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Abstract

X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to

enhance the visualization of soft tissues in comparison to conventional imaging

methods. Nevertheless the delivered dose as reported in the literature of

biomedical PCI applications often equals or exceeds the limits prescribed in clinical

diagnostics. The optimization of new computed tomography strategies which

include the development and implementation of advanced image reconstruction

procedures is thus a key aspect. In this scenario, we implemented a dictionary

learning method with a new form of convex functional. This functional contains in

addition to the usual sparsity inducing and fidelity terms, a new term which forces

similarity between overlapping patches in the superimposed regions. The functional

depends on two free regularization parameters: a coefficient multiplying the

sparsity-inducing L1 norm of the patch basis functions coefficients, and a coefficient

multiplying the L2 norm of the differences between patches in the overlapping

regions. The solution is found by applying the iterative proximal gradient descent

method with FISTA acceleration. The gradient is computed by calculating projection

of the solution and its error backprojection at each iterative step. We study the

quality of the solution, as a function of the regularization parameters and noise, on

synthetic data for which the solution is a-priori known. We apply the method on

experimental data in the case of Differential Phase Tomography. For this case we

use an original approach which consists in using vectorial patches, each patch

having two components: one per each gradient component. The resulting

algorithm, implemented in the European Synchrotron Radiation Facility tomography
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reconstruction code PyHST, has proven to be efficient and well-adapted to strongly

reduce the required dose and the number of projections in medical tomography.

Introduction

During the past two decades X-ray Phase Contrast Imaging (PCI) has shown a

remarkable enhancement of image contrast and sensitivity for soft tissue.

Reducing the deposited dose during PCI-CT is a crucial step towards an eventual

clinical implementation of the technique.

A solution to this problem consists in applying iterative CT reconstruction

schemes with a-priori knowledge of the solution. The signals occurring in Nature,

when cleaned from noise, present most of the time an intrinsic sparsity when

expressed in the proper basis. An image is intrinsically sparse when it can be

approximated as a linear combination of a small number n of basis functions, with

n=N, where N is the image dimensionality. Piece-wise constant images when

they are expressed by their gradient are examples of sparse signal: they have non-

zero signal only at the borders of flat regions. For piece-wise constant images one

can apply very efficient methods based on minimization of a convex functional,

called also convex objective function, which contains a total variation penalty

term. For other classes of images, such as medical images, one has to choose

different solutions which are adapted to the intrinsic sparsity of the case under

study (depending on the specific organ and imaging modality). There are mainly

two ways: either the sparsity structure is a-priori known and an appropriate basis

of functions can be built from the beginning, or it must be automatically learned

from a set with the dictionary learning technique [1]. This method consists in

building an over-complete basis of functions, over an m|m domain, such that,

taken an m|m patch from the studied image, the patch can be approximated

with good precision as a linear combination of a small number Nvvm2 of basis

functions. The rationale for using an over-complete basis is that by increasing the

basis dimension one increases the number of different patterns that can be fitted

using just one or few basis functions. We can think as an example of images

containing isolated and weakly curved lines: in this case we could use a basis

where each function represents a line with a given intercept and slope, but other

functions could be further introduced to fit other shapes. When we fit, patch by

patch, a noisy image using the appropriate basis, the features of the original

images will be accurately fitted with a small number of components. The noise

instead has in general no intrinsic sparsity, and if it happens to have one, it is with

high probability very different from the sparsity structure of the original images.

Therefore the noise will be reproduced only if we allow a large number of

components (the patch basis is over-complete so it can represent the noise) while

it will be effectively filtered out if we approximate the noisy image with a small

number of components.
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The dictionary learning technique has recently been applied to tomography

reconstruction using the Orthogonal Matching Pursuit (OMP) denoising

procedure [2]. This procedure consists in obtaining first an over-complete basis of

functions and then in least-square fitting every patch of the image using at most

Nomp components selected from this basis. The components are heuristically

selected choosing, each time, the one having the maximum overlap with the

remaining error. This optimization method cannot be implemented as a convex

objective function optimization problem, because the linear combination of two

candidate solutions can have more than Nomp components. In other words, the

optimization domain is not convex.

