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Abstract

In the context of Gaussian Graphical Models (GGMs) with high-dimensional small sample data, we present a simple
procedure, called PACOSE – standing for PArtial COrrelation SElection – to estimate partial correlations under the constraint
that some of them are strictly zero. This method can also be extended to covariance selection. If the goal is to estimate a
GGM, our new procedure can be applied to re-estimate the partial correlations after a first graph has been estimated in the
hope to improve the estimation of non-zero coefficients. This iterated version of PACOSE is called iPACOSE. In a simulation
study, we compare PACOSE to existing methods and show that the re-estimated partial correlation coefficients may be
closer to the real values in important cases. Plus, we show on simulated and real data that iPACOSE shows very interesting
properties with regards to sensitivity, positive predictive value and stability.
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Introduction

The robust estimation of the inverse covariance matrix is crucial

in many multivariate statistical methods such as discriminant

analysis or linear regression [1]. Many variants of these

multivariate methods aim at somehow ‘‘regularizing’’ the estima-

tion of the covariance matrix to make it invertible or better

conditioned, e.g. ridge regression (RR), diagonal discriminant

analysis or regularized discriminant analysis [2]. A large body of

literature is devoted to the estimation of the inverse covariance

matrix in high-dimensional small sample settings, i.e. when the

number of observations n is much smaller than the number of

variables p: A well-known example is the shrinkage estimator by

Shäfer & Strimmer [3] which is defined as a weighted sum of the

sample covariance matrix and a fixed (invertible) target matrix.

This method can be considered as ‘‘agnostic’’ in the sense that it

estimates the covariance matrix in a completely data-driven way,

i.e. without prior knowledge.

In this article, we first propose a method that directly estimates

the partial correlation matrix while taking into account prior

information on the dependencies between variables materialized

by a given undirected graph. In a nutshell, our new method takes

such a graph – called ‘‘independence graph’’ – as input and

estimates the non-zero coefficients of the partial correlation matrix

by regularized linear regression using the regression-based

definition of partial correlation. The inverse covariance matrix

can then be simply obtained from the partial correlation matrix by

incorporating estimates of the variances. In this sense, our method

can be seen as a covariance selection algorithm [4]. Although many

covariance selection methods have been proposed in the literature

(see below for details), none of these methods is designed to

estimate the partial correlation matrix in high-dimensional settings

while incorporating a non-decomposable independence graph. In

reference to covariance selection, we called this first method

‘‘PACOSE’, standing for PArtial COrrelation SElection.

Furthermore, we suggest a new iterative algorithm called

‘‘iPACOSE’’ – standing for iterative PACOSE – that estimates

an independence graph from a dataset using our new partial

correlation estimate in a recursive way. Briefly, iPACOSE takes as

inputs a dataset and a significance level for the partial correlation

and gives as an output an estimated independence graph. We

show on simulated datasets that recursive reestimation of the

partial correlation coefficients yields graphs closer to the true

graph than a simple thresholding of an estimated partial

correlation matrix.

The rest of the paper is structured as follows. We first present

our iterative method and the associated covariance selection and

also briefly reviews existing covariance selection methods. Then,

we compare our new method to existing estimation algorithms for

Gaussian Graphical Models (GGM) on simulated data. Finally, we

apply our method to real datasets.

For the sake of reproducibility, we made our code available in

the form of:

N An R package called pacose, available on the CRAN http://

cran.r-project.org/web/packages/pacose/index.html (Ac-

cessed 2013 March 13),

N A set of R programs for the reproduction of our results,

available online at http://www.ibe.med.uni-muenchen.de/
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organisation/mitarbeiter/020_professuren/boulesteix/

pacose2012/(Accessed 2013 March 13).

Methods

Context
The estimation of networks is a burning issue in bioinformatics.

Gaussian graphical models (GGMs) [5,6] have been widely used

for this purpose in the last few years [3,7]. In the context of systems

biology, the estimation of GGMs is very often characterized by a

lower number of individuals (n) or measures than the number of

variables (p): In this n%p situation, regularization techniques are

mandatory to enable the estimation of GGMs.

