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Abstract

Background: In the context of high-throughput molecular data analysis it is common that the observations
included in a dataset form distinct groups; for example, measured at different times, under different conditions or
even in different labs. These groups are generally denoted as batches. Systematic differences between these batches
not attributable to the biological signal of interest are denoted as batch effects. If ignored when conducting analyses
on the combined data, batch effects can lead to distortions in the results. In this paper we present FAbatch, a general,
model-based method for correcting for such batch effects in the case of an analysis involving a binary target variable. It
is a combination of two commonly used approaches: location-and-scale adjustment and data cleaning by adjustment
for distortions due to latent factors. We compare FAbatch extensively to the most commonly applied competitors on
the basis of several performance metrics. FAbatch can also be used in the context of prediction modelling to
eliminate batch effects from new test data. This important application is illustrated using real and simulated data. We
implemented FAbatch and various other functionalities in the R package bapred available online from CRAN.

Results: FAbatch is seen to be competitive in many cases and above average in others. In our analyses, the only cases
where it failed to adequately preserve the biological signal were when there were extremely outlying batches and
when the batch effects were very weak compared to the biological signal.

Conclusions: As seen in this paper batch effect structures found in real datasets are diverse. Current batch effect
adjustment methods are often either too simplistic or make restrictive assumptions, which can be violated in real
datasets. Due to the generality of its underlying model and its ability to perform well FAbatch represents a reliable
tool for batch effect adjustment for most situations found in practice.

Keywords: Batch effects, High-dimensional data, Data preparation, Prediction, Latent factors

Background
In practical data analysis, the observations included in
a dataset sometimes form distinct groups—denoted as
“batches”; for example, measured at different times, under
different conditions, by different persons or even in dif-
ferent labs. Such batch data is common in the context
of high-throughput molecular data analysis, where exper-
imental conditions typically have a high impact on the
measurements and only few patients are considered at
a time. Taking a more general point of view, different
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batches may also represent different studies concerned
with the same biological question of interest. Indepen-
dently of the particular scenario, in this paper all system-
atic differences between batches of data not attributable
to the biological signal of interest are denoted as batch
effects. If ignored when conducting analyses on the com-
bined data, batch effects can lead to distorted and less
precise results.
It is clear that batch effects are more severe when

the sources from which the individual batches originate
are more disparate. Batch effects—in our definition—may
also include systematic differences between batches due to
biological differences of the respective populations unre-
lated to the biological signal of interest. This conception of
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batch effects is related to an assumption made on the dis-
tribution of the data of recruited patients in randomized
controlled clinical trials (see, e.g., [1]). This assumption is
that the distribution of the (metric) outcome variable may
be different for the actual recruited patients than for the
patients eligible for the trial, i.e. there may be biological
differences, with one important restriction: the difference
between the means in treatment and control group must
be the same for recruited and eligible patients. Here, the
population of recruited patients and the population of
eligible patients can be perceived as two batches (ignor-
ing that the former population is a—very small—subset
of the latter) and the difference between the means of
the treatment and control group would correspond to the
biological signal.
Throughout this paper we assume that the data of

interest is high-dimensional, i.e. there are more vari-
ables than observations, and that all measurements are
(quasi-)continuous. Possible present clinical variables are
excluded from batch effect adjustment. Various meth-
ods have been developed to correct for batch effects.
See for example [2, 3] for a general overview and for an
overview of methods suitable in applications involving
prediction, respectively. Two of the most commonly used
methods are ComBat [4], a location-and-scale batch effect
adjustment method and SVA [5, 6], a non-parametric
method, in which the batch effects are assumed to be
induced by latent factors. Even though the assumed form
of batch effects underlying a location-and-scale adjust-
ment as done by ComBat is rather simple, this method has
been observed to greatly reduce batch effects [7]. How-
ever, a location-and-scale model is often too simplistic to
account for more complicated batch effects. SVA is, unlike
ComBat, concerned with situations where it is unknown
which observations belong to which batches. This method
aims at removing inhomogeneities within the dataset
that also distort its correlation structure. These inhomo-
geneities are assumed to be caused by latent factors.When
the batch variable is known, it is natural to take this
important information into account when correcting for
batch effects. Also, it is reasonable here to make use of
the data-cleaning ability of the latent factor-adjustment by
applying it within batches. This has the effect of reducing
such inhomogeneities within batches, which are unrelated
to the biological signal of interest. By doing so it can
be expected that the homogeneity of the data is further
increased across batches as well.
In this paper we suggest a method, denoted as

“FAbatch” in the following, where “FA” stands for “Factor
Adjustment”. The method combines the location-and-
scale adjustment (as performed by ComBat) with data
cleaning by latent factor adjustment (as performed by
SVA). Care has to be taken in the latent factor estimation
in the context of data-cleaning. Inhomogeneities within

the dataset are naturally not only induced by sources
of unwanted noise but also by the biological signal of
interest. If one would not take this interference between
batch effects and signal into account, removing the cor-
responding estimated latent factor loadings would lead to
removing a large part of the biological signal of interest.
An obvious, yet problematic way, of protecting the sig-
nal of interest would be to remove it temporarily before
estimating the latent factors by regressing each of the
variables in the dataset on the variable representing the
biological signal. However, this can lead to an artificially
increased signal, as outlined in the Section “FAbatch”. As
a solution for the case of a binary variable representing
the biological signal, in our method we fit preliminary
L2-penalized logistic regression models and use them to
predict the probabilities of the individual observations
to belong to the first and the second class, respectively.
These predicted probabilities are then used in place of
the actual values of the binary variable when protecting
the signal of interest during latent factor estimation. See
the Section “FAbatch” for details. In its current form our
method is thus only applicable when the signal variable
is binary, but extensions to other types of variables are
possible, see the Section “Discussion”.
As an illustration, Fig. 1 shows plots of the first two

principal components obtained by Principal Component
Analysis (PCA) on a raw dataset (upper-left) and after
running the three different batch effect adjustment meth-
ods described above, respectively. The dataset, com-
posed of two batches, contains the gene expressions of
20 alcoholics and 19 healthy controls. It is download-
able from ArrayExpress [8], accession number: E-GEOD-
44456. After ComBat adjustment, the centers of gravity
of the first principal components separated into the two
batches become very similar (upper-right panel). How-
ever, the shapes of the point clouds corresponding to
the two batches do not change substantially in compar-
ison to the results obtained on the raw data (upper-left
panel) and the two clouds do not fully overlap. After
SVA adjustment—as with ComBat—the two batch cen-
ters are also similar (lower-left panel). The forms of the
point clouds change more strongly compared to ComBat.
Nevertheless, there are still regions in the plots with sub-
optimal overlap between the two clouds. The two batch
centers are not distinguishable in the plot showing the
result obtained after applying our method (lower-right
panel). Moreover, the overlap between the two clouds
is very high. This illustrative example suggests that the
adjustment for batch effects can be improved by com-
bining location-scale-adjustment with data-cleaning by
factor adjustment.
An important area of application for high-throughput

molecular data is the prediction of phenotypes via so-
called prediction rules. Here, the training data used to
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FAbatch

Fig. 1 Visualization of batch effect adjustment. First two principal components out of PCA performed on the covariate matrix of a microarray dataset
studying alcoholism: raw, after batch effect adjustment according to ComBat, SVA using three factors and FAbatch using three factors. The first
batch is depicted in bold and the numbers distinguish the two classes “alcoholic” (2) vs. “healthy control” (1). The contour lines represent batch-wise
two-dimensional kernel estimates and the diamonds represent the batch-wise centers of gravities of the points

obtain the prediction rule often constitutes a different
batch than the validation data the prediction rule is
applied to. Batch effect adjustment can be used here to
make the validation data more similar to the training data
before applying a prediction rule that was previously fit-
ted on the training data. Such a procedure, termed “addon
batch effect adjustment” in the following, is not spe-
cific to our method, but a general concept. Here, batch
effect adjustment is first conducted based on the available
original dataset. Some methods require that the values
of the target variable are known in this dataset. Subse-
quently, batch effect adjustment for independent batches
is performed. To facilitate this, it is required that several
observations from each batch are available simultaneously
(“frozen SVA” is an exception here, see the Section “Addon
adjustment of independent batches”). This second phase
does not affect the data prepared in the first phase. See
the Section “Addon adjustment of independent batches”
for details. We refer to such scenarios as cross-batch pre-
diction in the rest of this paper. Our new FAbatch method
allows such an addon batch effect adjustment.
The structure of this paper is as follows: In the

