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Abstract

Alterations in bone remodeling are a major public health issue, as therapeutic

options for widespread bone disorders such as osteoporosis and tumor-induced

osteolysis are still limited. Therefore, a detailed understanding of the regulatory

mechanism governing bone cell differentiation in health and disease are of utmost

clinical importance. Here we report a novel function of carcinoembryonic antigen-

related cell adhesion molecule 1 (CEACAM1), a member of the immunoglobulin

superfamily involved in inflammation and tumorigenesis, in the physiologic

regulation of bone remodeling. Assessing the expression of all members of the

murine Ceacam family in bone tissue and marrow, we found CEACAM1 and

CEACAM10 to be differentially expressed in both bone-forming osteoblasts and

bone-resorbing osteoclasts. While Ceacam10-deficient mice displayed no

alteration in structural bone parameters, static histomorphometry demonstrated a

reduced trabecular bone mass in mice lacking CEACAM1. Furthermore, cellular

and dynamic histomorphometry revealed an increased osteoclast formation in

Ceacam1-deficient mice, while osteoblast parameters and the bone formation rate

remained unchanged. In line with these findings, we detected accelerated

osteoclastogenesis in Ceacam1-deficient bone marrow cells, while osteoblast

differentiation, as determined by mineralization and alkaline phosphatase assays,
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was not affected. Therefore, our results provide in vivo and in vitro evidence for a

physiologic role of CEACAM1 in the regulation of osteoclastogenesis.

Introduction

In the healthy organism, bone remodeling is performed by the balanced activity of

bone-forming osteoblasts and bone-resorbing osteoclasts, assuring the constant

renewal of bone tissue and maintenance of adequate bone stability [1, 2]. In

osteoporosis, the most prevalent bone disease worldwide, a relative increase of

bone resorption over bone formation occurs, thereby resulting in bone loss and a

subsequent increase in fracture risk [3]. As excessive osteoclastogenesis is

detrimental not only in osteoporosis, but also tumor-induced osteolysis and

Paget’s disease of bone [4, 5], the molecular understanding of the processes

regulating osteoclast formation and function is of paramount clinical importance.

Osteoclasts represent highly specialized, multinuclear giant cells, which are

formed by the fusion of hematopoietic precursor cells from the monocyte/

macrophages lineage. The process of osteoclast formation (osteoclastogenesis)

depends on two essential cytokines, macrophage colony-stimulating factor (M-

CSF) [6, 7] and receptor activator of nuclear factor kappa-B ligand (RANKL)

[8, 9], which are produced by bone marrow cells and osteoblasts, respectively.

While M-CSF is required for the early differentiation of monocytes and

macrophages, RANKL is essential for the subsequent cellular fusion to yield

mature and functional osteoclasts. This is best demonstrated by mice lacking

RANKL which display osteopetrosis, a condition characterized by the absence of

functional osteoclasts and resulting in a marked increase in bone mass with

consecutive displacement of bone marrow [10, 11]. Through binding to the

receptor activator of nuclear factor kB (RANK), expressed on osteoclasts and their

precursors, RANKL activates two key transcription factors, nuclear factor kappa-

light-chain-enhancer of activated B-cells (NF-kB) and cytoplasmic calcineurin/

nuclear factor of activated t cells (NFATC1), which have been demonstrated to be

of crucial importance for osteoclastogenesis [12, 13] Once fully differentiated,

osteoclasts express Acp5 (Tartrate-resistant acid phosphatase) and Calcr

(Calcitonin receptor) and attach to the bone matrix, which is subsequently

resorbed by the secretion of hydrochloric acid and matrix-degrading peptidases

[14].

While many systemic and local factors, including endocrine organs, the central

nervous system, and mechanical load bearing, have been identified as pivotal

regulators of bone turnover [15, 16], recent research has unraveled an

unanticipated role of cell adhesion molecules in the regulation of bone cell

differentiation and function. For example, vascular cellular adhesion molecule 1,

which is expressed on myeloma cells and interacts with integrins mediating

osteoclast attachment to bone surface, was shown to tether osteoclast progenitors
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to accelerate their maturation, thus facilitating tumor-induced osteolysis [17, 18].

