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Abstract

We propose a novel approach for the flexible modeling of exposure-lag-response asso-

ciations in time-to-event data, where multiple past exposures are cumulatively associated

with the hazard within a defined time window. Our method is an extension of the piece-

wise exponential model and allows for the estimation of a wide variety of effects, including

potentially smooth and smoothly time-varying effects as well as cumulative effects with

leads and lags, taking advantage of the advanced inference methods that have recently

been developed for generalized additive mixed models. Our research has been motivated

by a large multi-center study with the goal of analyzing the association between artificial

nutrition intake and short term survival of critically ill patients in intensive care units.
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1 Introduction

Critically ill patients admitted to the intensive care unit (ICU) often undergo mechanical ven-

tilation (MV) and the need for artificial feeding is generally recognized. The optimal timing

and amount of the nutrition supplied on the other hand is unclear, to the extent of differing

guidelines with respect to the recommended amount being used in Europe and North America

(Singer et al., 2009; McClave et al., 2009). More recent studies have also yielded contradictory

results (see Heyland et al. (2011) for an overview), which can partly be attributed to differ-

ences in study design and methodology, and more generally to the difficulty of modeling the

relationship between nutritional intake and health outcomes.

Modeling the association between nutritional intake and survival is particularly challenging

for several reasons: Firstly, the amount of artificial nutritional intake during the ICU stay

varies daily on a per patient basis. Secondly, the effect of the received intake is likely to vary

over time and hazard rates at a particular point in time may depend on multiple past intakes.

Moreover, intake may have a delayed impact on the outcome (Berger and Pichard, 2012) which

presumably “wears off” after some time.

In more technical terms, this implies the need for an approach that can incorporate time-

dependent covariates (TDC) and model their possibly non-linear, possibly time-varying, cu-

mulative effects on survival with lead and lag times. Here, “lag time” refers to the amount of

time after exposure until the delayed impact occurs, and “lead time” refers to the amount of

time after exposure until the effect vanishes. Additionally, we need to adjust for heterogene-

ity due to different ICUs via frailty effects and other possibly non-linear, possibly smoothly

time-varying effects of confounders recorded at baseline. In previous work in this field, Berhane

et al. (2008) used tensor product smooths to model the association between survival and pro-

tracted exposure to radiation. Sylvestre and Abrahamowicz (2009) presented the weighted

cumulative exposure model, where the effect of exposure at time t is the sum of weighted past

exposures and the weight function is estimated using B-Splines whose smoothness is controlled

through comparison of models based on different number of interior knots with respect to the

BIC. Xiao et al. (2014) applied this approach to marginal structural Cox models. Gasparrini

(2014) introduced an approach based on distributed lag non-linear models and coined the term

exposure-lag-response associations (ELRA) for the type of relationship described above, which
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we will adopt in this article. However, we will use this terminology in a broader sense, to refer

to cumulative effects of time-dependent covariates in general. Note that “exposure” refers to

the caloric intake of the patients in the following, as the intake is provided externally by the

hospital staff.

We propose a flexible, novel approach for the modeling of the aforementioned exposure-lag-

response associations that extends previous research by allowing penalized estimation of these

potentially non-linear associations, taking into account all three dimensions relevant to the effect

of a time-dependent exposure: time of exposure, amount of exposure as well as the time since

exposure, and thereby a subject’s exposure history. The method, an extension of the piece-wise

exponential model (PEM), is described in detail in section 2. By embedding the concept of

PEMs into the framework of generalized additive mixed models (GAMM) (cf. section 2.2), we

establish a flexible model class for survival analysis and ELRA in particular that inherits most

of the flexible tools for modeling, estimation and validation of GAMMs. Practical usefulness

of this approach is further increased due to readily available, robust and efficient software

implementations of these methods (Wood, 2006a, 2011). We extend existing methodology

regarding confidence intervals and testing procedures for smooth terms to derive respective

measures and test statistics for ELRAs and particularly for the comparison of hazard ratios

(or log hazard differences) resulting from different patterns of a TDC. Section 3 demonstrates

an application of our approach to a large multi-center observational data set of almost 10, 000

critically ill patients. In section 4, we present results of an extensive simulation study to

assess properties of the proposed modeling approach and to investigate its behavior under

deviations from modeling assumptions. In section 5, we review the proposed method and

discuss advantages as well as disadvantages of the approach and sketch further possibilities for

development in this field.
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2 Methods and Model

2.1 Piece-wise Exponential Models

Let

λi(t|xi) = λ0(t) exp(x′iβ), (1)

a general proportional hazards model with i = 1, . . . , n, where n is the number of subjects under

study and x′i,· = (xi,1, . . . , xi,P ) the row-vector of time-constant covariates xi,p, p = 1, . . . P .

A piece-wise exponential model (PEM) is obtained by partitioning the follow-up period (0, tmax]

into J intervals with J + 1 cut-points 0 = κ0 < . . . < κJ = tmax, where tmax is the maximal

(observed) follow-up time. The j-th interval is given by (κj−1, κj]. Assuming the hazard rate

in each interval j to be constant, such that λ0(t) = λj,∀t ∈ (κj−1, κj], t > 0, equation (1) (in

log-linear form) simplifies to

log(λi(t|xi)) = log(λj) + x′iβ ∀ t ∈ (κj−1, κj]. (2)

Let Ti denote the true survival time and Ci the non-informative censoring time, then

ti := min(Ti, Ci) is the observed right-censored time under risk for subject i. Given inter-

vals 1, . . . , J , Whitehead (1980) and Friedman (1982) established the equivalence of model (2)

and the likelihood of the Poisson GLM (3) with

(a) one observation for each interval j = 1, . . . , J under risk for each subject i,

(b) responses yij = 1 if ti ∈ (κj−1, κj] ∧ ti = Ti, else yij = 0 as event indicators for subject i for

interval j, and

(c) tij = min(ti−κj−1, κj−κj−1), representing the time subject i spends under risk in interval j:

log(E(yij|xi)) = log(λijtij) = log(λj) + x′iβ + log(tij). (3)

Equation (2) then follows from (3) by trivial transformation and defining λi(t|xi) := λij ∀ t ∈
(κj−1, κj]. The likelihood of model (3) is proportional to the likelihood of (2), thus the two

models are equivalent with respect to the ML estimation of the model parameters β. In

practice, when fitting the respective Poisson regression model, log(λj) is incorporated in the

linear predictor x′iβ and log(tij) enters as an offset. A major advantage of this model structure
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is that it lends itself easily to include TDC, as a covariate can change its value in each interval.

Alternatively, the interval cut-points could be chosen as the time-points at which a change in

the TDC is recorded. Then (2) can be extended to log(λi(t|xij)) = log(λj)+x′ijβ. Additionally,

time-varying effects can be incorporated by creating a TDC for time itself, e.g. by using the

interval midpoints t̃ := (κj − κj−1)/2, and including interaction terms of selected covariates

with time t̃, or transformations thereof, in the linear predictor.

2.2 Piece-wise Exponential Additive Model

Transitioning from the framework of generalized linear models to the framework of general-

ized additive mixed models (GAMM), model (3) can be further extended to include smoothly

time-varying effects of time-constant or time-dependent covariates (TDC). In reference to the

acronyms for piece-wise exponential models (PEM) and generalized additive models (GAM)

we denote these models (4) with PAM (penalized piece-wise exponential additive model). For

the sake of notational simplicity, we present the model with only one TDC that we refer to as

exposure and denote this covariate of primary interest by z. An extension to multiple ELRAs,

however, is straight forward, as will be illustrated in the application example (cf. section 3).

