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Abstract. Benchmark experiments produce data in a very specific format. The ob-
servations are drawn from the performance distributions of the candidate algorithms
on resampled data sets. In this paper we introduce new visualisation techniques and
show how formal test procedures can be used to evaluate the results. This is the
first step towards a comprehensive toolbox of exploratory and inferential analysis
methods for benchmark experiments.
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1 Introduction

In statistical learning, benchmark experiments are empirical experiments
with the aim of comparing and ranking algorithms with respect to a certain
performance measure. New benchmark experiments are published on almost
a daily basis. Especially in the machine learning community benchmarking is
the primary method of choice to evaluate new learning algorithms. However,
there are surprisingly few publications on how to evaluate benchmark ex-
periments. Some newer exceptions are Hothorn et al. (2005), Demsar (2006),
Yildiz and Alpaydin (2006) and Hornik and Meyer (2007).

Hothorn et al. (2005) use the bootstrap method as a sampling scheme
such that the resulting performance observations are iid and can be analyzed
using standard statistical methods. However, their paper describes a general
framework, not precise instructions for a concrete benchmark experiment. To
use a metaphor, it describes how to cook in general, but contains no recipes
for a nice dinner. Using the foundations laid out by the general framework,
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our goal is now to implement a toolbox of exploratory and inferential methods
for the analysis of benchmark experiments.

Due to space restrictions, we cannot give a comprehensive overview of
all our work in this direction in this paper. Hence, we chose to describe
one new visualization technique (the benchplot), and how benchmark data
can be seen as coming from a blocked design and analyzed as such (using
mixed effects models) as examples. All computations are done using R (R
Development Core Team, 2007), the corresponding R functions are part of
an R package for the analysis of benchmark experiments which is currently
under development and will be released on CRAN later this year.

Following Hothorn et al. (2005), we set up a regression benchmark ex-
periment with the mean squared error as loss function. Given a data set
L = {z1, . . . , zn}, we draw B learning samples using sampling with replace-
ment

L
i = {zi

1
, . . . , zi

n}

for i = 1, . . . , B (bootstrap). Furthermore we assume that there are K > 1
candidate algorithms ak (k = 1, . . . ,K) available for the solution of the
underlying problem. For each algorithm ak the function ak(· | Lb) is the
fitted model based on the sample Lb. This function itself has a distribution
Ak as it is a random variable depending on Lb:

ak(· | L
b) ∼ Ak(L), k = 1, . . . ,K

The performance of the candidate algorithm ak when provided with the train-
ing data Lb is measured with the mean squared error function p (a scalar
function):

pkb = p(ak,Lb) ∼ Pk = Pk(L)

The pkb are samples drawn from the distribution Pk(L) of the mean squared
error of the algorithm k on the data set L. As we are not able to calculate pkb

analytically, we have to use the empirical analogue p̂kb based on a test sample
T. A common choice to define T is in terms of out-of-bootstrap observations:
T = L \ Lb. This leads to non-independent observations of the performance
measure, but their correlation vanishes as n tends to infinity.

The first step is to analyse the benchmark experiment in an exploratory
way. Based on findings in this step, the second step tests hypothesis of interest
and yields an ordered ranking of the candidate algorithms.

To demonstrate the methods, we use an examplar benchmark study us-
ing the motorcycle data set, see Figure 1. The candidate algorithms used
(with corresponding R functions in parenthesis) are linear regression (lm),
nonlinear least-squares regression (nls), neural networks (nnet), regression
trees (rpart), generalized additive models (gam), loess regression (loess) (all,
e.g., in Venables and Ripley, 2002), and boosted generalized additive models
(gamboost, Hothorn & Bühlmann, 2006) as candidate algorithms. In order to
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Fig. 1. The motorcycle data set (Silverman (1985)): time and head acceleration of a
PTMO (post mortem human test object) after a simulated impact with motorcycles.
The number of observations is n = 133.