Section “Methods” we introduce our new approach and

treat addon batch effect adjustment.Moreover, we present
the design of an extensive comparison study based on
simulations and real data applications. In this study our
method is compared with commonly used competitors
with respect to diverse metrics measuring the effec-
tiveness of batch effect adjustment [2, 9]. Our main
focus lies in studying the performance of FAbatch here,
but the results of this comparison study can also be
used to aid researchers in choosing appropriate batch
effect adjustment methods for their applications. The
considered methods are: FAbatch (fabatch), Com-
Bat (combat), SVA (sva), mean-centering (meanc),
standardization (stand), ratio-A (ratioa) and ratio-
G [3] (ratiog). The results of this study are described
in the Section “Results”. In this section we also present
an analysis demonstrating the use of batch effect adjust-
ment methods in cross-batch prediction. Moreover, we
argue that SVA can lead to an artificial increase of the
biological signal of interest and demonstrate this using
simulated data. The Section “Discussion” mostly reviews
the models behind FAbatch and other approaches, and the
Section “Conclusions” summarizes important conclusions
from the paper.
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Methods
FAbatch
Model
We assume the following model for the observed data xijg :

xijg = αg + aTij βg + γjg +
mj∑
l=1

bjglZijl + δjgεijg , (1)

Zij1, . . . ,Zijmj ∼ N(0, 1), εijg ∼ N(0, σ 2
g ),

Here i is the index for the observation, j the index for
the batch and g the index for the variable. The term aTij βg
parametrizes the effect of experimental conditions or, in
general, any factors of interest aij on the measurements
of variable g. In this paper, aij is a dummy variable rep-
resenting the binary variable of interest yij, with aij = 1
if yij = 2 and aij = 0 if yij = 1, respectively. The
term εijg represents random noise, unaffected by batch
effects. The term γjg corresponds to the mean shift in
location of variable g in the j-th batch compared to the
unobserved—hypothetical—data x∗

ijg unaffected by batch
effects. The term δjg corresponds to the scale shift of
the residuals for variable g in the j-th batch. As in the
SVA model (Appendix A.2, Additional file 1), Zijl are ran-
dom latent factors. In contrast to the latter model, in our
model the distribution of the latent factors is indepen-
dent of the individual observation. However, since the
loadings bjgl of the latent factors are batch-specific, the
latter induce batch effects in our model as well. More pre-
cisely, they lead to varying correlation structures in the
batches. In the SVA model, by contrast, all batch effects
are induced by the latent factors. Without the summand∑mj

l=1 bjglZijl model (1) would equal the model underlying
the ComBat-method, see Appendix A.1 (Additional file 1).
The unobserved data x∗

ijg not affected by batch effects is
assumed to have the form

x∗
ijg = αg + aTij βg + εijg , εijg ∼ N(0, σ 2

g ). (2)

The remaining batch effect adjustment methods con-
sidered in this paper are described in Appendix A.3
(Additional file 1).

Using estimated probabilities instead of actual classes
As already noted in the Section “Background”, a further
peculiarity of our method is that we do not use the actual
classes when protecting the biological signal of interest in
the estimation algorithm. Instead, we estimate the proba-
bilities of the observations to belong to either class and use
these in place of the actual classes, see the next paragraph
and the next subsection for details.
This procedure has two major advantages. Firstly, it

makes the batch effect correction method applicable
to prediction problems involving new test observations
with unknown classes. Secondly, using the actual classes

might lead to an artificial increase of separation between
the two classes in the dataset. This is because, as will
be seen in the next subsection, it is necessary to use
the estimated, instead of the true, but unknown, class-
specific means when centering the data before factor
estimation. Due to sampling variance, these estimated
class-specific means often lie further away from each
other than the true means, in particular for variables for
which the true means lie close to each other. Subtract-
ing the estimated factors’ influences leads to a reduction
of the variance. Now, if centering the variable values
within the classes before factor estimation, removing the
estimated factor influences would lead to a reduction
of the variance around the respective estimated class-
specific means. In those—frequently occurring—cases,
in which the estimated class-specific means lie further
from each other than the corresponding true means, this
would lead to an artificial increase of the discrimina-
tory power of the corresponding variable in the adjusted
dataset.
All analyses which are concerned with the discrimi-

natory power of the covariate variables with respect to
the target variable would be biased if performed on data
adjusted in this way. More precisely, the discriminatory
power would be overestimated. This mechanism is con-
ceptually similar to the over-fitting of prediction models
on the data they were obtained on. SVA suffers from a
very similar kind of bias, also related to using the class
information in protecting the biological signal. See the
Section “Artificial increase of measured class signal by
applying SVA” for a detailed description of this phe-
nomenon and the results of a small simulation study
performed to assess the impact of this bias on data analysis
in practice.
The probabilities of the observations to belong to

either class, that are considered in FAbatch, are esti-
mated using models fitted from data other than the
corresponding observations. Using these probabilities
instead of the actual classes attenuates the artificial
increase of the class signal described above. The idea
underlying the protection of the signal of interest is to
center xijg before factor estimation by subtracting the
term

E(αg + aTij βg + γjg |xij1,, . . . , xijp) =
Pr(yij = 1|xij1,, . . . , xijp) (αg + γjg)+
Pr(yij = 2|xij1,, . . . , xijp) (αg + βg + γjg). (3)

Note that we perform this adjustment slightly differ-
ently in the FAbatch-estimation algorithm. See the next
subsection for details.
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Estimation
In the following we detail the estimation procedure of
FAbatch:

1. Standardize the values xijg per batch:

xijg,S := xijg − μ̂jg√
σ̂ 2
jg

, (4)

where μ̂jg = (1/nj)
∑

i xijg and
σ̂ 2
jg =[ 1/(nj − 1)]

∑
i(xijg − μ̂jg)2. Here, the number

of observations in batch j is denoted as nj.
2. Using L2-penalized logistic regression, for each

observation estimate the probability to belong to
class 2:

π̂ij := P̂r(yij = 2|xij1,S, . . . , xijp,S). (5)

Here, we employ the following cross-validation
related procedure. For batch j ∈ {1, . . . ,K}: 1) Fit a
L2-penalized logistic regression model using all
observations except those in batch j ; 2) Use the
model fitted in step 1) to predict the probabilities πij
of the observations from batch j. By using different
observations for fitting the models than for
predicting the probabilities we avoid overfitting in
the sense of the problems occurring when the actual
classes are used as described in the previous
subsection. The reason why we perform cross-batch
prediction for estimating the probabilities here
instead of ordinary cross-validation is that we expect
the resulting batch adjusted data to be more suitable
for the application in cross-batch prediction (see the
Section “Addon adjustment of independent
batches”). Here, for estimating the probabilities in the
test batch we have to use a prediction model fitted on
other batches. If the probabilities in the training data
were estimated via ordinary cross-validation they
would be more optimistic—i.e. closer to zero and
one, respectively—than those in the test data. This is
because in ordinary cross-validation it can occur that
observations from the same batch are in training and
test data. By doing cross-batch prediction for the
estimation of the πij we mimic the situation
encountered in cross-batch prediction applications.
The only, but important, exception where we
perform ordinary cross-validation for estimating the
πij is when the data come from only one batch (this
occurs in the context of cross-batch prediction, when
the training data consist of one batch).
The shrinkage intensity tuning parameter of the
L2-penalized logistic regression model is optimized
with the aid of cross-validation [10]. For
computational efficiency this optimization is not
repeated in each iteration of the cross-batch

prediction. Instead, it is performed beforehand on the
complete dataset. The overoptimism resulting from
this procedure compared to that of the gold-standard
technique “nested cross-batch prediction” can be
assumed to be negligible in the considered context.

3. Calculate the class adjusted values xijg,S,CA, which
should contain considerably less class signal than
xijg,S:

xijg,S,CA := xijg,S − (1− π̂ij)μ̂g,S
(1) − π̂ijμ̂g,S

(2), (6)

where μ̂g,S(c) = (1/#Lc)
∑

{i∗,j∗}∈Lc xi∗j∗g,S with
Lc = {{i, j} : yij = c, i ∈ {1, . . . , nj}, j ∈ {1, . . . , J}} and
c ∈ {1, 2}.

