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Abstract

Introduction

Physical activity is beneficial for individual health, but endurance sport is associated with the

development of arrhythmias like atrial fibrillation. The underlying mechanisms leading to this

increased risk are still not fully understood. MicroRNAs are important mediators of proarrhyth-

mogenic remodeling and have potential value as biomarkers in cardiovascular diseases.

Therefore, the objective of our study was to determine the value of circulating microRNAs as

potential biomarkers for atrial remodeling in marathon runners (miRathon study).

Methods

30 marathon runners were recruited into our study and were divided into two age-matched

groups depending on the training status: elite (ER,�55 km/week, n = 15) and non-elite run-

ners (NER,�40 km/week, n = 15). All runners participated in a 10 week training program

before the marathon. MiRNA plasma levels were measured at 4 time points: at baseline

(V1), after a 10 week training period (V2), immediately after the marathon (V3) and 24h later

(V4). Additionally, we obtained clinical data including serum chemistry and echocardiogra-

phy at each time point.

Results

MiRNA plasma levels were similar in both groups over time with more pronounced changes

in ER. After the marathon miR-30a plasma levels increased significantly in both groups.
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MiR-1 and miR-133a plasma levels also increased but showed significant changes in ER

only. 24h after the marathon plasma levels returned to baseline. MiR-26a decreased signifi-

cantly after the marathon in elite runners only and miR-29b showed a non-significant

decrease over time in both groups. In ER miRNA plasma levels showed a significant corre-

lation with LA diameter, in NER miRNA plasma levels did not correlate with echocardio-

graphic parameters.

Conclusion

MiRNAs were differentially expressed in the plasma of marathon runners with more pro-

nounced changes in ER. Plasma levels in ER correlate with left atrial diameter suggesting

that circulating miRNAs could potentially serve as biomarkers of atrial remodeling in

athletes.

Introduction
There is compelling evidence that physical activity has beneficial effects, especially regarding
cardiovascular health[1]. It has been shown that exercise can reduce the risk of stroke[2], coro-
nary heart disease[3], atherosclerosis[4], or heart failure[5]. Continuous exercise induces phys-
iological adaptation including cardiac enlargement and mild left ventricular hypertrophy,
classically characterized as “athlete’s heart”[6, 7]. In contrast, it has also been demonstrated
that participation in endurance sports is associated with increased risk of disease[8], in particu-
lar arrhythmias like sinus node dysfunction[9], heart block[10], or atrial fibrillation[11].One
explanation for these are underlying cardiac pathologies such as cardiomyopathy. However an
increasing body of evidence suggests that exercise-induced remodeling processes are not purely
benign but can also create an arrhythmogenic substrate.

Benito et al. demonstrated that daily treadmill exercise in rats for 16 weeks resulted in
eccentric ventricular hypertrophy, diastolic dysfunction, atrial enlargement and increased
myocardial fibrosis [12]. They could also induce ventricular tachyarrhythmias in 42% of these
rats (vs. 6% in control rats). Guasch et al. observed a significantly increased inducibility of AF
in the same rat model (64% vs. 15% after 16 weeks of 1h/d treadmill exercise)[13]. They dem-
onstrated autonomic dysregulation as well as significant left atrial dilatation and atrial fibrosis,
neither of which recovered fully with exercise cessation. Irreversible acute atrial remodeling
caused by endurance exercise might therefore be a potential explanation for long-term morbid-
ity in athletes.

In experimental animal models it is easy to measure molecular, genomic, or cellular
changes. However, in humans we have to use surrogate parameters to estimate atrial remodel-
ing[14]. One of the hallmarks of atrial remodeling that can be measured by echocardiography
is left atrial dilatation[15]. LA dilatation is a suitable surrogate parameter for atrial remodeling
as it is associated with atrial fibrosis, reduced atrial function, and increased risk for AF develop-
ment[16–18]. Another surrogate parameter is the peak A wave velocity measured by pulsed
wave Doppler echocardiography that has been widely used to assess atrial function[19–22] and
has been shown to be associated with AF risk in the Framingham Heart Study and the Cardio-
vascular Health Study[17, 23]. Furthermore, mitral annular E/E’ has been reported as an
appropriate parameter to estimate the degree of atrial remodeling[24] since diastolic dysfunc-
tion is an independent risk factor for AF[25, 26]. Additionally, it has been shown that recur-
rence of AF after electrical cardioversion can be predicted by the degree of diastolic
dysfunction[27] or LA dilatation[28].
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In recent years, microRNAs (miRNAs) have been shown to play an important role in AF
pathophysiology by regulating remodeling processes[29–34]. MiRNAs are short, single
stranded, and non-coding RNA fragments that bind to the 3’UTR of their target genes leading
to inhibition of mRNA translation. Therefore, miRNAs are post-transcriptional regulators of
gene expression either by direct inhibition (binding to the 3’UTR of the target gene) or indirect
activation (binding to the 3’UTR of an endogenous inhibitor). MiRNAs have been shown to
play an important role in atrial remodeling. MiR-1 and miR-26a are implicated in electrical
remodeling by regulating ion channels[35–37] or calcium homeostasis[38]. MiR-29b, miR-30a
and miR-133a are predominantly involved in structural remodeling causing enhanced atrial
fibrosis [31, 39].