Furthermore, it could be demonstrated that the intercellular adhesion molecule-1

provides a high affinity adhesion between osteoblast and osteoclast precursors,

thereby enhancing the binding of Rank to membrane-bound Rankl on osteoblasts

[19]. Another group of cell-to-cell adhesion molecules that has raised great

scientific and clinical interest in recent years are carcinoembryonic antigen-related

cell adhesion molecules (CEACAMs), representing a subdivision of the

immunoglobulin-related glycoproteins. Apart from functioning as receptors for

host-specific bacteria and viruses, CEACAMs have been shown to regulate tissue

architecture, cell-to-cell recognition, tumor proliferation, neovascularization and

metastasis [20]. However, despite the extensive characterization of CEACAMs in

pathologic conditions such as inflammation and cancer, their role in bone

remodeling remained unclear to date.

In the present study, we found Ceacam1 and Ceacam10 to be expressed in bone

marrow and tissue, including osteoblasts and osteoclast precursors. While no

alterations in bone remodeling were detected in Ceacam10-deficient mice, an

osteoporotic bone phenotype due to increased osteoclastogenesis was observed in

mice lacking Ceacam1. Ex vivo assays demonstrated an increased osteoclast

formation in bone marrow cultures derived from Ceacam1-deficient mice, which

was accompanied by an elevated expression of Nfatc1, the master transcription

factor governing osteoclastogenesis. Taken together, these findings not only

provide in vivo and in vitro evidence for a role of CEACAM1 in the regulation of

bone remodeling, they also raise the possibility that pharmacologic targeting of

CEACAM1 may be an alternative approach to treat skeletal disorders caused by

excessive bone resorption.

Materials and Methods

1. Animals

Ceacam1- and Ceacam10-deficient animals were generated and genotyped as

described previously [21, 22, 23]. All animal experiments were approved by the

local animal care committee.

2. Skeletal analysis

All mice received dual calcein injections for the determination of the bone

formation rate at 9 and 7 days before sacrifice. The lumbar vertebrae were

dehydrated and embedded non-decalcified into methyl methacrylate for

sectioning. 4 mm-thin sections were stained with toluidine blue or von Kossa/van

Gieson procedure as described [24]. Static and cellular histomorphometry was

carried out using the OsteoMeasure system (Osteometrics, Decatur, USA)

following the guidelines of the American Society of Bone and Mineral Research.

Dynamic histomorphometry for the determination of the bone formation rate was

performed on non-stained 12 mm-sections. The cortical thickness and the mean
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diameter of femora were quantified by mCT scanning using a mCT 40 (Scanco

Medical).

3. Primary osteoblasts

Primary osteoblasts were isolated from bone marrow cells derived from 12 to 18-

week-old mice as described [25]. At 80% confluency, cells were differentiated by

adding b-glycerophosphate and ascorbic acid. For staining with alizarin red, cells

were fixed with 90% ethanol, washed twice with water and incubated with 40 mM

alizarin red staining solution (pH 4.2). After washing, the stained cultures were

incubated with 10% acetic acid to quantify matrix mineralization. After removing

the cellular remnants by centrifugation, the supernatant was neutralized with

ammonium hydroxide, and absorption was determined at 405 nm.

4. Primary osteoclasts

For the assessment of osteoclastogenesis, the bone marrow from 12 to 18-week-

old mice was flushed out of the femora as described previously [25]. At day 2 of

differentiation, M-CSF (Peprotech) was added, followed by RANKL (Peprotech)

at day 4.

For TRAP-activity staining, cells were washed with PBS and then fixed in cold

methanol. After two washing steps with distilled water, the fixed cells were dried

before the TRAP-specific substrate naphthol AS-MX phosphate (Sigma-Aldrich)

was added. For the quantification of osteoclast formation, the number of TRAP-

positive, multinucleated (.3 nuclei/cell) cells per well was determined.

5. RAW264.7 cell line

RAW264.7 cells were obtained from ATCC (Wesel, Germany) and cultured in

DMEM containing 10% fetal calf serum. For induction of osteoclastogenesis cells

were cultured with RANKL for 5 days.

