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SUMMARY

An astounding property of the nervous system is its
cellular diversity. This diversity, which was initially
realized by morphological and electrophysiological
differences, is ultimately produced by variations in
gene-expression programs. In most cases, these
variations are determined by external cues. However,
a growing number of neuronal types have been iden-
tified in which inductive signals cannot explain the
few but decisive transcriptional differences that
cause cell diversification. Here, we show that hetero-
chromatic silencing, which we find is governed by
histone methyltransferases G9a (KMT1C) and GLP
(KMT1D), is essential for stochastic and singular
olfactory receptor (OR) expression. Deletion of G9a
and GLP dramatically reduces the complexity of the
OR transcriptome, resulting in transcriptional domi-
nation by a few ORs and loss of singularity in OR
expression. Thus, our data suggest that, in addition
to its previously known functions, heterochromatin
creates an epigenetic platform that affords stochas-
tic, mutually exclusive gene choices and promotes
cellular diversity.

INTRODUCTION

Stochastic geneexpression is important in generating thediverse

cell types of the nervous system. TheDrosophilaDscam family of

alternatively spliced isoforms (Zipursky et al., 2006), photore-

ceptor choice in mammals and flies (Rister and Desplan, 2011),

cellular differentiation within motor neuron pools in the spinal
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cord (Dasen et al., 2005, 2008), and the choice of mammalian

protocadherin promoters (Chen and Maniatis, 2013) all provide

examples of nondeterministic gene-expression programs with

critical roles in the generation of neuronal diversity (Chen et al.,

2012; Lefebvre et al., 2012). However, themonogenic andmono-

allelic expression of a single olfactory receptor (OR) gene (Chess

et al., 1994) from more than 1,000 available alleles (Buck and

Axel, 1991) provides the most-extreme paradigm of stochastic

transcriptional choice that determines the fate, circuitry, and

functional identity of an olfactory sensory neuron (OSN).

Themolecular mechanisms of OR gene choice inmammals re-

mained unknown until the identification of a feedback signal that

stabilizes the expression of the chosen OR allele and prevents

the transcriptional activation of additional alleles (Lewcock and

Reed, 2004; Serizawa et al., 2003; Shykind et al., 2004). This

feedback, which is generated by the OR protein-dependent acti-

vation of the ER-resident kinase Perk, leads to transient transla-

tion of transcription factor Atf5 and downregulation of histone

demethylase LSD1 (Dalton et al., 2013; Lyons et al., 2013).

LSD1 activates OR transcription most likely via the demethyla-

tion of lysine 9 of histone H3 (Lyons et al., 2013), an epigenetic

mark that is deposited on OR genes at the early stages of OSN

differentiation, along with histone H4 lysine 20 trimethylation

(Magklara et al., 2011).

These observations suggest that the heterochromatic

silencing of OR genes plays an important role in singular and

stochastic OR expression. First, it keeps the nonchosen ORs

completely silent, thereby ensuring coherent neuronal targeting

and activity. Second, it affords a feedback process, which ‘‘si-

lences the desilencer’’ and thus prevents activation of additional

ORs without affecting the expression of the already chosen

allele. It is not clear from these data, however, whether H3K9 de-

methylation, ostensibly required based on the effects of LSD1

deletion, is also sufficient for OR transcription. In other words,
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it remains unknown whether the stochastic H3K9 demethylation

of a single allele constitutes the singular choice per se or an addi-

tional superimposedmechanism provides the initial singularity of

choice. Because perturbations in theOR-elicited feedback result

in frequent OR switching, but not simultaneous coexpression of

multiple OR alleles (Dalton et al., 2013; Lyons et al., 2013), the

latter hypothesis is more likely. However, recent theoretical

models suggest that singular OR expression could also be ex-

plained just by a combination of a slow H3K9 demethylation pro-

cess and a fast feedback that blocks further demethylation (Tan

et al., 2013). In this scenario, removal of the repressive histone

marks from a randomly chosen OR allele could be essential

and sufficient for OR expression, a hypothesis supported by

pharmacological inhibition of G9a/GLP in zebrafish embryos

(Ferreira et al., 2014).