The core method of the present work is designed to estimate a

partial correlation matrix under the constraint that some known

coefficients are equal to zero. It is intimately related to so-called

covariance selection methods, which can themselves be seen as

methods able to estimate the covariance matrix or its inverse, the

so-called precision matrix, (i) under the constraint that some

coefficients in the precision matrix are null [4] or (ii) under the

constraint that a certain amount of coefficients are equal to zero in

the precision matrix [8,9]. To avoid any confusion with these

sensibly different definitions, we chose an acronym closely related

to the parameters that we want to estimate: the partial

correlations, hence the name of this core method: PACOSE,

‘‘PArtial COrrelation SElection’’. The theory behind PACOSE is

further described in the section ‘‘PACOSE’’.

We propose to embed PACOSE into an iterative algorithm

designed to estimate independence graphs. The algorithm – called

iPACOSE (standing for iterative PACOSE) – takes a dataset and a

significance level for the partial correlation coefficients as inputs.

PACOSE is then applied iteratively to the dataset to estimate an

independence graph extracted from the previous iteration’s partial

correlation matrix by thresholding it. The iPACOSE algorithm is

schematically represented in Figure 1. iPACOSE is described in

more details in the section ‘‘iPACOSE’’.

Partial correlation and Gaussian Graphical Models
This section briefly reviews the basics of GGM theory used in

this paper. Let X denote a p-variate random vector

X~(X1, . . . ,Xp)T such that variables X1, . . . ,Xp all have a mean

and a variance. G denotes the graph describing the conditional

independencies between the p variables: G is thus an undirected

graph with p nodes. The covariance matrix of X , denoted by S, is

supposed to be invertible. Its inverse V~S{1 is from now on

referred to as the precision matrix.

The partial correlation coefficient rij of Xi and Xj given all the

other variables fX1, . . . ,Xpg\fXi,Xjg can be estimated as

brrij~
ccovcov Xi{bXX i,Xj{bXX j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarvar Xi{bXX i

� �cvarvar Xj{bXX j

� �r , ð1Þ

where ccovcov and cvarvar denote the empirical covariance and variance,

respectively, and bXXi stands for the fitted value of Xi in a linear

regression model including all other variables except Xj as

covariates. In a few words, brrij is the correlation of the residuals

of the linear models regressing Xi against all variables except Xj

and vice-versa.

Another method to compute brrij based on linear regressions

results from the following property [6]:

brrij~sign(bbbij)

ffiffiffiffiffiffiffiffiffiffibbbij
bbbji

q
, ð2Þ

where bbbij is the estimated coefficient of variable Xj in the linear

model regressing Xi against all the other variables. Note that both

formulations (1) and (2) implicitly assume that the considered

linear regression models can be estimated, which is for instance

not the case in high-dimensional data with nvp: This issue will be

discussed later. Moreover, it can also be shown [6] that the partial

Figure 1. Flowchart representation of the iPACOSE algorithm, representing how it iteratively uses PACOSE to estimate an
independence graph from a dataset.
doi:10.1371/journal.pone.0060536.g001

(Iterative) PArtial COrrelation SElection
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correlation coefficient rij is related to the precision matrix

V~½vij �~S{1 as follows:

rij ~
{vijffiffiffiffiffiffi
vii
p ffiffiffiffiffiffi

vjj
p , for i=j: ð3Þ

If X1, . . . ,Xp are Gaussian, the following important property can

be shown for i,j,k[f1, . . . ,pg (k=i,j), , see for instance [10]:

Xi\\Xj DXkurij~0, ð4Þ

which means that two variables are conditionally independent if

and only if their partial correlation equals zero.

The formulation (4) is exploited by numerous methods to

estimate gene regulatory networks from high-dimensional micro-

array gene expression data [7,11,12]. Note, however, that these

data often have much more variables (genes) than observations

(arrays), hence the term high-dimensional data’’. A regularized

regression technique has then to be used to estimate bij and bji,
since least squares regression cannot be performed with nvp data.

Another popular approach [3] to estimate GGMs from high-

dimensional data consists in applying Eq. (3) using a regularized

(invertible) estimator of S:
All these methods yield an estimate of the partial correlation

matrix. Some methods are essentially sparse, i.e. yield a matrix

with many zeros [11]. In this case, the graph is simply derived

from the partial correlation matrix by connecting pairs of variables

with non-zero partial correlations. For other methods [3,7],

however, a threshold has to be applied to decide which variables

have to be connected.