6. Expression analysis

Total RNA was isolated from indicated tissues, whole and marrow-flushed bones,

or primary bone cells using the RNeasy Minikit (QIAGEN). Subsequently, DNase

digestion was performed according to the manufacturer’s instructions.

Concentration and quality of extracted RNA was measured using an ND-1000

system (NanoDrop Technology). For cDNA synthesis, 0,5–1 mg of RNA was

reverse transcribed using cAMV First-Strand Synthesis Kit (Invitrogen) according

to the manufacturer’s instructions. For semi-quantitative RT-PCR analysis, the

following primers were used to amplify fragments of Ceacam1a (59-TCAGCAC-

ATCTCCACAAAGG-39 and 59-CTCTCTGCCGCTGTATGCTT-39), Ceacam1/2

(59-AGCGTCAGGAGGAGCAACTCAA-39 and 59-AGAAGAAGGGGCTG-

AAGTTGGC-39), Ceacam2 (59-GCTATGAAAAGCAGGGCAGA-39 and 59-

TGAAATTGTCCAGTCAGGACC-39), Ceacam9 (59-CTTAACCTGCTGG-
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AATGCACCCGCCG-39 and 59-CAGCTTCTGTTACCGCGGTGCTGTCT-39),

Ceacam10 (59-GCTAGATCAAAACTTTGAAATTACTCC-39 and 59-ACAGGC-

ATTAGGGTATGATCG-39), Ceacam11 (59-CACAGGAGTTAAACCACTC-

AAGAA-39 and 59-AAACCTGCAGGAGAATATTGTCA-39), Ceacam12 (59-

AAGGAGGTAAACTGCTCAAGAT-39 and 59-AGTTGAGAAGTAGGATG-

CTTTC-39), Ceacam13 (59-GGAGCTGCACCGTTCAAGT-39 and 59-TGCGTC-

TTTCTTCTTGACATTG-39), Ceacam14 (59-CCTGGTTCACAGGAGCTAGAGT-

39 and 59-GGCATCTGAAAGACCCACAA-39), Ceacam15 (59-CCTCTAAAGAA-

ATGCGCTTCTC-39 and 59-GACACGCAGGTGAGAATTGA-39), Ceacam16 (59-

TCCTGGTGGCCAGTTACATT-39 and 59-GCTGCTACAGACGAGACGAA-39),

Ceacam17 (59AAACGGCCGATAGACAACGA-39 and 59-GAACGGGTCACT-

ATGGAAGG-39), Ceacam18 (59-TGAAGTGGACACTAGCAACG-39 and 59-

TGCTTAGGAAGGAGCCGTTA-39), Ceacam19 (59CACATCGAGATGATCCCA-

GA-39 and 59-TCCCAATGATGATGGCTACC-39), Ceacam20 A1-B1-domain (59-

CAAGCTCACCCTCACAGTCA-39 and 59-AAGTTCACGGTGTTGCCTTC-39),

Ceacam20 B2-cytopl. domain 5 (59-GATCTGCCTCTGTCCTGGTC-39 and 59-

TGGGGTGATCTTGCAGTAAA-39), Psg17 (59-GGTACAAAGGGGTGGCAA-39

and 59- CAAGCTTGTTAAACACAACTGCT-39), Psg30 (59-CTGCACAAATA-

ACCATTGAATTAGA-39 and 59-CTTGACTTGCAAAGGGTGATAA-39), Psg31

(59-CATCCCTTTCTACTTGCTACCAA-39 and 59-GCTCAGATTTCTCCTCT-

GCAATT-39) and b–actin (59-ATG GAT GAC GAT ATC GCT-39 and 59-

ATGAGGTAGTCTGTCAGGT-39) according to the study by Zebauser et al. [26].

Due to a considerable homology Ceacam1a and Ceacam2 were specifically

amplified in addition to Ceacam1/2 in order to detect expression of Ceacam1.