In this paper we present an advanced formalism which implements overlapping

patches into a new convex functional that we describe in the section Materials and

Methods. For the solution of our functional minimization problem we have

applied the recently developed tools taken from the field of convex optimization

[3]. Results on both synthetic and experimental data are compared to the state of

the art reconstruction methods. We compared the obtained images to Equally

Sloped Tomography (EST) [4], TV minimization [5]. Moreover we applied

convex optimisation also to another formulation, for the dictionary learning

technique, of the objective function, which has been applied, using the non-

convex OMP procedure, by Xu et al. [1].

Methods

Dictionary Learning

In this section we introduce first the decomposition of an image into non-

overlapping patches and the related objective function for denoising. Then we

introduce our original formalism which ensures, using overlapping patches, a

smooth transition at the patches borders, and finally we apply this formalism to

CT reconstruction. In order to make clearer the text we added the following

sentences in the introduction of the method: In this approach an iterative loop

between the sinogram space and the real space is used. A fidelity term is imposed

in the sinogram space while a sparsity inducing term is introduced in the real

space.

We denote by 1p the indicator function of patch p, which is equal to 1 over the

patch support (typically an m*m square) and is zero otherwhere. For non-

overlapping patches, covering the whole domain, we have:X
p

1p(i)~1 Vi: ð1Þ

where i denotes the pixel position and can be thought as a two-dimensional

vector. We are looking for the ideal solution x that we express by the vector, w, of

its coefficients in the basis of patch functions:

xi~
X

p

1p(i)
X

k

wkpQk(i{rp): ð2Þ
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where the set Qkf g is an over-complete basis of functions over the patch support;

rp is the closest to the origin corner of the patch p, and wkp is the component k,p
of vector w which multiplies the basis function Qk in the patch p. The denoising

problem, given an image y, consists in finding the minimum of a functional

F(w)~f (w)zg(w) which is sum of two terms. The term f (w)~ y{xk k2
2 links the

solution to the the data y. The other term, g(w), contains the a-priori knowledge

about the solution. This way of breaking the functional in two terms has his roots

in the Bayesian theorem. From a probabilistic point of view the denoising

problem consists in finding, given a noisy image y of an object, the most probable

object x that can generate that image. We represent the object x through the

patches coefficients w. The Bayes theorem, applied to denoising, states that the

conditional probability of w being the exact object given a measurement y, is the

product of the probability of y being the measure given the exact solution w times

the a-priori probability of w.

Assuming gaussian noise, the conditional probability of y being the measure

given the exact solution w is exp { y{xk k2
2= 2s2ð Þ

� �
, where x is expressed through

the patches coefficients w by equation 2. The exact a-priori probability of w is

unknown but we approximate it as exp {g(w)= 2s2ð Þð Þ. This function expresses

our a-priori knowledge that a non sparse solution having a high value of the L1

penalization term g(w)~b wk k1 (which is a sparsity-inducing term [6]) has low

probability. The most probable solution w? is obtained by finding the F(w)

minimum:

w?~ argminw(f (w)zg(w));

f (w)~ y{xk k2
2; g(w)~b wk k1:

ð3Þ

The solution can be obtained by using the iterative shrinkage thresholding

algorithm [3] (ISTA):

wnz1~Tbc(wn{c+f (wn)); w?~w? ð4Þ

where Ta is the shrinkage operator defined as

Ta(w)~
w
wk k2

max( wk k2{a,0) ð5Þ

and c is a positive number lesser than the inverse of the Lipschitz condition

number L:

c[�0,1=L�: ð6Þ

The Lipschitz number L is such that:

+f (w2){+f (w1)k k2ƒL w2{w1k k2; Vw1,w2: ð7Þ
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The ISTA algorithm can be accelerated by the Fast Iterative Shrinkage

Thresholding [7](FISTA) method.

In its non-overlapping version, the image denoising with patches is able to

detect features that are within the field of the patch: if a line crosses the central

region of a patch, it will be detected if the basis of functions has been trained to

detect such lines. But in the situation where a line intersects only one point in a

corner of the patch square, the signal of this point is indistinguishable from that of

a noisy point, no matter the dictionary training.

