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Destroying a topological quantum bit
by condensing Ising vortices
Zhihao Hao1, Stephen Inglis1,2 & Roger Melko1,3

The imminent realization of topologically protected qubits in fabricated systems will provide

not only an elementary implementation of fault-tolerant quantum computing architecture, but

also an experimental vehicle for the general study of topological order. The simplest topo-

logical qubit harbours what is known as a Z2 liquid phase, which encodes information via a

degeneracy depending on the system’s topology. Elementary excitations of the phase are

fractionally charged objects called spinons, or Ising flux vortices called visons. At zero

temperature, a Z2 liquid is stable under deformations of the Hamiltonian until spinon or vison

condensation induces a quantum-phase transition destroying the topological order. Here we

use quantum Monte Carlo to study a vison-induced transition from a Z2 liquid to a valence-

bond solid in a quantum dimer model on the kagome lattice. Our results indicate that this

critical point is beyond the description of the standard Landau paradigm.
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A
quantum bit (qubit) is the basic unit for quantum

information processing and quantum computation.
Among different proposed realizations, a topologically

protected qubit is one of the most attractive candidates thanks to
its inherent stability against decoherence. Unlike conventional
qubits, no material or physical system is known to harbour
a state appropriate to construct a topological qubit. However,
several groups have recently outlined a strategy1,2 for
artificially fabricating one elementary example, called a Z2

topological qubit, culminating in the recent proof-of-principle
implementation with three3- and five4-coupled superconducting
transmon qubits.

Although actual quantum computation can only be possible if
thousands of qubits are amassed and properly assembled, the
potential creation of a single Z2 topological qubit would open the
door to study the properties of a topologically ordered system
experimentally, for example its feasibility as quantum memory5.
In light of this, and to serve as motivation for the perfection of
fabrication and characterization techniques, it is highly desirable
to identify interesting physics that exist at the level of one qubit.
An important class of problems concerns how a logical qubit,
protected by Z2 topological order, is destroyed by two types of
errors in the physical qubits used to construct it, conventionally
referred to as ‘bit-flips’ and ‘phase-flips’.

Physically, a logical qubit protected by Z2 topological order can
emerge from the low-energy subspace of a many-body Hamilto-
nian6. The qubit encodes information through the 2g degeneracy
of its ground state where g is the genus of the hosting manifold.
The simplest realization is a quantum spin liquid characterized by
a Z2 gauge theory with electric field and magnetic fluxes defined
up to modulus two7. The bit-flip and phase-flip errors of the
physical qubits correspond to two low-energy excitations of the
liquid: spinons carrying electric charges and visons possessing
magnetic fluxes, respectively. Remarkably, it is predicted that
these excitations, or errors, may condense at T¼ 0, leading to
novel continuous quantum-phase transitions described by critical
theories beyond the paradigm of conventional Landau theory8,9.
The continuous-phase transition caused by condensing spinons
has been previously studied10. In contrast, although a study11 of
vison condensation transition by directly probing vison dynamics
exists, the critical properties of the transition involving visons
have not been investigated in a quantum many-body model
to date.

Recently, pioneering work by several groups12–15 established
that a Z2 spin liquid is the ground state of a set of very simple
models in frustrated magnetism. The liquid can be viewed as a
coherent fluid of short-range spin singlets, commonly referred to
as ‘dimers’ or ‘valence bonds’. The condensation of visons leads to
phases with spatially modulated dimer densities, or valence-bond
solids (VBS). In particular, it has been demonstrated12–14

that the spin-1/2 antiferromagnet on the kagome lattice hosts a
ground state with Z2 topological order with several VBS16,17

adjacent. It thus constitutes a good candidate to study the
universal properties promoted by a phase transition where the
topological phase is destroyed by condensing visons.