Here, we genetically remove both H3K9 (G9a and GLP) and

H4K20 (SUV4-20H1 and SUV4-20H2) histone methyltrans-

ferases, which we find are responsible for repressive lysine

methylation at OR genes. In the case of H3K9me3 disruption,

OR expression becomes heavily skewed toward a small subset

of OR genes at the expense of all other ORs, such that the

main olfactory epithelium (MOE) becomes reproducibly homog-

enous. These few dominating ORs defy the ‘‘one receptor per

neuron’’ rule but at low frequency. Furthermore, we find that

the severe skew toward these OR genes is G9a/Glp dose depen-

dent. In contrast, we eliminated H4K20me3 and found no overt

phenotype at the level of OR expression. Together, these data

link H3K9me3-based heterochromatic OR gene silencing to

the diversity of OR expression and the broad chemical sensitivity

of the mammalian nose.

RESULTS

Removal of G9a and GLP Severely Deregulates OR
Expression
To test how removal of repressive heterochromatic histone

marks affects OR choice, we deleted H3K9 and H4K20 methyl-

transferases from the developing MOE. Because OR loci are first

marked with H3K9me2, and only upon further differentiation with

H3K9me3 and H4K20me3 (Magklara et al., 2011), we reasoned

that H3K9me2 is the substrate upon which OR chromatin is

further methylated in the OSN lineage. In this scenario, preven-

tion of H3K9 dimethylation early would also prevent subsequent

trimethylation, resulting in OR chromatin devoid of repressive

H3K9methylation. To remove H3K9me2 activity before the addi-

tion of the extra methyl group on H3K9, we crossed G9a (Tachi-

bana et al., 2005) and GLP floxed alleles (Schaefer et al., 2009) to

Foxg1-Cre that is expressed very early, during olfactory placode

development (Hébert and McConnell, 2000). Because the KO

mice die perinatally, our analysis was restricted to the last day

of gestation (embryonic day 18.5).

For a global view of the transcriptional consequences of G9a

and GLP deletion, we performed RNA sequencing (RNA-seq)

analysis in G9a/GLP double knockouts (dKOs). Surprisingly,

genome-wide transcription is not heavily affected by homozy-

gote deletion of G9a and GLP together—the number of genes

that increase or decrease beyond a log2 fold-change of two is

limited to a small fraction of the total transcriptome (66 of
C

19,850 Ensembl gene records included in this analysis, only

three of which are known transcriptional regulators; Figure 1B;

Table S1). In contrast, OR expression is profoundly misregulated

by loss of G9a andGLP, with a fewORgenes beingmarkedly up-

regulated and most OR genes being downregulated (Figure 1A).

One OR in particular, Olfr231, is upregulated by �90-fold in the

double KO MOEs, a result confirmed by RNA fluorescence

in situ hybridization (FISH) (Figure 1C). Strikingly, Olfr231+

OSNs fill the entire MOE, abandoning the zonal pattern of

expression typically seen for OR genes (Figure S1A).

G9a/GLP Deletion Disrupts the One Receptor per
Neuron Rule
The high cellular frequency of Olfr231 expression in the G9a/GLP

dKOMOEs suggests that the singularity of ORexpressionmay be

perturbed in the mutant mice, because other ORs are also ex-

pressed with increased frequency. To test this directly, we per-

formed two color FISH with Cy3-labeled Olfr231 (red) and a pool

of probes against the next most highly expressed OR genes,

labeled with fluorescein (green; Olfr878 pool; Figure 2A). Remark-

ably, although we never see coexpression in control sections, we

found that Olfr231 is coexpressed in low frequency with at least

one of the other ORs in sections from the dKO MOEs (Figures

2B and 2C). This is a profound violation of the one receptor per

neuron rule. Despite this, double KO OSNs express mature OSN

markers at nearly wild-type levels and their axons reach the olfac-

tory bulb (Figure S2H). Furthermore, double KOOSNs likely retain

their ability to elicit an OR-dependent feedback, because Atf5

translation, as well as LSD1 and Adcy3 expression, appear indis-

tinguishable between control and double KO MOEs (Figures S3F

and S3G). This observation suggests that OR clusters are devoid

of H3K9 methylation in the G9a/GLP dKO, rendering dynamic

LSD1 activity insufficient for singular OR expression.