4. Using xijg,S,CA, estimate the latent factors Z∗
ijmj

and
their loadings b∗

jgmj
by an EM-algorithm presented in

[11], again considered by Friguet et al. [12] in a
specific context for microarray data. For the
estimation of the number of factors see [12].

5. Subsequently the estimated factor contributions are
removed:

xijg,S,FA := xijg,S − b̂∗
jg1Ẑ∗

ij1 − · · · − b̂∗
jgmj

Ẑ∗
ijmj

, (7)

where b̂∗
jg1, . . . , b̂∗

jgmj
are the estimated, batch-specific

factor loadings and Ẑ∗
ij1, . . . , Ẑ∗

ijmj
are the estimated

latent factors. Note that only the factor contributions
as a whole are identifiable, not the individual factors
and their coefficients.

6. Finally, in each batch the xijg,S,FA-values are
transformed to have the global means and pooled
variances estimated before batch effect adjustment:

x̂∗
ijg =

⎛
⎜⎜⎝xijg,S,FA − μ̂g,S,FA√

σ̂ 2
g,S,FA

⎞
⎟⎟⎠

√
σ̂ 2
g + μ̂g , (8)

where μ̂g,S,FA =
⎛
⎝1/

∑
j
nj

⎞
⎠ ∑

j

∑
i
xijg,S,FA,

σ̂ 2
g,S,FA =

⎡
⎣1/

⎛
⎝∑

j
nj − 1

⎞
⎠

⎤
⎦

∑
j

∑
i

(xijg,S,FA − μ̂g,S,FA)2,

μ̂g =
⎛
⎝1/

∑
j
nj

⎞
⎠∑

j

∑
i
xijg

and σ̂ 2
g =

⎡
⎣1/

⎛
⎝∑

j
nj−1

⎞
⎠
⎤
⎦ ∑

j

∑
i

(xijg−μ̂g)
2.

Note that by forcing the empirical variances in the
batches to be equal to the pooled variances estimated
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before batch effect adjustment we overestimate the
residual variances σ 2

g in (1). This is because we do not
take into account that the variance is reduced by the
adjustment for latent factors. However, unbiasedly
estimating σ 2

g appears difficult due to the scaling
before estimation of the latent factor contributions.

Verification ofmodel assumptions on the basis of real data
Due to the flexibility of its model FAbatch should
adapt well to real datasets. Nevertheless it is impor-
tant to check its validity based on real data, because
the behaviour of high-dimensional biomolecular data
does not become apparent by mere theoretical con-
siderations. Therefore, we demonstrate that our model
is indeed suited for such data using the dataset
BreastCancerConcatenation from Table 1. This
dataset was chosen because here the batch effects can be
expected to be especially strong due to the fact that the
batches involved in this dataset are themselves indepen-
dent datasets.We obtained the same conclusions for other
datasets (results not shown). Because our model is an
extension of the ComBat-model by batch-specific latent
factor contributions, we compare the model fit of FAbatch
to that of ComBat.
Additional file 1: Figure S1 and Figure S2 show, for each

batch, a plot of the data values against the corresponding
fitted values of FAbatch and ComBat respectively. While

there seem to be no deviations in the mean for both meth-
ods, the association between data values and predictions
is a bit stronger for FAbatch—except in the case of batch
4. This stronger association between fitted values and pre-
dictions for FAbatch can be explained by the fact that
the factor contributions absorb part of the variance of the
data values. In the case of batch 4, the estimated num-
ber of factors was zero, explaining why the variance is
not reduced here in comparison to ComBat. Additional
file 1: Figure S3 and Figure S4 correspond to the previous
two figures, except that here the deviations from the fit-
ted values instead of the data values are plotted against the
corresponding fitted values. We observe that for batches
2, 3 and 5 the variance of these residuals depends slightly
less on the mean for FAbatch in comparison to ComBat.
Batchwise density estimates of these residuals divided by
their standard deviations are shown in Additional file 1:
Figure S5 and Figure S6 for FAbatch and ComBat, respec-
tively. For both methods outliers are observed. However,
the distributions of the residuals differ between the two
methods. In the case of ComBat the distributions are
skewed for part of the batches, slightly for batches 3 and
5 and more strongly for batch 2. In the case of FAbatch
the distributions are symmetric. A probable reason for the
skewness of the distributions in the case of ComBat is that
the residuals still contain the biological signal, as it is not
included in the fixed part of the model.

Table 1 Overview of datasets used in empirical studies

Label Num. of Num. of Num. of Prop. with Data type Source (Acc.num.)

observ. batches variables y = 2

ColonGastricEsophagealcSNPArray 93 3 50000 0.54 comparative genomic hybridization ArrayExpr.: E-GEOD-36458

AgeDichotomTranscr 243 15 27568 0.49 DNA methylation profiling ArrayExpr.: E-GEOD-36194

EthnicityMethyl 133 3 50000 0.45 DNA methylation profiling ArrayExpr.: E-GEOD-39672

BipolardisorderMethyl 94 2 27537 0.50 DNA methylation profiling ArrayExpr.: E-GEOD-38873

PostpartumDepressionMethyl 50 5 50000 0.46 DNA methylation profiling ArrayExpr.: E-GEOD-44132

AutismTranscr 439 5 24526 0.53 transcription profiling ArrayExpr.: E-GEOD-37772

BreastcTranscr 410 23 20180 0.50 transcription profiling ArrayExpr.: E-GEOD-44281

BreastCancerConcatenation 168 5 22277 0.65 transcription profiling ArrayExpr.: E-GEOD-27562,

E-GEOD-21422, E-GEOD-22544,

E-GEOD-20266, E-TABM-276

IUGRTranscr 67 2 48701 0.40 transcription profiling ArrayExpr.: E-GEOD-35574

IBSTranscr 63 6 54671 0.70 transcription profiling ArrayExpr.: E-GEOD-36701

SarcoidosisTranscr 58 3 54675 0.66 transcription profiling NCBI GEO: GSE19314

pSSTranscr 49 3 54675 0.63 transcription profiling ArrayExpr.: E-GEOD-40611

AlcoholismTranscr 39 2 28869 0.51 transcription profiling ArrayExpr.: E-GEOD-44456

WestNileVirusTranscr 39 2 47323 0.46 transcription profiling ArrayExpr.: E-GEOD-43190

The following information is given: number of observations, number of batches, number of variables, proportion of observations with disease, biomolecular data type,
accession number
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Addon adjustment of independent batches
As already described in the Section “Background”, an
important feature of batch effect adjustment methods is
that they offer the possibility of making validation data
more similar to training data of the same kind studying the
same biological question of interest. Here, the training and
the validation data may themselves each consist of differ-
ent batches. This feature of batch effect adjustment can be
used for prediction purposes in particular. In the following
we detail how batch effect adjustment is conceptionally
performed for incorporating independent batches in gen-
eral and treat the respective procedures for the particular
methods considered in this paper.

General procedure
A batch effect adjustment method (implicitly or explic-
itly) assumes a specific model for the observed data. One
part of parameters involved in this model is connected
with the observed data within the batches xijg and another
part with the unobserved batch effect free data x∗

ijg . While
the values of the former kind of parameters in most cases
depend on the individual batches, the latter kind are the
same for all observations, i.e. these are batch-unspecific.
When incorporating independent batches after having
adjusted the training data, we are interested in trans-
forming the data in the independent batches in such a
way that its distribution becomes similar to that of the
already adjusted training data without having to change
the latter. This is achieved by performing the same kind of
transformation on the independent batches with the pecu-
liarity that for the involved batch-unspecific parameters
the estimates obtained on the training data are used. We
refer to these procedures as addon batch effect adjustment
procedures.
Using the above definition, for those batch effect adjust-

ment methods, for which the corresponding adjustment
does not involve estimated batch-unspecific parameters,
the addon procedure is the same as the corresponding
batch effect adjustment method. From the batch effect
adjustment methods considered in this paper, this is the
case for mean-centering, standardization, ratio-A and
ratio-G. Here the batch effect adjustment is performed
batch by batch. The adjustment according to ComBat,
FAbatch and SVA, respectively, does by contrast involve
estimated batch-unspecific parameters.