Recently, several studies have shown that endurance sport and aerobic exercise impact on
the level of circulating miRNAs[40, 41]. Mooren and colleagues evaluated miRNA plasma lev-
els in marathon runners and demonstrated that miR-1, miR-206 and miR-133a plasma levels
are increased after a marathon and are associated with aerobic performance parameters[41].
Baggish et al. performed a study in marathon runners and found that miR-1, miR-133a, miR-
126, miR-134, miR-146a, miR-208a, and miR-499 were differentially regulated[40]. In their
study the plasma profile of miRNAs and conventional cardiac injury markers like troponin dif-
fered suggesting a potential role for miRNAs as biomarkers for exercise-induced cardiac
adaptation.

In order to determine the potential value of miRNAs as biomarkers for acute atrial remodel-
ing in athletes we performed the miRathon study, analyzing the plasma profile of 5 miRNAs
associated with atrial remodeling in marathon runners over time.

Materials and Methods

Study design
Our study was designed as a sub-study of the previously published Munich Marathon study
[42, 43]. In brief, 30 marathon runners intending to participate in the Munich Marathon were
recruited via a local newspaper and by written invitations sent to local running clubs. Recruit-
ment was limited to healthy male marathon runners aged 30–60 years who had run at least a
half-marathon in the previous 3 years and who had no cardiovascular risk factors. The candi-
dates volunteered for an individually tailored, supervised training program. The group was
divided into two age-matched groups depending on the training status: elite runners (ER) and
non-elite runners (NER). ER performed regular intensive exercise throughout the year and
were scheduled for�55 km/week during the 10 week training program. The NER group was
scheduled for�40 km/week with only seasonal pre-marathon exercise training. The 10 week
endurance exercise program was according to current guidelines[44]. Before and after the
training program each runner performed a symptom-limited treadmill ergometry to determine
the individual anaerobic threshold (IAT) and to quantify the individual fitness improvement.
Blood was collected at baseline (V1), after a 10 week training period (V2), immediately after
the marathon (V3), and 24 hours later (V4).

Blood collection
Fasting blood samples were taken 2–5 days before the marathon and immediately after the
marathon. Runners did not exercise during the two days prior to baseline blood sampling.
Blood samples were collected via direct venous puncture into 9 ml EDTA containing tubes
(SarstedtMonovette). All blood was processed for isolation of plasma within 4 hours of collec-
tion. Blood was processed by spinning at 4000 rpm for 20 minutes at room temperature.
Plasma was carefully transferred to a fresh RNAse/DNAse free tube and stored at -80°C.
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RNA isolation
RNA isolation and miRNA plasma level measurement was performed as previously described
[31]. In brief, plasma was thawed on ice and 400 μL EDTA-plasma was mixed with
4000 μLTRIzol (Invitrogen), incubated for 5 minutes at room temperature and subsequently
mixed with 800 μL chloroform. The organic and aqueous phases were separated by centrifuga-
tion. The aqueous phase containing the RNA was carefully removed and RNA was precipitated
by addition of 100% ethanol. The mixture was applied to an RNeasy Mini spin column (Qia-
gen), washed several times and RNA was eluted by addition of 35 μL RNase-free water (95°C).

As no plasma housekeeping miRNA in the context of exercise has been established and vali-
dated to normalize for the miRNA content to date, we chose to use a fixed volume of plasma
per sample and a synthetic Caenorhabditis elegans miR-39 (cel-miR-39, 20 fmol/sample, syn-
thesized by Qiagen) as a spiked-in control to normalize for individual RNA-isolation-related
variations. Twenty fmol cel-miR-39 were introduced to each plasma sample after addition of
denaturatingQiazol solution. For each RNA sample, the C. elegans spiked-in miRNAs were
measured using TaqManqRT-PCR assays (Applied Biosystems).

Hemolysis assessment
To assess the degree of hemolysis we measured absorbance at 414 nm using a NanoDrop1000
as described elsewhere[45]. Values above 0.2 were indicative of hemolysis.

Measurement of miRNA Levels in Plasma with TaqMan qPCR Assays
A fixed volume of diluted RNA (5 μL) was subjected to reverse transcription using the TaqMan
microRNA Reverse Transcription kit (Applied Biosystems) according to the manufacturer’s
protocol. Subsequently, 1.33 μL of the product was used to detect miRNA-expression by quan-
titative PCR using miRNA-specific stem-loop primers (Applied Biosystems) for the corre-
sponding microRNA. Quantitative PCR reactions were performed on a Bio-Rad iQ5 system
using the following program: 10 minutes pre-incubation at 95°C, 45cycles of 15 seconds dena-
turation at 95°C and 60 seconds of elongation at 60°C. Values are normalized to cel-miR-39
and expressed as 2-[(CT microRNA)-(CT cel-miR-39)].

Echocardiography
All studies were performed using a commercially available echocardiography device equipped
with a 2.5-MHz probe and digital storage capacity (Philips iE32 System; PhilipsHealthcare).
Inter-observer variability was eliminated by having all studies performed and analysed by a single
experienced investigator. To facilitate imaging of all participants immediately postrace, the echo-
cardiographyexam was limited to measurements of LV systolic and diastolic function. The study
was performed in two-dimensional (2D) and colour tissue Doppler (TD) imaging modes. 2D
measurements included LV end-diastolic and end-systolic volumes. Systolic ejection fraction was
calculated using Simpson’s rule (biplane). Cardiac size was determined by assessing total LV
end-diastolic volume per kg of body weight (TEDD3/kg), as previously described in athletes.
Pulsed mitral annular Doppler and colour TD were used to determine regional and global dia-
stolic function. Mitral inflow velocities E and A and colour TDmeasurements of septal mitral
annulus velocities E’ and A´ were performed in the apical four-chamber view[46].