We first present the general model specification and discuss individual terms in subsequent

sections.

Let Zi(t) denote a subset of past exposures that affect the hazard at time t (cf. section

2.2.3 for more details), ` = 1, . . . , L the index for different clusters and `i the cluster to which

subject i belongs. We model the hazard rate λ at time t for individual i from cluster `i as:

log (λi(t|xi,Zi(t), `i)) = f0(t) +
P∑

p=1

fp(xi,p, t) + g(Zi(t), t) + b`i (4)

where

• f0(t) represents the baseline hazard rate (cf. section 2.2.1),

• fp(xi,p, t), p = 1, . . . , P , are potentially smooth non-linear and smoothly time-varying

effects (cf. section 2.2.2) of time-constant covariates xi,p,
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• g(Zi(t), t) denotes the exposure-lag-response association and will be discussed in detail in

section 2.2.3.

• b`i is a Gaussian random effect for cluster `i.

2.2.1 Baseline hazard

In the classical definition of PEMs (3), the baseline hazard is a step function and interval-

specific hazards λj are estimated by including dummy variables for the individual intervals

in the model matrix. A disadvantage of this approach is the potentially arbitrary choice of

interval cut-points (Demarqui et al., 2008). Additionally, choosing a very high number of cut-

points increases the number of parameters that need to be estimated and reduces stability of

the individual estimates λ̂j. Representing the baseline hazard as a regression spline over the

interval mid-points (or end-points) t̃ ameliorates this issue. Given a sufficiently large number of

spline basis functions and intervals, the hazard can be estimated flexibly and efficiently, while

overfitting is avoided due to penalization (cf. section 2.3). As hazard rates in medical studies

tend to change quickly in the beginning of the follow-up and become more stable towards the

end of the observation period, adaptive spline smooths (Wood, 2011, p. 21) can be employed

to allow the smoothness of the baseline hazard to vary over time.

2.2.2 Smooth non-linear, smoothly time-varying effects

The summands fp(xi,p, t) in the second term in equation (4) represent possibly non-linear,

possibly time-varying effects of time-constant covariates. In the simplest case, when effects

are assumed to be linear and not time-varying, this would reduce to a linear effect xi,pβp.

Time-varying effects are modeled as interaction terms between the variable of interest x·,p

and time t. Table 1 shows possible representations of time-varying effects. Depending on the

specification of the interaction term, flexibility can increase from linear effects with linear time-

variation βpxi,p+βp:t(xi,p · t), to varying coefficients xi,pfp(t) or fp(xi,p)t (Hastie and Tibshirani,

1993), or nonlinear, smoothly time-varying covariate effects fp(xi,p, t) modeled as bivariate

function surfaces, parameterized as tensor product smooths (Wood et al., 2013). The smooth

functions fp(·) can be represented as splines of the form fp(·) =
∑M

m=1 γm,pBm,p(·), where Bm,p

are covariate specific basis functions. The specification xi,pfp(t) is particularly useful when
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xi,p is a dummy variable coding for a certain level of a categorical variable, in which case a

smoothly time-varying effect fp(t) is estimated for each category. One possible application is

the evaluation of the effects of different treatment arms in clinical trials when the proportional

hazards assumption is not fulfilled. Specification fp(xi,p, t) is the most flexible and should be

Effect specification Description

βpxi,p + βp:t(xi,p · t): Linear, linearly time-varying effect
fp(xi,p) · t : Smooth, linearly time-varying effect
xi,p · fp(t) : Linear, smoothly time-varying effect
fp(xi,p, t) : Smooth, smoothly time-varying effect

Table 1: Overview of possible time-varying effect specifications.

employed whenever prior information or domain specific knowledge regarding the relationship

is absent. However, this latter option is also the most computationally demanding. In general,

due to the model definition and respective estimation routine, the amount of parameters that

can be feasibly and reliably estimated is limited by number of subjects n under study and the

observed censoring rate. In addition, depending on the number of such components and their

specification, identifiability issues may arise, especially since, in contrast to “standard” additive

regression models, time t will typically appear in multiple model terms in PAMs (4). Therefore,

appropriate nesting is necessary in these cases as discussed in Wood (2006b).

2.2.3 Exposure-lag-response Associations

For the specification of the ELRA g(Zi(t), t) in (4) it is important to distinguish between time

at risk t and time of exposure te, i.e., the time at which the hazard is evaluated and the time

at which the value of the TDC is observed, respectively. Note that in the following, specifying

t is equivalent to specifying j, as j is the interval for which κj−1 < t ≤ κj.

Let zi(te) denote the value of the TDC at exposure time te. To model the time-varying,

cumulative effects of exposure histories Zi(t), we:

1. Specify a time window Te(j) of exposure-times te for which the time-dependent covariate

z(te) is assumed to affect survival in interval j, such that the exposure-history affecting

the hazard at time t is defined by

Zi(t) := {zi(te) : te ∈ Te(j)}. (5)
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To specify Te(j) we first define the set of intervals j that can be affected by exposure at

time te

J (te) := {(κj−1, κj] : κj ≤ te + tlag + tlead ∧ κj−1 > te + tlag}

where tlag is the delay before exposure at time te can affect the hazard and tlead is the

maximal time for which the exposure still affects the hazard after being observed. Then,

Te(j) is defined as

Te(j) := {te : (κj−1, κj] ∈ J (te)}. (6)

This definition is explained more intuitively in section 3.2 of the application example (see

also Figure 1).

2. Specify the shape of partial effects g(zi(te), t) representing the ELRA

g(Zi(t), t) =

∫

Te(j)
g(zi(u), t)du ≈

∑

k:te,k∈Te(j)
∆kg(zi(te,k), t), (7)

with t ∈ (κj−1, κj] and ∆k = te,k − te,k−1 the time between two consecutive exposures.

Finally, the partial effects are represented as a bivariate smooth function in te and t

g(zi(te), t) = f(te, t) · wij, (8)

where

wij =




zi(te) if te ∈ Te(j)

0 else,

(9)

and

f(te, t) =
M∑

m=1

K∑

k=1

γmkBm(te)Bk(t) =
∑

m,k

γmkBmk(te, t) (10)

is modeled as a tensor product spline smooth, with marginal bases Bm(·), Bk(·) evaluated

at the respective values of te and t, Bmk(·, ·) = Bm(·)Bk(·), and spline coefficients γmk

controlling the shape of f(te, t). Note that the distinction in (9) is not really necessary, as
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the cases where wij = 0 are implicitly excluded through specification of integration limits

in (7), but making it explicit helps with practical data preparation (e.g. specification of

the design matrix). The penalized estimation of the smooth terms (cf. section 2.3) im-

plies the assumption of smoothness for f(te, t), which ensures that effects of exposures at

consecutive exposure times te, t
′
e are similar and that effects of exposure z(te) on the haz-

ards in neighboring intervals j, j′ are similar as well. Note that the information regarding

the amount of exposure zi(te) is not included in the construction of the marginal bases

B(·). This information is added to the design matrix through weights wij (9), specified

beforehand (and therefore known). Lead and lag times are also implemented using these

weights by setting the partial effects for exposures outside the relevant window Te(j) to

zero.