Quantitative RT-PCR expression analysis was performed using StepOnePlus

predesigned TaqMan gene expression assays (Applied Biosystems). b–actin or

Gapdh expression was used as an internal control, as indicated. For western

blotting CEACAM1 protein was detected using the polyclonal rabbit anti-

CEACAM1 antiserum ‘‘P1’’ after transfer of proteins from an SDS-page onto a

PVDF membrane [27].

7. Serum analysis

Serum concentrations of bone-specific collagen degradation products (Crosslaps)

and OPG were quantified using antibody-based detection kits (#AC-06F1,

Immunodiagnostic Systems; #MOP00, R&D Systems; #MTR00, R&D Systems).

Mice were fasted for 4 h prior to blood sampling.

8. Immunofluorescence

For visualization of the actin cytoskeleton, cells were fixed in Formafix

(Pathomed, Germany), followed by permeabilization with ice-cold acetone and

rinses in phosphate buffered saline. Subsequently, cells were stained with

fluorescein-labelled phalloidin and 49,6-diamidin-2-phenylindol (DAPI; both

Molecular Probes, Germany) at room temperature in the dark (1:300 in
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phosphate buffered saline). After washes in phosphate buffered saline, slides were

mounted with Vectashield mounting media (Vector Labs, United Kingdom).

Pictures were taken on a Leica DM5000B fluorescent microscope (Leica,

Germany).

9. Statistical analysis

All data were analyzed by two-tailed Student’s t test using Excel software. All data

are reported as mean ¡ SD. p,0.05 was considered statistically significant.

Results

To elucidate a potential role of CEACAMs in bone remodeling, we monitored the

expression of all genes of the CEACAM family in whole bone, bone marrow and

marrow-flushed bone. While the expression of most members was not detectable

by semi-quantitative PCR, we exclusively found Ceacam1 and Ceacam10

expression in bone and bone marrow (S1 Figure). Comparing the expression in

various tissues, Ceacam1 and Ceacam10 were expressed at comparable levels in

bone samples (Fig. 1A). Interestingly, while the expression of Ceacam1 was

highest in liver and femur, Ceacam10 was expressed at much higher levels in all

bone specimens compared to non-skeletal tissues (Fig. 1A). To further

characterize the expression of Ceacam1 and Ceacam10 in the course of osteoblast

and osteoclast formation, we differentiated bone marrow cells into osteoblasts and

osteoclasts and performed quantitative RT-PCR. Here we found that the

expression of both Ceacam1 and Ceacam10 increased during the early stages of

osteoblast differentiation, and decreased towards terminal osteoblast differentia-

tion (Fig. 1B). In addition, although Ceacam1 and Ceacam10 were both expressed

at high levels in undifferentiated bone marrow cultures, their expression markedly

decreased during the course of osteoclastogenesis (Fig. 1C). This observation was

confirmed in experiments using the macrophage cell line RAW264.7 where we

found Ceacam1 to be differentially expressed during the course of osteoclasto-

genesis on mRNA (Fig. 1D) and protein level (Fig. 1E).

As this observation pointed towards a specific role of CEACAM1 and

CEACAM10 in the regulation of bone remodeling, we next applied non-

decalcified bone histology in mice lacking the respective genes. Von Kossa staining

of spine sections from 6-month-old mice demonstrated a reduced bone mass in

Ceacam1-deficient mice compared to WT controls, whereas no alteration could be

detected in mice lacking CEACAM10 (Fig. 2A). These findings were confirmed by

static histomorphometry, which demonstrated Ceacam1-deficient mice exhibit

decreased trabecular bone volume accompanied by a reduction in trabecular

number and an increase in trabecular separation (Fig. 2B). In contrast, none of

these parameters were altered in mice lacking CEACAM10. In order to analyze

whether the observed phenotype is also detectable in younger mice, we

additionally performed static histomorphometry of 3-month-old mice. Spine
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sections of Ceacam1-deficient mice were characterized by a significantly reduced

trabecular bone mass accompanied by reduced trabecular numbers (S2 Figure),

similar to what was observed in 6-month-old animals. In addition, 3-month-old

mutant animals displayed a reduced trabecular thickness and increased trabecular

separation (S2 Figure). To address the question whether the lack of Ceacam1 not

only affects skeletal architecture in vertebrae, but also long bones, we finally

performed histomorphometry of non-decalcified tibia sections and mCT-scanning

of femora derived from Ceacam1-deficient mice. While we found a decreased

trabecular bone volume accompanied by a decrease in trabecular numbers in the

tibiae of mutant animals (Fig. 3A), cortical thickness and mean diameter were

unaltered in the femora of Ceacam1-deficient mice (Fig. 3B).