For this reason the patches denoising technique is often used with overlapping

patches using post-process averaging [8]. In this case the minimization problem is

solved for each patch separately first, and then the averaging is performed in the

overlapped regions.

In this study we do not follow this procedure but we add an overlap term into

the objective function. We choose a system of patches which covers the whole

domain, and we allow for overlapping. In our implementation of the algorithm

the set of all patches is formed by a set of non-overlapping m*m square patches

covering the image plus the translated copies that we obtain by (ixs,iys)
translational vectors, where ix,iy,s are positive integers, s is a constant step size

selected by the user and ix,iyvm=s.
In the case of overlapping patches the sum of all indicator functions is greater

or equal to one: X
p

1p(i)§1; Vi: ð8Þ

We define the core indicator functions 1c
p, which indicate the core of the

patches, and make a non-overlapping covering:

1c
p(i)ƒ1p(i);

X
1c

p(i)~1; Vi: ð9Þ

For our implementation, when the translational step size s is equal to one, the

core region is a pixel at the center of the patch. The core region gets larger when

the step size increases.

For a given point i, 1c
p(i) indicates which patch p has its center Cp closest to

point i: X
p

1c
p(i) i{Cp

�� ��
1
ƒ i{Cp’
�� ��

1
; Vp’,i: ð10Þ

The solution x is composed as a function of w using the central part of the

patches as indicated by the functions 1c
p:

xi(w)~
X

p

1c
p(i)
X

k

wkpQk(i{rp): ð11Þ
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Now we introduce the P operator which is the projection operator, for

tomography reconstruction, and is the identity for image denoising. The

functional F(w) whose minimum gives the optimal solution is written, for both

applications, as:

F(w) ~ f (w)zg(w); g(w)~b wk k1;

f (w) ~ y{P(x(w))k k2
2z

r
X

pi

1p(i) xi(w){
X

k

wkpQk(i{rp)

 !2

:

ð12Þ

where the r factor weights a similarity-inducing term which pushes all the

overlapping patches touching a point i, towards the value xi(w) of the global

solution x(w) in that point. For future reference we call y{P(x(w))k k2
2 the fidelity

term. The factor r has also the role of a regularisation parameter: as an example

we consider the case where the set of overlapping patches is generated with a

translational step s~1. In this case the core indicator function has a 1*1 pixel

domain and, without the r term, we could get a perfect fit, for an arbitrary image,

by using for each patch an arbitrary component chosen randomly amongst those

which are not zero at the core pixel. The solution is found with the FISTA

method, using the gradient of f (w) which is easily written as:

Lf (w)

Lwkp
~
X

i

2Qk(i{rp)1c
p(i) PT P(x(w))-yð Þ

� �
i

8>><
>>: z

r
X

p’

1p’(i) xi(w){
X

k’

wk’p’Qk’(i{rp’)

 !)
z

X
i

2Qk(i{rp)r1p(i)
X

k’

wk’pQk’(i{rp){xi(w)

 !
ð13Þ

where PT is the adjoint operator of P, called back-projection operator in the case

of tomography, which is again the identity for image denoising.

Other iterative methods

Floating Solution Functional

Xu et al. [1] have recently used an objective function which differs from ours for

the fact that their global solution x is a free variable, while ours is a function of

w:x(w). Their objective function is
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F(w,x) ~ f (w,x)zg(w);

f (w,x) ~ y{P(x)k k2
2z

r
X

pi

1p(i) xi{
X

k

wkpQk(i{rp)

 !2

:

ð14Þ

Xu et al. used the non-convex OMP procedure for minimisation of the

functional. In this paper we will also compare their functional to our, using for

both functionals the FISTA optimization.