The above specification of the ELRA implies that effects of the TDC can be non-linear over

the timing of exposure te and time t but not with respect to the value of zi(te), which enters

linearly. An extension of the presented framework to non-linear ELRAs via three-dimensional

smooth functions of the form f(te, t, zi(te)) is straight forward (Wood, 2006a, sec. 4.1.8), but

was not pursued in this work.

2.3 Estimation and Inference

Stable likelihood-based methods for the parameter estimation of the proposed model have been

recently developed in Wood (2011) in the context of penalized models of the form D(γ) +
∑

p λpγ
′Kpγ, where D(γ) is the model deviance, γ contains all spline basis coefficients rep-

resenting model (4), and λp and Kp are the smoothing parameters and penalty matrices for

the individual smooths fp(·), respectively. Given λ = (λ1, . . . , λp), parameter estimates can

be obtained by penalized iteratively reweighted least squares (P-IRLS). To guarantee conver-

gence, Wood (2011) employs P-IRLS based on nested iterations, i.e. after each P-IRLS step,

estimation of λ is updated given the current γ estimates. Subsequent papers (Marra and

Wood, 2011, 2012; Wood, 2012) develop shrinkage based procedures for simultaneous smooth-

ness and variable selection and methods for confidence intervals and significance tests for smooth

components. In the following sections we extend these methods to the context of PAM and,

particularly, exposure-lag-response associations.
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2.3.1 Confidence Intervals

Confidence intervals (CI) with good coverage properties for smooth terms are developed in

Marra and Wood (2012) and are directly applicable to ELRA in (4). Let γq be the vector

of estimated basis coefficients associated with f(te, t) in (10), and Vγ̂q the empirical Bayesian

covariance matrix of the estimated parameters γ̂q. Let further Xq be the J × ne design matrix

for a specific exposure history Z(t), where J is the number of intervals into which the follow-up

period has been partitioned, and ne is the number of columns associated with the tensor-product

smooth of the ELRA term. The confidence intervals are given by

Xqγ̂q ± z1−α/2
√

diag(XqVγ̂qX
T
q ) = f̂q ± z1−α/2ŜEq (11)

In (11), f̂q as well as ŜEq are vectors of length J , representing the estimated cumulative effect

of the TDC and its standard errors in intervals j = 1, . . . , J . By defining Xq := Xq2 − Xq1

in (11) we can obtain estimated differences of cumulative effects (and a respective CI) given

different exposure histories Z2(t) and Z1(t). We demonstrate this approach in section 3.3 and

investigate properties of such CIs for ELRAs by means of a simulation study in section 4.

2.3.2 Hypothesis testing

The method introduced in section 2.3.1 provides a way to assess differences in cumulative effects

at individual time-points of the follow-up. In some applications, however, it is also of interest

to assess the overall effect of individual ELRA terms or whether the difference of cumulative

effects resulting from differing exposure histories Z1(t), Z2(t) is different from zero over the

whole follow-up (or a predefined partition of it).

For the first question we can use significance tests for individual smooth terms of the form

H0 : fq = 0, (12)

where fq could be any of the smooth components in (4) and particularly the ELRA (7). The

general idea of the test is straight forward and uses the representation of the smooth term

as a linear transformation of basis coefficients γq such that fq = Xqγq and an appropriate
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test-statistic has the familiar quadratic Wald-type form

Tr = f̂Tq Vr−
fq f̂q. (13)

Here Vr−
fq

is the rank-r pseudo inverse of Vfq = XqVγqX
T
q . The difficult part then becomes

choosing the appropriate r in the context of penalized estimation, as naive choices (e.g. rank

of Vfq) lead to reduced power (see Wood (2012) for details). Given r, which in this context can

be a non-integer number, Tr follows a mixture of χ2 distributions, from which p-values can be

obtained routinely (Wood, 2012, p. 4). In section 4.4 we show that this Overall Test works

well for testing individual ELRA terms.

Although this answers the question if there is any part of fq that is not equal to zero with

respect to the data set, i.e. for some patient-interval combinations, this may not be of particular

interest for the practitioner. More interesting, from a medical or epidemiological point of view,

may be the question whether specific, practically relevant exposure histories Z1(t),Z2(t) lead

to significantly different cumulative effects on the hazard rate. For example we would like to

know if the differences of cumulative effects resulting from different nutrition profiles (cf. Table

3), are significantly different from 0.

One idea to construct such a test would be to extend the procedure for the overall test

presented above. Let fq1 the vector of cumulative effects associated with exposure history Z1(t)

and fq2 the respective vector for exposure history Z2(t).

We want to test H0 : fq1 = fq2 vs. H1 : fq1 6= fq2 or alternatively

H0 : fq2 − fq1 = 0 vs. H1 : fq2 − fq1 6= 0 (14)

and using the representation via basis functions and coefficients we get

f̃q = fq2 − fq1 = Xq2γq −Xq1γq = (Xq2 −Xq1)γq = X̃qγq.

Note that when fq1 = 0, the testing procedure is analogous to the overall test (12). Furthermore,

using f̃q and X̃q we could obtain expressions for the test statistic Tr analogously to (13). How-

ever, it is not obvious what the effective degrees of freedom (edf) would be for the difference of

two splines, that are needed to obtain the degrees of freedom of the χ2 distribution. Obviously,
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when fq1 = 0 the edf of the difference spline reduce to the edf of fq2 and in the other extreme

when fq2 = fq1 exactly, the edf for the difference spline would be 1. The edf for the general case

therefore should be somewhere in between, but it’s not straight forward how to obtain them.

To the authors’ knowledge, at the moment there are no procedures available to perform such a

generalized test in the context of penalized additive models, thus more methodological research

is needed in this area.

3 Association between caloric intake and mortality in

ICU patients

3.1 Data and Objective

We apply our method in a retrospective analysis of a large international multi-center study with

n = 9661 critically ill patients (after preprocessing and application of exclusion criteria) with a

maximal follow up of 60 days or until release from hospital. Starting with the day of admission

(day 0), goal calories have been determined for each patient by a nutritionist or physician and

the actual caloric intake provided by the hospital staff has been recorded for a maximum of 11

calendar days after the date of ICU admission, which we denote by te ∈ {1, . . . , 11}.
We are interested in the relationship of caloric adequacy and acute mortality, that is, mor-

tality within 30 days after ICU admission. In total, 1974 (20.4%) patients died within this

period. As patients released from hospital before t = 30 were presumably healthier than pa-

tients that remained in hospital, the interpretation of the nutritional effects may be hindered

by this informative censoring. For our main analysis, we assume that patients released from

the hospital have survived at least until t = 30.

For the application of the piece-wise exponential model the time line was partitioned in

one-day intervals until tmax = 30. We only included patients that survived at least 96 hours,

consequently we began evaluation in interval (4, 5]. For the purposes of the following analysis

we set the status of all patients still alive after t = 30 to “censored”.

It is important to emphasize, that our analysis considers two different time scales, the time

scale of the follow up, denoted by t and the time scale of exposure, denoted by te. Survival
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times were calculated as differences tdeath/release − tadmission. For example, when a patient was

admitted to the hospital on Monday, 3pm and died on Sunday 2pm, his survival time was

≈ 5.96 days. Thus, when we discretize the time-line in one day intervals, this patient’s event

would fall in the interval (5, 6].