These findings suggested an important role of CEACAM1 in the regulation of

trabecular bone remodeling, while CEACAM10 was found to have no overt effect.

Therefore, we focused our further analyses on CEACAM1 and performed a full

histomorphometric characterization of the spine sections derived from 6-month-

old Ceacam1-deficient mice. Cellular histomorphometry using toluidine-blue

stained spine sections revealed no alteration in the number of osteoblasts or

osteoblast surface, indicating normal osteoblastogenesis in Ceacam1-deficient

mice (Fig. 4A). Likewise, dynamic histomorphometry following dual calcein

labeling demonstrated a normal bone formation rate, ruling out an impaired

osteoblast function as the underlying cause of the observed phenotype. In

contrast, Ceacam1-deficient mice were found to display an increased number of

osteoclasts and osteoclast surface, suggesting increased bone resorption (Fig. 4B).

Although an absolute increase in collagen degradation products was undetectable

(Fig. 4C), normalization of serum crosslaps to the reduced bone mass revealed an

elevated net bone resorption in mice lacking CEACAM1 (data not shown).

In order to analyze, whether the observed increase in osteoclastogenesis could

be explained by gross alterations in OPG levels, we measured this cytokine in the

serum of Ceacam1-deficient mice and controls by ELISA. While no changes were

detectable in 3-month-old Ceacam1-deficient mice, we measured an increased

concentration of OPG in 6-month-old mice, pointing towards an age-dependent

compensatory regulation in vivo in the light of enhanced osteoclastogenesis. This

assumption was confirmed in vitro, were we detected normal expression of Tnfsf11

and Tnfrsf11b, encoding RANKL and OPG, in primary osteoblasts at day 10 of

differentiation (S3 Figure).

Investigating the possibility of cell-autonomous defects in these mice, we next

differentiated WT and Ceacam1-deficient bone marrow cells into osteoblasts and

Fig. 1. Expression of Ceacam1 and Ceacam10 in various tissues and differentiated bone cells. (A, B) qRT-PCR of Ceacam1 and Ceacam10 in various
tissues. nd 5 not detectable. (C) qRT-PCR of the same genes during osteoblast (Obl) differentiation at the indicated days (d) of differentiation, using Bglap
expression (OSTEOCALCIN) as a control. (D) qRT-PCR of Ceacam1 and Ceacam10 during osteoclast (Ocl) differentiation at the indicated days (d) of
differentiation, using Calcr expression (CALCITONIN RECEPTOR) as a control. (E) qRT-PCR of Ceacam1 and Ceacam10 in undifferentiated (undiff.) and
differentiated (diff.) RAW cells, using Acp5 expression (TRAP) as a control. (F) Western blot showing CEACAM1 expression in cell lysates from
undifferentiated and differentiated RAW cells. Arrows indicate size of the nearest marker. All bars represent mean + SD (n$3 independent experiments).
Asterics indicate statistically significant differences compared to day 0 in the case of osteoblasts or day 1 in the case of osteoclasts, respectively (p,0.05).

doi:10.1371/journal.pone.0114360.g001
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osteoclasts ex vivo. Von Kossa staining at day 10 of differentiation revealed a

normal formation of mineralized nodules in Ceacam1-deficient osteoblast

cultures (Fig. 5A). Likewise, the assessment of alizarin red staining demonstrated

regular extracellular matrix mineralization in osteoblasts derived from Ceacam1-

deficient mice. In addition, normal levels of intracellular alkaline phosphatase

Fig. 2. Decreased trabecular bone mass in 6-month-old mice lacking Ceacam1. (A) Von Kossa staining of non-decalcified spine sections from controls
(Ceacam1+/+, Ceacam10+/+) and Ceacam1- or Ceacam10-deficient mice (Ceacam1-/-, Ceacam10-/-). Histomorphometric quantification of the trabecular
bone volume (BV/TV, bone volume per tissue volume), trabecular number (Tb.N.), trabecular thickness (Tb.Th.) and trabecular separation (Tb.Sp.). All bars
represent mean ¡ SD (n55 mice per group). Asterisks indicate statistically significant differences (p,0.05).