While the density matrix renormalization group (DMRG) and
related tools12–14 are sufficent to identify some features of the Z2

topological liquid in quasi-two-dimensional kagome lattices18,
fully characterizing quantum-phase transitions out of the liquid
phase is not feasible using these methods because of the large
lattice sizes required as the correlation length diverges. The ideal
method for the task is scalable simulation methods such as
quantum Monte Carlo (QMC)19. Since a direct QMC simulation
of the spin model12 is impossible because of the existence of the
infamous sign problem19, we simulate a quantum dimer model
(QDM) on the kagome lattice, which contains a stable Z2 liquid

phase over a large region of its phase diagram. After mapping out
the phase diagram via large-scale T¼ 0 diffusive QMC20, we
examine the quantum-phase transitions out of the liquid to two
VBS phases. For the transition between one of the VBS phases
and the Z2 liquid, our QMC simulations provide the first
numerical evidence for novel quantum critical properties driven
by vison condensation. These critical properties are consistent
with the exotic O(4*) universality class9 previously studied
theoretically21 and numerically22 in effective field theories.

Results
Quantum dimer model on the kagome lattice. We proceed to
construct our QDM. Taking a different approach from previous
studies23–25, which use a QDM derived directly from the spin
model, we follow an alternative strategy and study the minimal
QDM on the kagome lattice. Since the kinetic energy of collective
motion decreases exponentially as the number of dimers involved
increases23–25, the simplest dimer model on the kagome lattice
includes only the motion and interaction of three dimers (Fig. 1).
However, the three-dimer motion does not change the number of
‘perfect hexagons’, a hexagon of six triangles with only three
dimers. Henceforth, we will refer to the hexagonal loops of six
triangles as ‘plaquettes’. The model is classical since the kinetic
term and the potential term commute. The lowest energy state of
the classical model is any dimer configuration with a maximum
(or minimum) number of perfect hexagons. The ground state is
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Figure 1 | The kagome lattice and the four-dimer plaquettes. (a) The

thick purple bonds are dimers. The number at the centres of plaquettes

indicate the number of dimers around the plaquette. The thin dashed line

circles a cluster of seven plaquettes without a four-dimer plaquette.

(b) Three types (a, b, c) of plaquettes with four dimers. On an application of

T̂4 operator, the purple thick dimer configuration 4a,b,c change into the red

thick dimer configurations 4
0

a;b;c respectively.
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thus highly degenerate. The degeneracy is lifted by the lowest-
order quantum terms: kinetic energy and interaction of four
dimers. Following these arguments, the minimal QDM on the
kagome lattice is:

H ¼ � t
X

h

T̂4ðhÞþ uN̂4þ a
X

h

t0T̂3ðhÞþ u0N̂3

 !
: ð1Þ

Here, T̂nðhÞ moves n dimers collectively around the plaquette h.
N̂n count the number of plaquettes with n dimers. In the limit of
a-N, we recover the classical dimer model. In this work, we
focus on the opposite quantum limit with a¼ 0:

H ¼ � t
X

h

T̂4ðhÞþ uN̂4 � t �
X

h

T̂4ðhÞþ lN̂4

 !
; ð2Þ

where l�v/t.
We now prove, by reductio ad absurdum, that any dimer-

covering state on the kagome lattice is connected to some other
states through the Hamiltonian (2). We note that this is only the
necessary condition for the ergodicity of our dimer model.
Consider a kagome lattice with M sites. The number of plaquettes
with three, four, five and six dimers (nl with l¼ 3, 4, 5, 6) satisfy
the following relations:X6

l¼3

nl ¼
M
3
;

X6

l¼3

lnl ¼
3M

2
: ð3Þ

The average number of dimer per plaquette is �n ¼ 4:5, the exact
median of l¼ 3,y6. If there is a dimer-covering state with no
four-dimer plaquettes, the state must have some three-dimer
plaquettes. Because of geometrical constraints, only plaquettes
with four or five dimers can be adjacent to a three-dimer
plaquette. Assuming that there is no four-dimer plaquettes, the
average dimer density of the cluster of seven plaquettes (Fig. 1) is
33=7�4:74�n. To lower the average number of dimers to �n, the
cluster must be adjacent to at least one perfect hexagon. This is
geometrically impossible. As a result, every dimer-covering state
must have a non-zero number of four-dimer plaquettes.