G9a/GLP Govern the Formation of OR Heterochromatin
To test the effects of G9a/GLP deletion in the heterochromatini-

zation of OR loci, we used imaging-based approaches, because

chromatin immunoprecipitation (ChIP)-based assays are not

feasible with the limited number of olfactory neurons in embry-

onic MOEs and the infrequency by which we obtain double

conditional KO mice. OR genes physically cluster together in a

few topological clusters in the nucleus that are enriched for

H3K9me3 and are functionally important for the singular expres-

sion of ORs (Clowney et al., 2012). We thus performed DNA FISH

with a complex probe that recognizes the majority of OR

genomic clusters in the genome (‘‘pan-OR’’) and immunofluores-

cence (IF) with an antibody against H3K9me3, as previously

described (Clowney et al., 2012). Pan-OR DNA FISH shows

that OR aggregation still occurs in the G9a/Glp double KO (Fig-

ures 3A and 3B). However, we observe statistically significant

differences in the organization of the OR foci. Quantitation of

the radial distribution of signal intensity in the OR foci shows

that the average radius of these foci increases from 12 pixels

in control nuclei to 17 pixels in nuclei from the dKO sections (Fig-

ure 3C, top; n = 100; p < 0.001; Student’s unpaired t test). This

increase may reflect decompaction of the OR chromatin in the

double KO. Moreover, there is a highly significant increase in

the signal intensity of the pan-OR probe outside the OR foci in
ell Reports 9, 884–892, November 6, 2014 ª2014 The Authors 885
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Figure 1. H3K9Methyltransferases G9a and

GLP Are Needed for OR Expression and

Ensure Neuronal Diversity in the MOE

(A) Circos plot (Krzywinski et al., 2009) depicting

fold change in all olfactory receptor (OR) genes

calculated as log2 of G9a/GLP double knockout

(dKO) (OR RPKM + 1)/G9a heterozygote (OR

RPKM +1). Chromosomes are shown as an

ideogram with differently colored lines. Each OR

cluster is delineated by a gray line dividing the

chromosome ideogram such that the relative size

of each cluster is maintained. Position of Olfr231 is

denoted on Chr.1. y axis ranges from �7 to 7.

Axis marks are every 0.7.

(B) Nonchemoreceptor genes were plotted as a

function of their expression levels in control and

dKO. Genes up- or downregulated log2 2-fold or

more are shown in blue and are listed in Table S1.

(C) RNA fluorescent in situ hybridization (FISH) of

Olfr231 in Cre-negative control MOEs (left) and

G9a-GLP dKO (right). DAPI nuclear stain shown in

blue.
the dKO nuclei (Figure 3C, bottom; p < 0.001), which could also

reflect increased accessibility of the pan-OR probe or incom-

plete nuclear aggregation of the OR loci.

In contrast to the small effects in the nuclear organization of

the OR loci, we detect an overt decrease of H3K9me3 at the

OR foci in the double KO nuclei (compare Figures 3E and 3F to

3G and 3H; Pearson’s (r) and Manders’ coefficients (M); rcontrol =

0.657; rdKO = 0.275; Mcontrol = 0.882; MdKO = 0.361). Importantly,

in the double KO, overall levels of H3K9me3 in the heterochro-

matic chromocenters remain high (Figure 3D), which is expected

because G9a/Glp do not play a significant role in the trimethyla-

tion of pericentromeric and subtelomeric repeats (Shinkai and

Tachibana, 2011); instead, trimethylation of pericentromeric

and subtelomeric repeats is accomplished by Suv39H1 and

Suv39H2 (Schotta et al., 2004), which trimethylate H3K9 in these

genomic loci much prior to the deletion of G9a/Glp by Foxg1-

Cre. Therefore, G9a/GLP deletion from the differentiating MOE

reduces the levels of H3K9me3 from OR loci and affects the
886 Cell Reports 9, 884–892, November 6, 2014 ª2014 The Authors
nuclear organization of OR loci. This

observation is consistent with recent ex-

periments demonstrating a direct correla-

tion between epigenetic state and nuclear

distribution in mammalian cells (Pinheiro

et al., 2012). However, it should be noted

that the overall aggregation of OR genes

still takes place in the dKO nuclei, in sharp

contrast with the complete disruption of

these structures upon ectopic lamin-B re-

ceptor (Lbr) expression in mature OSNs

(Clowney et al., 2012)

H4K20me3 Has Nonessential
Function in OR Gene Repression
To examine whether trimethylation of

H4K20 is as important in OR gene regu-

lation as trimethylation of H3K9, we
generated conditional dKO mice by crossing Foxg1-Cre and

Suv4-20H1 floxed allele (Schotta et al., 2004) to the Suv4-

20H2 KO allele. Because these mice are viable, we analyzed

the dKO postnatally so we could biochemically address the ef-

fect of the deletion in H4K20 trimethylation. Although our ChIP-

quantitative PCR (qPCR) analysis shows that, in dKO MOEs,

H4K20me3 is significantly reduced at OR genes (Figure S3E),

our RNA-seq, qRT-PCR, and IF analysis shows that OR expres-

sion is not affected by loss of this histone modification (Figures

S3A, S3C, and S3D). Both the mean and median levels of OR

expression remain the same between control and double KO

MOEs (Figure S3A); the number of OR alleles detected is nearly

identical (ORs detected in dHet: 1,019; ORs detected in dKO:

