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SUMMARY

Elevated levels of the free amino acid L-tryptophan
(L-Trp) trigger expression of the tryptophanase
tnaCAB operon inE. coli. Activation depends on tryp-
tophan-dependent ribosomal stalling during transla-
tion of the upstream TnaC peptide. Here, we present
a cryoelectron microscopy (cryo-EM) reconstruction
at 3.8 Å resolution of a ribosome stalled by the
TnaC peptide. Unexpectedly, we observe two
L-Trp molecules in the ribosomal exit tunnel coordi-
nated within composite hydrophobic pockets
formed by the nascent TnaC peptide and the tunnel
wall. As a result, the peptidyl transferase center
(PTC) adopts a distinct conformation that precludes
productive accommodation of release factor 2
(RF2), thereby inducing translational stalling. Collec-
tively, our results demonstrate how the translating
ribosome can act as a small molecule sensor for
gene regulation.
INTRODUCTION

An increasing number of regulatory peptides are known to stall

the translating ribosome during their own synthesis. Induction

of stalling can be an intrinsic property of the nascent chain or

can be triggered by the presence of specific small molecules

(Ito and Chiba, 2013). In order to regulate gene expression, the

translating ribosome can thereby be turned into a highly specific

sensor for small molecules or alternatively also into a sensor for

mechanical force (Ito and Chiba, 2013).

The expression of the tna operon in E. coli is controlled using a

feedback loop requiring the small molecule L-tryptophan (L-Trp):

the L-Trp catabolizing enzyme tryptophanase (TnaA) and the

tryptophan-specific permease (TnaB) are localized downstream

of the regulatory peptide TnaC. The spacer region between tnaC

and tnaA contains several Rho-dependent transcription termina-

tion sites. In the absence of free L-Trp, translation of tnaC is effi-

ciently terminated at the stop codon by release factor 2 (RF2),

and the ribosome is dissociated (Gong and Yanofsky, 2002).

This enables the transcription termination factor Rho to bind to

the mRNA and terminate transcription prior to synthesis of the
C

tnaAB mRNA. In contrast, in the presence of inducing levels of

free L-Trp peptide release by RF2 is inhibited (Gong et al.,

2001). Hence, the ribosome stalls on the TnaC mRNA carrying

a peptidyl-tRNA with a C-terminal proline (P24) in the P-site

and a UGA stop codon in the A-site. As a consequence, Rho is

blocked from binding to the mRNA and, thus, allows the tran-

scription and subsequent translation of TnaB and TnaA (Fig-

ure 1A) (Gong and Yanofsky, 2002).

Extensive mutational studies revealed that specific amino

acids of TnaC, such as P24, D16, and W12 (Cruz-Vera et al.,

2005, Cruz-Vera and Yanofsky, 2008; Gong and Yanofsky,

2002) as well as their relative position to each other, are crucial

for the ribosome to efficiently respond to L-Trp and induce trans-

lational stalling. In addition, numerousmutations in the ribosomal

exit tunnel modulate tryptophan-dependent TnaC stalling, sug-

gesting that the ribosome and the TnaC peptide cooperate to

monitor tryptophan levels (Ito and Chiba, 2013).

A previous cryo-EM structure of a TnaC-stalled ribosome

complex demonstrated that TnaC stalls the ribosome indeed

with a peptidyl-tRNA remaining in the ribosomal P-site. The

nascent peptide adopts a defined conformation within the ribo-

somal exit tunnel, and contacts between TnaC and components

of the tunnel wall were identified (Seidelt et al., 2009). However,

due to limited resolution it was impossible to identify how the

ribosome and TnaC sense the presence of the key regulator

L-Trp and how this leads to inhibition of peptidyl transferase cen-

ter (PTC) activity (Seidelt et al., 2009).
RESULTS AND DISCUSSION

Cryo-EM Structure of a TnaC-Stalled Ribosome
To elucidate the molecular mechanism by which the TnaC pep-