ComBat
For ComBat, Luo et al. [3] present the addon procedure for
the situation of having only one batch in the training data.
The addon batch effect adjustment with ComBat con-
sists of applying the standard ComBat-adjustment to the
validation data without the term aTij βg and with all batch-
unspecific parameters αg , σ 2

g and βg estimated using the
training data.

M-ComBat [13] is a similar method, applicable in the
situation of one batch in the training data. This method
can be seen to perform a location-and-scale adjustment
of the validation data, i.e., in contrast to original Com-
Bat, this method does not use shrinkage by empirical
Bayes. According to our definition of addon batch effect
adjustment from the previous subsection, M-ComBat
thus represents the addon batch effect adjustment proce-
dure for the following method: location-and-scale batch
effect adjustment when having one batch in the training
data.

FAbatch
The adjustment with FAbatch involves estimates of the
same batch-unspecific parameters as that with ComBat
(according to Eq. (1)): αg , σ 2

g and βg . However, unlike in
the adjustment with ComBat, in FAbatch the term aTij βg
is considered additionally. This is achieved—roughly—by
estimating E(aij|xij1,, . . . , xijp) and βg using L2-penalized
logistic regression. See again the Section “Estimation”
for details. The addon procedure for FAbatch is straight-
forwardly derived from the general definition of addon
procedures given above: the estimation scheme in the
Section “Estimation” is performed with the peculiarity
that for all occurring batch-unspecific parameters, the
estimates obtained in the adjustment of the training data
are used.

SVA
For SVA there exists a specific procedure denoted as
“frozen SVA” [6], abbreviated as “fSVA,” for preparing
independent data for prediction. More precisely, Parker
et al. [6] describe two versions of fSVA: the “exact fSVA
algorithm” and the “fast fSVA algorithm”. In Appendix
A.2.1 we demonstrate that the “fast fSVA algorithm” cor-
responds to the addon procedure for SVA.
In the fSVA algorithms the training data estimated fac-

tor loadings (and other informations in the case of the
fast fSVA algorithm) are used. This requires that the same
sources of heterogeneity are present in training and test
data, which might not be true for a test data batch from
a different source. Thus, frozen SVA is only fully applica-
ble when training and test data are similar, as stated by
Parker et al. [6]. Nevertheless in the Section “Application
in cross-batch prediction” we apply it in cross-batch pre-
diction to obtain indications on whether the prediction
performance of classifiers might even deteriorate through
the use of frozen SVA when training and test data are very
different.
Above we have presented the addon procedures for the

batch effect adjustment methods that are considered in
this paper. However, using our general definition of addon
procedures, such algorithms can readily be derived for
other methods as well.
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Comparison of FAbatch with existing methods
A comprehensive evaluation of the ability of our method
to adjust for batch effects in comparison to its competi-
tors was performed—using both simulated as well as real
datasets. The simulation enables us to study the perfor-
mance, subject to basic settings and to use a large number
of datasets. Nevertheless simulated data can never cap-
ture all properties found in real datasets from the area of
the application. Therefore, in addition, we studied 14 pub-
licly available real datasets, each consisting of at least two
batches.
The value of batch effect adjustment contains different

aspects, which are connected with the adjusted data itself
or with the results of certain analyses performed using
the latter. Therefore, when comparing batch effect adjust-
ment methods it is necessary to consider several criteria,
where each is concerned with a certain aspect. We calcu-
lated seven different metrics measuring the performance
of each batch effect adjustment method on each simulated
and each real dataset.
In the following, we first outline the seven metrics

considered in the comparison study described above.
Subsequently, we introduce the simulation designs and
give basic information on the real datasets. The results
of these analyses are presented and interpreted in the
Section “Ability to adjust for batch effects”.

Performancemetrics
Here we describe the performance metrics used to assess
batch effect adjustment. Several of them are, in their orig-
inal form, restricted to the case of only two batches. For
datasets with more than two batches they are extended
as follows: 1) Calculate the original metric for all possible
pairs of batches; 2) Calculate the weighted average of the
values in 1) with weights proportional to the sum of the
sample sizes in the two respective batches.

Separation score (sepscore) We derived this metric
from themixture score presented in [2]. The latter was not
applicable here, because it depends on the relative sizes
of the two involved batches j and j∗. Roughly speaking
the mixture score measures the degree of mixing between
the observations belonging to the two batches after batch
effect adjustment. The separation score by contrast mea-
sures the degree of separation between the two batches. At
first for each observation in j, its k nearest neighbours are
determined in both batches simultaneously with respect
to the euclidean distance. Here, the proportion of near-
est neighbours belonging to batch j∗ is calculated. Then
the average—denoted as MSj—is taken over the nj pro-
portions obtained in this way. This value is the mixture
score as in [2]. To obtain a measure for the separation of
the two batches the absolute difference between MSj and
its value expected in the absence of batch effects is taken:

|MSj − nj∗/(nj + nj∗ − 1)|. The separation score is defined
as the simple average of the latter quantity and the corre-
sponding quantity when the roles of j and j∗ are switched.
The number k of nearest neighbours considered was set
to 10. Smaller values of the separation score are better.

Average minimal distance to other batch (avedist)
A very similar metric for two batches is the average min-
imal distance to the other batch after batch effect adjust-
ment, see also [2]. For each observation in batch j the
euclidean distance to the nearest observation in batch j∗ is
calculated. Consecutively the roles of j and j∗ are switched
and finally the average is computed over all nj + nj∗ mini-
mal distances. To obtain ametric independent of the scale,
we standardize the variables before the calculation to have
zero mean and uniform variance. Here, smaller values are
better.

Kullback-Leibler divergence between density of within
and between batch pairwise distances (klmetr) This
metric, used in [9] in a similar form is again based on the
distances of the observations within and between batches.
At first the distances between all pairs of observations in
batch j—denoted as {distj}—and the distances between
all such pairs in batch j∗—denoted as {distj∗}—are cal-
culated. Then for each observation in j the distances to
all observations in j∗ are calculated, resulting in nj ×
nj∗ distances denoted as {distjj∗}. Consecutively we esti-
mate the Kullback-Leibler divergence between the densi-
ties of {distj} and {distjj∗} and that between the densities
of {distj∗} and {distjj∗ }—using the k-nearest neighbours
based method by Boltz et al. [14] with k = 5. Finally, we
take the weighted mean of the values of these two diver-
gences with weights proportional to nj and nj∗ . As in the
case of avedist the variables are standardized before
the calculation to make the metric independent of scale.
Smaller values of this metric are better.

Skewness divergence score (skewdiv) This metric
presented in [15] is concerned with the values of the skew-
ness of the observation-wise empirical distributions of
the data. Because batch effect adjustment should make
the distribution of the data similar for all batches, these
skewness values should not differ strongly across batches
after a successful batch effect adjustment. The metric is
obtained as follows for two batches j and j∗ after batch
effect adjustment: 1) for each observation calculate the
difference between the mean and the median of the data
in batch j and j∗, respectively, as a measure for the skew-
ness of the distribution of the variable values; 2) determine
the area between the two batch-wise empirical cumula-
tive density functions of the values out of 1). The value
obtained in 2) can be regarded as a measure for the dis-
parity of the batches with respect to the skewness of
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the observation-wise empirical distributions. Again, stan-
dardization is conducted before the calculation. Smaller
values indicate a more successful batch effect adjustment
with respect to the homogeneity of the skewness values.

Proportion of variation induced by class signal
estimated by Principal Variance Components Analysis
(pvca) Principal Variance Component Analysis [16]
allows the estimation of the contributions of several
sources of variability. Here, first principal component
analysis is performed on the n × n covariance matrix
between the observations. Then, using a random effects
model, the principal components are regressed on arbi-
trary factors of variability, such as “batch” and “(pheno-
type) class”. Ultimately, estimated proportions of variance
induced by each factor, and that of the residual variance
are obtained; for details see [16]. We included the factors
“batch”, “class” and the interaction of these two into the
model and used the proportion of variance explained by
“class” as a metric. Naturally, higher values of this metric
indicate a better preservation or exposure, respectively, of
the biological signal of interest.