Measurement of Troponin T, CK, and CK-MB
Troponin T was quantified using electrochemiluminescence sandwich immunoassay (Roche,
Switzerland) according to the manufacturer’s recommendations. Serum CK activity was
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quantified using a Beckman Coulter analyser system AU5800 (Beckman Coulter Inc., Brea CA,
USA) based on a photometric test according to the International Federation of Clinical Chem-
istry (IFCC method). For the quantification of CK-MB an immuno-inhibition method on the
same analytical routine platform was used.

Statistical analysis
Data are presented as MEAN±SEM. GraphPad Prism 5.01 was used for statistical analysis.
Friedman-Test was used for multi-group comparisons. Spearman’s correlation analysis was
used to identify any significant relationships. A p<0.05 was considered statistically significant.

Ethics statement
The study was approved by the hospital’s ethics committee of the Technical University of
Munich. Investigations were performed according to the 1975 Declaration of Helsinki. Written
informed consent was obtained prior to study enrolment by all participants.

Results

Clinical characteristics
In our study we evaluated 2 age-matched groups of athletes participating in the Munich mara-
thon: elite runners (n = 15) who performed regular endurance exercise throughout the year
and non-elite runners (n = 15) without regular endurance exercise.

Since our study was designed as a sub-study of the Munich Marathon Study, marathon per-
formance data has already been published elsewhere[42, 43]. In brief, during the training
period elite runners ran 73.9±3.9 km per week whereas non elite runners ran 33.9±2.7 km per
week (��� p<0.001, Table 1). Before the 10 week training program baseline heart rate was sig-
nificantly lower in elite runners (50.5±2.4 vs. 61.5±2.9, �� p = 0.006) and IAT was significantly
higher in elite runners (13.4±0.4 vs. 11.9±0.3, �� p = 0.001). 10 weeks of training resulted in a
marked improvement of both training parameters. IAT was significantly increased and resting
heart rate was decreased in both groups with more pronounced changes in non-elite runners
(Table 1). None of the performance parameters correlated with miRNA plasma levels.

MicroRNA plasma level
MicroRNA plasma levels at baseline (V1) were similar in both groups (Table 2, Fig 1). The 10
week training program had no significant impact on the miRNA plasma level (V2). At the end of
the marathon (V3) miR-1, miR-133a and miR-30a showed a significant increase (��� p<0.001
vs. before marathon (V2)). However, this increase was mainly driven by the changes in elite run-
ners. 24 hours after the marathon (V4) plasma levels of miR-1, miR-133a and miR-30a decreased
significantly.

MiR-26a and miR-29b showed a different expression pattern in plasma over time. After the
marathon (V3) both miRNAs were downregulated and showed a further decrease 24 hours
later (V4). However, only miR-26a was significantly downregulated in elite runners only (V4
compared to V3) whereas non-elite runners and miR-29b levels in both group showed a non-
significant trend towards downregulation (Fig 1).

Assessment of hemolysis
Since hemolysis can affect the level of miRNAs in plasma samples we performed a quality con-
trol by measuring absorbance at 414 nm on 13 samples at each time point. Although measure-
ments indicated some degree of hemolysis (Table 3) in some samples we could not detect any
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correlation between the degree of hemolysis (as indicated by the absorbance) and the miRNA
expression level (Fig 2).

Skeletal muscle and cardiac serummarkers
Serum levels of troponin T (published before[43]), CK and CK-MB were used in our study for
calculation of potential correlations with miRNA plasma levels (Table 4). Only 2 measure-
ments of CK-MB at visit 3 (both elite runners) did not pass our internal quality control and
were therefore not used for further calculation.

Table 1. Clinical characteristics.

pre training post training

Elite runners Non-elite runners p Elite runners Non-elite runners p

demographic data

age (years) 40.0±1.7 40.1±1.4 0.953

training parameters

BMI 23.3±0.55 24.1±0.42 0.222 22.8±0.55 23.7±0.45 0.213

resting heart rate (/min.) 50.5±2.39 61.5±2.85 0.006 ** 50.1±2.09 58.1±2.36 0.018 *

km per week 73.9±3.86 33.9±2.72 0.000007 ***

IAT (km/h) 13.4±0.36 11.9±0.25 0.001 ** 13.6±0.363 12.4±0.25 0.011 *

heart rate at IAT (/min.) 168.7±2.97 167.1±2.54 0.675 167.4±2.91 164.9±2.05 0.494

lactat (mmol/l) 2.8±0.156 3,09±0.199 0.187 2.6±0.12 2.8±0.19 0.520

systolic blood pressure (mmHg) 127.3±2.48 127.7±3.93 0.943 128.0±2.79 132.0±3.44 0.375

diastolic blood pressure (mmHg) 79.0±1.11 79.0±2.14 1.000 83.0±1.88 85.7±2.17 0.361

Echocardiography

Ejection fraction (%) 65.9±1.04 59.6±4.58 0.252 65.8±0.94 60.0±4.55 0.513

LA diameter (mm) 38.9±1.26 35.5±2.69 1.000 38.1±1.28 35.1±2.72 0.871

LVEDD (mm) 50.2±1.05 46.9±3.50 0.796 49.2±1.18 46.5±3.60 0.568

posterior wall thickness (mm) 11.5±0.34 9.5±0.88 0.181 12.5±0.46 10.7±0.91 0.905

E wave velocity (cm/s) 83.7±3.26 73.0±6.57 0.189 82.1±4.06 69.8±6.55 0.130

A wave velocity (cm/s) 46.3±2.59 44.2±4.26 0.588 54.7±3.13 47.5±4.41 0.385

E/E‘ ratio 7.8±0.26 7.0±0.67 0.838 8.7±0.30 7.5±0.67 0.285

BMI: body mass index.

km: kilometer.