Total Variation penalisation

In the total variation (TV) method [5] one minimises a convex functional given

by the sum of the fidelity term y{P(x)k k2
2 and of a gradient-sparsity inducing

term bTV TV(x), where bTV is a regularisation parameter and TV gives the

isotropic total variation of the image x:

TV(x)~
X
pixels

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(L1x)2z(L2x)2

q
: ð15Þ

Equally Sloped Tomography

Equally Sloped Tomography (EST) is a Fourier-based iterative reconstruction

method that iterates back and forth between real and Fourier space, utilizing an

algebraically exact Pseudo-Polar fast Fourier transform [4, 9]. Measured

projections (in this case obtained by the radon transform) are inserted into the

Fourier space thanks to the fractional Fourier transform (FrFFT). Then the

Pseudo-Polar Fast Fourier transform (PPFFT) and its adjoint are utilized to

transform the images back and forth between Fourier and object space. During

each iteration, physical constraints including sample boundary and the positivity

of the coefficient are enforced in real space, while the measured data are applied in

the Fourier space. The algorithm, monitored by an error metric, is guided towards

the minimum that is consistent with the experimental data. To prevent any

human intervention, the algorithm is automatically terminated when no further

improvement can be made. In this case the number of iterations was 50 for a good

convergence of the algorithm using 80 projections.

The EST algorithm has proved to allow a drastic reduction of the number of

projections for conventional CT [9] and phase contrast imaging [4]. Fahimian et

al. [9] demonstrated that the image quality and contrast obtained with EST is

comparable with other iterative reconstruction schemes such as TV minimization

or expected minimization statistical reconstruction with a faster convergence.

Dictionary Learning Based Low Dose Phase Contrast Computed Tomography
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Results

Numerical Experiment

According to the Shannon-Nyquist criterion, to achieve a proper reconstruction

in conventional CT, the number of angular projections N required is determined

by

N§

pD
2P

where D is the thickness of the sample and P the detector pixel size. One scenario

for reducing the deposited dose during a CT scan is to reduce the number of

projections.

To investigate the potential of the Dictionary Learning method on synthetic

data, we use the standard 512|512 pixel Lena image as phantom. The dictionary

is learnt from a different image that the one to reconstruct. In this case we used

the boy image showed in fig. 1 a). The dictionary is shown in fig. 1b. Note that we

intentionally did not use the standard Shepp-Logan phantom in this study as it is

a piece-wise constant and therefore it does not reflect the complexity of a phase

contrast medical image.

The sinogram is obtained by projecting the image at 80 angles between 0 and

180 degrees using the radon transform.

We have optimized the regularisation parameters maximizing the following

improvement factor, which quantifies the improvement obtained with the TV or

patches methods, with respect to a simple FBP reconstruction:

QTV ,patches~ 1{S(xfbp,x̂)
� �

= 1{S(xTV ,patches,x̂)
� �

ð16Þ

where x̂ is the exact solution (unnoised Lena) and xfbp,TV ,patches represents the

reconstruction result from one of the three methods, and where S is the Structural

SIMilarity index [10] which is equal to 1 when the images are identical. In fig. 2

we show the quality factor dependency versus the regularisation parameter b for

our overlapping patches method (squares), and versus bTV (dots) for the total

variation method. For our method we have used a similarity-inducing term (r)

value fixed to 1000, the patches basis shown in fig. 1 and a step size of 3.

We have performed this reconstruction also with the floating solution function.

We have used the same optimisation method, FISTA, used for our functional. We

optimized b and r values by scanning over a 2D grid and comparing to the

ground-truth. If the ground truth is not available, statistical methods such as the

discrepancy principle [11] or generalized cross-validation [12] can be used to

select the optimal regularization parameter in future application of the method.

We obtained no significant difference between the results obtained with our

functional and the floating solution: the SSIM is the same up to the third

significant digit, and no significant difference can be detected in the final images.

The convergence rate of FISTA, shown for both functional (our method (blue)

and [1] (red)) in fig. 3 is instead much faster using our functional form.