Performance of differential expression analysis
(diffexpr) This metric is similar to the idea pre-
sented in [2] which consists in comparing the list of genes
deemed differentially expressed the strongest using a
batch effect adjusted dataset to the corresponding list
obtained using an independent dataset. Having no inde-
pendent data available here we had to consider a slightly
different approach: 1) For each batch j leave this batch out
and perform batch effect adjustment using the rest of the
dataset. Derive two lists of the 5% of variables deemed
differentially expressed the strongest (see next paragraph
for details): one using the batch effect adjusted dataset—
where batch j was left out—and one using the data from
batch j. Calculate the number of variables appearing in
both lists and divide this number by the common length
of the lists. 2) Calculate a weighted average of the values
obtained in 1) with weights proportional to the number
of observations in the corresponding left-out batches.
Note that in the case of the simulated datasets we would
be able to estimate the true discovery rate instead of
calculating the metric described above. However, for the
sake of comparability, we applied the procedure described
above for the simulated data as well.
Now we describe the procedure performed for estimat-

ing those 5% of variables which are most differentially
expressed. Our original idea to use the p-values of simple
two-sample t-tests between the two classes was soon dis-
carded. The reason for this was that this procedure might
have favoured batch effect adjustment methods that pro-
duce more normally distributed values of the variables.
The p-values of classical non-parametric tests, such as

the Mann-Whitney-Wilcoxon rank sum test would also
not have been suitable here, because of the fact that here
the p-values can only adopt a limited number of possible
values. Therefore, it would have occurred in many cases
that more than 5% of the variables adopt the smallest
of possible p-values, making a selection of 5% of vari-
ables with the smallest p-values impossible. As a solution,
for each variable we drew a randomized p-value out of
the Whitney-Wilcoxon rank sum test, see [17] for details.
These randomized p-values can adopt any possible value
between zero and one and were consequently suitable for
ordering the variables according to their degree of differ-
ential expression between the two classes. We ultimately
considered those 5% variables that were associated with
the smallest p-values. Higher values of this metric are
better.

Mean Pearson’s correlation of the variable values
before and after batch effect adjustment (corbeaf)
This metric suggested by Lazar et al. [2] is not a measure
for the performance of batch effect adjustment. However,
it may be used occasionally to decide between two meth-
ods performing similarly: in such cases the method that
least affects the data—i.e. that with smaller corbeaf-
values—could be preferred [2].

Simulation design
Three basic scenarios were considered: 1) “ComCor”:
Common correlation structure in all batches; 2) “Batch-
Cor”: Batch-specific correlation structures; 3) “Batch-
ClassCor”: Batch- and class-specific correlation
structures. For each of these the correlations were
induced in two ways (see below for details): 1) simulating
from a latent factor model with normally distributed
residuals; 2) drawing from multivariate normal distri-
butions with specified correlation matrices. The second
scheme was considered to avoid favouring FAbatch
and SVA by restricting the simulation to factor-based
data generation mechanisms. We simulated datasets
consisting of four batches with 25 observations each.
The number of variables was 1000. For each of the six
(3 × 2) settings 500 datasets were simulated. The values
of the parameters occurring in the simulation models
were based on corresponding estimates obtained from
two publicly available microarray datasets: a dataset also
used in the real data study, denoted as AutismTranscr
(Table 1) and a dataset studying colon cancer, denoted
as ColoncbTranscr. The latter is downloadable from
ArrayExpress [8], accession number: E-GEOD-44861.
All six settings can be expressed using the following

most general model:

xij = α + aijβ + γ j + ε∗
ij,

ε∗
ij ∼ MVN(0,�j,aij), (9)
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with xij = (xij1, . . . , xijp)T , α = (α1, . . . ,αp)T , aij ∈
{0, 1}, β = (β1, . . . ,βp)T , γ j = (γj1, . . . , γjp)T , ε∗

ij =
(ε∗

ij1, . . . , ε∗
ijp)

T , j ∈ {1, . . . ,K} and p = 1000.
The entries of α and γ j (j ∈ {1, . . . ,K}) were drawn

from normal distributions with means and variances
based on corresponding estimates obtained from
ColoncTranscr. For details see the corresponding
commented R code provided in Additional file 2. The
vector of the class differences β contains 300 (30%)
non-zero values. Half of these are negative and half
positive. The values were drawn from gamma distribu-
tions, where the choice of parameters was again based
on ColoncTranscr. Here, in the case of the negative
entries of β , the sign of the originally drawn values was
changed.
The six settings differ with respect to the specification

of �j,aij . The differences are outlined in the following.

Design A: Simulating from latent factor model The
residuals of the fixed part of the model ε∗

ij were simulated
in the following ways for the corresponding scenarios:

1. ComCor: ε∗
ijg :=

5∑
m=1

b0gmZijm + δjgεijg (10)

2. BatchCor: ε∗
ijg :=

5∑
m=1

b0gmZijm+

5∑
m=1

bjgm
∗
Zijm + δjgεijg (11)

3. BatchClassCor: ε∗
ijg :=

5∑
m=1

b0gmZijm+

5∑
m=1

b̃aijgmZijm+

5∑
m=1

bjgm
∗
Zijm + δjgεijg , (12)

where εijg
iid∼ N(0, σ 2

g ) and Zijm,
∗
Zijm

iid∼ N(0, 1). b0gm, bjgm
and b̃aijgm were drawn from normal distributions and δ2jg
and σ 2

g from inverse gamma distributions. The parameters
of the latter distributions are again based on correspond-
ing estimates obtained from ColoncTranscr.
In Eqs. (10), (11) and (12) the factors Zij1, . . . ,Zij5 model

the biological correlation between the variables. The fac-
tors

∗
Zij1, . . . ,

∗
Zij5 in (11) and (12) model distortions that

affect the correlation in the batches. In setting “ComCor”
all observations have the same correlation structure—
independent of the batch. In setting “BatchCor” the cor-
relation structure is different in each batch, due to the

batch-specific loadings of the factors
∗
Zij1, . . . ,

∗
Zij5. In the

third setting, “BatchClassCor”, the correlations differ not
only by batch but also according to which of the two
classes the observations are in, i.e. we have batch- and
class-specific correlations. In each setting the variances
are different in the batches.

Design B: Drawing from multivariate distributions
with specified correlationmatrices In Design B, all cor-
relation matrices appearing in the three scenarios were
estimated using real data. Here we first calculated the
approximate positive definite correlation matrix using the
R function cor and then applied the R function nearPD
from the R package Matrix to the result to calcu-
late the nearest positive definite correlation matrix. We
used the 1000 genes from the AutismTranscr dataset,
which showed themselves to be most related to the binary
outcome according to variable-wise two-sample t-tests.
Before estimating the correlation matrices, the data was
further centered by class in each batch to adjust for excess
correlations due to class differences. The variances are the
same in all three scenarios. They were set to be equal to
those in scenario “ComCor” of Design A, i.e.

∑5
m=1 b20gm+

δ2jgσ
2
g .

The correlation matrices were obtained as follows for
the three scenarios:

1. ComCor: A single correlation matrix was used for all
batches here. It was estimated from the data of a
single batch in AutismTranscr.

2. BatchCor: A separate correlation matrix was used for
each batch here, each estimated from the data of a
batch in AutismTranscr.

3. BatchClassCor: A separate correlation matrix was
used for each combination of batch and class here,
where each was estimated on a corresponding
batch-class-combination in AutismTranscr.

After obtaining the correlation matrices, the corre-
sponding covariance matrices were calculated. The latter
was done by multiplying each entry in the correlation
matrices with the respective pair of standard deviations.