IAT: individual aerobic threshold.

LA: left atrium.

LVEDD: left ventricular end-diastolic diameter.

*p<0.05

**p<0.01

***p<0.001 elite vs. non-elite runners.

doi:10.1371/journal.pone.0148599.t001

Table 2. MiRNA raw CT values. Data shown as raw cycle numbers (Min-Max).

miRNA Assay-ID Baseline (V1) After 10 weeks training (V2) directly after the marathon (V3) 24h post marathon (V4)

miR-1 000385 34,94–40,64 34,96–42,37 32,89–43,17 35,50–39,74

miR-26a 000405 34,96–39,65 34,36–40,39 33,70–41,33 35,08–39,39

miR-29b 000413 33,76–36,59 33,13–38,42 34,43–39,48 34,57–36,85

miR-30a 000416 34,95–39,65 34,76–41,05 33,43–41,94 35,22–39,39

miR-133a 002246 34,96–39,65 34,36–40,39 33,70–41,33 35,08–39,39

doi:10.1371/journal.pone.0148599.t002
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In brief, serum levels of troponin T, CK and CK-MB were similar before (V1) and after the
10 week training program (V2) without any significant differences between groups. Serum lev-
els of creatine kinase (CK) showed a non-significant trend towards higher levels after the mara-
thon (V3) but increased significantly 24 hours later (V4). The serum levels of the MB isoform

Fig 1. MicroRNA plasma expression over time. AmiR-1, B miR-133a, C miR-30a, D miR-26a, E miR-29b. V1 baseline, V2 after a 10 week training period,
V3 immediately after the marathon, V4 24 hours after the marathon. Data shown as MEAN±SEM, * p < 0.05, ** p<0.01, *** p<0.001 vs. timepoint V1, #
p < 0.05, ## p<0.01, ### p<0.001 vs. timepoint V2, † p < 0.05, †† p<0.01, ††† p<0.001 vs. timepoint V4, Friedman-Test.

doi:10.1371/journal.pone.0148599.g001

Table 3. Hemolysis Assessment.

Absorbance at 414 nm

participant Baseline (V1) After 10 weeks training (V2) directly after the marathon (V3) 24h post marathon (V4)

03 0,211 0,342 0,232 0,188

05 0,303 0,403 0,419 0,238

06 0,231 0,235 0,174 0,17

08 0,267 0,437 0,347 0,181

09 0,135 0,154 0,211 0,031

17 0,175 0,207 0,229 0,197

25 0,389 0,575 0,466 0,285

39 0,172 0,177 0,254 0,148

47 0,238 0,264 0,346 0,185

50 0,079 0,19 0,166 0,116

57 0,23 0,217 0,402 0,168

60 0,123 0,194 0,249 0,199

61 0,162 0,292 0,321 0,183

doi:10.1371/journal.pone.0148599.t003
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of creatine kinase (CK-MB) showed a similar pattern as CK but significant changes occurred
only in non-elite runners 24 hours after the marathon (V4).

Troponin levels were below detection limit before the marathon (V1, V2), increased after
the marathon (V3) significantly, and returned to non-measurable levels 24 hours later (V4).
None of these markers differed significantly between elite and non-elite runners.

Echocardiography
We obtained echocardiographic measurements from all 30 participants at all four time points.
However, at visit 3 adequate measurement of LA diameter in 2 participants (both elite runners)
was not possible.

At baseline (V1)there was no significant difference between groupswith regard to left ven-
tricular end-diastolic diameter (LVEDD), posterior wall (PW) thickness, left atrial (LA)

Fig 2. Correlation betweenmiRNA plasma expression and Absorbance at 414 nm. Different time points (V1-V4) shown from top to bottom, different
miRNAs (miR-1, -26a, -29b, -30a, -133a) are shown from left to right. Spearman correlation coefficient.

doi:10.1371/journal.pone.0148599.g002

Table 4. Skeletal muscle and cardiac serummarkers.

V1 V2 V3 V4

Elite
runners

Non elite
runners

p Elite
runners

Non elite
runners

p Elite
runners

Non elite
runners

p Elite
runners

Non elite
runners

p

CK (U/l) 220.0
±24.5

277.1±59.2 0.381 178.9
±21.4

174.5±26.6 0.901 524.9
±64.4

531.3
±103.3

0.959 1986.7
±326.5

1928.4
±423.3

0.914

CK-MB
(U/l)

23.2±4.8 23.0±5.4 0.983 12.5±10.2 20.0±3.5 0.522 30.1±3.9 25.5±2.3 0.343 62.6±16.5 47.3±6.2 0.421

doi:10.1371/journal.pone.0148599.t004
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diameter, peak A wave velocity, or E/E’ ratio (Fig 3). After the 10 week training program (V2) no
significant changes were observed. After the marathon (V3) LVEDDwas significantly reduced
(��� p<0.001 vs. V2; Fig 3A), PW thickness and peak A wave velocity were significantly increased
(��� p<0.001 vs. V2; Fig 3B and 3D), LA diameter showed a non-significant trend towards lower
dimensions (Fig 3C) and E/E’ ratio showed no significant changes compared to baseline (Fig 3E).
24 hours after the marathon all parameters returned to a level similar to baseline. However, PW
thickness, LA diameter, peak A wave velocity, and E/E’ ratio were still slightly increased (not sig-
nificantly), whereas LVEDD was still slightly decreased (not significantly).