Mean SD 95% CI Median IQR

nnet 1438.1 868.4 [−263.9, 3140.1] 977.2 1697.1
lm 2209.2 294.1 [1632.8, 2785.5] 2209.8 384.1

rpart 812.4 181.2 [457.2, 1167.6] 809.2 248.8
gamboost 583.7 116.5 [355.2, 812.1] 582.1 151.4

gam 565.2 122.6 [324.9, 805.6] 563.6 138.1
nls 1818.1 242.3 [1343.2, 2292.9] 1808.5 307.6

loess 604.3 134.6 [340.4, 868.1] 596.6 169.2

Table 1. Common summary statistics of the example experiment: based on the
250 benchmark experiment runs, the mean, standard deviance (SD), 95% confidence
interval, median and interquartiles range (IQR) of the empirical mean squared error
distributions are calculated.

present an experiment with a wide variety of algorithm performances, we in-
cluded linear regression, although the data are clearly nonlinear. The number
of bootstrap samples B is 250.

2 Exploratory analysis

Common analyses of benchmark experiments consist of the comparison of
the empirical performance measure distributions based on some summary
statistics. Table 1 shows the most established ones. In many cases, these
heavily compacted numbers are the only analysis and basis for a ranking of
the algorithms. But in doing so, one loses a lot of interesting and primarily
important information about the experiment.

Based on the mean performance values, the order of the candidate al-
gorithms is gam < gamboost < loess < rpart < nnet < nls < lm. As
indication for the significance of differences, one can use the corresponding
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Fig. 2. Dot plot of the example experiment: the performance of each algorithm on
each benchmark run is shown as a dot.
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Fig. 3. Box plot of the example experiment: outliers are identified. In comparison
to the dot plot, information about local minima is lost.

95% confidence intervals. For our data the mean is approximately equal to
the median for all except nnet, i.e. the performance of the latter seems to be
skewed. Figure 2 shows a dot plot with the algorithms on the abscissa (sorted
after their mean performance) and their performances on the ordinate, rep-
resented with a dot for each benchmark run (i.e., bootstrap sample). It can
bee seen that the distribution for nnet is not only skewed, but also bimodal.
Manual replications of fitting neural networks to the data show that training
often gets stuck in local minima. Figure 3 shows a box plot with a box for
each algorithm. This plot allows the indication of outlier performances, but
information about local minima is lost.

Both, Figure 2 and 3, also give an idea about the overall order of the
algorithms. gam, gamboost and loess have basically the same performance,
the small differences in mean performance being caused mostly by a few
outliers. rpart has slightly worse performance, but with an isolated point
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Fig. 4. Benchmark experiment plot of the example: the abscissa is a podium 7
places. For each benchmark run, the algorithms are sorted according to their per-
formance values and a dot is drawn on the corresponding place. To visualise the
count of an algorithm on a specific position, a bar plot is shown for each of podium
places.

close to the best value of the other three algorithms. nls and lm are in the
upper MSE range, whereas nls has a lower minimal value as lm, but similar
variance. lm also has some outliers near to the minimal value from nls. As
said above, nnet ranges in two areas, whereas the lower MSE range (which
corresponds to good performance) is similar to gam, gamboost and loess.

One massive problem of the dot plot is the overdrawing of dots. We do
not know how many “lower” outliers of rpart there are, but the number
of them really influences the impression of an order. This could be partly
solved by jittering the plots, i.e., adding some random noise to the data. Ad-
ditionally, the standard dot plot suggests the independence of the bootstrap
samples. Indeed we know that, for example, gam, gamboost and loess per-
form similarly over all benchmark runs, but we do not know their ranking
per benchmark run, which algorithm is on which rank and how often. The
benchmark experiment plot was developed to overcome these limitations and
to get a better understanding of benchmark experiments.

Instead of random jittering, we use the ranks of the algorithms on each
bootstrap sample to horizontally “stretch out” the dots. For each benchmark
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run, the algorithms are ordered according to their performance value, and
we draw seperate dot plots for each rank, ties are broken at random. This
can be seen as creating a “podium” with K places, and having separate dot
plots for each podium place, see Figure 4. Note that the plot is much easier
to read when in color.

While the mean performances of gam, gamboost and loess (as shown
in Table 1), and the performace distributions of these three (as shown in
Figure 2 and Figure 3) all look very similar, we see in Figure 4 that gam is by
far most often the best algorithm for single bootstrap samples. Another aspect
that is impossible to infer from the marginal distributions of the performance
measures alone is that there are a few bootstrap samples where rpart works
best.