Dictionary Learning Based Low Dose Phase Contrast Computed Tomography
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The comparison of the results obtained by the different reconstruction

algorithms is shown in fig. 4. We present the reconstruction results with four

methods: filtered backprojection a), EST [9] b), the total variation penalisation [5]

c) and our overlapping patches method d). These results have to be compared to

the original cropped image shown in subfigure e). In this figure it is clear that the

FBP images suffer a lot of streaking artefacts due to the number of projections well

below the one required by the Shannon-Nyquist sampling theorem. The EST

reconstruction removes some of these artefacts with the price of a blurred image

with weak spatial resolution. Despite the fact that our technique gives a Q factor

which is only slightly better than the one from the TV method, the obtained result

looks much better by human eye inspection. The TV result shows a strong and

irregular skin tessellation of those regions which have an illumination gradient.

Fig. 1. The training image used in our work (a) and the dictionary elements obtained by using the K-
SVD algorithm (b). This basis is then used for the numerical experiment.

doi:10.1371/journal.pone.0114325.g001

Fig. 2. The quality improvement factor Q versus the regularisation parameter b (squares) for our
overlapping patches method, and versus bTV (dots) for the total variation method. The used phantom is
the 512|512 image of Lena, the reconstruction is performed using only 80 noised projections. For our method
we have used a r value fixed to 1000, the patches basis shown in figure 1 and a step size of 3.

doi:10.1371/journal.pone.0114325.g002
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The hat feathers region (second row) is better resolved with the DL method. They

look natural in the patches result, while the TV result produces strong grey levels

distorsions which vary irregularly along the feathers. EST results show a really

good preservation of the tiny structure of the feathers but is noisier. The hat itself

looks well preserved in the patches result while, in the TV image, the hat borders

have irregular shapes. The SSIM values with the original images are reported for

each subfigure. These values confirm the observation. Note that the visual

difference between TV and DL seems greater than their SSIM values.

1000 iterations were used for the DL method. The computation time is 27 s on

a Tesla k20m gnu card using the open source PyHST code [13]. On the same GPU

card the computation time for the FBP is less than 1 s and 27 s for the TV method

using the same number of iterations. The EST method has not yet been

implemented on GPU and is therefore much slower (5 min).

Another strategy to further reduce the dose in tomography one can acquire

with fewer number of photons onto the detector. To simulate this lack of photons

we added a Poisson noise onto the sinogram data with a standard deviation
ffiffiffi
l
p

equal to 0:3% of the sinogram value. We show in fig. 5 the reconstruction results

for the different algorithms.

The same conclusions for the not noisy case test can be drawn for the additive

Poisson Noise: the dictionary learning method gives the best results. The FBP

Fig. 3. The objective functions F(w) and F(w,x) (floating solution form) versus iteration number for
FISTA optimisation.

doi:10.1371/journal.pone.0114325.g003
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method is more sensitive to additive noise. With additive noise, the TV method

shows a stronger and irregular skin tessellation of the skin surface of Lena.

Phase Contrast Tomography

In this section we apply our method to medical tomography of a human sample

imaged using X-ray Phase Contrat Imaging (PCI).

PCI has shown an enhancement of soft tissue visualization in comparison to

conventional imaging modalities [14]. It employs the dual property of X-rays of

being simultaneously absorbed and refracted while passing through tissue. Among

all the phase contrast techniques, we chose to test our method on analyzer based

PCI [15, 16] because of the high sensitivity of the modality. Moreover, to the best

of our knowledge, it is the only modality that showed results for investigating

large and highly absorbing biological tissues (i.e. full human breasts) at a clinically

compatible dose [4].

In the analyzer based PCI technique, the projection data contain a signal which

is proportional to the gradient of the X-ray phase in one direction (i.e. the

direction perpendicular to the plane formed by the incoming and diffracted X-

rays on a perfect Bragg crystal which is used for analyzing the radiation passing

through the sample). More details on the principles and technical aspects of PCI

are available in [14]. Briefly the analyzer based imaging approach produces a

Fig. 4. Results from the numerical experiment on the Lena image 512|512. The sinogram is obtained by
projecting the image at 80 angles between 0 and 180 degree. A comparison of the images reconstructed with
the FBP (a), the EST (b), the TV algorithm (c), and our DL method (d) is shown. The final image (e) is the
same cropped zone in the original image for the sake of comparison (e).

doi:10.1371/journal.pone.0114325.g004
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mixed signal which originates from both X-ray absorption and refraction (i.e.

phase derivative) [17]. The signal recorded by the detector is therefore very close

to those recorded with other PCI techniques such as Grating Interferometry (GI)

[18]or Edge Illumination (EI) [19]. All these methods are differential PCI

methods and produce similar signals. Therefore the proposed approach can in

principle be generalized.