doi:10.1371/journal.pone.0114360.g002
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Fig. 3. Analysis of long bones derived from 6-month-old mice lacking Ceacam1. (A) Von Kossa staining of non-decalcified tibia sections from controls
(Ceacam1+/+) and Ceacam1-deficient mice (Ceacam1-/-) and histomorphometric quantification of the trabecular bone volume (BV/TV) and trabecular
number (Tb.N.) below. (B) mCT scanning of femora derived from the same mice. Mean femoral diameter and cortical thickness (C.Th.) are indicated below.
All bars represent mean ¡ SD (n55 mice per group). Asterisks indicate statistically significant differences (p,0.05).

doi:10.1371/journal.pone.0114360.g003

Fig. 4. Increased osteoclastogenesis in mice lacking Ceacam1. (A) Histomorphometric quantification of the osteoblast number per bone perimeter
(ObN/BPm), osteoblast surface per bone surface (ObS/BS) and the bone formation rate per bone surface (BFR/BS). (B) Quantification of the osteoclast
number per bone perimeter (OcN/BPm), osteoclast surface per bone surface (OcS/BS). (C) Quantification of serum crosslaps. All bars represent mean ¡

SD (n55 mice per group). Asterisks indicate statistically significant differences (p,0.05).

doi:10.1371/journal.pone.0114360.g004
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Fig. 5. Accelerated osteoclast formation in bone marrow cells lacking Ceacam1. (A) Alizarin red and von Kossa staining of mineralized matrix and
nodules, respectively, in osteoblast cultures at day 10 of differentiation. The quantification of Alizarin red staining extracellular matrix mineralization is
indicated on the right. (B) Quantification of intracellular alkaline phosphatase activity in bone marrow-derived osteoblast cultures at day 10 of differentiation.
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activity were measured, ruling out a functional osteoblast defect caused by

Ceacam1-deficiency (Fig. 5B). In contrast, TRAP-activity staining of Ceacam1-

deficient bone marrow cells cultured in the presence of M-CSF and RANKL

displayed a marked increase in osteoclastogenesis at day 7 of differentiation

(Fig. 5C), while no alteration in the number of nuclei per osteoclast could be

detected by immunofluorescence (Fig. 5D). To understand this effect on the

molecular level, we finally screened for differentially expressed genes essential for

osteoclast differentiation and function. On day 0 of differentiation, no significant

differences could be measured among the tested genes (Fig. 5E). On day 3 of

differentiation, only a tendency towards a reduced expression of Tm7sf4, encoding

the fusion protein DC-STAMP, could be detected in Ceacam1-deficient cultures,

whereas the expression of the late osteoclast marker gene Calcr was still

undetectable in mutant and control cells. In contrast, on day 4 of differentiation

we observed a trend towards enhanced expression of Acp5 and significantly

increased expression of Nfatc1 (Fig. 5E). However, while the increased expression

of Acp5 was only temporarily detectable, we found Nfatc1 to be overexpressed in

Ceacam1-deficient osteoclasts again at day 7, pointing towards a crucial role of

this key transcription factor in mediating the effects of CEACAM1 on

osteoclastogenesis.

Discussion

The molecular understanding of bone remodeling represents an ongoing clinical

challenge, as therapeutic options for skeletal disorders such as osteoporosis and

tumor-induced osteolysis caused by excessive osteoclast function remain limited.

While the biological actions of CEACAMs have been studied extensively in the

context of pathological conditions including inflammation, stroke and cancer

[20, 22] a potential role in the regulation of bone turnover has not been

sufficiently addressed to date. This is indeed surprising, given the growing body of

evidence establishing a link between skeletal integrity and immune or cancer cells

not only in basic, but also clinical research. For example, rheumatoid arthritis, a

chronic autoimmune disease characterized by joint destruction, is considered to

be driven by the secretion of pro-inflammatory cytokines including TNFa and IL-

17 from lymphocytes, resulting in excessive activation of osteoclasts [28, 29].