1,020). In agreement with a more dominant role in OR gene

expression, H3K9me3 levels remain high on OR loci in the

double KO, consistent with previous observations (Schotta

et al., 2004) that dissociate H3K9 from H4K20 methylation

(Figure S3A).
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Figure 2. Coexpression of Multiple ORs in OSNs Lacking G9a and GLP

(A) Bar plot illustrating relative expression level of five most highly expressed ORs in G9a/GLP dKO used to make RNA probes for FISH below.

(B) Two-color FISHwith Olfr231 probe in red and ten other ORs in green including the four next most highly expressed ORs in dKO (Olfr878, Olfr1339, Olfr464, and

Olfr1361), four other highly upregulated ORs (Olfr446, Olfr419, Olfr433, and Olfr420), and two control probes that are readily detected in nonmutant embryonic

day 18.5 (E18.5) MOE (OIfr686 and OIfr556). Left is control; right is dKO. DAPI is removed from bottom panels.

(C) Magnified view of inset as shown in (B) to highlight red/green coexpressing OSNs (arrowheads). Count totals for dKO are coexpressing cells: 49, Olfr231+

cells: 698, and Olfr878 pool+: 350. Totals for control are coexpressing cells: 0, Olfr231+: 4, and Olfr878 pool+: 81.
LSD1 Is Partially Dispensable in the Setting of Reduced
H3K9 Methylation
Because Olfr231 is expressed at a significantly higher fre-

quency in the G9a/GLP dKO, we hypothesized that its expres-

sion is independent of LSD1-mediated H3K9 demethylation.

If this were true, then deletion of LSD1 should have no impact

on Olfr231 expression in the G9a/GLP dKO background.

Because generation of a conditional triple KO was not feasible,

we asked if single deletion of G9a or GLP results in increased

Olfr231 expression frequency as seen in G9a/GLP dKO.

Indeed, RNA-seq, qRT-PCR, and RNA-FISH analysis in either

G9a or GLP single KO reveals a significant increase in the num-

ber of Olfr231-expressing neurons, suggesting that the two

methyltransferases are partially redundant in the MOE (Figures

4A, S4A, and S4B). This allowed us to test whether LSD1 is

required in the G9a KO setting for the increase in Olfr231.

Although Olfr231 expression is completely abolished in the

LSD1 KO MOEs (Figure 4A), its expression is partially restored
C

in the G9a/LSD1 dKO MOEs, supporting direct and opposing

roles of the two enzymes in H3K9 methylation of OR loci. The

fact that G9a deletion in the LSD1 KO background does not

restore Olfr231 expression to the levels of the G9a single KO

is likely explained by compound toxicity of the two independent

deletions. Additionally, we reasoned that, if there was a

reduced role for LSD1 in the activation of ORs in the G9a KO

MOE, a comparison of the DNA damage produced by its activ-

ity, 8-oxoguanosine, would reflect this LSD1 independence

(Lyons et al., 2013). Indeed, we find no evidence for increased

LSD1 activity at the Olfr231 locus in the G9a single KO

compared to the control 8-oxoguanosine DNA immunoprecipi-

tation (Figure 4B). These observations support a model where

G9a and GLP methylate H3K9 on every OR gene and then

LSD1 stochastically demethylates H3K9 from the chosen OR

allele. In agreement with a sequential fashion by which H3K9

methylation and demethylation regulate OR expression, dele-

tion of G9a immediately after OR choice or upon terminal
ell Reports 9, 884–892, November 6, 2014 ª2014 The Authors 887
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Figure 3. Heterochromatin Is Reduced at OR Clusters in G9a/GLP dKO

(A and B) DNA FISH and immunofluorescence for OR gene cluster DNA (green; ‘‘pan-OR’’) and H3K9me3 (red) in MOE cryosections at E18.5 of control and G9a/

GLP dKO, respectively. Upper left: merged image; upper right: pan-OR with DAPI; lower left: pan-OR with H3K9me3; lower right: H3K9me3 with DAPI.