Calories on the other hand were recorded at the end of a calendar day. Therefore the first

full calendar day at the ICU, which we denote by te=1, does not necessarily coincide with the

first “day” (0, 1] on the scale of the follow-up, but rather spans between the first (0, 1] and the

second (1, 2] “day” (or rather 24 hour period of the follow-up). Consequently, when we want

to include a lag time of 4 days (96 hours) between exposure at time te=1 (2nd calendar day

at ICU) and survival, we need to count ((te + 1) + 4) ∈ (5, 6] to obtain the correct interval at

which at least 4 “days” (96 hours) since exposure have passed on the time scale of the follow up.

3.2 Modeling approach

We adjusted for various potential confounders, including subject specific covariates age, BMI,

sex, diagnosis at admission and admission category, the Apache II Score (an overall measure

of the patients’ health status at admission) as well as patient unrelated covariates like year of

admission and a random effect (Gaussian frailty) for the ICUs. Since we model the mortality

risk beginning in interval (4, 5] (due to application of exclusion criteria), we also included

variables that describe the patients’ ICU stay up to that point, namely number of days under

mechanical ventilation (MV) and number of days with additional oral intake (OI), number of

days with parenteral nutrition (PN), and number of days receiving Propofol (PF) on the first

3 full calendar days of the ICU stay, respectively.

To be able to compare different caloric intakes independently of a patient’s weight and

caloric requirements, we define a patient’s caloric adequacy (CA) as

CA = actual daily caloric intake(in kcal)/goal calories(in kcal). (15)

In many cases, however, we could not quantify the caloric intake exactly, as some patients

received additional oral intake on some days, for which the amount of calories had not been

recorded. Patients receiving additional oral intake (OI) must have been extubated at some point
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and were therefore presumably healthier. At the same time, the recorded amount of calories

received is, on average, lower when a portion of the calories has been received orally. Ignoring

additional OI could therefore result in spurious correlations. Thus we discretized the daily

CA, depending on whether or not additional OI occurred (see Table 2). Furthermore, some

patients, again presumably healthier, were released from the ICU before the end of the eleven

day nutrition protocol phase (incomplete protocols). In these cases we assumed that patients

were able to sate themselves after their release from the ICU and assigned nutrition category

CIII for the remainder of the protocol days. Both assumptions have been investigated in terms

of sensitivity analyses (not shown) and did not yield substantial changes to the estimated

nutritional effects.

Discretized
Caloric

Adequacy
(dCA)

Description

CI :
0% ≤ CA < 30% and no additional oral
intake

CII :
30% ≤ CA < 70% and no additional oral
intake, or 0% ≤ CA < 30% and additional
oral intake

CIII :

CA ≥ 70% and no additional oral intake, or
30% ≤ CA < 70% and additional oral
intake, as well as days with incomplete
protocols.

Table 2: Discretization of relative caloric intake in categories CI (lower), CII (mid) and CIII
(upper)category nutrition.

The effect of nutrition is represented in the model by two terms, g
CII

(·, ·) and g
CIII

(·, ·),
while category CI was considered the “reference” category, thus direct interpretation of g

CII

and g
CIII

is only possible with respect to a (hypothetical) patient that received CI on all 11

days. Each of the terms has the structure defined in section 2.2.3, except that zi(te) now is

represented by dummy variables zCII
i (te), z

CIII
i (te), indicating if nutrition at time te has been

in category CII and CIII respectively. Equation (16) shows the final model specification:
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log(λi(t|Xi, zi, `i)) = f0(t̃) + Xβ

+ βApache · xi,Apache + βApache:t̃ · (xi,Apache · t̃)

+ fage(xi,age) · t̃+ fBMI(xi,BMI) · t̃

+
∑

te∈T (j)
g
CII

(te, t̃) +
∑

te∈T (j)
g
CIII

(te, t̃)

+ b`i , where

(16)

• f0(t̃) represents the baseline hazard rate, estimated over the interval mid-points t̃,

• Xβ incorporates all linear time-constant effects of time-constant covariates.

• βApache · xi,Apache + βApache:t̃ · (xi,Apache · t̃) is a linear, linearly time-varying effect of the

Apache II Score measured at initial admission to the ICU,

• fage(xi,age) · t̃ and fBMI(xi,BMI) · t̃ are smooth, linearly time-varying effects of age and

BMI, modeled as so-called varying coefficients (see section 2.2.2 for details),

• g
CII

and g
CIII

are smoothly time-varying cumulative effects of the nutritional intake (see

section 2.2.3 for details) and

• b`i is an independent identically distributed Gaussian random intercept term attributed

to different ICUs in the data set.

In this application all non-linear functions of time-constant covariates fp(x·,p) have been

estimated using P-Splines (Eilers and Marx, 1996) with penalties based on second order dif-

ferences and M = 10 (cf. sec. 2.2.2) basis functions spanned over equidistant knots. For the

f(te, t) terms associated with the ELRA, M = K = 5 (cf. eq. (10)) basis functions were used

for each dimension and first order differences were used for the dimension of exposure time te.

The lag-lead window Te(j) in (16) was defined based on substantive considerations with

tlag = 4 (see discussion in section 5 on the choice of lag and lead times) and tlead = tlag + 2 · te.
We will refer to this specification as dynamic lag-lead T dynamic. However, since there is little

empirical knowledge about the potential lengths of such lag and especially lead periods, we
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also evaluated results for a static lag-lead specification T static with tlag = 4 and tlead = 30,

which implies that partial effects, from all relevant intervals, contribute to the cumulative effect

until the end of the follow up. Both specifications are depicted in Figure 1. When viewed

column-wise, the figures show the intervals at which a specific protocol day (te ∈ {1, ..., 11})
can potentially affect the hazard. When viewed row-wise, one can obtain protocol days te which

contribute to the cumulative nutrition effect in interval j. In general the tlag and tlead can be

used to control the number of exposures that enter the cumulative effect at any given time t,

thus potentially controlling the magnitude of this effect.
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Figure 1: Two possible specifications of the lag-lead Te(j), j = 5, . . . , 30. Left panel shows the
dynamic Te(j), right panel depicts the static Te(j) with a longer and constant lead period.
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3.3 Results

We are mostly interested in the relationship between caloric intake and survival, therefore here

we only present the results of this association. The estimated effect surfaces g
CII

, g
CIII

(cf.

section 3.2) are difficult to visualize and interpret intuitively, therefore we show the cumulative

effects of nutrition at interval mid-points t̃ ∈ {4.5, 5.5, . . . , 29.5} as hazard ratios

ej = λ(j|Z2(t))/λ(j|Z1(t)) (17)

for patients with different nutrition protocols Z1(t) and Z2(t) and identical values for all other

covariates (see also suggestions by Sylvestre and Abrahamowicz (2009)).

Comparison Z1(t) Z2(t)

Comparison A days 1-11: CI days 1-4: CI , days 5-11: CII
Comparison B days 1-11: CI days 1-11: CII

Comparison C days 1-4: CI , days 5-11: CII days 1-11: CII
Comparison D days 1-11: CI days 1-11: CIII
Comparison E days 1-11: CII days 1-4: CII , days 5-11 CIII
Comparison F days 1-11: CII days 1-11: CIII

Table 3: Overview of evaluated comparisons with nutrition categories CI (lower), CII (mid)
and CIII (upper) as defined in Table 2.