tide induces translational stalling in a strictly L-Trp dependent

manner, we first purified TnaC-stalled ribosomes from whole

E. coli cells (Bischoff et al., 2014) in the presence of L-Trp. Affinity

purification yielded a very homogenous sample with uniformly

stalled nascent chains. Cryo-EM, in combination with single-

particle analysis and in silico sorting (Figure S1), resulted in a

reconstruction of a ribosome population with a peptidyl-tRNA

in the ribosomal P-site that was refined to an overall resolution

of 3.8 Å (Figures 1B, 1C, and S2). Calculation of the local resolu-

tion (Kucukelbir et al., 2014) revealed that features in the

conserved core of the ribosome were in part better resolved

than the average resolution (Figure S2). Rigid-body docking of
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Figure 1. Cryo-EM Structure of a TnaC-Stalled Ribosome Nascent Chain Complex

(A) Schematic for the tryptophan dependent regulation of the tna operon in E. coli.

(B) Cross-section through the cryo-EM density of the TnaC-RNC, with 30S in yellow, 50S in gray, P-tRNA in dark green, and the nascent chain in light green. The

mRNA anticodon is colored in red, and the free tryptophan molecules in the ribosomal exit tunnel are orange.

(C) Density and model for the TnaC nascent chain attached to the CCA end of the P-tRNA with the two additional densities of the free tryptophan molecules

W1 and W2.

(D) Close up on the two free tryptophan molecules interacting with hydrophobic residues of the TnaC nascent chain.
a crystallography-based molecular model of the E. coli large

ribosomal subunit (Dunkle et al., 2010) (PDB 3OFR) revealed

very good agreement of the structural details in our map with

the molecular features of the model (Figure S2). As expected,

the pitch of a helices, strand separation in b sheets, as well as

density of large side chains were observable throughout the

entire map (Figures 1C, 1D, and S2). Moreover, we found contin-

uous and well resolved density for the nascent TnaC peptide

comprising the entire C-terminal part that is critical for stalling

(Cruz-Vera et al., 2005; Cruz-Vera and Yanofsky, 2008; Gong

and Yanofsky, 2002). A molecular model was built de novo for

this part of the TnaC peptide, and the conformation of a few

rRNA bases and amino acids of the ribosomal tunnel was also

adjusted (see Experimental Procedures) (Figures 1B–1D). After

these adjustments, two unassigned extra densities were identi-

fied in the upper region of the exit tunnel resembling the shape

of the free amino acid L-Trp (Figures 1C, 1D, and S3). Earlier

biochemical studies suggested that the binding site of the free
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L-Trp may be located directly in the A-site of the PTC and that

it may overlap with the binding site of the antibiotic sparsomycin

(Cruz-Vera et al., 2006, 2007; Cruz-Vera and Yanofsky, 2008).

However, this view was recently challenged in a careful muta-

tional analysis (Martı́nez et al., 2014). Indeed, our cryo-EM recon-

struction cannot provide any evidence for tryptophan binding

within the PTC. In contrast, we observe clear density for not

only one but two free L-Trp molecules directly within the ribo-

somal tunnel, located 15–20 Å from the PTC.

Interactions of TnaC with Components of the Ribosomal
Tunnel
The two L-Trp molecules are bound within two hydrophobic

pockets formed by the TnaC nascent chain between residues

D21 and N17, and rRNA nucleotides of the 23S rRNA (Figures

2A and 2B). Specifically, the first L-Trp (W1) is bound close to

V20 and I19 of TnaC and establishes stacking interactions with

U2586 of the rRNA (Figure 2C). The W1 is additionally stabilized



Figure 2. Interactions of TnaC with the Free

L-Trp Molecules and the Ribosomal Exit

Tunnel

(A) Molecular model of TnaC and the free trypto-

phan molecules in a schematic ribosomal exit

tunnel.

(B) Surface hydrophobicity plot (h, hydrophobic;

c, charged) of the nascent chain reveals two hy-

drophobic pockets, formed by residues V20, I19,

and I15 of TnaC engaging the free tryptophan

molecules.