The observation that �n ¼ 4:5 helps us anticipate the phase
diagram of (2) (Fig. 2). At l¼ 1, the Rokhsar–Kivelson point26,
the ground state of Hamiltonian (2) is exactly known. It is a Z2

liquid with short-range correlation27. As l increases, the four-
dimer plaquettes are ‘expelled’ from the ground state due to
higher energy cost. To keep �n ¼ 4:5, the number of perfect
hexagons increases. At large l, one expects the ground state to be
a valence-bond crystal with maximum number of perfect
hexagons. There are two candidate states discussed in previous
studies, the 36-site VBS16,17 and the stripe VBS17, referred to as
VBS36 and VBSS, hereafter. Similarly, for l smaller than some

critical lc1 , the ground state is expected to be a valence-bond
crystal with maximum number of four-dimer plaquettes, the
12-site valence-bond solid or VBS12. We note that Yan et al.12

demonstrated that the VBS12 state is close in phase space to the Z2

quantum spin liquid in their seminal DMRG work.

Quantum Monte Carlo simulation. We perform our numerical
QMC simulations on finite kagome-lattice rhombi with L� L� 3
sites. Periodical boundary conditions are applied along two
directions: ê1 ¼ x̂ and ê2 ¼ x̂=2þ

ffiffiffi
3
p

ŷ=2. The torus preserves all
point-group symmetry of the lattice11,28,29. The fourfold
degenerate ground states are labelled by two binary winding
numbers (s1, s2), which are the parities of the numbers of dimers
crossed by a cut through the system along ê1 and ê2 directions,
respectively. Assuming L¼ 2N, either (0, 1) (1, 0) and (0, 0) or
(0, 1) (1, 0) and (1, 1) states are related by sixfold rotational
symmetries if N is odd or even, respectively11,28. To expose the
topological property of the liquid state, we start the QMC
simulation from initial configurations with inequivalent (s1, s2).
On a finite kagome rhombus, a particular VBS is compatible with
some (s1, s2); whereas the liquid state exists for all possible
topological sectors. As a result, we expect the ground state
energies to be degenerate among all topological sectors if the
ground state is a Z2 liquid. In contrast, the ground state energies
of the topological sectors will be different if the system orders into
a VBS.

We first consider the torus with L¼ 6. The rhombus is
commensurate with the unit cells of the three VBSs. The ground
state energy per plaquette is calculated as the function of l for
both (0, 0) and (1, 1) sectors (Fig. 3). Approximately for
� 1olo1.4, the ground state energies of the two topological
sectors are degenerate. This indicate a large stable region of Z2

liquid phase of size dlB2.4 comparing with the dlB0.3 in the
triangular lattice QDM28,30. For l41.4, the system orders into a
VBS indicated by the abrupt splitting of the ground-state energies
of the two topological sectors (Fig. 3). The dimer configuration
from our simulation indicates that this is the VBSS phase (Fig. 2).
Similarly, for lo� 1, our model orders into VBS12 evidenced
in both the gradual splitting of the ground-state energies, and
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Figure 2 | The phase diagram of Hamiltonian (2). The dimer

configurations of both VBS12 (the 12-site VBS) and VBSS (the stripe VBS)

are produced from the snapshots of QMC simulation for L¼6. The purple

thick bonds are the dimers.
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Figure 3 | The ground state energy for different topological sectors for

L¼6. The splitting of ground state energy as a function of l for topological

sectors (0, 0) (the teal line) and (1, 1) (the orange line). The background

gradient shows the onset of the two solid phases. Inset: The energy splitting

D(L) in the limit of L-N as a function of l (axis labels on top).
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real-space images of dimer configurations (Fig. 2) sampled from
the simulation.

First, we focus on the phase transition into VBSS. The abrupt
nature of the energy splitting at lc2�1:4 indicates that there is no
VBS order for lolc2 in a finite system. Furthermore, we observe
metastability of the liquid phase for l4lc2 . We tentatively
conclude that the transition to VBSS is first order.