The six clinically relevant comparisons considered in our analysis are summarized in Table

3. The estimated cumulative effect differences and suggest that

(a) hypocaloric (category CI) nutrition is associated with increased hazard rates throughout

the follow-up period (Comparisons B, D and to a lesser extent Comparison A);

(b) based on this model, moving from constantly medium (CII) to constantly full (CIII)

nutrition is not associated with a decrease of the hazard rate (Comparisons E, F);

(c) the (small) hazard rate increases associated with hypocaloric nutrition in the first few

days of the protocol phase may persist for up to 25 days after ICU admission (Comparison C).
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4 Simulation Study

We performed an extensive simulation study to investigate the performance of the proposed

modeling approach. We patterned the simulation study after the application example, especially

with respect to data structure and the simulated effects. The main objective was to evaluate

• the ability of our approach to model the type of associations found in the application

example in the presence of complex confounding

• its behavior in case of misspecification, specifically the misspecification of the lag-lead

structure

• how different penalty structures influence estimation

• the properties of the confidence intervals (sec. 2.3.1) for the effect comparisons of different

exposure trajectories ej (17)

• the properties of the overall test presented in sec. 2.3.2

In the following, we briefly outline the data generation process (section 4.1) and define the

settings that were considered in the simulation study (section 4.2), as well as the metrics that

were used to evaluate the models performance in each of the settings (section 4.3). Finally,

results are presented in section 4.4.

4.1 Data generation

To evaluate the proposed approach we simulated data from the model

λ(t) = β0 + f0(t) + f(x, t) + gCII
(Zi(t), t) + gCIII

(Zi(t), t) (18)

and represent this model by XC , the design matrix for model (18) containing complete covariate

information for all subjects i = 1, ..., n and intervals j = 1, . . . , J , and coefficient vector γ =

(γ0,γf ,γCII
,γCIII

)′ such that

λ = exp(XCγ) = (λ1,1, . . . , λ1,J , λ2,1, . . . , λ2,J , . . . λn,1λn,J)′ (19)
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is a length nJ vector of subject- and interval-specific hazard rates λi,j. Given the subject-

specific hazard rate vector λi,· of length J , we draw random survival times ti from the piece-wise

exponential distribution (see appendix A.2). New data sets are then constructed based on the

covariates of subjects i = 1, ..., n and by generating the event and offset variables according to

ti (cf. section 2.1). The procedure is summarized below:

1. Set parameters γ, specifying the shape of f0(t), f(x, t) and gCII
(Zi(t), t) and gCIII

(Zi(t), t)
in (18).

2. Obtain hazard rate vectors λi,· = (λi,1, . . . , λi,J) ⊂ λ = XCγ for each subject i, i =

1, . . . , n.

3. For replications r = 1, . . . , R

(a) Draw new random survival times ti,r from the piece-wise exponential distribution

with rates λi (as described in Appendix A.2).

(b) Given survival times ti,r, obtain Xr by subsetting the complete data XC such that

only observations for intervals j during which subject i is under risk remains in the

data and adjust the event and offset covariates accordingly when ti,r < tmax.

(c) Return Xr and (ti,r)i=1,...,n.

4.2 Settings

Let γg = (γCII
,γCIII

)′ be the coefficient vector controlling the functional shape of the ELRAs

g
CII

and g
CIII

in (18), T ∈ {T dynamic, T static} the lag-lead window that defines how partial

effects are cumulated (cf. Figure 1) and P ∈ {P1, P2} the P-Spline penalty type imposed on

the estimates of γg (P1=̂ 1st order differences, P2=̂ 2nd order differences).

Generation of data sets Xr depends on γg and T , whereas estimation of γ̂g from Xr depends

on T and P . Accordingly, the different simulation scenarios considered in this work can be

summarized by the parameters used for data generation and by the specification of the model

terms associated with the ELRAs (cf. Table 4).

Settings I-III differ with respect to the functional shape of the ELRAs implied by the coef-

ficients γ1
g , γ2

g and γ3
g (cf. supplementary appendix Figure 6). The parameters were set such
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Data Generation Estimation Setting

γ1
g , T dynamic

T dynamic, P1

I

I.a

T dynamic, P2 I.b

T static, P1 I.c

T static, P2 I.d

γ2
g , T dynamic

T dynamic, P1

II

II.a

T dynamic, P2 II.b

T static, P1 II.c

T static, P2 II.d

γ3
g , T static

T dynamic, P1

III

III.a

T dynamic, P2 III.b

T static, P1 III.c

T static, P2 III.d

—, —

T dynamic, P1

IV

IV.a

T dynamic, P2 IV.b

T static, P1 IV.c

T static, P2 IV.d

Table 4: Settings considered in the simulation study. Data generation setting IV refers to a
special case where coefficients associated with the ELRA where set to zero (γg = 0).
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that g
CII

is similar to the effects estimated in section 3.3 and we set g
CIII

= 1.2g
CII

for all

settings. In Settings I and II a dynamic lag-lead was used to specify the ELRAs, in Setting III

the static lag-lead. Setting IV is an important special case, where we assume that nutrition has

no effect on the hazard in the data generating model, i.e., γg = 0 and consequently ej = 1,∀j
(cf. equation (17)). Parameters of the baseline f0(t) and the confounder effect f(x, t) were held

constant across all settings (cf. Figure 5).

For each data generating setting we compare estimates based on all 4 combinations of

T (dynamic/static) and P (P1/P2), yielding 16 simulation settings in total with R = 500

replications each. Depending on whether T equals the lag-lead window of the data generation,

the model is specified correctly or misspecified. Accordingly, another way to categorize the

different settings is:

• Correctly specified T : Settings I.a, I.b, II.a, II.b, III.c, III.d

• Misspecified T

– Lead too long: Settings I.c, I.d, II.c, II.d

– Lead too short: Settings III.a, III.b

• ELRA = 0: Settings IV.a - IV.d

4.3 Evaluation

In the data generation process, we included confounders in addition to variables related to the

ELRA to obtain a more complex and realistic simulation. However, at the evaluation stage of

the simulations we focus on the ELRA.

Let ej denote the true cumulative effect of the nutrition in interval j = 1, . . . , J as defined

in equation (17) and êj,r the respective estimation obtained from simulation run r = 1, . . . , R =

500. For the quantitative evaluation of the models performance we defined the root mean

squared error

RMSE =
1

R

R∑

r=1

(
1

J

J∑

j=1

(ej − êj,r)2
)1/2

(20)
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and coverage

coverageα =
1

R

R∑

r=1

J∑

j=1

I
(
ej ∈ [êj,r ± z1−α/2ŜEj,r]

)
. (21)

In the following we set α = 0.05. Additionally bias is investigated graphically by comparison

of trajectories of individual simulation runs, the average trajectory over all simulation runs and

the true effects (e.g. Figure 3).

4.4 Results

Summarized results of the simulation study are presented in Figure 2. Full raw results are

presented in section A.3 of the supplementary appendix. The top panel of Figure 2 depicts

mean coverage (21) of models with different penalty (P1/P2) and lag-lead (static/dynamic)

specifications across all comparisons (cf. Table 3) and Settings I – IV. Setting IV can bee

viewed as a baseline case, where all model specifications lead to close to nominal (95%) levels

of coverage (although models with dynamic lag-lead and P1 penalties have coverages slightly

below 95% across all comparisons). In general, models based on P2 penalties (gray lines) have

better coverage properties compared to those based on P1 (black lines) and the largest devia-

tions from the nominal level occur when models with P1 penalty are misspecified with respect

to T (dashed black line Setting I, solid black line Setting III). The bottom panel presents model

evaluation with respect to RMSE (20). Models based on P1 penalties have lower RMSEs across

most settings and comparisons. RMSEs are, on average, highest when models are misspecified

(dashed lines Settings I and II, solid lines Setting III), and in Setting II, where the true effects

ej have more variable shapes compared to other settings.

