −2.8436

×1.0e+ 03 for all values

Table B.17: AIC/BIC for offices.

ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC

City
offices

(0, 0) −2.183 −2.1676 −2.2259 −2.2066
(0, 1) −2.2848 −2.2656 −2.3354 −2.3122
(0, 2) −2.2888 −2.2657 −2.3548 −2.3278
(1, 0) −2.3443 −2.3250 −2.4157 −2.3926
(1, 1) −2.3743 −2.3512 −2.4555 −2.4285
(1, 2) −2.3725 −2.3455 −2.4535 −2.4227
(2, 0) −2.3610 −2.3379 −2.4376 −2.4105
(2, 1) −2.3728 −2.3458 −2.4536 −2.4227
(2, 2) −2.3912 −2.3603 −2.4556 −2.4209

×1.0e+ 03 for all values

Table B.18: AIC/BIC for city offices.
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ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC

Retail

(0, 0) −2.5838 −2.5684 −2.5816 −2.5624
(0, 1) −2.7048 −2.6855 −2.7221 −2.699
(0, 2) −2.7613 −2.7381 −2.7722 −2.7452
(1, 0) −2.8887 −2.8694 −2.9145 −2.8914
(1, 1) −2.9046 −2.8815 −2.9285 −2.9015
(1, 2) −2.8632 −2.8362 −2.9268 −2.8959
(2, 0) −2.9034 −2.8803 −2.9258 −2.8988
(2, 1) −2.9032 −2.8762 −2.9266 −2.8957
(2, 2) −2.8994 −2.8685 −2.9264 −2.8917

×1.0e+ 03 for all values

Table B.19: AIC/BIC for retail.

ǫt ∼ N ǫt ∼ t

(p,q) AIC BIC AIC BIC

All
Property

(0, 0) −2.4166 −2.4011 −2.4221 −2.4028
(0, 1) −2.5304 −2.5111 −2.5683 −2.5452
(0, 2) −2.5576 −2.5345 −2.6063 −2.5793
(1, 0) −2.6435 −2.6242 −2.7131 −2.6899
(1, 1) −2.6579 −2.6347 −2.7194 −2.6924
(1, 2) −2.6562 −2.6292 −2.7191 −2.6883
(2, 0) −2.6564 −2.6332 −2.7169 −2.6899
(2, 1) −2.6562 −2.6292 −2.7177 −2.6869
(2, 2) −2.6554 −2.6246 −2.7201 −2.6854

×1.0e+ 03 for all values

Table B.20: AIC/BIC for warehouse.
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B.5 Param. Estimates

Equity

Data ǫt (p,q) Parameter Estimate Stand. Error t-statistic

MSCI World

∼ N (0,0)

φ0 0.00216979 0.000365323 5.93938

Original

α0 1.8045e-05 3.14972e-06 5.72906
α1 0.142444 0.00973617 14.6304
β1 0.817434 0.015557 52.5443

∼ t (0,0)

φ0 0.00212008 0.00035961 5.89549
α0 1.1314e-05 3.29802e-06 3.43054
α1 0.0922449 0.0160336 5.75324
β1 0.879075 0.0209436 41.9734
DoF 8.29272 1.13508 7.30581

MSCI World

∼ N (0,0)

φ0 0.00215796 0.000347232 6.21474

Recent

α0 1.98181e-05 3.31083e-06 5.98583
α1 0.142324 0.00955968 14.8879
β1 0.813466 0.0154083 52.7942

∼ t (0,0)

φ0 0.00211991 0.000339589 6.24259
α0 1.2692e-05 3.39447e-06 3.73903
α1 0.0953547 0.0153441 6.21442
β1 0.872878 0.0201109 43.4032
DoF 8.29278 1.05563 7.85576

Table B.21: Parameter estimates for chosen ARMA-GARCH models: MSCI
World.
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Data ǫt (p,q) Param. Estimate Stand. Error t-statistic

LPX50

∼ N (1,2)

φ0 0.000763745 0.000459514 1.66207

Original

φ1 0.768521 0.120179 6.39479
ψ1 -0.762193 0.126291 -6.0352
ψ2 0.0703712 0.037389 1.88214
α0 1.04693e-05 3.32891e-06 3.14496
α1 0.13804 0.0119963 11.5069
β1 0.861959 0.0134639 64.0202

∼ t (1,2)

φ0 0.000750974 0.000386505 1.94299
φ1 0.781838 0.0965395 8.09864
ψ1 -0.780076 0.101069 -7.71824
ψ2 0.0766913 0.0340933 2.24945
α0 9.07685e-06 3.91286e-06 2.31975
α1 0.103634 0.0213897 4.84506
β1 0.890795 0.0201646 44.1761
DoF 6.25678 0.986726 6.34096