(C) W1 interacts with V20 and I19 of TnaC and

forms a stacking interaction with U2586 of the

23S rRNA.

(D) W2 bound in a hydrophobic pocket formed by

I19 and I15 interacts with A2058 and A2059 of the

23S rRNA.

(E) The invariant residues D16 and W12 engage

in a ‘‘zipper’’-like interaction with K90 and R92

of the ribosomal protein uL22 of the central

constriction.

(F) TnaC residue N14 interacts with R61 of uL4

on the opposite site of uL22 in the central

constriction.

See also Figure S3.
by D21 and the peptide backbone of the nascent chain. Interest-

ingly, the nascent chain forms a sharp kink in the vicinity of N17

and K18, which is stabilized by interactions of these two amino

acids with the rRNA base pair U2609 and A752 (Figure 2D).

This kink results in a second hydrophobic cavity formed by

V20 and I15 of the TnaC peptide (Figure 2D) that accommodates

the second L-Trp (W2). W2 also interacts with the rRNA bases

A2058 and A2059 that form a crevice in the tunnel wall that com-

prises the binding site of macrolide antibiotics (Dunkle et al.,

2010) (Figure S4). Consistent with the composition of these bind-

ing pockets, mutation of U2609 and A752 and mutations of

A2058 have been shown to severely reduce the efficiency of

TnaC stalling (Cruz-Vera et al., 2005; Cruz-Vera and Yanofsky,

2008; Gong and Yanofsky, 2002). Moreover, mutation of I19 of

the TnaC peptide to amino acids other than the chemically

very similar leucine also affects stalling (Martı́nez et al., 2014).
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Although distinct density enabled the

majority of side chains in the TnaC

nascent peptide to be assigned, I19 and

I15 lack a clearly defined conformation.

This suggests that they are not involved

in direct contacts with the ribosomal exit

tunnel as proposed in earlier molecular

dynamics simulations but rather provide

a hydrophobic environment that facili-

tates binding of the L-Trp molecules.

Together with the TnaC nascent chain,

W2 forms a compact ‘‘bridge’’ or ‘‘plug’’

between the A2058/A2059 crevice on

one side of the tunnel and the U2609/

A752 base pair on the other (Figure 2D).

This ‘‘bridge’’ resembles the ketolide teli-

thromycin that bridges the ribosomal tun-
nel using a very similar geometry and by doing so induces

translational arrest during translation of certain peptides (Dunkle

et al., 2010) (Figure S4). These findings suggest a general role for

the bases A2058, A2059, and the base pair U2609/A752 in the

allosteric control of the ribosome, because this area is the target

site for various small molecules ligands.

Deeper in the ribosomal tunnel, we observe additional interac-

tions between TnaC and the ribosomal proteins uL22 and uL4

that form the central constriction. The invariant residues D16

and W12 of the nascent chain form a ‘‘zipper’’-like motif with

the residues K90 and R92 of uL22 (Figures 2E, 2F, and S3).

This motif may explain the particular importance of these resi-

dues for TnaC-induced stalling, for example, mutations of K90

in uL22 reduce stalling (Cruz-Vera et al., 2005, 2007), and the dis-

tance of D16 andW12 of TnaC from the PTC is also critical (Cruz-

Vera et al., 2005; Cruz-Vera and Yanofsky, 2008; Gong and
October 23, 2014 ª2014 The Authors 471



Figure 3. Silencing of the PTC in the TnaC-Stalled Ribosome

(A) The cryo-EM density for the 23S rRNA nucleotides U2585 and A2602 adopting distinct conformations in the PTC of the TnaC stalled ribosome.

(B) Conformation of 23S nucleotide U2585 in TnaC (blue) in comparison to a ribosome bound to the antibiotic chloramphenicol (Dunkle et al., 2010) (PDB 3OFC,

yellow), the uninduced (PDB 1VQ6, pink), and the induced (PDB 1VQN, light blue) state of the PTC (Schmeing et al., 2005a, 2005b).