Correlation between miRNA plasma levels and LA diameter
We could not find any correlation between miRNA plasma levels before the marathon (V2)
and LA diameter before (V2) or after the marathon (V3). However, we observed a significant
correlation between the peak plasma levels of miR-1 and miR-133a and LA diameter after the
marathon (V3) in elite runners (Fig 4, Table 5). Furthermore, peak plasma levels of miR-1 and
miR-133a also correlated with LA diameter 24 hours after the marathon (V4; Fig 5, Table 5). In
non-elite runners no correlation between miRNA plasma levels and LA diameter could be
found (Table 6).

We also evaluated potential correlations between miRNA plasma expression and other echo-
cardiographic parameters but we could not observe any correlation between miRNA plasma lev-
els and peak A wave velocity or E/E’ in either elite or non-elite athletes (Tables 5 and 6).

Fig 3. Echocardiographic parameters over time. A Left ventricular end-diastolic diameter (LVEDD), B Posterior Wall (PW) thickness, C Left atrial (LA)
diameter, D Peak AWave velocity, E E/E’ ratio. V1 baseline, V2 after a 10 week training period, V3 immediately after the marathon, V4 24 hours after the
marathon. Data shown as MEAN±SEM, * p < 0.05, ** p<0.01, *** p<0.001 vs. timepoint V1, # p < 0.05, ## p<0.01, ### p<0.001 vs. timepoint V2, † p < 0.05,
†† p<0.01, ††† p<0.001 vs. timepoint V3, Friedman-Test.

doi:10.1371/journal.pone.0148599.g003
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Correlation between miRNA plasma levels and markers of muscle injury
An increase in circulating miRNAs could potentially be caused by injured cells releasing their
intracellular miRNAs into the blood. Therefore we evaluated if the miRNA plasma levels corre-
lated with markers of cellular injury (Figs 6–8).

MiR-30a, miR-26a and miR-29b did not correlate with levels of creatine kinase, the MB iso-
form of creatine kinase, or troponin T (Figs 6–8, C-E). MiR-1 and miR-133a, however, showed
a significant correlation: in elite runners these miRNAs correlate with creatine kinase and the

Fig 4. Correlation betweenmiRNA plasma expression at timepoint V3 and LA diameter at timepoint V3. AmiR-1, B miR-133a, C miR-30a, D miR-26a,
E miR-29b. * p< 0.05, ** p<0.01, *** p<0.001 Spearman correlation coefficient.

doi:10.1371/journal.pone.0148599.g004

Table 5. Correlation analyses betweenmiRNAs and clinical parameters in elite runners (ER).

miR-1 miR-133a miR-30a miR-26a miR-29b

r p-value r p-value r p-value r p-value r p-value

miRNA plasma
levels at V3

Peak A wave
velocity at V3

0.1518 0.6044 0.0088 0.9762 0.1364 0.6419 -0.0792 0.7878 -0.3961 0.1802

E/E’ at V3 -0.1610 0.5665 -0.0411 0.8842 -0.3417 0.2126 -0.2200 0.4307 -0.0308 0.9167

LA diameter at V3 -0.6897 0.0091 -0.7090 0.0067 0.0110 0.9715 -0.1434 0.6401 0.0491 0.8861

LA diameter at V4 -0.6631 0.0070 -0.5643 0.0284 -0.1617 0.5647 -0.0563 0.8587 0.0288 0.9222

CK plasma levels at V3 0.7143 0.0028 0.7536 0.0012 0.5286 0.0428 0.1786 0.5243 0.3802 0.1799

Troponin levels at V3 0.0841 0.7657 0.3234 0.2397 0.1701 0.5444 -0.1739 0.5355 0.3747 0.1868

CK-MB levels at V3 0.7455 0.0034 0.8363 0.0004 0.6080 0.0275 0.2311 0.4475 0.0736 0.8171

doi:10.1371/journal.pone.0148599.t005
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MB isoform of it (Figs 6A and 6B, 7A and 7B). In non-elite runners miR-1 and miR-133a cor-
relate with troponin T levels (Fig 8A and 8B).

Discussion
In our miRathon study we measured circulating miRNAs in plasma and evaluated their poten-
tial value as biomarkers for atrial remodeling in marathon runners. We demonstrated a signifi-
cant increase of miR-1, miR-30a and miR-133a immediately after the marathon with return to
baseline 24 hours later. Furthermore, miR-26a and miR-29b showed a trend towards progres-
sively reduced expression over time. In elite runners plasma miRNA levels after the marathon
correlated with LA diameter, a parameter of structural remodeling.

miRNAs as potential biomarkers
MiRNA biology has been a very active area of research recently, and several studies have been
published evaluating circulating miRNAs as potential biomarkers of heart disease including
acute infarction, coronary artery disease and heart failure. However, only a few data exist on
miRNAs in patients with arrhythmias. We have previously shown that miR-29b is downregu-
lated in an experimental model of AF and confirmed this downregulation in plasma of AF
patients[31]. Interestingly, in our current study miR-29b also showed a trend towards a pro-
gressively reduced plasma expression over time. MiR-26a showed a similar expression pattern
in plasma in our study (significantly downregulated in elite runners only) and was also shown
to be downregulated in human right atrial tissue resulting in an upregulation of the IK1 current

Fig 5. Correlation betweenmiRNA plasma expression at timepoint V3 and LA diameter at timepoint V4. AmiR-1, B miR-133a, C miR-30a, D miR-26a,
E miR-29b. * p< 0.05, ** p<0.01, *** p<0.001 Spearman correlation coefficient.

doi:10.1371/journal.pone.0148599.g005
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and a shortening of the action potential duration[36]. In sum, we observed a more moderate
and slower expressional response of miR-29b/-26a compared to other miRNAs. Therefore, a
larger number of runners or measurement of miRNAs at later time points might show this
downregulation more clearly. Another miRNA involved in regulation of the IK1 current is
miR-1, which has been shown to be upregulated in our study cohort as well as in several animal
models[37, 47]. In sum, the expression levels of these miRNAs observed in our cohort are con-
firmed by studies in patients and in experimental animal models that demonstrated a role of
these miRNAs in cardiac remodeling. This further supports circulating miRNAs as potential
biomarkers for cardiac remodeling.