Second, we consider the phase transition from the liquid phase
to VBS12. The energy splitting between topological sectors sets in
slowly around lc1� � 1 ; indicating that the solid order onsets in
the finite L¼ 6 system in a gradual fashion. This suggests that the
transition could be continuous. We estimate lc1 in the L-N

limit through scaling analysis of energy splitting dE(l, L) as a
function of L. We calculate dE(l, L) under a fixed set of l for
L¼ 6, 8y16. The data for different system sizes can be fitted to
the following formula: dE l; Lð Þ ¼ D lð Þþ a lð Þ

L2 � D lð Þ (Fig. 3) is
the energy difference between topological sectors in the limit
L-N. While the scaling behaviour of D(l) is not rigorously
known around the phase transition point, a simple linear fit
(Fig. 3), which is equally justified, of D versus l suggests that
lc1� � 1:06ð1Þ.

Critical properties and finite-size scaling. To investigate the
properties of the phase transition quantitatively, we measure the
order parameter and the equal-time two-point correlator31 of the
order parameter in our QMC using the forward walking
technique20. To define the order parameter, note that the VBS12

state is a superposition of three-dimer density-waves at the
following wave vectors:

Q1 ¼
2pffiffiffi

3
p ŷ; Q2;3 ¼

2pffiffiffi
3
p �

ffiffiffi
3
p

x̂
2
� ŷ

2

� �
: ð4Þ

The centres of all plaquettes, labelled as x, form a triangular
lattice. We define n(x) to be the total number of dimers around
plaquette x, while mi with i¼ 1, 2, 3 are defined as modulations of
dimer density at Qi:

mi ¼
1

L2

X
x

ðn ðxÞ� �nÞ expðiQi � xÞ: ð5Þ

We note that Qi¼ �Qi (i¼ 1, 2, 3). As a result, all values of mi

are real numbers. The components mi form a three-dimensional
vector, m¼ (m1, m2, m3), which is the proper order parameter
defining the VBS12 order in the thermodynamic limit. The space
group symmetries guarantee that, in the ground-state wave
function of a finite system, the weights for dimer configurations
with m having opposite directions but the same magnitudes are
equal. As a result, for any finite system, the expectation value of m
with respect to the ground-state wave function is strictly zero. To
characterize the VBS order in finite systems, we thus define the
order parameter m�|m| and the corresponding equal-time two-
point correlator w (ref. 32):

m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1þm2
2þm2

3

q
; ð6Þ

w � ðhm2i� hmi2ÞL2: ð7Þ
If the system has the saturated VBS12 order, hmi ¼ffiffiffi

3
p

=2 � 0:866. This is the maximum value of the order
parameter m.

We measure both m and w as functions of l for L¼ 6,y12. For
all system sizes, the order parameter shows a continuous increase
from zero toward the saturation value at loolc1 . As l becomes
smaller, the values of order parameters for different system sizes
converge onto the same value, which is typical behaviour for a
continuous-phase transition. To measure the critical exponents,
we plot the data for different system sizes using the following

scaling form32:

m ¼ L�
b
nF
ðl� lc1ÞL

1
n

lc1

 !
ð8Þ

where F(x) is the universal scaling function. For lc1 ¼ � 1:00ð6Þ,
b/n¼ 0.51(4) and n¼ 0.75(6), all of our data collapse on a
universal curve (Fig. 4) with ~m � mL

b
n vs ~l � ðl� lc1ÞL

1
n=lc1 .

The success of this scaling is a very strong evidence that the phase
transition is indeed continuous.