When the object is rotated around an axis (Z-axis, for instance), this signal

contains contributions from the X and Y gradient components, where X and Y

axes co-rotate with the sample. The two components are de-phased by a rotation

angle of 90 degrees and can be reconstructed separately by multiplying before-

hand the sinogram with the cosine and sine of the rotation angle. We apply our

formalism considering that the reconstructed and learning images are vectorial

objects: the value associated with a pixel is not a scalar but a two-component

vector.

The studied sample is a 7 cm human breast imaged with a pixel size of 100 mm.

The experiment was conducted at the biomedical beam line of the European

Synchrotron Radiation Facility (ESRF). The sample was a human breast

mastectomy specimen. The study was performed in accordance with the

Declaration of Helsinki. A monochromatic X-ray beam with energy of 60 keV was

used.

Fig. 5. Results from the numerical experiment on the Lena image 512|512 with additive Poisson noise.
The sinogram is obtained by projecting the image at 80 angles between 0 and 180 degree, and adding a
Poisson noise with a standard deviation equal to 0.3% of the maximal sinogram value. A comparison of the
images reconstructed with the FBP (a), the EST (b), the TV algorithm (c), and our DL method (d) is shown.
The final image (e) is the same cropped zone in the original image for the sake of comparison (e).

doi:10.1371/journal.pone.0114325.g005
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The training set is obtained from another breast sample imaged with the same

technique but with high quality reconstruction. We consider a slice image for

which the phase retrieval has been performed [20]. Then we apply a Sobel filter to

extract the two derivative components and use the KSVD algorithm [21]. In this

experiment 5 iterations were used to obtain the 100 atoms

Fig. 6 shows the patches basis functions that we use to fit both components at

the same time. The patches size is 7|7 pixels and each basis function is displayed

as a 14|7 rectangle whose upper 7|7 part is the X component and the lower one

in the Y component.

In a previous work [20], it was demonstrated that the CT reconstruction of the

refractive index obtained by first reconstructing the CT gradient field images and

then applying a phase retrieval procedure, yields a better image quality than

performing phase retrieval first and then reconstruction. The method is more

robust with respect to noise, which may be a critical aspect in low dose

tomography. In this case, the noise level may be such as it covers the information

in the region where one gradient component of the refractive index has values

close to zero. On the contrary, in those same regions the other component of the

gradient of the refractive index has high values and it is thus less sensitive to noise.

As a result, the information which is lost in one direction may be somehow

retrieved by using the signal contained in the gradient image corresponding to the

perpendicular direction. Additionally, when we use the vectorial approach, the

information for the two reconstructed gradient components are intrinsically

correlated by the dictionary and thus it increases the robustness of the method.

The result of reconstruction obtained by using filtered back projection

algorithm with 1000 projections is shown in fig. 7a. In this image, radiologists

could easily identify the skin, fat and glandular tissue. Fig. 7 is the reconstruction

of a 765|765 pixel slice, using only 200 projections over the 1000 available. The

upper left square is a zoom in the region marked in subfigure 7. The used

projections cover, with constant spacing, a 180 degree range. The right column is

the reconstruction with our method for X and Y components, while the left

column (subfigure 7c) and d) is reconstructed with the standard FBP using all

1000 available projections. Using our method, we can still generate a high quality

image with only one fifth of projections which would otherwise be necessary to

generate a high quality reconstruction with the standard FBP method. Visually,

the difference between the FBP results obtained with the full data set and our

method with a five-fold reduction of the data is barely noticeable. The different

borders of structures like skin layers, fatty tissues, and collagen strands are easily

identified. The obtained results are very promising and a systematic evaluation for

clinical application is under-way. The radiation dose absorbed by the sample

during 200 projections is comparable to that of a standard clinical dual view (2D)

mammography (3.5 mGy).