Datasets
We used 14 high-dimensional datasets with a binary tar-
get variable and at least two batches. They were down-
loaded from the ArrayExpress database (www.ebi.ac.uk/
arrayexpress) [8] or the NCBI GEO database (www.ncbi.
nlm.nih.gov/geo) [18].
In searching for suitable datasets on ArrayExpress and

NCBI GEO, we entered the search term “batch” and
manually surveyed the search hits. This proceeding was
chosen in order to maximise the number of possibly eli-
gible datasets. Exclusion criteria were: number of samples

www.ebi.ac.uk/arrayexpress
www.ebi.ac.uk/arrayexpress
www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
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too low, abscence of a batch variable, and impossibility
of forming a suitable binary target variable. We state that
the selection of the datasets was not in any way based on
the results they yielded with the different methods, thus
following Rule 4 from [19] (“do not fish for datasets”).
Three datasets featured too many variables to be man-

ageable for our systems. Therefore, in these cases, we
randomly selected 50,000 variables. When missing values
occurred in the measurements of datasets we took the
following approach. First, we excluded variables with too
many missing values. Consecutively the remaining miss-
ing values were simply imputed by the median of the
observed values of the corresponding variable in the cor-
responding batch. This simplistic imputation procedure
can be justified by the very low numbers of variables with
missing values in all datasets. Outlier analysis was per-
formed by visually inspecting the principal components
out of PCA applied to the individual datasets. Here, suspi-
cious samples were removed. Additional file 1: Figure S7
shows the first two principal components out of PCA
applied to each of the used datasets after imputation and
outlier removal.
Table 1 gives an overview on the datasets. Infor-

mation on the nature of the binary target variable is
given in Appendix D (Additional file 1). The dataset
BreastCancerConcatenation is a concatenation of
five independent breast cancer datasets. For the remain-
ing 13 datasets the reason for the batch structure could be
ascertained in only four cases. In three of these, batches
were due to hybridization and in one case due to labeling.
For details see Appendix E (Additional file 1).
For further details regarding the background of the

datasets and the preprocessing the reader may look up
the accession numbers online and consult the correspond-
ing R scripts, respectively, written for preparation of the
datasets, which are available in Additional file 2. Here
we also provide all R code necessary to reproduce our
analyses.

Results
Ability to adjust for batch effects
Additional file 1: Figure S8 to S14 show the values of the
individual metrics obtained on the simulated data and
Fig. 2 shows the corresponding results obtained on the
14 real datasets. Additional file 1: Tables S1 to S7 for the
simulated and Tables 2 and 3 for the real data, respec-
tively show the means of the metric values separated by
method (and simulation scenario) together with the mean
ranks of the methods with respect to the individual met-
rics. In most cases, we observe that the simulation results
differ only slightly between the settings with respect to the
ranking of the methods by their performance. Therefore,
we will only occasionally differentiate between the scenar-
ios in the interpretations. Similarly, simulations and real

data analyses often yield similar results. Differences will
be discussed whenever relevant.
According to the values of the separation score

(Additional file 1: Figure S8 and Fig. 2, Additional file 1:
Table S1 and Table 2) ComBat, FAbatch and standardiza-
tion seem to lead to the best mixing of the observations
across the batches. For the real datasets, however, stan-
dardization was only slightly better on average than other
methods.
The results with respect to avedist are less clear.

The simulation with factors (Design A) suggests that
FAbatch and SVA are associated with greater minimal
distances to neighboring batches, compared to the other
methods. However, we do not clearly observe this for
Design B other than for the setting with common cor-
relations. The real data results also suggest no clear
ordering between the methods with respect to this met-
ric; see in particular the means over the datasets in
Table 2. The values of this metric were not appreciably
improved by batch effect adjustment in general on the real
datasets.
The values of klmetric, which is conceptionally very

similar to the separation score, allows a very similar con-
clusion as the latter metric (Additional file 1: Figure S10
and Fig. 2, Additional file 1: Table S3 and Table 2): Com-
Bat, FAbatch and standardization performed best here.
While this conclusion could be obtained on both sim-
ulated and real data, other results differed between the
different simulation scenarios and the real data analy-
ses: SVA performed considerably worse here for Design
A than B and mean-centering performed better on the
simulated data in general.
The estimates of the proportions of the variation

explained by the class signals obtained via Principal Vari-
ance Components Analysis (pvca) are depicted in the
Additional file 1: Figure S11 and Fig. 2 and summarized in
the Table S4 (Additional file 1) and Table 2. SVA appears
to be associated with the highest proportion of variation
induced by the class signal. However, the comparison to
the other methods is not fair here: SVA makes use of
the target variable and is therefore associated with an
artificially increased class signal. See the Section “Artifi-
cial increase of measured class signal by applying SVA”
for details on this mechanism related to overoptimism.
FAbatch performed well only on the simulated data here,
but not on the real datasets, where it had the lowest mean
value with the exception of no batch effect adjustment.
Figure 2 reveals that those three datasets for which pvca
was considerably smaller after batch effect adjustment by
FAbatch were, at the same time, the three datasets with
the highest pvca-values before batch effect adjustment.
Datasets with high pvca-values are datasets where the
biological signal is relatively strong in comparison to the
batch effects. Our results suggest that for such datasets,
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Fig. 2Metric values in real datasets. Boxplots of values for all 14 datasets separated into method for the following metrics: sepscore, avedist,
klmetr, pvca, diffexpr, skewdiv and corbeaf. The grey lines connect values corresponding to the same datasets

batch effect adjustment with FAbatch might be coun-
terproductive. The distinguishing feature of FAbatch in
comparison to a mere location-scale adjustment as per-
formed by ComBat is that it aims at additionally adjusting
for batch effects not explainable by location and scale
shifts.While FAbatch aims at protecting the biological sig-
nal in the factor estimation, it cannot be protected entirely
here due to the uncertainty in the estimation of the
class probabilities. When reducing the total heterogene-
ity by FAbatch in cases of weak batch effects, the merit
of removing heterogeneity due to batch effects becomes
smaller in comparison to the harm that affects the sig-
nal. ComBat performed better than other methods here
on the real data (with the exception of SVA as mentioned
before).

For the performance metric related to differen-
tial expression analysis diffexpr (Additional file 1:
Figure S12 and Fig. 2, Additional file 1: Table S5 and
Table 3) the results for FAbatch and SVA are quite differ-
ent between simulated and real data. In the simulation,
the two methods performed best compared to the others
(with the exception of FAbatch for Design B with common
correlation). However, for the real data they performed
worst—even worse than no batch effect adjustment in the
mean. For FAbatch we examined those datasets which
yielded substantially worse diffexpr-values after batch
effect adjustment than before. As can already be seen
from Fig. 2, two of these datasets have high diffexpr-
values on the data before batch effect adjustment. This
implies that for these datasets the biological signal is well
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Table 2 Means of the metric values and of their ranks among the different methods over the 14 studied datasets separated into
method for the following metrics: sepscore, avedist, klmetr and pvca

sepscore

Mean values
combat fabatch stand sva meanc ratiog ratioa none

0.09895 0.10227 0.13238 0.15217 0.15807 0.16618 0.18314 0.2806

Mean ranks
combat fabatch stand sva meanc ratiog ratioa none

2.28571 3.35714 3.71429 4.42857 4.64286 4.78571 5.92857 6.85714

avedist

Mean values
meanc ratiog ratioa combat stand fabatch sva none

233.32619 235.27321 235.39525 235.52757 237.86855 239.53197 240.55365 243.10948

Mean ranks
meanc combat ratiog ratioa fabatch stand none sva

3.07143 3.57143 3.57143 3.57143 5.14286 5.21429 5.78571 6.07143

klmetr

Mean values
fabatch combat stand sva meanc ratioa ratiog none

0.32312 0.33748 0.35524 1.08835 1.13029 1.15025 1.23577 2.85956

Mean ranks
combat fabatch stand sva meanc ratioa ratiog none

2.85714 3 3.14286 4.57143 4.71429 4.92857 5.42857 7.35714

pvca

Mean values
sva combat meanc ratioa ratiog stand fabatch none

0.06364 0.06015 0.05636 0.0502 0.04933 0.04741 0.04569 0.04477

Mean ranks
sva combat meanc ratioa stand ratiog fabatch none

2.92857 3.14286 3.57143 5 5.07143 5.21429 5.35714 5.71429

In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively. The results of FAbatch are
printed in bold