(C)Summaryofmeasurements frompan-ORaggregate radial analysis (top) andperipheral signalquantification (bottom;n=100pan-ORfoci forboth).Cartoondepicts

source of measurements for these analyses, whereby pan-OR aggregates were defined as the area containing signal between 25% and 100%maximum intensity.

(D) H3K9me3 signal intensity in two different regions of the nucleus illustrate a specific loss of H3K9me3 from OR gene foci in the dKO. OR, olfactory receptor

gene aggregates; PH, pericentromeric heterochromatin. Error bars are SD from the mean (for both genotypes: nPH = 50; nOR = 150).

(E) Image of pan-OR and H3K9me3 in control E18.5 OSN, shown with reference line used for signal quantification (white, top panel); intensity plot corresponding

to pixels intersecting reference line (bottom panel). a.u., arbitrary unit.

(F) Pixel intensity plot for entire control image plane (shown in inset). H3K9me3 intensity is plotted along y axis; pan-OR intensity is plotted on x-axis. Hotter colors

correspond to greater frequency of occurrence.

(G) Same as (E) but with G9a/GLP dKO OSN.

(H) Same as (F) but with G9a/GLP dKO image plane.

For (C)–(E) and (G), morphologically identified OSNswere used formeasurements whereas (F) and (H) are quantifications of entire fields of cells in anMOE section.
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Figure 4. Reduction of H3K9me3 at OR Genes Allows LSD1-Independent OR Activation

(A) Olfr231 ISH in control (Cre-) MOE (leftmost; average approximately two Olfr231+ cells per section; n = 20 sections) compared with (from left to right) LSD1 KO

(average zero Olfr231+ cells per section; n = 20 sections), G9a KO (average �38 Olfr231+ cells per section; n = 20 sections), and LSD1/G9a dKO (average

approximately four Olfr231+ cells per section; n = 20 sections; for GLP KO: see Figure S4).

(B) 8-oxoguanosine DNA immunoprecipitation in G9a heterozygote (cont.) and G9a KO MOE at E18.5. Values represent the mean of technical duplicates; error

bars are mean ± SEM.

(C) Percentage of total OR RPKM that the top tenmost highly expressed ORs represent for each genotype as shown (all are Foxg1-Cre+, each color corresponds

only to rank, not Olfr gene identity). Flox is abbreviated ‘‘fl.’’

(D) Lorenz curve depicting OR expression across all OR genes in the G9a-GLP dosage series (if all OR genes express at equal levels, Gini = 0 and curve is perfect

diagonal; see Figures S2C and S2D). Curve depicts cumulative fraction of OR expression as a function of cumulative OR genes detected (‘‘Het’’: flox/+; ‘‘KO’’:

flox/flox).
neuronal differentiation has no detectable consequences in OR

expression or axonal targeting (Figures S1B–S1D).

G9a and GLP Drive the Diversification of OR Expression
in a Dose-Dependent Fashion
The observation that G9a KO has an intermediate OR expression

phenotype compared to the G9a/GLP dKO is intriguing. Because

both genes are very likely to be coexpressed in the same cells of

the MOE (Figure S4C), an explanation for this phenotype is that

OR silencing is effective only in the presence of both enzymes.