For the sake of comparison we report in fig. 8 the reconstruction obtained

using the same number of projections using FBP (subfigure b,g), EST(subfigure

d,i) and our method(subfigure f and k) using 200 projections in comparison with

the full dose image (subfigure f and k). We report also the results obtaining
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penalizing the L1 of the reconstructed result(subfigure c and h). Our signal is a

derivative, therefore penalizing the derivative modulus is similar to applying the

TV method to the non derived object. The top inset is in a zone close to the skin

with a blood vessel. The bottom insets are zoom in a zone with micro-

calcifications. Note that micro-calcifications are of high interest for medical

diagnoses because it may help identifying malignant masses. We report the ssim

values obtained by comparing the images with the FBP reconstruction with the

full set of projections

In this figure it is clear that the overall image quality of the TV minimization is

poor as well as the FBP with 200 images. The image quality of the EST 200 is lower

than DL especially in terms of spatial resolution and sharpness. The EST image is

indeed more blurred and the DL looks more similar the original full dose image.

The DL image is indeed sharper with a clear delineation of the small micro-

calcifications or blood vessel. The EST reconstructed image does not show the

little micro-calcification in the middle of the image. Moreover on the top inset

small round structures disappeared with the EST reconstruction whilst they are

preserved in the DL image. The SSIM values confirm the visual inspection.

Conclusion

For a decade Iterative CT reconstruction algorithms have demonstrated a possible

dose reduction in conventional CT data. To the best of our knowledge, few works

dealt with applying those algorithms to phase contrast tomography [4, 22, 23].

We have presented a new convex functional which implements in a

mathematically pure form the concept of overlapping-patches-averaging, which

was used so-far with a non-convex formalism. The resulting algorithm is efficient

and well adapted to strongly reduce the noise in a natural image. A comparison

with other iterative algorithms has been carried out on the Lena image showing

Fig. 6. The vectorial basis of patches (left) learnt from a high quality tomographic reconstruction of the
phase image of a human breast(right). In each atom of the dictionary the upper 7|7 part is the X
component while the lower part is the Y component.

doi:10.1371/journal.pone.0114325.g006
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that our method outperforms TV minimization and Equally Sloped Tomography.

The method gives the best results with few projections and is less sensitive to

additional noise. Compared to the state of the art dictionary learning method [1]

our proposed approach converges faster to an equivalent image quality.

The method was applied to a medical diagnostic case by considering phase

contrast tomographic data of a whole cancer-bearing human breast acquired with

phase contrast imaging. A vectorial approach consisting of reconstructing

gradients of the index of refraction was adopted. We demonstrated that thanks to

this approach it is possible to reduce the deposited dose in breast CT by a factor of

5 compared to the standard filtered backprojection while keeping a comparable

image quality.

Although we used this specific example as a proof of principle in this study, the

method we developed and described can be easily applied to other tomography

fields where a limited dose or a rapid acquisition time is a requirement. The

Fig. 7. Reconstruction of a computed tomographic slice of the breast. The images on the first and
second row are the X and Y phase gradients, respectively. In the left column the results of the reconstruction
obtained with the FBP method using the full set of data are reported. In the right column the results of our
method using one projection over five are shown. For these reconstructions we set b~3 � 10{6 and r~10.

doi:10.1371/journal.pone.0114325.g007
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numerical results have been generated with PyHST [13, 24], the ESRF tomography

reconstruction code which uses the GPU implementation of the presented

methods.
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The study was performed in accordance with the Declaration of Helsinki. IRB-

approval was granted by the ethics committee of the Ludwig-Maximilians

University. Written informed consent was gathered before enrollment within the

study

Fig. 8. Comparison of the tomographic image reconstructions of the breast obtained with the FBP (b and g), the TV minimization (c and h), the
EST (d and i), and our method (e and j) using 200 projections over the 1000 available. The right images (f and k) are the images computed with the FBP
using the entire set of projections. The top image (a) is the result obtained by the FBP using the entire set of projections. It is reported for showing the
location of the insets. The SSIM values are reported based on the FBP full dose image.

doi:10.1371/journal.pone.0114325.g008
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