Figure 3 shows exemplary raw results for Setting I.a and Setting I.b, where data was simu-

lated with a dynamic lag-lead and where models were correctly specified with respect to T , but

different penalties, P1 (top panel) and P2 (bottom panel), were used at the estimation stage.

Qualitatively the true relationship was on average (dashed gray lines) captured in both settings

and for all comparisons, however, especially for models based on P1 penalties, true effects are

on average slightly underestimated, especially at the beginning of the follow up, which in turn
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Figure 2: Simulation results summarized by settings for data generation (facets), penalty (black
(P1) vs. gray (P2) lines), and lag-lead specification (dynamic (solid) vs. static (dashed) lines).
RMSEs and Coverages were averaged for each comparison and subsetting.
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explains the lack of coverage for models with this specification. This problem is more severe

for comparisons A – D, where the true effect is more pronounced, compared to comparisons E

and F. Similar findings can be found for the other Settings (cf. section A.3, see also Table 5).

In general, models based on P2 penalties appear, on average, to capture wiggly effects more

closely and show better coverage properties, but tend to exhibit higher RMSEs due to a higher

variance of the individual trajectories (Figure 3, supplementary Figure 9). Especially in case

of a misspecified lead time (supplementary Figures 8, 10, 11), these models have much better

coverage properties compared to models based on P1 penalties.

In Figure 4 we present the results of the simulation study with respect to the overall test

(12) presented in section 2.3.2. In our simulations we included two ELRA terms, therefore

we perform tests for both terms, namely H0 : g
CII

= g
CIII

= 0. In Figure 4 column facets

indicate the setting for the data generation process (Setting I-IV) and rows facets indicate the

estimation settings (a-d). For each combination R = 500 simulation runs were performed and

the overall test calculated for both effects, g
CII

(black crosses) and g
CIII

(gray circles). The

empirical rejection rate is denoted by αe respectively. One important observation is that the

distribution of p-values is uniform for data generation setting IV, when in fact g
CII

= g
CIII

= 0,

and the empirical rejection rates are close to the nominal level of α = 0.05. The power of the

test (αe for settings I-III) is also satisfactory, especially for g
CIII

that was simulated to have a

larger effect than g
CII

, although it is generally lower when data was generated from Setting III

and when models where fit using penalty specification P2.
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Figure 4: Quantile-Quantile plots of the p-values, empirical (y-axis) and theoretical (U(0, 1),
x-axis) quantiles, for each combination of data generation (columns) and estimation (rows)
settings. Empirical rejection rates to the nominal level α = 0.05 are denoted by αe. Black
crosses depict p-values for the hypothesis H0 : g

CII
= 0, gray circles indicate the p-values for

the hypothesis H0 : g
CIII

= 0.
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5 Discussion

By embedding the concept of PEMs into the framework of additive models, we were able to

establish a very versatile model class for life-time data analysis that inherits the robust and

flexible tools for modeling, estimation and validation of penalized generalized additive mixed

models, as has been discussed in section 2. In contrast to traditional PEMs, the baseline and

time-varying effects are represented as flexible, potentially non-linear penalized splines. We

further presented a novel approach to model exposure-lag-response associations, or cumulative

effects of time-dependent covariates (exposures), that takes into account timing and amount of

the exposure as well as the time since exposure. The practical value and relevance of this ap-

proach was demonstrated by application to an important medical research question (cf. section

3) and is further enhanced by the readily available open source implementation of the proposed

estimation routine. In addition to the discussed advantages recent algorithmic advances (Wood

et al., 2016) for the underlying implementation also allow application to “giga-data” scenarios

with > 108 number of patient-intervals under consideration. The proposed presentation of the

results in form of hazard ratio trajectories for different pairs of exposure histories provides a

more intuitive alternative compared to classical visualization techniques (e.g. contour plots).

Simulation studies (section 4) confirmed that our method is suitable to estimate complex EL-

RAs and is relatively robust to misspecification. Moreover, when no true exposure effect was

present, both the coverage of the proposed CIs for all comparisons and the Type I error rate of

the hypothesis tests were maintained near nominal levels in all simulated scenarios, regardless

of the specification of penalty and the lag and lead times (cf. Setting IV in Figures 2 (upper

panel) and 4).

However, the simulation studies also revealed that CIs can sometimes have sub-nominal

coverage (especially in the case of P1 penalties). Bootstrapped confidence intervals may pro-

vide improved coverage, but, depending on the number of covariates and the complexity of

their effects, the computational cost of such approaches may be very high. It is also appar-

ent that misspecification of lag and lead times can induce bias, potentially underestimating

effects at the end of the follow up if the lead time was specified as too short and overestimating

them if the lead time was specified as too long. Thus a data-driven selection of the relevant

27



time window would be preferable, which offers possibilities for future research. One approach

for such a procedure could include an additional penalty, that, for example, would penalize

partial effects depending on the time since exposure, similar to the double penalty approach

by Obermeier et al. (2015). Another interesting extension would be the application of these

methods to competing risks. This again would present challenges regarding the interpretation

of nutritional effects, as the ELRA could have differing functional shapes for different outcomes.

In general, the interpretation of effects of time-dependent covariates is quite challenging as

the “externality” of these variables is sometimes unclear, in that although nutrition is adminis-

tered by the hospital staff, the amount of nutrition provided could still depend on the patients’

health status – e.g., patients undergoing procedures due to life-threatening complications pre-

sumably receive less calories or feeding could be stopped due to the decision to withdraw life

support. Handling such variables always demands a trade-off with respect to the recency of the

covariate (Crowder, 2012, ch. 3.6.), that may result in better adjustment for confounding for

more recent values of the covariate, but may also be fully indicative of the outcome and thus

induce indication bias (Signorello et al., 2002; Sjoding et al., 2015). In our application we tried

to address this issue by including a minimum lag time of four days for the nutritional effects.

6 Software details

All analyses and simulations presented have been implemented in the R statistical program-

ming environment (R Core Team, 2016). To facilitate the parallel processing of the individual

simulation runs we used the add-on packages BatchJobs and BatchExperiments (Bischl

et al., 2015). Models were fit using package mgcv (Wood, 2011) and graphical visualizations

have been implemented with ggplot2 (Wickham, 2016).

Acknowledgements

The authors would like to thank Daren Heyland for providing the data set and useful discussion.

Fabian Scheipl was supported by the German Research Foundation through the Emmy Noether

Programme, grant GR 3793/1-1 to Sonja Greven.

28



References

Berger, M. M. and C. Pichard (2012). Best timing for energy provision during critical illness.

Critical Care 16 (2), 215.

Berhane, K., M. Hauptmann, and B. Langholz (2008). Using tensor product splines in modeling

exposure-time-response relationships: Application to the colorado plateau uranium miners

cohort. Statistics in Medicine 27 (26), 5484–5496.

Bischl, B., M. Lang, O. Mersmann, J. Rahnenführer, and C. Weihs (2015). BatchJobs and

BatchExperiments: Abstraction mechanisms for using R in batch environments. Journal of

Statistical Software 64 (11), 1–25.

Crowder, M. J. (2012). Multivariate Survival Analysis and Competing Risks. Chapman & Hall

/ CRC Texts in Statistical Science. Hoboken: CRC Press.