(C) Conformation of 23S rRNA nucleotide A2602 in TnaC (blue) in comparison to a ribosome bound to the antibiotic chloramphenicol (Dunkle et al., 2010) (PDB

3OFC, orange), the uninduced (PDB 1VQ6, pink), and the induced (PDB 1VQN, light blue) state of the PTC (Schmeing et al., 2005a, 2005b).

(D) The conformation of A2602 in TnaC-SRC is inconsistent with the accommodation of release factor 2 (space filled model, orange, GGQmotive colored in red).

The rotation of TnaC A2602 in comparison to A2602 in the 70S-RF2 complex (Jin et al., 2010) (PDB 2X9R, orange) leads to a clash of the nucleotide with RF2.

(E) U2585 in the conformation observed in TnaC-RNC would clash with RF2 (orange space filled, GGQ motive colored in red).

(F) The contact of U2585 to P24 of TnaC leads to a stabilization of R23 of TnaC (green space filled) in a position that would clash with the correct accommodation

of the GGQ motive of RF2.

See also Figure S4
Yanofsky, 2002). These interactions were indeed proposed to be

of significance in a molecular dynamics simulation (Trabuco

et al., 2010). An additional stabilization of the ‘‘zipper’’ motif is

established by an interaction of TnaC and ribosomal protein

uL4, specifically between N14 of TnaC and R61 of uL4 (Figures

2E and 2F), the importance of which is also supported by muta-

tional analysis of N14 (Gish and Yanofsky, 1995).

Inactivation of the Peptidyl Transferase Center
The question remains as to how these interactions within the

tunnel can lead to silencing of the PTC in a manner that allows

RF2 binding to the ribosome but prevents RF2-mediated release

of the TnaC peptide (Gong et al., 2001; Gong and Yanofsky,

2001) Peptide-bond formation and peptide release strictly

require precise positioning of the substrates, the peptidyl-

tRNA and either A-tRNA or the GGQ motif of the release factor,

respectively. In addition, highly conserved rRNA residues in the

PTC such as U2585 and A2602 are required to dynamically

adopt specific conformations depending on the functional state

of the ribosome (Schmeing et al., 2005a, 2005b, 2002, 2009).

Notably, the PTC of the TnaC stalled ribosomes adopts a
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defined state with stabilized conformations of U2585 and

A2602 (Figures 3A–3C). These conformations appear in both

cases to be incompatible with productive RF2 accommodation.

When comparing our structure with the crystal structure of an

RF2-bound ribosome (Jin et al., 2010), it is apparent that

U2585 as well as A2602 would clash with the GGQ motif of

RF2 (Figures 3D and 3E). In contrast to RF2, accommodated

aminoacyl-tRNA in the A-site would not clash with the observed

conformation of U2585 and A2602, thus explaining why replac-

ing the stop codon in the TnaC peptide with a canonical (non-

rare) sense codon alleviates stalling (Cruz-Vera et al., 2006,

2009; Martı́nez et al., 2014). However, placing the rare isoleu-

cine codon AUA in place of the stop codon induces stalling on

the TnaC leader peptide (Cruz-Vera et al., 2006). This is in agree-

ment with the idea of a general mechanism of kinetic competi-

tion between L-Trp binding in the tunnel and A-site ligand

accommodation that would apply to both, release factors and

aa-tRNAs. A role for such a kinetic component would also be

consistent with the slow puromycin reactivity being inhibited

by TnaC and with the requirement of the kinetically slower pro-

line as ultimate amino acid.



Figure 4. Relay to PTC and Schematic

Model of the TnaC-Stalled Ribosome

(A) The interaction of W1 with 2586 and the inter-

action of K18 and N17 of TnaC with U2609 lead to

the formation of a new interaction between G2608

and the phosphate connecting U2586 and U2585

eventually stabilizing U2585 in the observed

conformation.