PACOSE
The concepts briefly reviewed in the above section are

important for understanding our novel method – PACOSE -,

whose main idea is to combine formulation (2) along with the

information given in an a priori independence graph G between

the variables. This is done by setting bij and bji to 0 if Xi and Xj

are not connected in the graph G. It immediately results from Eq.

(2) that brrij~0.

Setting bij to 0 impacts the whole linear model

Xi~
X

k

bikXk,

since it essentially removes one covariate in the regression model.

As a consequence, the estimation of other partial correlation

coefficients rik involving Xi and any other variable Xk,k=j is also

affected.

More precisely, our graph-constrained estimator of the partial

correlation between Xi and Xj is given as

Figure 2. MSE of the partial correlation matrix estimates. p~50 and n~100, when the graphs are decomposable.
doi:10.1371/journal.pone.0060536.g002

(Iterative) PArtial COrrelation SElection
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brrGij~sign(bbbGij) ffiffiffiffiffiffiffiffiffiffibbbGijbbbGjiq
, ð5Þ

where

N bbbGij~0 if Xi and Xj are not connected in G,

N bbbGij is the estimated regression coefficient of Xj in the regression

of Xi against its connected variables if Xi and Xj are

connected, i.e. the estimate of coefficient bGij in the linear

regression model

Xi ~ bGi0 z
X

k: k*i

bGikXk z Ei, ð6Þ

where k*i means that variables k and i are connected in G.

This definition implicitly assumes that the estimates of the

regression coefficients exist, which may not be the case in high-

dimensional settings. This problem is addressed in the next

section.

High dimensional settings
When the number of variables connected to i is greater than the

number of observations, the estimation of the coefficients of the

linear regression model (6) cannot be performed by ordinary least

squares. Unfortunately, it is likely to sometimes occur in practical

analyses with high-dimensional data. That is why we suggest to

replace least squares regression by one of its regularized versions:

ridge regression [13], PLS regression [14,15], Lasso [16] or

adaptive Lasso [17]. The regularization parameters are estimated

by k-fold cross-validation (CV). Once the partial correlation

coefficients are estimated, an estimator of the partial correlation

matrix P is obtained via Eq. (2).

Figure 3. MSE of the partial correlation matrix estimates. p~100 and n~50, when the graphs are not decomposable. Since the graphs are
not decomposable, the estimators MVUE and SURE are not applicable. Wermuth’s algorithm does not converge, and the implementation of
Whittaker’s method requires a decomposition of the graph into cliques.
doi:10.1371/journal.pone.0060536.g003

Table 1. Prediction nomenclature in the context of graph
inference.

i,j i 6*j

pij?0 TP FP

pij?0 FN TN

The definitions of true and false positives (resp. TP and FP), true and false
negatives (resp. TN and FN) in the context of graph inference.
doi:10.1371/journal.pone.0060536.t001

(Iterative) PArtial COrrelation SElection
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Competing approaches
To our knowledge, there is no method in the literature allowing

to compute directly the partial correlation matrix with the

knowledge of an undirected graph. But there are numerous

methods dedicated to the estimation of the inverse covariance

matrix knowing a given graph. The literature refers to these

methods as covariance selection algorithms. These algorithms are

usually used to estimate the covariance matrix, but they can also

be used to estimate the precision matrix.

When the graph is decomposable, the covariance matrix can be

estimated by maximum likelihood. Alternative methods have been

proposed such as the shrinkage estimator designed by Wiesel et al.

[10]. However, these methods are not able to cope with a non-

decomposable graph. This is a major drawback in practice

because most of the graphs relevant to bioinformatics are non-

decomposable. One thus has to turn to iterative methods [6,18] or

methods such as ‘‘glasso’’ [11] based on the optimization of a

criterion independently from the nature of the graph.

All the covariance selection methods we refer to in this section

compute directly the precision matrix, and not the partial

correlation matrix as PACOSE does. In order to compare

PACOSE to them, we use Eq. (3) to transform any estimated

precision matrix into a partial correlation matrix.