We previously showed that OR heterochromatin forms blocks

that extend throughout their genomic clusters (Magklara et al.,

2011); thus, it is possible that highconcentrationof theseenzymes

is required for the completemarkingof theORchromatin and that,

by reducing the number of functional methyltransferase alleles,

H3K9 methylation at OR loci becomes incomplete. To test this,

we performed RNA-seq on G9a KO as well as G9a KO; GLP het-

erozygoteMOEs tocomparewith the doubleKOandcontrol sam-

ples. Strikingly, we observe a direct dose dependency for G9a/

GLP levels on OR expression. Olfr231 and the rest of the ORs

that are upregulated in the dKO increase their expression as the

number of methyltransferase alleles decreases (Figure 4C). Inter-

estingly, at the same time, the number of detectedORsdecreases
C

stepwise with each additional missing G9a/GLP allele as fewer

ORs contribute to OSN diversity (Figures S2A and 4C). Mean OR

transcription remainssimilar acrosssamples (mean readsperkilo-

base of exonpermillion readsmapped [RPKM]= 0.37; SD=0.14),

but median OR RPKM is severely reduced in MOE lacking these

methyltransferases (Figure S2B), indicating a reduction in the

complexity of the transcribed OR repertoire. The complexity of

the OR transcriptome can be best depicted with a Lorenz curve,

which was first used for the description of income inequality

among nations (Lorenz, 1905). In this graph, which shows cumu-

lative OR expression levels, each OR gene contributes a percent-

age of total expression; the more equally each OR contributes to

the total expression, the lower the Gini coefficient is. Thus, if

each OR gene had equal contribution to the cumulative OR tran-

scriptome, the Lorenz curve would approach the diagonal of per-

fect equality and Gini coefficient would be zero (Figures 4D, S2C,

and S2D; Wittebolle et al., 2009). In control mice, 85%of the ORs

contribute to the total OR mRNA and the Lorenz curve is the

closest to the diagonal. In contrast, in the dKO, less than 20% of

theORgenes account for all of the observedORgene expression,

providing the highest deviation from the perfect diagonal (Fig-

ure 4D). The rest of the genotypes examined have intermediate

levels of OR diversity that decrease with the number of available
ell Reports 9, 884–892, November 6, 2014 ª2014 The Authors 889



methyltransferase alleles (Figure 4D). Importantly, the decreased

equality of OR expression in the dKO is counterbalanced by

dramatically increased transcription of fewer than ten OR genes,

which correspond to 6.4%of the total OR transcriptome in control

MOEs and 60% in the double KO (Figure 4C). In contrast, the

complexity of the OR transcriptome remains the same in the

Suv4-20h1/Suv4-20h2 dKO MOEs (Figure S3B).

DISCUSSION

The data presented here demonstrate that OR heterochromatini-

zation is critical for properORexpression. In the doubleG9a/GLP

KOMOEs, where H3K9me3 is significantly reduced from the OR

genome, the vastmajority of ORs are not highly transcribed at the

cellular level, whereas fewer than ten ORs are expressed in most

OSNs. In addition to their zonal expansion, these ORs evade the

one receptor per neuron rule according to our two color RNA

FISH experiments. Remarkably, although OR gene silencing is

significantly reduced in the G9a/GLP KO MOEs, coexpression

among the ten dominant ORs is infrequent (Figure 2). Thus, for

most ORs, H3K9 demethylation is necessary, but not sufficient,

for expression at high cellular levels. Although recent theoretical

calculations support that a slow demethylation process com-

bined with a fast feedback can explain singular OR expression

(Tan et al., 2013), our experimental findings suggest that an addi-

tional regulatory layermay also contribute to the singularity of OR

choice. Were the absence of H3K9 methylation sufficient for

robust OR transcription, then most G9a/GLP KO OSNs should

express multiple ORs at high levels. Instead, we observe only a

subset of OR genes being expressed at high levels throughout

the MOE and only occasional coexpression of more than one

OR per sensory neuron (Figure 2).

In this note, our data, with the exemption of the few upregu-

lated ORs, diverge from recent observations in zebrafish

OSNs, whereby pharmacological inhibition of G9a/Glp results

in increased frequency of OR coexpression (Ferreira et al.,

2014). Although, in zebrafish embryos, the global effects of

G9a/Glp inhibition on OR transcription were not determined, in-

hibition of G9a/Glp caused robust OR coexpression for several

ORs analyzed by two-color RNA FISH, suggesting that desilenc-

ing is sufficient for robust OR expression in this organism. Thus,

despite the deep conservation of H3K9 methylation in OR regu-

lation from fish to mammals, the lineage leading to mice has

gained what could be termed a ‘‘singularity enforcer’’ that adds

a regulatory layer to OR choice. The source of this singularity

may be the stochastic convergence of multiple distant enhancer

elements in a unique nuclear location of the olfactory neurons

(Markenscoff-Papadimitriou et al., 2014). This additional layer

may be helping to ensure singular expression in the face of log-

arithmic expansion of this gene family in terrestrial vertebrates

compared to fish (Nei et al., 2008). Obviously, we cannot exclude

the intriguing possibility that G9a/Glps, beyond their H3K9meth-

yltransferase activity, have additional regulatory functions that

are not perturbed by pharmacological inhibition but are only re-

vealed upon genetic deletion of the whole protein.