MiRNA abundance in plasma
We have observed a low abundance of miRNAs in plasma (Table 2). This raises potential con-
cerns regarding the validity and reproducibility of our results. Previous studies have also
reported low miRNA expression in plasma but the reports generally do not include raw CT val-
ues, instead focusing on relative expression levels[1, 41, 48] or fold-changes[2, 4, 40]. These do
not allow for direct comparison of results across studies. Of the few available studies that report
raw CT values, results are consistent with our present work. Wang et al. evaluated circulating
miRNAs as biomarkers for myocardial infarction and reported mean CT values for miR-1
(35.29±0.79, MEAN±SEM) and miR-133a (33.68±0.33, MEAN±SEM)[3]. Nielsen and colle-
gues investigated plasma miRNAs in response to acute exercise and endurance training and
demonstrated mean CT values for miR-1 (32.9±1.9, MEAN±SD), miR-29b (32.9±1.8, MEAN

Fig 6. Correlation betweenmiRNA plasma expression at timepoint V3 and plasma levels of creatine kinase at timepoint V3. AmiR-1, B miR-133a, C
miR-30a, D miR-26a, E miR-29b. * p< 0.05, ** p<0.01, *** p<0.001 Spearman correlation coefficient.

doi:10.1371/journal.pone.0148599.g006
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±SD), and miR-133a (34.8±1.6, MEAN±SD)[49]. Therefore expression levels of circulating
miRNAs are consistently low but within a comparable range indicating valid and reproducible
measurements.

To increase confidence in our data, we have reported the range of raw CT data per group.
Furthermore, we repeated miRNA measurements at different time points and analyzed the
data in a paired manner. This allows consideration of each subject individually over time and
facilitates reliable detection of significant differences despite low miRNA abundance.

Circulating miRNAs in athletes
A small number of studies have been published that report circulating miRNA levels in athletes
[40, 41, 48–50]. Baggish et al. performed a study on marathon runners evaluating miRNAs
enriched in skeletal muscle (miR-1, miR-133a, miR-499), heart (miR-208a), and vascular endo-
thelium (miR-146a)[40]. All miRNAs analyzed were significantly upregulated after the mara-
thon and returned to baseline 24 hours later. Mooren and colleagues analyzed a similar set of
miRNAs in marathon runners and could show a similar pattern of miRNA regulation with a
significant increase after the marathon and a decrease 24 hours later for miR-1, -133a, -499,
-206, and -208a[41]. Additionally, they showed that miR-21 and miR-155 were not affected by
exercise. Our miRathon study confirms the expression profile of miR-1 and miR-133a in an
independent third cohort of marathon runners.

Conflicting data were presented by Nielsen et al. who analyzed circulating miRNAs after an
acute exercise bout by ergometer cycling and after 12 weeks of endurance training[49]. They
demonstrated a general decrease of miRNAs immediately after an acute exercise bout and an

Fig 7. Correlation betweenmiRNA plasma expression at timepoint V3 and plasma levels of creatine kinase, isoformMB at timepoint V3. AmiR-1, B
miR-133a, C miR-30a, D miR-26a, E miR-29b. * p< 0.05, ** p<0.01, *** p<0.001 Spearman correlation coefficient.

doi:10.1371/journal.pone.0148599.g007
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upregulation one hour later. MiR-1 (significantly) and miR-133a (non-significantly) showed
delayed upregulation 3 hours after the exercise bout only. However, it is doubtful if these
results can be compared to results obtained in marathon runners since Banzet et al. showed
that exercise modality has a significant impact on miRNA plasma profile[48]. They measured
miRNAs over time in volunteers performing two 30-minute walking exercises, either downhill
(eccentric exercise) or uphill (concentric exercise)[48]. MiR-1, miR-133a, miR-133b, and miR-
208b were not affected by concentric exercise but were significantly upregulated two to six
hours after eccentric exercise. Concentric exercise, however, was associated with significant
increase of miR-181b and -214, whereas miR-208a was undetectable. The influence of exercise
modality on circulating miRNAs was further confirmed by Uhlemann and co-workers[50].
They measured miR-126 and miR-133a in healthy volunteers performing different exercises. A
maximal symptom-limited exercise test and four hours bicycling resulted in a significant
increase of miR-126 whereas miR-133a was unchanged. Resistance exercise, another eccentric
form of exercise, was associated with a miR-133a increase confirming the result ofBanzett.
Interestingly, marathon running was another exercise modality tested by Uhlemann et al. and
resulted in a significant increase of both miR-126 and miR-133a.