LPX50

∼ N (0,0)

φ0 0.00346488 0.00061159 5.665361

Recent

α0 1.17509e-05 3.76704e-06 3.11939
α1 0.149019 0.012309 12.1065
β1 0.850981 0.0144427 58.921

∼ t (2,0)

φ0 0.00309297 0.000601204 5.14462
φ1 0.00708075 0.0312474 0.226603
φ2 0.114293 0.0303428 3.76671
α0 9.15048e-06 3.92017e-06 2.3342
α1 0.10053 0.0209365 4.80169
β1 0.893057 0.0200618 44.5153
DoF 6.28284 0.986663 6.36777

Table B.22: Parameter estimates for chosen ARMA-GARCH models: LPX50.
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Data ǫt (p,q) Param. Estimate Stand. Error t-statistic

S&P GSCI

∼ N (0,0)

φ0 0.00219891 0.000418299 5.25679

Original

α0 1.01743e-05 2.329e-06 4.36853
α1 0.100473 0.0114386 8.78369
β1 0.886929 0.0120913 73.3526

∼ t (0,0)

φ0 0.00238073 0.000433009 5.49811
α0 9.82857e-06 3.08145e-06 3.18959
α1 0.100828 0.0148571 6.78655
β1 0.887844 0.0155529 57.0853
DoF 9.75914 2.1304 4.5809

S&P GSCI

∼ N (0,0)

φ0 0.00178212 0.00040193 4.4339

Recent

α0 8.79903e-06 1.85943e-06 4.73212
α1 0.0878656 0.00931001 9.43775
β1 0.901318 0.009459 95.2868

∼ t (0,0)

φ0 0.00203403 0.000413185 4.92282
α0 9.18197e-06 2.75048e-06 3.33831
α1 0.0908625 0.0129594 7.01131
β1 0.898363 0.0133348 67.3697
DoF 8.82261 1.56374 5.64198

Table B.23: Parameter estimates for chosen ARMA-GARCH models: GSCI.

Data ǫt (p,q) Parameter Estimate Stand. Error t-statistic

HFRX

∼ N (0,0)

φ0 0.00128108 0.000303174 4.22558

Original

α0 7.11971e-06 1.42674e-06 4.99019
α1 0.309917 0.067815 4.57003
β1 0.563896 0.0805339 7.00197

∼ t (1,1)

φ0 0.000362522 0.000179108 2.02404
φ1 0.823612 0.0902572 9.12517
ψ1 -0.696608 0.118892 -5.85916
α0 8.39716e-06 3.11567e-06 2.69514
α1 0.274593 0.103007 2.66577
β1 0.567122 0.124238 4.56479
DoF 4.36598 1.13111 3.85991

HFRX

∼ N (1,1)

φ0 0.00022922 0.000153631 1.49202

Recent

φ1 0.683861 0.12722 5.37544
ψ1 -0.531457 0.15707 -3.38356
α0 5.47725e-06 2.15146e-06 2.54583
α1 0.200921 0.0314088 6.39697
β1 0.658891 0.0631905 10.4271

∼ t (1,1)

φ0 0.000261955 0.000120519 2.17355
φ1 0.811242 0.0837947 9.6813
ψ1 -0.695121 0.105417 -6.59401
α0 5.65734e-06 2.67864e-06 2.11202
α1 0.149581 0.0447186 3.34494
β1 0.697307 0.0855676 8.14919
DoF 4.69863 0.906382 5.18394

Table B.24: Parameter estimates for chosen ARMA-GARCH models: HFRX.
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Data ǫt (p,q) Parameter Estimate Stand. Error t-statistic

MSCI BRIC

∼ N (0,0)

φ0 0.00469493 0.00118844 3.95051

Original

α0 8.24773e-05 2.09489e-05 3.93707
α1 0.138927 0.0216343 6.42161
β1 0.810021 0.0290884 27.8468

∼ t (0,0)

φ0 0.00537562 0.00112216 4.79043
α0 6.57746e-05 2.67399e-05 2.45979
α1 0.138913 0.0340882 4.07512
β1 0.825952 0.0387672 21.3054
DoF 6.02959 1.46622 4.11233

MSCI BRIC

∼ N (0,0)

φ0 0.00276169 0.000972906 2.8386

Recent

α0 6.64198e-05 1.6203e-05 4.09923
α1 0.124209 0.017512 7.09276
β1 0.827093 0.0249185 33.1918

∼ t (2,0)

φ0 0.0026862 0.000903528 2.97302
φ1 0.0579067 0.0314365 1.84202
φ2 0.108501 0.0319006 3.40122
α0 5.95883e-05 2.11898e-05 2.81213
α1 0.115328 0.0257362 4.48118
β1 0.841532 0.0329732 25.5217
DoF 6.45653 1.34318 4.80689

Table B.25: Parameter estimates for chosen ARMA-GARCH models: MSCI
BRIC.