It ispossible thatboth lossofH3K9me3andcompletedisruption

of the OR aggregates, like the one caused by ectopic Lbr expres-

sion inmatureOSNs (Clowney et al., 2012), are required for robust
890 Cell Reports 9, 884–892, November 6, 2014 ª2014 The Authors
expression from multiple ORs. Moreover, although loss of

H4K20me3 from OR clusters does not have detectable transcrip-

tional consequences, the removal of thismarkmay also be essen-

tial for robustOR expression, explainingwhy loss of H3K9methyl-

ation does not cause frequent OR coexpression. Both scenarios

are not currently testable because they require crossing several

additional alleles to theG9a/Glp double KO.Moreover, we cannot

exclude that indirect effects from these genetic manipulations

convolute the interpretationof our analysis. However, our previous

work showed that, in OSNs, H3K9me3 is deposited almost exclu-

sively onORgenes andpericentromeric and subtelomeric repeats

(Magklara et al., 2011). In agreement with this, our RNA-seq data

fromG9a/Glp KOmice suggest that, by and large, only OR genes

are significantly affected by this deletion. Finally, the fact that

mature OSNmarkers and components of the OR feedback signal

have normal expression levels and distribution (Figures S2E–S2H)

make the possibility of indirect effects less likely.

Our findings pose an important question: why in the absence

of heterochromatic silencing are only these few ORs expressed

at significant cellular levels? We propose that chromatin-medi-

ated silencing, which occurs before the onset of OR transcrip-

tion, masks the DNA sequence of OR promoters and equalizes

their frequency of choice, explaining the relatively equal repre-

sentation of ORs observed in control MOEs. According to this

model, LSD1 and the rest of the OR transcriptional machinery

cannot ‘‘predict’’ a priori the strength of an OR promoter, making

the exact sequence of the promoter irrelevant for the initial

choice. In the G9a/GLP dKO with much reduced H3K9 methyl-

ation, the role for LSD1-mediated activation is accordingly

diminished, and stronger OR promoters may prevail, transform-

ing a stochastic process to a deterministic one. Computational

analysis comparing the promoters of the most upregulated

ORs with the rest of the repertoire failed to reveal significant dif-

ferences in predicted transcription-factor-binding motifs (data

not shown). Moreover, de novo motif analysis revealed only dif-

ferences in low-complexity repetitive sequences, for which there

are no data supporting a role in transcriptional activation (data

not shown). Thus, at the moment, the reason(s) why certain

ORs are specifically upregulated in a reproducible manner

across multiple experimental animals remains mysterious and

likely will remain so until we obtain a comprehensive understand-

ing of the transcription factors that bind to and regulate OR

transcription.

Importantly, whatever transcription factors are responsible for

the increased expression frequencies of Olfr231 and the other

upregulated ORs, they are not expressed in a zonal fashion,

because, in the double KO, zonal boundaries are violated (Fig-

ure S1A). This could in fact provide mechanistic insight into the

zonal nature of OR expression, whichmay not be primarily deter-

mined by zonal expression of specific transcription factors but

by the selective demethylation of specific OR clusters within

different zones, in agreement with the homogeneity among OR

promoters from different zones (Clowney et al., 2011).

In summary, for OR genes, heterochromatinization facilitates

their singular, stochastic selection, ascribing a novel regulatory

role for heterochromatic gene silencing as that of a source of

cellular diversity. Interestingly, it was recently reported that

silencing, in this case in the form DNA methylation by Dnmt3b,



also governs the stochastic and mutually exclusive nature of

clustered protocadherin gene expression (Toyoda et al., 2014).

With an increasing number of reports of widespread stochastic

and monoallelic expression during mammalian development

(Deng et al., 2014; Eckersley-Maslin et al., 2014; Nag et al.,

2013), it will be interesting to examine whether epigenetic

silencing is generally used for the diversification of gene-expres-

sion programs.

EXPERIMENTAL PROCEDURES

Animals

All mice were housed in standard conditions with a 12 hr light/dark cycle and

access to food and water ad libitum and in accordance with the University of

California Institutional Animal Care and Use Committee guidelines. All strains

were maintained on a mixed genetic background. Mouse strains used are as

follows: Foxg1-Cre (Hébert and McConnell, 2000), OMP-IRES-Cre (Eggan

et al., 2004), MOR28-IRES-Cre (Shykind et al., 2004), R26R mT/mG (Muzum-

dar et al., 2007), G9a flox (Tachibana et al., 2005), GLP flox (Schaefer et al.,

2009), LSD1 flox (Wang et al., 2007), SUV4-20H1 flox, and SUV4-20H2 null

(Schotta et al., 2004).

DNA Deep Sequencing

Sequencing was performed on the Illumina HiSeq 2000 and 2500. cDNA

libraries for all samples were prepared with the ScriptSeq kit V2 (Epicenter;

Illumina) with total mappable reads from 50 bp paired end reads as follows:

G9a heterozygote: 69,620,496; G9a KO: 73,023,480; G9a KO/GLP heterozy-

gote: 67,119,073; G9a/GLP double KO: 59,623,472; SUV4-20H1/H2 double

heterozygote: 52,438,433; and SUV4-20 double knockout: 46,703,558.