In sum, our study confirms some of the prior observations concerning miRNA biology
inendurance athletes. Interestingly, we also identified differences among marathon runners:
changes in miRNA plasma expression were more pronounced in elite runners and correlated
with LA diameter only in elite runners.Our results suggest that training intensity (elite vs. non
elite runners) affects the degree of miRNA expression. This may explain recent findings by
Khan et al. who observed that improved fitness is protective of AF only within a certain range,

Fig 8. Correlation betweenmiRNA plasma expression at timepoint V3 and plasma levels of troponin T at timepoint V3. AmiR-1, B miR-133a, C miR-
30a, D miR-26a, E miR-29b. * p< 0.05, ** p<0.01, *** p<0.001 Spearman correlation coefficient.

doi:10.1371/journal.pone.0148599.g008
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beyond which the risk of AF rises again[51]. What remains unclear is the mechanism by which
training intensity affects miRNA plasma expression. A recent study by Padrao et al. demon-
strated significant differences in the proteome signaturewith regard to training intensity[52].
Chronic endurance exercise upregulates the tricarboxylic acid cycle and oxidative phosphoryla-
tion system while a single bout of exercise affects calcium homeostasis and amino acid metabo-
lism. These changes in energy metabolism provide a potential mechanism for our observations
as mitochondrial (dys)function has been shown to affect miRNA expression[53]. It is also pos-
sible that exerciseintensity related changes in endothelial function[54] or hemodynamics[55]
imposed on the hearts of elite compared to non-elite athletes play a key role in our
observations.

Hemolysis and miRNA plasma levels
It has been shown by Kirchner and colleagues that hemolysis can affect the level of miRNAs
circulating in plasma[45]. In their study they evaluated miR-16 and miR-451 and observed a
clear correlation between the plasma levels of these two miRNAs and the degree of hemolysis
as determined by absorbance measurement at 414 nm. They concluded that hemolysis results
in an increase of these two miRNAs. Running a marathon is associated with hemolysis[56]. In
fact, measuring absorbance in 13 participants indicated hemolysis in some of the samples
(Table 3). However, we think that hemolysis did not affect miRNA levels in our study for sev-
eral reasons. First, we observed a significant upregulation of miR-1 and miR-133a at V3 and
identified correlation of clinical parameters with these two miRNAs. These miRNAs are
known to be (skeletal and heart)muscle-specific[57], a fact that is further supported by Doss
et al.[58] who performed short RNA transcriptome analysis on human erythrocytes and could
not detect miR-1 or miR-133a. They were able to detect miR-26a and miR-29b in erythrocytes,
but in our study these miRNAs were downregulated over time. Although we cannot exclude a
high clearance rate resulting in paradoxically lower plasma levels it is unlikely that hemolysis is
a significant contributor to the plasma levels of miR-26a/miR-29b. Second, we could not detect
a correlation between the degree of hemolysis (as indicated by Absorbance at 414nm) and the
miRNA levels (Fig 2).

Release of miRNAs into the circulation
To date, the origin of circulating miRNAs that are measured in the plasma remains unclear. As
extreme exercise like marathon running is associated with dehydration it is possible that a
miRNA increase after the marathon is a false positive result due to plasma contraction. In our
study, however, we used a synthetic cel-miR-39 as spike-in control to normalize for the
miRNA content. Furthermore, if plasma contraction influenced our measurement, we would
expect to see the plasma levels of miR-26 and miR-29b increase, too. However, miR-26 and
miR-29b decreased after the marathon. Therefore, our study results represent a true upregula-
tion of miR-1, miR-30a and miR-133a in plasma of marathon runners.

Another potential explanation for miRNA increase in plasma is the release of miRNAs by
destroyed cells. In fact, in our study cohort a significant increase of creatine kinase and tropo-
nin was identified after the marathon showing muscle damage[42, 43]. Additionally, we could
show that miR-1 and miR-133a plasma levels correlated with CK, CK-MB and/or troponin lev-
els. Therefore, release into the plasma by destroyed cells is a potential explanation for miRNA
upregulation. However, several aspects do not support this hypothesis. First, CK and CK-MB
plasma levels showed a further increase 24 hours after the marathon (indicating an ongoing
cell damage) whereas miR-1 and miR-133a returned to baseline levels. Second, miR-30a
showed a similar expression pattern as miR-1 and miR-133a but did not correlate with CK or
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troponin levels. Third, miR-26a and miR-29b that are also expressed in skeletal muscle and
heart[31, 36] are decreased suggesting that cell destruction is not the origin of circulating miR-
NAs in our study although this could also be due to different clearance rates of these miRNAs.
It is possible that excretion is increased or that miRNAs are incorporated into remote cells as
indicated by some authors[59, 60]. All these potential mechanisms do not necessarily affect
every miRNA to the same degree and could therefore explain different expression patterns
over time.

Role of the left ventricle (LV)
In our study we demonstrate a significant decrease in left ventricular end-diastolic diameter
(LVEDD) and a significant increase in A wave velocity after the marathon (V3 vs. V1). One
could postulate that the dehydration caused by running a marathon leads to reduced blood vol-
ume and preload (manifested by a reduced LVEDD). The increased A wave velocity would
therefore simply be a consequence of atrioventricular mechanical coupling, implying that the
observed changes in atrial parameters are secondary to global (hydration status) and/or local
ventricular changes (LVEDD) rather than independent surrogate markers for atrial remodel-
ing. However, we think this is not true for several reasons. First, this potential relationship
between LVEDD and A wave velocity was not shown by other studies evaluating marathon
runners. Manier et al. found significant reductions in LVEDD after a marathon but an
unchanged A wave velocity[61] whereas Neilan and colleagues observed an unchanged
LVEDD and significantly increased A wave velocity[62] suggesting that these two parameters
are independent of each other. Second, studies on hemodialysis patients showed that LVEDD
is significantly reduced after hemodialysis (i.e. after volume depletion) whereas A wave velocity
remains unchanged[63, 64]. Third, these studies also showed that LA volume is significantly
reduced after hemodialysis. In contrast, LA diameter was unchanged in our study after the
marathon[63, 64]. Finally, LVEDD and A wave velocity did not correlate with each other in
our study (Fig 9) suggesting that altered atrial measurements are truly indicative of atrial
remodeling and correlating them with miRNA plasma levels is a valid approach.