Demarqui, F. N., R. H. Loschi, and E. A. Colosimo (2008). Estimating the grid of time-points

for the piecewise exponential model. Lifetime Data Analysis 14 (3), 333–356.

Eilers, P. H. C. and B. D. Marx (1996). Flexible smoothing with B-splines and penalties.

Statistical Science 11 (2), 89–121.

Friedman, M. (1982). Piecewise exponential models for survival data with covariates. The

Annals of Statistics 10 (1), 101–113.

Gasparrini, A. (2014). Modeling exposure-lag-response associations with distributed lag non-

linear models. Statistics in Medicine 33 (5), 881–899.

Hastie, T. and R. Tibshirani (1993). Varying-coefficient models. Journal of the Royal Statistical

Society. Series B (Methodological) 55 (4), 757–796.

Heyland, D. K., N. Cahill, and A. G. Day (2011). Optimal amount of calories for critically ill

patients: Depends on how you slice the cake! Critical Care Medicine (39), 2619–2626.

Jackson, C. H. (2011). Multi-state models for panel data: The msm package for R. Journal of

Statistical Software 38 (8), 1–29.

29



Marra, G. and S. N. Wood (2011). Practical variable selection for generalized additive models.

Computational Statistics & Data Analysis 55 (7), 2372–2387.

Marra, G. and S. N. Wood (2012). Coverage properties of confidence intervals for generalized

additive model components. Scandinavian Journal of Statistics 39 (1), 53–74.

McClave, S. A., R. G. Martindale, V. W. Vanek, M. McCarthy, P. Roberts, B. Taylor, J. B.

Ochoa, L. Napolitano, and G. Cresci (2009). Guidelines for the provision and assessment of

nutrition support therapy in the adult critically ill patient: Society of critical care medicine

(SCCM) and american society for parenteral and enteral nutrition (A.S.P.E.N.). Journal of

Parenteral and Enteral Nutrition 33 (3), 277–316.

Obermeier, V., F. Scheipl, C. Heumann, J. Wassermann, and H. Küchenhoff (2015). Flexible
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A Simulation

A.1 Data generation

In this section we describe the process of simulating survival times from model (18) in more

detail. First we specify the functional shapes of f0(t), f(x, t) and g
CII

(Zi(t), t), gCIII
(Zi(t), t)

for the different simulation settings (cf. Table 4). Common to all settings were the specification

of β0 = −4.5 as well as f0(t) and f(x, t) specified by coefficient vectors γ0 and γf (see Figure

5).
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Figure 5: True (log) baseline f0(t) and confounder effect f(x, t) used for data generation in the
simulation studies.

The cumulative effects g
CII

and g
CIII

are represented as hazard ratios ej (cf. equation (17))

for the 6 comparisons defined in Table 3 and displayed in Figure 6 for settings I, II and III.

The respective cumulative effects are controlled by parameters γg = (γkCII
,γkCIII

)′, k = 1, . . . , 3.

Given these parameters, we define the coefficients vector γ = (β0,γ
′
0,γ

′
f ,γ

′
g)
′ and hazards

λ = XCγ. The design matrix XC contains the covariate information regarding caloric ade-

quacy, taken from the real data example discussed in section 3.1 of the main manuscript. For

patients without a complete nutrition protocol (due to an event or discharge from the ICU

before day 11 of the nutrition protocol), the last observation was carried forward until day 11.
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The distribution of caloric adequacy categories CI , CII and CIII across the 11 days of nutri-

tion protocol were taken from the real data example discussed in section 3.1 (cf. Figure 7),

such that number of patients with caloric adequacy CI is high at the beginning (∼ 5000) and

decreases towards the last day of nutrition protocol te = 11 (∼ 1500), while CIII is lowest at

the beginning (∼ 2000) and predominant towards the end (∼ 7000). Number of patients with

category CII nutrition is relatively small in the beginning (∼ 2500) and also decreases towards

the end of the nutrition protocol phase (∼ 1000).

As n = 9661 subjects are included in the study and we consider J = 26 intervals, XC contains

9661 · 26 rows and λ is a vector of the same length containing hazards for each subject and for

each interval. Given these hazards, we can simulate new survival times for each subject i (see

section A.2) and create simulated data sets X by adjusting number of observations for each

subject i, their event variables and offsets according to the simulated survival times and subset

XC , such that, for all subjects, it only includes intervals for which the respective subjects are

alive at the beginning of the interval.
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Figure 6: True effects ej for simulation settings I, II and III (top to bottom, cf. Table 4).34
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A.2 Drawing random survival times from piece-wise exponential dis-

tribution

Drawing survival times from piece-wise exponential distributions was performed with the rpexp

function from the R package msm (Jackson, 2011). The procedure is described in the following:

Let κj−1 the left border of the interval (κj−1, κj], j = 1, . . . , J . For each subject i = 1, . . . , n,

I. Set j = 1.

II. While j < J

(i) Draw survival time t′ij from the exponential distribution with rate λij, set ti =

t′ij + κj−1

(ii) if κj−1 < ti ≤ κj, accept ti

(iii) else j = j + 1

III. Draw t′iJ with hazard λiJ , accept ti = t′iJ + κJ−1.
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A.3 Results

In the following raw results for the individual settings of the simulation study (cf. section 4 of

the main article) are presented:

• Table 5 presents summary statistics for RMSE and Coverageα of all simulation runs across

all settings (cf. Table 4) and comparisons (cf. Table 3).

• Figure 8 contains individual trajectories for Settings I.c and I.d (Misspecified T dynamic,
lead time to long)

• Figure 9 contains individual trajectories for Settings II.a and II.b (Correctly specified

T dynamic)

• Figure 10 contains individual trajectories for Settings II.c and II.c (Misspecified T dynamic,
lead time to long)

• Figure 11 contains individual trajectories for Settings III.a and III.b (Misspecified T static,
lead to short)

• Figure 12 contains individual trajectories for Settings III.c and III.d (Correctly specified

T static)

• Figure 13 contains individual trajectories for Settings IV.a and IV.b (Null case, no cumu-

lative effect)

• Figure 14 contains individual trajectories for Settings IV.c and IV.d (Null case, no cumu-

lative effect)

On average, models fit with P1 penalties tend to underestimate the true effects at the

beginning of the follow up, and overestimate, when the lead time was specified too short (Setting

III.a). Models based on P2 penalties tend, on average, to fit the true effect shape more closely,

while having larger mean RMSE and better coverage properties.
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Comparison
Setting Model A B C D E F
Setting I a RMSE 0.125 0.147 0.068 0.110 0.104 0.121

Coverage 0.869 0.914 0.848 0.866 0.948 0.955

b RMSE 0.198 0.207 0.100 0.134 0.173 0.186
Coverage 0.916 0.938 0.947 0.928 0.951 0.952

c RMSE 0.133 0.219 0.141 0.184 0.106 0.144
Coverage 0.844 0.859 0.720 0.722 0.942 0.951

d RMSE 0.200 0.235 0.143 0.160 0.176 0.204
Coverage 0.928 0.935 0.924 0.909 0.952 0.954

Setting II a RMSE 0.248 0.241 0.094 0.200 0.164 0.178
Coverage 0.834 0.869 0.867 0.826 0.950 0.951

b RMSE 0.243 0.243 0.110 0.161 0.209 0.220
Coverage 0.918 0.932 0.940 0.924 0.954 0.955

c RMSE 0.225 0.226 0.161 0.180 0.151 0.185
Coverage 0.832 0.901 0.812 0.843 0.950 0.949

d RMSE 0.236 0.275 0.169 0.185 0.210 0.247
Coverage 0.926 0.923 0.925 0.916 0.949 0.950