For w (L¼ 6,y12), we observe that w(l) show a peak for all
system sizes. As L increases, the peak shifts right while its height
increases. Away from the peak position, the w data converge to
the same value for all system sizes. For a conventional
continuous-phase transition in two dimensions, the peak height
should increase approximately as L2 due to the small value of
anomalous dimension Z in conventional universality classes33. In
contrast, the peak height at L¼ 12 is less than twice the peak
height for L¼ 6, signalling a large Z. We assume the following
scaling form for w (refs 31,32):

w ¼ L2� ZG
ðl� lc1ÞL

1
n

lc1

 !
: ð9Þ

Here G(x) is the universal scaling function. Optimizing close to lc1 ,
all our data collapse on a universal curve with n¼ 0.75(6) and
Z¼ 1.37(8) (Fig. 4) with ~w � wLZ�2 vs ~l. Obtaining Z to higher
accuracy is impossible due to the decreasing quality of data collapse
away from the critical region, and the difficulty in fitting the peak
of the largest L; regardless, the existing data provides compelling
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evidence for a large anomalous dimension Z. This is the definitive
signature of an unconventional quantum-phase transition9

induced by the condensation of nonlocal excitations—Z2 vortices
or visons. In other words, the physical interpretation is that singlet-
density fluctuations are not the coherent excitations in a Z2 liquid;
they fractionalize into pairs of visons. The equal-time two-point
correlator that we measure via QMC correspond to the tensorial
correlator of four visons.

Discussion
The critical exponents that we obtain are consistent with the
exponents of the O(4*) universality class9: b/n¼ 0.5129(11)
(ref. 34), n¼ 0.7525(10) (ref. 35) and Z¼ 1.373(3) (ref. 22). An
effective field theory study36 indicates that the critical theory of
the transition to VBS12 involves four components of real fields.
However, the most general quartic term does not respect O(4)
symmetry36. Although a two-loop perturbative renormalization
group (RG) study37 does not reveal a stable fixed point, it is
possible that a higher-order RG study could yield a stable fixed
point, indicating a generic second-order phase transition. The
potential new fixed point would generally possess critical
exponents different from the O(4*) universality class. However,
the numerical difference could be small and, therefore, not
appreciated in our current simulation.

While in this paper we studied a QDM with general
parameters, it is likely that our liquid phase is adiabatically
connected to the Z2 quantum spin liquid phase identified in
previous DMRG studies12–14 on the kagome lattice. The kinetic
and interaction energies for three and four valence bonds are the
largest in the QDM23–25 derived from the spin model. We
have demonstrated that the three valence-bond terms generically
favour frozen VBS states. The four valence-bond terms are
thus the quantum fluctuations that melt the VBS states and
induce the liquid phase. Previous studies12 also indicate that the
Z2 liquid phase is close to VBS12. Given that the phase transition
from the liquid to the VBS is likely to be continuous, the
singlet excitations (pairs of visons) can have a very small energy
cost. This is consistent with the large number of singlet
excitations within the spin gap observed in exact
diagonalization studies38. It is also consistent with the difficulty
in pinpointing the minimal energy cost to create singlet
excitations in DMRG calculations12.

We conclude by commenting on the relevance of our results on
real physical systems. Our unconventional transition is reliant
upon visons condensing out of a Z2 ‘parent’ phase, of which there
are very few candidates in real material systems7. However, it
appears that elementary Z2 states will soon be fabricated in
superconducting quantum circuits1–4, raising the possibility of
realizing interesting many-body physics in artificial quantum
systems. Indeed, there have been proposals in the past39 to use
Josephson junction arrays to realize a Z2 liquid phase in the
triangular lattice QDM30. In that model, the maximum gap to
low-energy excitations is only B0.1t at the RK point39. As a
result, the liquid phase exists only for a small parameter space28,30

and any practical realization would have to be fine-tuned.
However, for our present model, this gap is likely of the order of t
evidenced by the larger range of parameter space where the liquid
phase prevails. This certainly improves the prospect of realizing
our QDM in an artificial system such as a Josephson junction
array. It has also been shown that the signature of the
unconventional quantum-phase transition, that is, the large Z,
can be accessed experimentally, for example, through a spin-
lattice relaxation time T1 scaling with temperature T in nuclear
magnetic resonance experiments40. The fact that novel concepts,
such as fractionalization, deconfinement and unconventional

quantum criticality—usually discussed in the context of
condensed matter theory—may first be manifested in artificial
quantum systems should motivate the engineering and
fabrication effort of these systems in the near future.
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