Table 3 Means of the metric values and of their ranks among the different methods over the 14 studied datasets separated into
method for the following metrics: diffexpr, skewdiv and corbeaf

diffexpr

Mean values
combat stand ratioa meanc ratiog none sva fabatch

0.11044 0.10958 0.10891 0.1088 0.10796 0.10526 0.09517 0.09364

Mean ranks
combat stand ratioa meanc none ratiog fabatch sva

3.28571 3.57143 3.78571 4.14286 4.5 4.64286 5.85714 6.21429

skewdiv

Mean values
fabatch sva stand combat ratioa ratiog meanc none

0.01724 0.02206 0.02377 0.02688 0.02875 0.03257 0.03671 0.05041

Mean ranks
sva fabatch combat stand meanc ratioa ratiog none

2.21429 2.92857 4.28571 4.78571 5.07143 5.42857 5.5 5.78571

corbeaf

Mean values
none combat meanc ratioa ratiog stand sva fabatch

1 0.86857 0.86742 0.85516 0.84931 0.82754 0.69313 0.67795

Mean ranks
none combat meanc ratiog ratioa stand sva fabatch

1 2.92857 2.92857 4.21429 4.35714 5.85714 7.14286 7.57143

In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively. The results of FAbatch are
printed in bold
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preserved in the batches—in other words they seem to
be less affected by batch effects. A possible reason why
FAbatch performs worse for mild batch effects has already
been outlined above. The other datasets connected with
worse diffexpr-values than “no batch effect adjust-
ment” in the case of FAbatch were those datasets
for which some “outlying” batches were very different
from the others—according to the PCA plots given in
(Additional file 1: Figure S7). We conjecture that, in
this case, pooling the data of the outlying batch(es) with
the other batches and estimating the L2-penalized logis-
tic regression model can result in a predictor with bad
performance. The combined data might be too hetero-
geneous for the L2-penalized logistic regression model,
which assumes that all observations follow the same dis-
tribution. If the predictions of the class probabilities by the
L2-penalized logistic regression rule are bad, the biologi-
cal signal is less protected in the latent factor estimation.
Therefore, the removal of the estimated latent factor influ-
ences will affect the biological signal more. There were no
noteworthy differences between the other methods with
respect to diffexpr. For the real datasets there were
also no improvements over no batch effect adjustment.
This indicates that differential expression analysis might
not benefit from batch effect adjustment in general.
For the skewness divergence score (Additional file 1:

Figure S13 and Fig. 2, Additional file 1: Table S6 and
Table 3) no clear ranking between the methods is seen
in the case of the simulated data. However, for the real
datasets, SVA and FAbatch clearly outperform the other
methods with respect to this metric.
Finally, both in the simulated and real data, FAbatch

and SVA have considerably lower corbeaf-values
(Additional file 1: Figure S14 and Fig. 2, Additional file 1:
Table S7 and Table 3), which is not very surprising consid-
ering their high complexity.

Application in cross-batch prediction
In this illustrative analysis we apply all batch effect
adjustment methods considered above together with
the corresponding addon procedures described in the
Section “Addon adjustment of independent batches” in
cross-batch prediction in a real data example and using
simulated data. A more extensive real data study was con-
ducted by Luo et al. [3] who used several datasets to
compare all of the methods considered here, except for
frozen SVA (“fSVA”) and FAbatch, with respect to their
performance in cross-batch prediction.
We use the dataset IUGRTranscr. The reasons for

choosing this dataset were that it features a relatively
strong class signal and is at the same time strongly affected
by batch effects—judging from the principal component
analysis plot in Additional file 1: Figure S7. This dataset
contains miRNA-measurements obtained from 67 human

placentas using the Illumina Human-6 v2 Expression
BeadChip. Of these 67 samples, 27 were obtained from
placentas of embryos suffering from intrauterine growth
restriction (IUGR), the remaining 40 samples originate
from placentas of healthy embryos. The dataset consists
of two batches of sizes 20 and 47, where in the first batch
9 (45%) and in the second batch 18 (≈ 38%) samples
originate from IUGR embryos.
As classification algorithm for the dependent variable

“IUGR (yes vs. no)” Linear Discriminant Analysis (LDA)
using Partial Least Squares (PLS) components as covari-
ates [20] was chosen, where the number of components
used was tuned on the grid 1,2, . . . , 10 employing 3-fold CV.
Just as Luo et al. [3] in their extensive real data study,

we use Matthews Correlation Coefficient (MCC) as per-
formancemetric. This measure has the advantage over the
more commonly considered misclassification error rate,
that it is independent of the class frequencies in the test
data. It takes values in [−1, 1], where a MCC-value of
1 would indicate a perfect prediction, a MCC-value of
0 would correspond to a completely random prediction
and a MCC-value of -1 to a total disagreement between
prediction and reality.
Figure 3 depicts the MCC-values resulting when apply-

ing the different batch effect adjustment methods in pre-
dicting from one batch to the other and than switching the
training and test set roles between the two batches. When
training on the first batch only ComBat, mean-centering
and FAbatch lead to a higherMCC-value in comparison to
no batch effect adjustment. The two fSVA algorithms and
standardization lead to a very strong deterioration of the
prediction performance, where the fast fSVA algorithm
was slightly better than the exact fSVA algorithm. When
training on the second batch, the prediction performance
without batch effect adjustment corresponded to random
guessing as indicated by the MCC-value of zero here.
Except for standardization and the exact fSVA algorithm,
all methods lead to a more or less strong improvement
of prediction performance here. The ranking between the
methods is almost entirely the same compared to that
when training on the first batch.
In Additional file 1: Figure S7 and in Fig. 1 we used PCA

plots to visualize batch effects in raw data and in data
after batch effect adjustment, respectively. In this section
we utilize such plots for a slightly different purpose: to
study to what extent the validation batch is similar to the
training batch after addon batch effect adjustment using
the different batch effect adjustment methods. In each
panel of Fig. 4 the training batch is depicted in bold. In
each case PCA was applied to the following data matrix:
the training batch after batch effect adjustment combined
with the validation batch after addon batch effect adjust-
ment using the respective method indicated in each case.
The stronger the two point clouds overlap, the closer the
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Fig. 3 Cross-batch prediction—MCC-values. MCC-values out of using the individual batch effect adjustment methods in cross-batch prediction
when training on the first and second batch. fsvafast and fsvaexact denote the fast and the exact fSVA algorithm, respectively

validation batch is to the training batch after addon batch
effect adjustment. Before batch effect adjustment the two
batches are obviously grossly disparate. While the shapes
of the point clouds are rather similar, their location dif-
fers strongly. FAbatch lead to the greatest overlap between
the training and validation batches. ComBat and stan-
dardization were second place here. Note that despite the
decent overlap between training and validation batches
using standardization, this method delivered bad MCC-
values in the analysis above. Mean-centering, ratio-A and
ratio-G were connected with a worse overlap and the
point clouds do hardly differ between these methods. The
two fSVA algorithms made the two point clouds even
more disparate than before batch effect adjustment. The
bad performance of fSVA observed here indicates that in
this example it seems not to be appropriate to assume
that the same sources of heterogeneity operate in the
two batches—an assumption required for the application
of fSVA. In Section “Addon adjustment of independent
batches” we noted that for the methods mean-centering,
standardization, ratio-A and ratio-G no specific addon
batch effect adjustment methods are required, because
they treat each independently of the others. Therefore,
for each of these methods, in the two corresponding sub-
plots of Fig. 4 the point clouds are identical, irrespective
of which batch is used as training and validation batch,
respectively.
Note again that the above real data analysis is only illus-

trative. Simulations give more accurate results and allow

for the study of the impact of specific aspects of the under-
lying data distribution. In this simulation we are interested
in demonstrating that FAbatch is best suited in situations
with correlated predictors. We considered four simula-
tion settings. These are: the three settings of Design B
presented in Section “Design B: Drawing from multivari-
ate distributions with specified correlation matrices” and
an additional setting in which no correlation between the
predictors was induced. Design B was chosen instead of
Design A in order to prevent a possible optimistic bias
with respect to FAbatch and fSVA, since these involve
adjustment for latent factor influences. The additional
fourth setting was generated by simply setting the corre-
lations in Design B to zero. For each setting we simulated
100 datasets and proceeded as in the analysis of the real
dataset presented above—with two differences. The first
difference was that in the simulation we have to consider(4
2
) × 2 = 12 instead of two combinations of training