(B) The interactions shown in (A) might decrease

the flexibility of the rRNA stretch up to the PTC and

could contribute to the stabilization of A2602

(C) Overview of molecular interactions and allo-

steric communication between the TnaC peptide,

the two L-Trp molecules, and ribosomal compo-

nents. Important residues the contribution of

which has been shown also by mutational studies

are indicated in magenta.
Moreover, the penultimate amino acid of the TnaC peptide,

R23, is stably positioned between U2506 and C2452 in the

PTC. Here, R23 may also contribute to silencing because it

would clash with the observed position of Q240 of RF2, one of

the three critical amino acids in the GGQ motif (Figure 3F). Simi-

larly, the position of R23 of TnaC may also contribute to the par-

tial inhibition of the antibiotic puromycin (Cruz-Vera et al., 2006;

Hansen et al., 2003) through a potential steric clash (Figure S4).

But how is the observed specific state of the PTC induced

when the essential residues of TnaC and the two critical L-Trp

molecules are relatively far away? First, we find W1 in a stacking

interaction with the rRNA base U2586. This may further reduce

the flexibility of the neighboring U2585 that itself is already

coordinated by P24 of TnaC (Figures 3A and 4A). Furthermore,

the interactions of the TnaC peptide and W2 in the area of

A2058/A2059 crevice and the base pair U2609/A752 result in

a shift of U2609 and G2608 toward the nascent chain. This shift

enables a new interaction between G2608 and the phosphate

backbone between U2586 and U2585 that additionally stabi-

lizes U2585 in its particular conformation (Figure 4B). Moreover,

the interactions of the nascent chain and W2 deep in the tunnel

as well as the interaction of G2608 and U2586 are likely to result

in a dramatic decrease of flexibility in the whole rRNA stretch

extending to A2602. Notably, most of the amino acids and

rRNA residues involved in either contacts or potential relay sys-

tems in our model have been found in mutational analysis to be

critical for stalling efficiency (Ito and Chiba, 2013; Martı́nez

et al., 2014) (Figure 4C; Table S1). Interestingly, the strictly

conserved and most C-terminal residue P24 of TnaC interacts
Cell Reports 9, 469–475,
with the important nucleotide U2585 in

the PTC and may also contribute to the

TnaC stalling by its relatively poor reac-

tivity during peptide bond formation and

termination (Pavlov et al., 2009). The

rather slow kinetics of proline could facil-

itate the formation of the L-Trp binding

pockets by allowing establishment of

the described interactions. This may

prime the system to act as a L-Trp

sensor.
Taken together, the conserved amino acids in the TnaC stall-

ing peptide appear to collectively engage in specific interactions

with the ribosomal exit tunnel. As a consequence, two compos-

ite binding pockets are formed by the nascent chain and the tun-

nel wall, now turning the translating ribosome into an efficient

sensor for L-Trp: in the presence of sufficiently high levels of

this amino acid two L-Trp molecules are bound, likely in a coop-

erative fashion. This, in turn, results in further stabilization of the

nascent peptide chain and allosteric silencing of the PTC (Fig-

ure 4C). It will be interesting to see whether other small molecule

sensing regulatory peptides follow the same principles.
EXPERIMENTAL PROCEDURES

Purification of TnaC Stalled Ribosome Nascent Chain Complexes

The TnaC stalled ribosome nascent chain complex (RNC) was essentially

purified as described (Bischoff et al., 2014). In brief, E. coli KC6 DsmpBDssrA

carrying the plasmid encoding for FtsQ85-TnaC were grown at 37�C in Luria-

Bertani medium to an OD600 of 0.5. Expression of the nascent chain was

induced for 1 hr by adding 0.2% arabinose. The complete construct contains

an N-terminal His-tag followed by a linker sequence, a C3-protease cleavage

site, and the first 85 amino acids of E. coli FtsQ. C-terminal of FtsQ is anHA-tag

for detection and the E. coli TnaC stalling sequence. The total amino acid

sequence of the construct is MGHHHHHHHHDYDIPTTLEVLFQGPGTAAL

NTRNSEEEVSSRRNNGTRLAGILFLLTVLTTVLVSGWVVLGWMEDAQRLPLSK

LVLTGERHYTRNDDIRQSILALGEPGYPYDVPDYAGPNILHISVTSKWFNIDNKI

VDHRP(UGA-Stop).