Setting III a RMSE 0.133 0.202 0.129 0.181 0.116 0.131
Coverage 0.853 0.783 0.490 0.641 0.933 0.936

b RMSE 0.207 0.242 0.141 0.181 0.191 0.200
Coverage 0.919 0.902 0.626 0.860 0.940 0.941

c RMSE 0.121 0.151 0.065 0.112 0.107 0.138
Coverage 0.859 0.914 0.940 0.862 0.941 0.952

d RMSE 0.195 0.223 0.129 0.145 0.188 0.220
Coverage 0.929 0.940 0.954 0.932 0.948 0.951

Setting IV a RMSE 0.084 0.098 0.040 0.064 0.084 0.100
Coverage 0.937 0.936 0.935 0.941 0.945 0.940

b RMSE 0.167 0.170 0.078 0.105 0.152 0.161
Coverage 0.948 0.946 0.948 0.954 0.950 0.947

c RMSE 0.081 0.115 0.049 0.077 0.079 0.113
Coverage 0.949 0.950 0.952 0.954 0.954 0.953

d RMSE 0.164 0.183 0.105 0.118 0.151 0.178
Coverage 0.952 0.951 0.956 0.952 0.953 0.947

Table 5: Raw simulation results for all considered settings and across Comparisons A – D.
Settings and comparisons are explained in the main part of the article. The nominal level of
the confidence intervals was set to 95%.
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Figure 8: Settings I.c and I.d : Trajectories of hazard ratios êj (gray lines) from all 500 simula-
tion runs across six comparisons of nutrition protocols Zi(t). The solid black line indicates true
cumulative effects ej. The dashed gray line indicates the average trajectories over all simulation
runs.
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Figure 9: Settings II.a and II.b: Trajectories of hazard ratios êj (gray lines) from all 500
simulation runs across six comparisons of nutrition protocols Zi(t). The solid black line indicates
true cumulative effects ej. The dashed gray line indicates the average trajectories over all
simulation runs.

40



Comparison A

RMSE=0.225
Coverage=0.832

Comparison A

RMSE=0.236
Coverage=0.926

Comparison B

RMSE=0.226
Coverage=0.901

Comparison B

RMSE=0.275
Coverage=0.923

Comparison C

RMSE=0.161
Coverage=0.812

Comparison C

RMSE=0.169
Coverage=0.925

Comparison D

RMSE=0.18
Coverage=0.843

Comparison D

RMSE=0.185
Coverage=0.916

Comparison E

RMSE=0.151
Coverage=0.95

Comparison E

RMSE=0.21
Coverage=0.949

Comparison F

RMSE=0.185
Coverage=0.949

Comparison F

RMSE=0.247
Coverage=0.95

days 1−11: C I vs. 
 days 1−4: C I; 5−11: C II

days 1−11: C I vs. 
 days 1−4: C I; 5−11: C II

days 1−11: C I vs. 
 days 1−11: C II

days 1−11: C I vs. 
 days 1−11: C II

days 1−4: C I; 5−11: C II vs. 
 days 1−11: C II

days 1−4: C I; 5−11: C II vs. 
 days 1−11: C II

days 1−11: C I vs. 
 days 1−11: C III

days 1−11: C I vs. 
 days 1−11: C III

days 1−11: C II vs. 
 days 1−4: C II; 5−11: C III

days 1−11: C II vs. 
 days 1−4: C II; 5−11: C III

days 1−11: C II vs. 
 days 1−11: C III

days 1−11: C II vs. 
 days 1−11: C III

0.25

0.5
0.75

1
1.25

2

4

0.25

0.5
0.75

1
1.25

2

4

0.25

0.5
0.75

1
1.25

2

4

0.25

0.5
0.75

1
1.25

2

4

10 20 30

10 20 30

10 20 30

10 20 30

10 20 30

10 20 30

t

t

e j
e j

Setting II.c

Setting II.d

Figure 10: Settings II.c and II.d : Trajectories of hazard ratios êj (gray lines) from all 500
simulation runs across six comparisons of nutrition protocols Zi(t). The solid black line indicates
true cumulative effects ej. The dashed gray line indicates the average trajectories over all
simulation runs.

41



Comparison A

RMSE=0.133
Coverage=0.853

Comparison A

RMSE=0.207
Coverage=0.919

Comparison B

RMSE=0.202
Coverage=0.783

Comparison B

RMSE=0.242
Coverage=0.902

Comparison C

RMSE=0.129
Coverage=0.49

Comparison C

RMSE=0.141
Coverage=0.626

Comparison D

RMSE=0.181
Coverage=0.641

Comparison D

RMSE=0.181
Coverage=0.86

Comparison E

RMSE=0.116
Coverage=0.933

Comparison E

RMSE=0.191
Coverage=0.94

Comparison F

RMSE=0.131
Coverage=0.936

Comparison F

RMSE=0.2
Coverage=0.941

days 1−11: C I vs. 
 days 1−4: C I; 5−11: C II

days 1−11: C I vs. 
 days 1−4: C I; 5−11: C II

days 1−11: C I vs. 
 days 1−11: C II

days 1−11: C I vs. 
 days 1−11: C II

days 1−4: C I; 5−11: C II vs. 
 days 1−11: C II

days 1−4: C I; 5−11: C II vs. 
 days 1−11: C II

days 1−11: C I vs. 
 days 1−11: C III

days 1−11: C I vs. 
 days 1−11: C III

days 1−11: C II vs. 
 days 1−4: C II; 5−11: C III

days 1−11: C II vs. 
 days 1−4: C II; 5−11: C III

days 1−11: C II vs. 
 days 1−11: C III

days 1−11: C II vs. 
 days 1−11: C III

0.25

0.5
0.75

1
1.25

2

4

0.25

0.5
0.75

1
1.25

2

4

0.25

0.5
0.75

1
1.25

2

4

0.25

0.5
0.75

1
1.25

2

4

10 20 30

10 20 30

10 20 30

10 20 30

10 20 30

10 20 30

t

t

e j
e j

Setting III.a

Setting III.b

Figure 11: Settings III.a and III.b: Trajectories of hazard ratios êj (gray lines) from all 500
simulation runs across six comparisons of nutrition protocols Zi(t). The solid black line indicates
true cumulative effects ej. The dashed gray line indicates the average trajectories over all
simulation runs.
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Figure 12: Settings III.c and III.d : Trajectories of hazard ratios êj (gray lines) from all 500
simulation runs across six comparisons of nutrition protocols Zi(t). The solid black line indicates
true cumulative effects ej. The dashed gray line indicates the average trajectories over all
simulation runs.
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Figure 13: Settings IV.a and IV.b: Trajectories of hazard ratios êj (gray lines) from all 500
simulation runs across six comparisons of nutrition protocols Zi(t). The solid black line indicates
true cumulative effects ej. The dashed gray line indicates the average trajectories over all
simulation runs.
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Figure 14: Settings IV.c and IV.d : Trajectories of hazard ratios êj (gray lines) from all 500
simulation runs across six comparisons of nutrition protocols Zi(t). The solid black line indicates
true cumulative effects ej. The dashed gray line indicates the average trajectories over all
simulation runs.
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