Likewise, expression of IL-1b and inhibitors of Wnt signaling, such as DKK-1, in

tumor cells have been reported to be involved in malignant osteolysis through

both an activation of osteoclastogenesis and an inhibition of bone formation

(C) TRAP activity staining of terminally differentiated osteoclasts. The quantification of TRAP-positive, multinuclear osteoclasts is given on the right. (D)
Immunofluorescence using DAPI (nucleus) and Phalloidin (actin) staining of osteoclast cultures at day 7 of differentiation. The quantification of the number of
nuclei per osteoclast (Nuclei/Oc) is indicated on the right. (E) qRT-PCR expression analysis of the indicated genes (Acp5, Tartrate-resistant acid
phosphatase; Tmf7sf4, DC-STAMP, dendrocyte-expressed seven transmembrane protein; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B-
cells; Nfat1c, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1, Tnfrsf11a, receptor activator of nuclear factor kB, Rank; c-Fos, FBJ
osteosarcoma oncogene; and Calcr, Calcitonin receptor) at day 0, 3, 4 and 7 of osteoclast differentiation. All bars represent mean ¡ SD (n53 cultures per
group). Asterisks indicate statistically significant differences (p,0.05).

doi:10.1371/journal.pone.0114360.g005
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[30, 31]. Based on their broad array of biological effects in the immune system and

tumorigenesis, it was thus important to analyze the role of CEACAMs in the

regulation of bone turnover.

Monitoring the expression of all genes encoding the members of the CEACAM

family, we could exclusively detect the expression of Ceacam1 and Ceacam10 in

bone tissue. Although this observation does not necessarily rule out a potential

role of other Ceacams in bone remodeling, they pointed towards a specific

function of CEACAM1 and CEACAM10 in regulating bone cell function. This

notion was further supported by the high cDNA levels of the two encoding genes

in bone tissue compared to other organs. Based on the specific expression

dynamics of both Ceacam1 and Ceacam10 during osteoblast and osteoclast

differentiation, we went on to analyze the bone phenotype of the respective animal

models. While Ceacam10-deficiency was not associated with any alterations in

structural bone parameters, static histomorphometry demonstrated a decreased

trabecular bone volume in 3- and 6-month old Ceacam1-deficient mice. This was

indeed an interesting finding, as Ceacam1-deficient mice, under basal conditions,

have been reported to display no gross phenotypical abnormalities [20]. As

mentioned above, while previous studies have primarily focused on the

pathophysiologic functions of CEACAM1 in various in vivo and in vitro disease

models, this observation pointed towards a physiologic role of CEACAM1 in the

regulation of bone cell activity.

Although Ceacam1 was differentially expressed during osteoblastogenesis, the

cellular and dynamic histomorphometry failed to detect defective osteoblasto-

genesis or osteoblast function. Surprisingly, increased osteoclast parameters were

found in trabecular bone, indicating accelerated osteoclastogenesis in Ceacam1-

deficient mice. To further characterize this effect at the cellular level, we

differentiated bone marrow cells into osteoblasts and osteoclasts. In line with our

in vivo observations, primary osteoblasts derived from Ceacam1-deficient mice

displayed normal matrix mineralization and alkaline phosphatase activity in vitro.

In contrast, although no alteration in the numbers of nuclei per osteoclasts could

be detected, Ceacam1-deficient bone marrow cells demonstrated an increased

osteoclastogenesis when cultured with M-CSF and RANKL. Therefore, it is now

possible to conclude that CEACAM1 functions as a negative regulator of

osteoclastogenesis in vivo and in vitro. The fact that we could detect increased

levels of serum OPG in 6-month old animals is interesting, however does not

explain the observed bone phenotype and increased osteoclastogenesis associated

with the lack of CEACAM1. This is supported by the finding that 3-month-old

mutant animals displayed a low bone mass phenotype despite normal OPG levels.