Property

Data ǫt (p,q) Parameter Estimate Stand. Error t-statistic

All Prop

∼ N (2,2)

φ0 0.00102886 0.000392135 2.62375

Recent

φ1 -0.0591907 0.0224054 -2.6418
φ2 0.919202 0.0220665 41.6559
ψ1 0.707915 0.0649291 10.9029
ψ2 -0.274542 0.0628853 -4.36576
α0 5.18075e-07 6.28978e-07 0.823677
α1 0.677037 0.0380464 17.795
β1 0.322963 0.0545632 5.91906

∼ t (1,1)

φ0 0.000493899 0.000171297 2.88328
φ1 0.922869 0.0188978 48.8348
ψ1 -0.247396 0.061299 -4.03589
α0 8.21526e-07 7.85982e-07 1.04522
α1 0.384214 0.0997638 3.85124
β1 0.615786 0.0622294 9.89542
DoF 4.61414 0.966867 4.77226

Table B.26: Parameter estimates for chosen ARMA-GARCH models: IPD
UK All Property.
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Data ǫt (p,q) Parameter Estimate Stand. Error t-statistic

Offices

∼ N (1,1)

φ0 0.000370845 0.000173782 2.13396

Recent

φ1 0.947684 0.0183722 51.5825
ψ1 -0.364651 0.0553234 -6.59126
α0 5.24782e-07 6.85012e-07 0.766091
α1 0.303069 0.0483977 6.26206
β1 0.696931 0.0382543 18.2184

∼ t (1,1)

φ0 0.000463707 0.000174777 2.65313
φ1 0.924637 0.0203226 45.4981
ψ1 -0.292208 0.0644576 -4.53333
α0 5.16142e-07 7.30348e-07 0.706707
α1 0.312918 0.0768141 4.07371
β1 0.687081 0.0556175 12.3537
DoF 5.95557 1.35268 4.4028

Table B.27: Parameter estimates for chosen ARMA-GARCH models: IPD
UK Office.

Data ǫt (p,q) Parameter Estimate Stand. Error t-statistic

City offices

∼ N (2,2)

φ0 0.000898617 0.000523684 1.71595

Recent

φ1 0.330214 0.0887795 3.71948
φ2 0.586614 0.0763998 7.67822
ψ1 0.229703 0.108091 2.1251
ψ2 -0.453643 0.0682958 -6.64233
α0 1.0805e-06 7.96288e-07 1.35692
α1 0.168969 0.0239039 7.0687
β1 0.831031 0.0158745 52.3499

∼ t (1,1)

φ0 0.00100725 0.000276742 3.63965
φ1 0.86812 0.0285575 30.3991
ψ1 -0.476912 0.0591585 -8.0616
α0 2.42071e-06 1.90292e-06 1.2721
α1 0.18787 0.0769987 2.43991
β1 0.81213 0.04257 19.0775
DoF 2.93884 0.516924 5.68524

Table B.28: Parameter estimates for chosen ARMA-GARCH models: IPD
UK City Offices.
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Data ǫt (p,q) Parameter Estimate Stand. Error t-statistic

Retail

∼ N (1,1)

φ0 0.000515259 0.00024487 2.10422

Recent

φ1 0.925479 0.0281024 32.9324
ψ1 -0.284466 0.0748298 -3.80151
α0 1.54438e-06 9.64595e-07 1.60106
α1 0.360844 0.056004 6.44317
β1 0.593749 0.0546824 10.8581

∼ t (1,1)

φ0 0.000562495 0.000200358 2.80745
φ1 0.907769 0.0244622 37.109
ψ1 -0.257638 0.0689975 -3.73403
α0 1.44203e-06 1.04655e-06 1.37789
α1 0.425464 0.123124 3.45556
β1 0.574536 0.077588 7.40496
DoF 4.65734 1.32627 3.5116

Table B.29: Parameter estimates for chosen ARMA-GARCH models: IPD
UK Retail.