The dots in Figures 2 and 4 are not independent from each other, because
all algorithms were evaluated on each bootstrap sample. This dependency can
be displayed by connecting the dots corresponding to one bootstrap sample
with a line, resulting in a modified version of a parallel coordinates plot. In
our implementation, the line segment between two podium places is drawn
with the color of the algorithm in the lower position. To overcome the problem
of overdrawing lines we use transparency (alpha shading). In this “full bench-
mark experiment plot” one can also see correlations between algorithm perfor-
mances (parallel vs. crossing lines). In greyscale the plot looks like a big mess
of grey lines and dots, and hence had to be excluded from this manuscript (a
color version is available from http://www.statistik.lmu.de/~eugster/).

3 Inference

To make a statistically correct order and ranking we need more formal tools:
statistical inference and primarily the testing of hypothesis provides them.
The design of a benchmark experiment is a random block design. This type
of experiment has two classification factors: the experimental one, for which
we want to determine systematic differences, and the blocking one, which
represents a known source of variability. In terms of benchmark experiments,
the experimental factor is the set of algorithms and the blocking factor is
that all algorithms perform on the same bootstrap samples.

We use a mixed effects model (e.g. Pinheiro and Bates, 2000) to analyze
the output of a benchmark experiment. The variable of primary interest, i.e.,
the set of algorithms, is modelled as fixed effect βj . The blocking factor, i.e.
the sampling, is modelled as random effect bj :

pij = β0 + βj + bi + εij

with bi ∼ N(0, σ2

b ), εij ∼ N(0, σ2) and i = 1, . . . , B, j = 1, . . . K − 1. Hence,
we estimate only one parameter σ2

b for the effect of the data set. A modelling,
by contrast, with the effect of the data set as main effect, would have lead to
B parameters. Since we are able to draw as many random samples B from
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Fig. 5. Simultaneous 95% confidence intervals for multiple comparisons of means
using Tukey constrast based on the mixed effects model of the example experiment.

the performance distributions as required, we can rely on asymptotic normal
theory. In case of our example the estimates for the parameters have been
calculated as

σ̂b = 121.31, σ̂ = 353.73,

and

Intercept ∆gamboost ∆lm ∆loess ∆nls ∆nnet ∆rpart

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

565.24 18.41 1643.91 39.03 1252.85 872.86 247.16,

with ∆ denotes the difference between the Intercept and the corresponding
algorithm.

The global test, whether there are any differences between the algorithms
which do not come from the sampling, can be performed with ANOVA and
the F-test. For our model this test rejects the null hypothesis that all al-
gorithms have the same performance. We then use Tukey contrasts to test
pairwise differences. Figure 5 shows the corresponding 95% family-wise con-
fidence intervals. The differences between gam, gamboost and loess are not
significant, the corresponding confidence intervals intersect 0 and overlap
each other. As we can not establish a strict total order < or a total order ≤,
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we define a reflexive and symmetric order relation ≈: two algorithms are ≈-
related if their difference is not significant. The differences between all other
algorithms are significant and we can establish a strict total order < for each
pair. Based on this set of ordered pairs (≈- and <- ordered) we can use use
a topological sort to define an overall order of the algorithms. In case of our
benchmark experiment example, the final order of the candidate algorithms
is gam ≈ loess ≈ gamboost < rpart < nnet < nls < lm.

4 Summary and future work

In this paper we gave a short introduction to our current work on formal
statistical analysis of benchmark experiments and introduced the benchmark
experiment plot as a new visualisation method. The random block design of a
benchmark experiment has been modelled using mixed effects. This allows to
test various hypothesis of interest, amongst others, the pairwise differences.
We introduced an order relation for algorithms with non-significant differ-
ences, and inferred a statistically correct order of the candidate algorithms.

This paper is the first step towards a comprehensive toolbox for ex-
ploratory and inferential analysis of benchmark experiments. There are lots
of things to do. Two examples are (1) sequential testing to reduce computa-
tion time and (2) alternative order mechanisms like the minimax principle.
Besides the analysis of a set of candidate algorithms on one data set, the
extension to a set of data sets is obvious.
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