Figure 4. Performance of iPACOSE (black straight lines) when compared to its regression based GGM estimate counterpart (red
dashed lines). (a) and (b): performance of the PLS version of iPACOSE. sen and ppv for p~100 and n~50 (a) and for p~50 and n~100 (b).
Thresholds: 0:05, 0:1, 0:2 and 0:3. The results of iPACOSE are represented by the black line and the results of the pls.net function with the red dashed
line. UPPER FIGURE: sensitivity as a function of the threshold, LOWER FIGURE: PPV as a function of the threshold. (c) and (d): performance of the Ridge
version of iPACOSE. sen and ppv for p~100 and n~50 (c) and for p~50 and n~100 (d). Thresholds: 0:05, 0:1, 0:2 and 0:3. The results of iPACOSE are
represented by the black line and the results of the ridge.net function with the red dashed line. UPPER FIGURE: sensitivity as a function of the
threshold, LOWER FIGURE: PPV as a function of the threshold.
doi:10.1371/journal.pone.0060536.g004

(Iterative) PArtial COrrelation SElection
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iPACOSE
When estimating an independence graph from raw data with

partial correlation matrices, one usually first estimates the partial

correlation matrix and then applies to it a certain threshold,

allowing to eliminate small coefficients. The obtained sparse

matrix is then considered as the adjacency matrix of the

underlying graph, following the principle of GGM.

The idea of the iPACOSE (as in ‘‘iterated PArtial COrrelation

SElection’’) algorithm is the following: rather than stopping after

this first estimation of the underlying graph, we use this graph as

an input for PACOSE, then allowing a re-estimation of the partial

correlation coefficients. Since the newly estimated coefficients are

likely to become smaller than the given threshold, a new graph can

be estimated from this new partial correlation matrix by thresh-

olding it, and so on. With this iterated process, we aim to estimate

the coefficients close to the threshold more accurately and then

eliminate as many false positive edges as possible.

More precisely, our algorithm iPACOSE takes a data matrix, a

threshold and a graph (called G(0)) as inputs and operates as

follows:

Figure 5. Performance of iPACOSE (black straight lines) when compared to its regression based GGM estimate counterpart (red
dashed lines). (a) and (b): performance of the LASSO version of iPACOSE. sen and ppv for p~100 and n~50 (a) and for p~50 and n~100 (b).
Thresholds: 0:05, 0:1, 0:2 and 0:3. The results of iPACOSE are represented by the black line and the results of the adalasso.net function with the red
dashed line. UPPER FIGURE: sensitivity as a function of the threshold, LOWER FIGURE: PPV as a function of the threshold. (c) and (d): performance of the
adaptive LASSO version of iPACOSE. sen and ppv for p~100 and n~50 (c) and for p~50 and n~100 (d). Thresholds: 0:05, 0:1, 0:2 and 0:3. The results
of iPACOSE are represented by the black line and the results of the adalasso.net function with the red dashed line. UPPER FIGURE: sensitivity as a
function of the threshold, LOWER FIGURE: PPV as a function of the threshold.
doi:10.1371/journal.pone.0060536.g005

(Iterative) PArtial COrrelation SElection
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1. Apply PACOSE with the dataset and G(0) as arguments.

2. Transform the estimated partial correlation matrix into a graph

by applying the threshold.

3. Apply PACOSE to the dataset with the graph derived in 2 in

order to estimate a new partial correlation matrix.

4. Iterate steps 2 and 3 until the graph does not change anymore.

G(0) can be estimated with any existing method, such as

pcor.shrink from the R package GeneNet [3] or ridge.net, pls.net,

adalasso.net or lasso.net from the R package parcor [7].

Results

In this section we present a simulation study for the evaluation

of

(a) PACOSE as an estimation procedure for the partial

correlation matrix given a fixed undirected graph,

(b) iPACOSE as a procedure for graph estimation, in

combination with standard GGM estimation procedures.

When one wants to simulate data knowing a given graph of

independence, there is the possibility of using the theory of GGM,

more particularly through the constraint (4). Furthermore, the

randomly generated precision matrix has to be positive definite.

One could see this problem as a so-called ‘‘positive definite

completion matrix’’ issue [19]. But the work on this specific issue is

once again mainly focused on decomposable graphs. We adopt a

more empirical method, which in practice gives a very satisfying

range of partial correlation coefficients, and at the end of the

algorithm, the fulfillment of constraint (4).