Data ǫt (p,q) Parameter Estimate Stand. Error t-statistic

Warehouse

∼ N (1,1)

φ0 0.000804766 0.00035475 2.26854

Recent

φ1 0.908565 0.0351814 25.8252
ψ1 -0.304846 0.077401 -3.93853
α0 8.59639e-07 7.58427e-07 1.13345
α1 0.259074 0.0410113 6.31714
β1 0.740926 0.0284269 26.0643

∼ t (1,1)

φ0 0.000948878 0.000294503 3.22197
φ1 0.863781 0.0309399 27.918
ψ1 -0.20804 0.0703957 -2.95529
α0 1.3596e-06 1.06883e-06 1.27205
α1 0.358192 0.100956 3.54799
β1 0.641808 0.0598325 10.7268
DoF 4.05647 0.736296 5.50929

Table B.30: Parameter estimates for chosen ARMA-GARCH models: IPD
UK Warehouse.
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B.6 Correlation based on Daily Returns

VaR-Implied

LPX50 S&P GSCI HFRX BRIC

α Original Recent Original Recent Original Recent Original Recent

0.995 1 0.9427 0.0015 0.1625 1 1 1 0.8094
0.99 1 1 0.1908 0.306 1 1 1 0.8903
0.98 0.8203 0.9839 0.0723 0.2037 1 1 0.908 0.8732
0.97 1 1 0.1124 0.1598 1 1 0.8835 0.828
0.96 1 1 0.1154 0.1707 1 1 0.7994 0.9052
0.95 1 0.98 0.094 0.17 1 1 0.7421 0.7966
0.9 0.9349 0.9278 0.1139 0.1627 1 1 0.8011 0.7947
0.85 0.7427 0.76 0.1258 0.1617 1 1 0.805 0.8088
0.8 0.6224 0.6414 0.1768 0.205 1 1 0.8083 0.7649

Table B.31: 95% bootstrap confidence intervals for VaR-implied correlation
coefficients between ”global equity” and ”other equity” based on daily returns

of recent data.
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Figure B.5: based on daily returns in comparison to results of calibrations
based on rolling-window annual returns.

Data Cutting

LPX50 S&P GSCI HFRX BRIC

α Original Recent Original Recent Original Recent Original Recent

0.995 0.2123 0.2927 0.4152 0.4606 0.4541 0.4677 0.544 0.6533
0.99 0.5822 0.5405 0.6236 0.6396 0.5076 0.7078 0.4858 0.491
0.98 0.6661 0.7001 0.7292 0.6955 0.6212 0.5823 0.5905 0.6068
0.97 0.6724 0.6944 0.7487 0.7287 0.5467 0.3909 0.5407 0.5591
0.96 0.7168 0.7189 0.7644 0.7338 0.4065 0.5169 0.5197 0.5315
0.95 0.747 0.7306 0.605 0.596 0.4864 0.5501 0.5394 0.5476
0.9 0.6943 0.7023 0.5639 0.5406 0.4917 0.5316 0.5633 0.5485
0.85 0.6873 0.701 0.5163 0.4915 0.5092 0.5353 0.5695 0.5492
0.8 0.6844 0.6996 0.4581 0.4439 0.5555 0.5722 0.5787 0.5624

Table B.32: 95% bootstrap confidence intervals for data-cutting correlation
coefficients between ”global equity” and ”other equity” based on daily returns

of recent data.



Appendix B. Empirical Appendix 93

Figure B.6: Data-cutting correlation based on daily returns in comparison to
results of calibrations based on rolling-window annual returns.



Appendix B. Empirical Appendix 94

Pearson Correlation

Annualized Returns Daily Returns
Regulator

Original Data Recent Data Original Data Recent Data

LPX50 0.7502 0.7680 0.6706 0.6971 0.8359
S&P GSCI 0.0653 0.0825 0.1290 0.1848 0.4472
HFRX 0.9664 0.9433 0.6900 0.7110 0.7731
MSCI BRIC 0.6950 0.6660 0.5921 0.6072 −0.5282

Table B.33: Linear Pearson correlation coefficients between ”global equity”
and ”other equity” based on daily and annualized returns in comparison.
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Electronic Appendix

The Electronic Appendix in form of a CD-Rom comprises

1. Data

2. Matlab Code

3. Thesis

Data

The indexes are extracted from Bloomberg1. Data representing equity risk are

available in form of daily closing prices. Indexes representing property risk are

provided on a monthly price basis. For each of the two investigated risk modules,

indexes are combined in one excel file. For each module, there are two data sets –

the original and the recent data set. Thus, data for this thesis is provided in four

excel files,

• Daily Prices Equity Recent.xlsx

• Daily Prices Equity Original.xlsx

• Monthly Prices Property Recent.xlsx

• Monthly Prices Property Original.xlsx

1Except the HFRX Global Hedge Fund Index which is directly extracted from the HFR
website: https://www.hedgefundresearch.com/family-indices/hfrx.
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MATLAB Code

The MATLAB code required for the empirical part of this thesis is divided in

several functions and programs. Those functions and programs are topically stored

in several sub-folders. Figure C.1 gives an overview.

Figure C.1: Summary of the written programs and functions for the empirical
analysis.

Thesis

This folder contains a pdf version of the master thesis.
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