and validation batches per dataset, because the simulated
datasets feature four instead of only two batches. The
second difference concerns the evaluation of the results,
because the MCC values could not be calculated in cases
where both the numerator and denominator in the cal-
culation were zero. Therefore for each combination of
setting and batch effect adjustment method we summed
up the true positives, the true negatives, the false posi-
tives and the false negatives over all prediction iterations
in all 100 datasets and calculated the MCC-value using
the standard formula. Figure 5 shows the results. In many
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Fig. 4 Visualization of the assimilation of validation batch to training batch after batch effect adjustment. First two principal components out of PCA
performed on the following datamatrix: the training batch after batch effect adjustment combinedwith the validation batch after addon batch effect
adjustment. The training batch in each subplot is depicted in bold and the numbers distinguish the two classes “IUGR yes” (2) vs. “IUGR no” (1). The
contour lines represent batch-wise two-dimensional kernel estimates and the diamonds represent the batch-wise centers of gravities of the points
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fsvaexact ( ), meanc ( ), stand ( ), ratiog ( ), ratioa ( ). For better interpretability the results to the same methods are connected

respects the simulation results concur with the results
obtained using the real dataset. The most striking differ-
ence is that standardization was best here, while it was
bad for the real data analysis. The good performance of
standardization in the simulation should however not be
over-interpreted as it was the least performant method in
the study of Luo et al. [3]. FAbatch was the second-best
method in all settings except for that without correlation
between the predictors. In the latter setting, FAbatch is
outperformed by ComBat and mean-centering. This con-
firms that FAbatch is best suited in situations with more
correlated variables. Ratio-G performed poorly here—
other than in the study by Luo et al. [3] and in the real-data
analysis above. Both frozen SVA algorithms performed
bad here as well.

Artificial increase of measured class signal by applying SVA
In the Section “FAbatch” we detailed why using the actual
values of the target variable in protecting the biologi-
cal signal during the latent factor estimation of FAbatch
would lead to an artificially increased class signal. SVA
does use the values of the target variable and indeed suf-
fers from the problem of an artificially increased class
signal. In the following, we will outline the reason why
SVA suffers from this problem. A crucial problemwith the
weighting of the variable values by the estimated proba-
bilities that the corresponding variable is associated with
unmeasured confounders but not with the target vari-
able is the following: these estimated probabilities depend
on the values of the target variable, in particular for
smaller datasets. Naturally, due to the variability in the
data, for some variables the measurements are, by chance,

separated overly strong between the two classes. Such
variables, for which the observed separation between the
classes is larger than the actual—biologically motivated—
separation, are connected with smaller estimated weights.
This means that such variables are affected less strongly
by the removal of the estimated latent factor influences
compared to variables which are not connected with such
a randomly increased separation. Phrased differently, the
stronger the apparent—not the actual—signal of a vari-
able is, the less its values are affected by the adjustment of
latent factors. As a result, after applying SVA the classes
are separated to a stronger degree than they would be if
biological differences between the classes were the only
source of separation—as is required in a meaningful anal-
ysis. This phenomenon is pronounced more strongly in
smaller datasets. The reason for this is that for larger
datasets the measured signals of the variables get closer
to the actual signals, wherefore the overoptimism due
to working with the apparent instead of the actual sig-
nals becomes less pronounced here. Accordingly, in the
real data example from the previous subsection fSVA per-
formed considerably worse when using the smaller batch
as training data.
Using datasets with artificially increased signals in anal-

yses can lead to over-optimistic results, which can have
dangerous consequences. For example, when the result
of cross-validation is over-optimistic, this may lead to
overestimating the discriminatory power of a poor pre-
diction rule. Another example is searching for differ-
entially expressed genes. Here, an artificially increased
class signal could lead to an abundance of false-positive
results.
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The observed deterioration of the MCC-values in the
real data example by performing frozen SVA when train-
ing on the smaller batch may, admittedly, also be due to
random error. In order to investigate whether the effects
originating from the mechanism of artificially increas-
ing the discriminative power of datasets by performing
SVA are strong enough to have actual implications in data
analysis, we performed a small simulation study. We gen-
erated datasets with 40 observations, 1000 variables, two
equally sized batches, standard normally distributed vari-
able values and a binary target variable with equal class
probabilities. Note that there is no class signal in this data.
Then using 5-fold cross-validation repeated two times we
estimated the misclassification error rate of PLS followed
by LDA for this data. Consecutively, we applied SVA to
this data and again estimated the misclassification error
rate of PLS followed by LDA using the same procedure.
We repeated this procedure for the number of factors
to estimate set to 1, 2 and 3, respectively. In each case
we simulated 50 datasets. The mean of the misclassifica-
tion error rates was 0.504 for the raw datasets and 0.431,
0.356 and 0.306 after applying SVA with 1, 2 and 3 factors.
These results confirm that the artificial increase of the
class signal by performing SVA can be strong enough to
have implications in data analysis. Moreover, the problem
seems to be more severe for a higher number of factors
estimated. We did the same analysis with FAbatch, again
using 1, 2 and 3 factors, where we obtained the misclas-
sification error rates 0.505, 0.521 and 0.509, respectively,
suggesting that FAbatch does not suffer from this problem
in the investigated context.

Discussion
In this paper, with FAbatch, we introduced a very general
batch effect adjustment method for situations in which
the batch membership is known. It accounts for two kinds
of batch effects simultaneously: 1) coarse, easily observ-
able batch effects expressed as location and scale shifts of
the variable values across the different batches; 2) more
complicated batch effects, modelled by latent factor influ-
ences, which affect the correlations between the variables
in the batches. The model behind FAbatch is an exten-
sion of the model underlying ComBat, where the latter
is designed to address the first kind of the batch effects
described above. FAbatch uses latent factors to model
batch effects in the spirit of SVA. In contrast to SVA,
however, FAbatch assumes that the batch membership
of the observations is known and that the latent factor
models are batch-specific, i.e. that in each batch differ-
ent sources of heterogeneity may operate. In Appendix
A.2 (Additional file 1) it is shown that in the SVA model
it is implicitly assumed that the distribution of the vec-
tor of latent factors may be different for each observation.
This is a very general assumption. However, it is unclear

how well SVA can deal with specific datasets originat-
ing from such a general model, because the link between
the singular value decomposition used in the estimation
and this model is not evident. Our algorithm by con-
trast was explicitly motivated by its underlying model,
which is quite general and reasonable. In cases in which
the data in question is approximately uniform with this
model, FAbatch should perform reasonably well. In the
form presented here, FAbatch is only applicable in the
presence of a binary target variable. However, it can also
be extended to other types of target variables. For exam-
ple, when having a metric target variable one could use
ridge regression instead of L2-penalized logistic regres-
sion when protecting the biological signal of interest in the
factor estimation.
In an illustrative analysis we applied the batch effect

adjustment methods studied in the main analyses in the
important case of cross-batch prediction. FAbatch—other
than fSVA—performed reasonably well in this example.
Moreover, by a small simulation study we obtained evi-
dence that the artificial increase of the measured biologi-
cal signal of interest faced when performing SVA can have
noticeable negative effects in applications. In FAbatch,
this artificial increase is prevented by employing the fol-
lowing idea: for each observation the parameters involved
in the transformations performed for protecting the bio-
logical signal are estimated using training data, which
does not contain the respective observation to be trans-
formed. This idea may also be applied in the protection of
the biological signal of SVA, i.e. whenmultiplying the vari-
able values by the estimated probabilities that the corre-
sponding variables are associated with unmeasured con-
founders, but not with the binary variable representing the
biological signal. More precisely these probabilities could
be estimated in a cross-validation procedure—taking up
again the idea also used in FAbatch.
All batch effect adjustment methods considered in this

paper, together with the corresponding addon procedures
and all metrics used in the comparisons of the meth-
ods, were implemented/adopted into the new R package
bapred available online from CRAN [21].

Conclusions
FAbatch leads to a good mixing of the observations across
the batches in comparison to other methods, which is
reassuring given the diversity of batch effect structures in
real datasets. In the case of very weak batch effects and in
the case of strongly outlying batches, the observed biolog-
ical signalmay be slightly altered by FAbatch. In our exten-
sive comparison study of existing and new batch effect
correction methods, we found that no method was best
with respect to all metrics. It is thus difficult to formulate
general recommendations: the choice of the method may
primarily depend on the goal of the researcher as reflected
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by the choice of the metric. Performing no batch effect
correction at all is in any case not recommended.
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