Simulated data
We use simulated data to compare our method to the methods

presented in the literature. Erdös-Rényi [20] or Barabasi [21]

graphs are used to model the interactions between genes, which

allows loops, hubs, and multiple connected components. We use

the following algorithm:

(i) Compute a first random Erdös-Rényi [20] (if we want a

non-decomposable graph) or Barabasi [21] (if we want a

decomposable graph) graph G(init),

(ii) Get the ‘‘upper triangular’’ adjacency matrix A(init) of this

graph and replace any non null coefficient by a random

r e a l i z a t i o n o f a u n i f o r m v a r i a b l e ( e . g .

U(�{1,{0:8�|½0:8,1½), but any interval is possible), which

then allows to define an upper triangular weight matrix

W (init),

(iii) C o m p u t e t h e f o l l o w i n g m a t r i x

M~(W (init)zI)T (W (init)zI), where I is the identity

matrix, defining a new graph G slightly different from the

Figure 6. Measure of the stability with Fleiss’ k for the methods
ridge.net and the Ridge version of iPACOSE. LEFT FIGURE: n~100
and p~50. RIGHT FIGURE: n~50 and p~100. The regularization
parameter of the ridge regression is determined analytically [26] for
both methods.
doi:10.1371/journal.pone.0060536.g006

Figure 7. Measure of the stability with Fleiss’ k for (a) ridge.net and the Ridge version of iPACOSE, (b) pls.net and the PLS version of
iPACOSE, (c) the non adaptive version of the method adalasso.net and the LASSO version of iPACOSE and (d) the adaptive version
of the method adalasso.net and the adaptive LASSO version of iPACOSE. For each one of the couples of figures, the LEFT FIGURE
corresponds to n~100 and p~50 and the RIGHT FIGURE to n~50 and p~100. The regularization parameters of the Ridge, PLS, LASSO and adaptive
LASSO regressions are determined analytically via a 5-fold cross-validation.
doi:10.1371/journal.pone.0060536.g007

(Iterative) PArtial COrrelation SElection
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initial graph, but above all defining a sparse positive

definite matrix M,

(iv) Normalize this matrix to get a partial correlation matrix

P~M?,

(v) Generate the dataset from the multivariate Gaussian

distribution X*N (0,S~P{1).

We prefer this algorithm to e.g. the algorithm presented in

Verzelen et al. [22] and Krämer et al. [7] because the latter

produces partial correlation coefficients often very close to 0 when

p is greater than a few dozens. The drawback of this method is that

it alters the degree distribution of the initial graph structure – in a

drastic way for Erdös-Rényi graphs, and in a very moderate way

for Barabasi graphs.

We implemented the covariance selection algorithm presented

in [18] in R and C, and the minimum variance unbiased estimator

(MVUE) and the Stein unbiased risk estimator (SURE) [10] in R.

Whittaker’s method [6] is implemented in the R package ggm, and

Friedman’s et al. method [11] in the package glasso.

Estimation of the partial correlation matrix with PACOSE
We compare PACOSE to the competing methods presented

above based on the mean square error (MSE) between the

estimated partial correlation matrix (denoted bPP) and the real one

(denoted P), as defined by

MSE(bPP)~
1

N

X
ij

bPPij{Pij

� �2

,

with N~p(p{1)=2.

The following notations are used for the competing approaches:

GeneNet [3], glasso [11], MVUE, SURE [10], Whittaker [6],

wermuth [18]. It has to be noted that GeneNet does not take into

account the information in the given graph: it is considered in our

results as a reference method giving an upper bound on the MSE.

These methods are compared to the PACOSE algorithm, where

four different regularized regression methods are used to estimate

the coefficients in Eq. (2):

N Ridge regression ( PACOSE(1)),

N PLS regression ( PACOSE(2)),

N LASSO regression ( PACOSE(3)),

N adaptive LASSO regression ( PACOSE(4)).

All the regularization parameters are estimated with 10-fold

cross-validation. The graph used within PACOSE is the real

independence graph, which is known since we work on simulated

data.

When there are more individuals than variables, and when the

considered graphs are decomposable, we can see on Figure 2 that

the SURE estimator performs better than all the others methods.