Sequence Data Analysis

RNA-seq reads were mapped with Tophat (Trapnell et al., 2009) using Bowtie

(Langmead et al., 2009). Differential expression was quantified with the Cuf-

flinks software package (Trapnell et al., 2010) using classic-fpkm library

normalization methods. Downstream visualization was carried out with a com-

bination of Excel (Microsoft) and R (http://www.R-project.org). Lorenz curves

were generated with the Ineq R package (http://cran.r-project.org/web/

packages/ineq/), and additional visualization of RNA-seq data was carried

out in Perl using Circos data visualization software (Krzywinski et al., 2009).

In Situ Hybridization

Sixteen micrometer cryosections were air dried briefly at 37�C before 10 min

fixation in ice-cold 4% paraformaldehyde in PBS at pH 7.4. PBS with 0.1%

Tween was used to wash the slides thrice prior to one 10 min acetylation

step carried out in diethylpyrocarbonate-treated water. A single PBS-Tween

wash immediately preceded the prehybridization step, in which slides are sub-

merged in a room-temperature solution containing 50% formamide, 53 saline

sodium citrate (SSC), Denhardt’s solution, and yeast tRNA. Probes were

diluted in this solution and hybridized to sections overnight at 65�C, after which

slides were washed briefly in 65�C 53 SSC then for 90 min in 0.23 SSC again

at 65�C. We then used 0.1 M Tris-HCl /0.15 M NaCl buffer at pH 7.5 to wash

slides, followed by a 1 hr blocking step in 10% sheep serum in Tris/NaCl.

Slides were then incubated overnight at 4�C in 1% sheep serum with anti-di-

goxigenin-conjugated alkaline phosphatase (Roche). Tris (pH 9.5) buffer with

1 mM levamisole and 0.3% Tween-20 was used as the buffer for the NBT/

BCIP (Roche) color reaction.

FISH was carried out similarly, with the following differences: following the

initial 0.1 M Tris-HCl washes after hybridization, 0.5% block (PerkinElmer) in

Tris buffer was applied to the slides for 30 min followed by an anti-digoxigenin

antibody conjugated to peroxidase (Roche) incubation in Tris-NaCl buffer at

1:500 for 30 min. In situ hybridization (ISH) was developed using TSA reagent

(PerkinElmer).

For two-color ISH, both probes were detected using TSA signal amplifica-

tion (PerkinElmer) with a 30% hydrogen peroxide wash between development

steps to quench peroxidase.
C

DNA FISH/Immunofluorescence

IF for H3K9me3 (Abcam 8898) was performed as described above, prior to

annealing DNA FISH probes. pan-OR DNA probe was synthesized as previ-

ously described (Clowney et al., 2012). Following the addition of Alexa-con-

jugated secondary antibody, sections were fixed for 10 min in 2–4 mM

ethylene glycol-bis-succinimidyl succinate at 37�C. DNA FISH was per-

formed using standard protocol. Briefly, RNase1 treatment was carried out

at 37�C for 1 hr followed by 0.1 N HCl treatment. Probes were applied

following brief denaturation at exactly 85�C in 75% formamide in 23

SSC. Probes were detected with Dylight-488-conjugated anti-biotin (Jackson

ImmunoResearch Laboratories) following 8% formamide in PBS-Triton

washes.

DNA Immunoprecipitation

Purified genomic DNA was sonicated in PBS with 0.5% Tween-20 to approx-

imately 400 bp fragments using the Bioruptor (Diagenode). For sorted cells,

fragmentation of DNA was assumed to be complete following 15 min of soni-

cation using medium power output with samples on ice. 8-oxodG monoclonal

antibody (Trevigen) was incubated with DNA rotating overnight at 4�C prior to

immunoprecipitation.

Microscopy and Image Analysis

All images were captured with a Zeiss LSM 700 confocal microscope. Pixel in-

tensity scatterplots from Zen stock software of entire image planes were

directly exported to Adobe Photoshop to increase blue signal intensity (these

points lacked sufficient contrast in raw image); single cross-section intensity

tables were exported and plotted using R. The JACoP plugin for ImageJ was

used for the generation of both Pearson’s correlation and Manders’ coeffi-

cients in association with data in Figure 3; image intensity calculation and

quantitation of pan-OR signal distribution was done with the Radial Profile

plugin.
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