Fig 9. Correlation between LVEDD at timepoint V3 and A wave velocity at timepoint V3. A elite runners, B non-elite runners. Spearman correlation
coefficient.

doi:10.1371/journal.pone.0148599.g009
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Novelty
The miRathon study is the first study evaluating plasma levels of circulating miRNAs in regard
to atrial remodeling. The few studies published on circulating miRNAs in athletes to date were
either purely descriptive[40, 48–50] or were designed to evaluate miRNAs as potential bio-
markers for exercise capacity[41].

Our hypothesis was that circulating miRNAs are biomarkers of atrial remodeling in athletes.
Interestingly, we found distinct patterns specific for either elite runners or non-elite runners.
First of all, non-elite runners showed less prominent peak levels of miR-1, miR-30a and miR-
133a compared to elite runners. The miRNA plasma levels after the marathon correlated with
LA diameter only in elite runners, whereas non-elite runners did not show any correlation.This
suggests that training intensity (elite vs. non elite runners) affects the degree of miRNA expres-
sion and may therefore explain the discrepancy between beneficial moderate physical activity
and harmful endurance sports.

Taken together our data suggest that circulating miRNAs can potentially serve as biomark-
ers of pro-arrhythmogenic signaling leading to structural changes of the atrium in the long
term after endurance exercise.

Potential limitations
In the miRathon study we measured miRNAs in 30 marathon runners, a relatively small num-
ber. However, this is the largest cohort of athletes for whom circulating miRNAs have been
evaluated so far.

We measured miRNA levels by real-time quantitative PCR (qPCR). Despite all the advan-
tages of this method some limitations especially in regard to miRNA quantification remain.
The major disadvantage of this approach is the necessity of a specific probe set for each individ-
ual miRNA. Therefore, only a group of miRNAs can realistically be measured (in our study 5
miRNAs). Also, only known miRNAs can be measured. Recently, miRNA quantification by
sequencing has emerged as a more comprehensive approach since it allows detection of known
and unknown miRNAs as well as isomiRs, and quantification of a large panel of miRNAs at
the same time in a high-throughput manner. However, this method is expensive, requires spe-
cialised “core facilities” or companies, and data analysis by experienced bioinformaticians[65,
66]. Within the constraints of our study we therefore decided to pursue a candidate-miRNA
approach using qPCR.

AF is a chronic disease that develops over decades and has the highest prevalence in people
older than 60 years. The average age of our study cohort was 40 years and the observation
period was only 11 weeks. Therefore, we did not expect to observe an arrhythmic endpoint like
new onset AF. Therefore we focused on surrogate parameters of atrial remodeling. Although
these parameters are valuable and widely used they remain surrogates and as such they are not
infallible. However, these echocardiographic parameters are the best non-invasive parameters
for atrial remodeling currently available. In sum, our data are not evidence of a causal link
between circulating miRNAs and development of disease but should rather be seen as an indi-
cator of acute cardiac adaptation in response to exercise. We cannot draw firm conclusions on
long-term effects and we do not know if the changes we observed are harmful or whether any
of our study participants will develop arrhythmias in the future.

Conclusion
In our study we observed a characteristic differential expression of circulating miRNAs in ath-
letes and identifiedspecific miRNA expression patterns dependent upon training intensity: we
observed a significant correlation between miRNA plasma levels and LA diameter in elite
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runners only. These are hypothesis-generating and do not prove a direct causal link between
circulating miRNA levels and development of AF in athletes. They may however be seen as a
potential indicator of atrial remodeling that may or may not result in future disease. Long term
follow-up studies are necessary to provide definitive evidence.

Supporting Information
S1 File. Fig A. MicroRNA plasma expression over time—Raw Data.Data shown as mean
miRNA expression±SEM. V1 Baseline, V2 after 10 weeks training, V3 directly after the mara-
thon, V4 24h post marathon. Fig B. Correlation between miRNA plasma expression and absor-
bance at 414 nm–Raw Data. Data shown as absorbance at 414 nm (left column) and miRNA
expression (right columns). V1 Baseline, V2 after 10 weeks training, V3 directly after the mara-
thon, V4 24h post marathon. Fig C. Echocardiographic parameters over time–Raw Data. Data
shown as mean±SEM. LVEDD Left ventricular end diastolic diameter, PW posterior wall, LA
left atrium, V1 Baseline, V2 after 10 weeks training, V3 directly after the marathon, V4 24h post
marathon. Fig D. Correlation between miRNA plasma expression (V3) and LA diameter (V3).
Data shown as miRNA expression (left column) and LA diameter (right column). Fig E. Corre-
lation between miRNA plasma expression (V3) and LA diameter (V4). Data shown as miRNA
expression (left column) and LA diameter (right column). Fig F. Correlation between miRNA
plasma expression (V3) and CK plasma levels (V3). Data shown as miRNA expression (left col-
umn) and CK plasma levels (right columns). Fig G. Correlation between miRNA plasma
expression (V3) and CK plasma levels (V3). Data shown as miRNA expression (left column)
and CK-MB plasma levels (right column). Fig H. Correlation between miRNA plasma expres-
sion (V3) and CK plasma levels (V3). Data shown as miRNA expression (left column) and tro-
ponin plasma levels (right column). Fig I. Correlation between LVEDD (V3) and A wave
velocity (V3). Data shown as LVEDD (left column) and peak A wave velocity (right column).
LVEDD Left ventricular end diastolic diameter.
(XLSX)
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