When the setting is less favorable, i.e. when there are less

individuals than variables and the graphs are not decomposable,

the results show a better performance of our estimator, both in

terms of stability and accuracy, see Figure 3, especially for the PLS

and Ridge regressions. This is a very promising result for

PACOSE, since in reality the considered graphs are very unlikely

to be decomposable, and the number of variables is generally

bigger than the number of individuals. In both Figures 2 and 3,

method GeneNet performs poorly, which is due to the fact that it

does not consider the underlying graph. This method acts as a

baseline representing the methods estimating the partial correla-

tion matrix without any prior knowledge.

The underlying graphs of independence are not precisely known

for biological data, estimating them being even a burning issue in

bioinformatics. We show in the following that PACOSE can be

advantageously integrated into the estimation of GGMs, yielding

potential improvements in terms of estimation accuracy.

Estimation of independence graphs with iPACOSE
In this section, we apply iPACOSE to simulated datasets in

order to recover partial independence graphs. Our goal is to

compare the four different network inference methods: ridge.net,

pls.net, the non-adaptive version of adalasso.net and the adaptive

version of adalasso.net based on the estimation of the partial

correlation matrix, to their iterative versions iPACOSE(1), (2), (3),

(4), respectively.

To compare the estimated graphs with the real graph, we use

the positive predictive value (PPV, denoted ppv) and the sensitivity

(denoted sen):

ppv~
TP

TPzFP
andsen~

TP

TPzFN
,

where TP, FP and FN are defined in Table 1. Biological networks

are indeed often described as sparse, and indicators based on the

number of edges are more suitable in this case [23].

The sensitivity and the PPV of the estimated graphs as a

function of the threshold are represented on Figures 4 and 5. Two

different settings are considered for these simulations: p~100 and

n~50 for Figures 4(a), 4(c), 5(a), 5(c), and p~50 and n~100 for

Figures 4(b), 4(d), 5(b), 5(d). The key chacteristic of iPACOSE is

that it allows to estimate networks with less edges without

eliminating too many correct interactions. We can indeed observe

on Figures 4(a)–(d) that the PPV, i.e. the capacity to estimate sparse

networks, is improved when compared to ridge.net or pls.net. On

the other hand, when applied to adalasso.net, a method estimating

particularily sparse networks, there is no detectable improvement

in PPV – see Figures 5(a)–(d).

In other words, Figures 4 and 5 compare the sensitivity and

PPV of G(0) for a given threshold to the sensitivity and PPV of

iPACOSE with the same threshold: iPACOSE has a real interest

when there is room for improvement in G(0)’s PPV.

Stability
In practical data analyses, the true network is almost always

unknown, which makes the evaluation of graph inference methods

so difficult on real data. For our particular application, we choose

not to assess the performance of iPACOSE by comparing the

obtained networks with interactions found in publicly available

databases, but rather to evaluate its stability. A stable algorithm is

robust against small perturbations of the dataset, see the work of

Krämer et al. [7] or Varoquaux et al. [24] for an example in brain

imaging. In our study, the considered datasets are split into 10

groups and GGMs are inferred based on datasets obtained by

excluding each of the 10 groups successively. The 10 obtained

networks are compared using Fleiss’ k, following the procedure

described in Krämer et al. [7]. Fleiss’ k is originally designed to

measure the degree of agreement between more than two raters.

Each rater attributes a grade to an individual: in our case, a rater is

a network inference method and a grade is 0 or 1, meaning that an

interaction is considered as significant or not. The resulting

statistic is always lower than 1 and, the closer the 10 networks, the

closer it gets to 1. For a short description of this measure of

agreement, see [25] (pp. 256–258).

(Iterative) PArtial COrrelation SElection
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We first measure the stability of iPACOSE, and compare it to

the stability of ridge.net on simulated data. According to Krämer

et al. [7], ridge.net and the other methods presented in this paper

do not show good stability performance. In order to stabilize the

method, we replace the determination of the optimal ridge

regularization parameter through a cross-validation approach by

an analytic determination [26]. The results are shown on Figure 6.

We observe that iPACOSE stabilizes the inference of the network.

Figures 7(a), 7(b), 7(c) and 7(d) show the same type of stability

results, except for the determination of the regularization

parameters, which is done with a 5-fold cross validation. Stability

is not improved with iPACOSE when it is low with the original

inference method. However, when the stability is at a high level, it

either remains at the same level or is improved.