Furthermore, as we failed to detect differences in the expression of Tnfsf11 and

Tnfrsf11b in primary osteoblasts derived from Ceacam1-deficient mice, this

particular phenomenon is most likely explained by an age-dependent counter

regulatory mechanism rather than an intrinsic osteoblast defect.

On the molecular level, we could detect differential expression of Ceacam1 not

only in bone marrow derived osteoclast progenitors, but also in the pure

macrophage cell line RAW264.7, providing a potential explanation for the
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increased osteoclast formation in Ceacam1-deficient mice. Since the formation of

mature osteoclasts primarily depends on RANKL-induced activation of key

transcription factors and the subsequent expression of several osteoclast marker

genes, we monitored the expression of NF-kb, Nfatc1, Acp5, Tmf7sf4, Tnfrsf11a, c-

Fos, and Calcr during osteoclastogenesis in bone marrow cells derived from WT

and Ceacam1-deficient mice. While indicators of mature osteoclasts, including

Calcr and Acp5, were found to be expressed at similar or only temporarily elevated

levels compared to WT controls, respectively, increased expression of Nfatc1 in

Ceacam1-deficient cells was found at day 4 and 7 of osteoclast differentiation. As

this coincided with the induction of monocyte/macrophage fusion into mature

osteoclasts by the addition of RANKL to these cultures, it appears tempting to

speculate that CEACAM1 may modulate osteoclastogenesis through the

regulation of NFATC1, the master transcription factor required for osteoclast

differentiation. Although a previous study reported a stimulatory effect of a short

splice variant of CEACAM1 on the expression of Nfatc1 in CD4+ T cells [32],

further research is necessary to elucidate the influence of CEACAM1 on the

regulation of this transcription factor specifically in osteoclasts and myeloid-

derived cells. This is of particular importance, as the liver-specific inactivation of

Ceacam1, characterized by hyperinsulinemia and glucose intolerance, results in

decreased osteoclastogenesis [33]. Thus, it appears that the impact of global

Ceacam1 deletion, including cells of the osteoclast lineage, is dominant over the

effects of hepatic Ceacam1 expression on bone metabolism.

Taken together, our study reports a novel function of CEACAM1 in bone

remodeling. Using in vivo and in vitro assays, we demonstrate that deficiency of

CEACAM1 is associated with a reduced bone mass due to increased osteoclasto-

genesis, at least in mice. Given its previously reported function in regulating tumor

cell differentiation and the immune system, future studies investigating the role of

CEACAM1 in pathologic bone conditions, such as tumor-induced osteolysis and

inflammation-induced bone loss, will be of crucial importance.

Supporting Information

S1 Figure. Expression of Ceacam genes in bone tissue and differentiated bone

cells. RT-PCR of the indicated genes in the spine (S), femur (F), flushed femur

(FF) and bone marrow (BM) using the same primers as described previously (26).

doi:10.1371/journal.pone.0114360.S001 (TIF)

S2 Figure. Decreased trabecular bone mass in 3-month-old mice lacking

Ceacam1. Von Kossa staining of non-decalcified spine sections from controls

(Ceacam1+/+) and Ceacam1-deficient mice (Ceacam1-/-). Histomorphometric

quantification of the trabecular bone volume (BV/TV, bone volume per tissue

volume), trabecular number (Tb.N.), trabecular thickness (Tb.Th.) and trabecular

separation (Tb.Sp.). All bars represent mean ¡ SD (n55 mice per group).

Asterisks indicate statistically significant differences (p,0.05).

doi:10.1371/journal.pone.0114360.S002 (TIF)
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S3 Figure. OPG in Ceacam1-deficient mice. (A) Serum concentrations of OPG in

3- and 6-month old Ceacam1-deficient mice. (B) qRT-PCR of Tnfsf11 and

Tnfrsf11b encoding RANKL and OPG, respectively, in primary osteoblasts at day

10 of differentiation. All bars represent mean ¡ SD (n55 mice and n53 cultures

per group, respectively). Asterisks indicate statistically significant differences

(p,0.05).

doi:10.1371/journal.pone.0114360.S003 (TIF)
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