Application to a real dataset
This first very positive result still holds for the comparison of the

stability of ridge.net and iPACOSE on a real dataset. For this

application, we use the real data presented in [27] and further

described and used in [28] consisting in n~310 amino acid

sequences on which were measured p~104 different physical

properties. The regularization parameters are determined analyt-

ically [26] for both methods. Fleiss’s k is computed on this dataset

in a 10-fold fashion and is equal to 0.70 for the 10 networks

obtained with ridge.net and to 0.85 for the 10 networks obtained

with iPACOSE, which is an even higher improvement than in

simulated data.

Replacing the 10-fold approach by a 5-fold does not essentially

change the results (data not shown), which conforts us in the fact

that our results are not depending too strongly on the number of

parts the dataset is split into.

Discussion

In this article, we presented PACOSE, a simple method to

estimate a partial correlation matrix under the constraint that

some known coefficients are null. We also presented iPACOSE, an

original procedure to apply PACOSE iteratively within the

estimation of independence graphs in combination with any

GGM estimation method.

Our results on simulated data suggest that PACOSE’s

performance is very promising when the known graph describing

the sparse structure of the partial correlation matrix is non-

decomposable and nvp. Since those two characteristics are met

when dealing with biological data, our method is all the more

interesting.

Having in mind the field of biological data as an application, we

designed iPACOSE, an application of PACOSE to the estimation

of independence graphs. iPACOSE is a method designed to

improve the performance of the graph estimation algorithms based

on the estimation of the partial correlation matrix. Results on

simulated data show that iPACOSE manages to increase the

positive predictive value of the inferred graphs while still showing

good sensitivity. Moreover, results on simulated data and

confirmed on real world data show that iPACOSE has very

interesting stability properties. As a perspective of this work,

iPACOSE would provide candidate interactions to work on more

elaborate models, such as e.g. non linear ordinary differential

equations applied to transcriptomic data [29] or used in cancer

studies [30]. Such models would both help the discussion with the

biologist or the phycisian by providing more elaborate interaction

models between genes, and help in the design of ‘‘on the bench’’

experiments for the validation of the interactions found by

iPACOSE.
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7. Krämer N, Schäfer J, Boulesteix AL (2009) Regularized estimation of large scale

gene association networks using gaussian graphical models. BMC Bioinformatics

10: 384.

8. D’Aspremont A, Banerjee O, El Ghaoui L (2008) First-order methods for sparse

covariance selection. SIAM Journal on Matrix Analysis and Applications 30: 56–

66.

9. Krishnamurthy V, d’Aspremont A (2009) A pathwise algorithm for covariance

selection. In: OPT 2009: 2nd NIPS Workshop on Optimization for Machine

Learning. MIT Press.

10. Wiesel A, Eldar YC, Hero AO (2010) Covariance estimation in decomposable

gaussian graphical models. IEEE Transactions on Signal Processing 58: 1482–

1492.

11. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation

with the graphical lasso. Biostatistics 9: 432–441.

12. Tenenhaus A, Guillemot V, Gidrol X, Frouin V (2010) Gene association

networks from microarray data using a regularized estimation of partial

correlation based on PLS regression. IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics 7: 251–262.

13. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for

nonorthogonal problems. Technometrics 12: 55–77.

14. Wold H (1975) Path models with latent variables: the NIPALS approach, in: H.

M. Blalock (Ed.), Quantitative Sociology: International Perspectives on
Mathematical and Statistical Model Building. New york: Academic Press.

15. Wold S, Ruhe A, Wold H, Dunn WJ, III (1984) The collinearity problem in

linear regression. the partial least squares (PLS) approach to generalized inverses.
SIAM Journal on Scientific and Statistical Computing 5: 735–743.

16. Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of
the Royal Statistics Society Series B 58: 267–288.

17. Zou H (2006) The adaptive lasso and its oracle properties. Journal of the

American Statistical Association 101: 1418–1429.
18. Wermuth N, Scheidt E (1977) Fitting a covariance selection model to a matrix,

algorithm 105. Journal of the Royal Statistical Society C 26: 88–92.
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