Cells were harvested and resuspended in buffer A (50 mM HEPES [pH 7.2],

250 mM KOAc, 25 mMMgOAc, 2 mM Tryptophan, 0.1% n-Dodecyl b-D-Mal-

topyranoside [DDM]) and 0.1% EDTA-free complete proteinase inhibitors

(Roche Applied Science). Cells were lysed by passing two times through a
October 23, 2014 ª2014 The Authors 473



microfluidizer (M-110L, Microfluidics) and debris was removed by centrifuga-

tion for 20 min at 16,000 rpm in a SS34 rotor (Sorvall). The cleared lysate was

centrifuged through a sucrose cushion (750 mM sucrose) in buffer A at

25,000 rpm for 20 hr in a Ti45 rotor (Beckman Coulter). The crude ribosomal

pellet was resuspended in a small volume of buffer A.

Ribosomes carrying the nascent chain were separated by affinity chroma-

tography using Talon beads (Clontech Laboratories), that were additionally

preincubated with 10 mg/ml E. coli tRNAs to minimize unspecific binding of

ribosomes. After incubating for 1 hr at 4�C, the beads were washed with at

least ten column volumes (CVs) of buffer B (50 mM HEPES [pH 7.2], 500 mM

KOAc, 25 mM MgCl2, 0.1% DDM, 2 mM tryptophan). RNCs were eluted in

buffer B + 150 mM imidazole and loaded on a linear sucrose gradient 10%–

40% sucrose in buffer B. After spinning for 3 hr at 40,000 rpm in a SW40 rotor

(Beckman Coulter), the 70S peak was collected and diluted three times with

buffer B. RNCs were finally concentrated by spinning for 4 hr at 40,000 rpm

in a Ti70 rotor (Beckman Coulter) and resuspended in an appropriate volume

of grid buffer (20 mM HEPES [pH 7.2], 50 mM KOAc, 5 mM Mg[OAc]2,

125 mM sucrose, 2 mM tryptophan, 0.03% DDM).

Cryo-EM Specimen Preparation and Data Collection

Freshly prepared FtsQ85-TnaC RNCs (4 A260/ml) was mixed with a five times

excess of E. coli signal recognition particle and applied to 2 nm precoated

Quantifoil R3/3 holey carbon supported grids and vitrified using a Vitrobot

Mark IV (FEI Company). Cryo-EM data were collected at NeCEN (Leiden) on

a Titan Krios TEM (FEI Company) operated at 300 keV equipped with a

Cs-corrector and a back-thinned FEI Falcon II direct electron detector. The

camera was calibrated for a nominal magnification of 125,0853 resulting

and a pixel size of 1.10 Å at the specimen. Frames (8 s�1) were recorded in

automatic mode with a dose of 4 e�/Å per frame at defocus values between

0.8 and 2.2 mm. The first and the last image were excluded from the data

set. The remaining frames were aligned using the Gatan Microscopy suite

2.30.463.1 and subsequently summed up using the SPIDER (Frank et al.,

1996) command AD S.

Cryo-EM Data Processing

The images were manually inspected, and micrographs showing drift or

contamination were discarded from the data set. Subsequently, the particles

were picked automatically using the software SIGNATURE (Chen and Grigor-

ieff, 2007).

The data set of 254,000 particles was processed using the SPIDER (Frank

et al., 1996) software package. It was first cleaned from nonribosomal particles

(217,861 ribosomal particles left) and then sorted for the presence of a stoi-

chiometric, homogenous P-site tRNA. The 145,393 particles that were sorted

out in this step showed A/P hybrid tRNA, E site tRNA, SRP bound close to the

ribosomal exit tunnel, as well as undefined density in the A-site and were not

included in further refinement (Figure S1). A final subdata set of 72,468 parti-

cles with homogenous, stoichiometric density for P-site tRNA was refined to

a final average resolution of 3.8 Å. To exclude potential overfitting, the data

were processed using a frequency limited refinement protocol by truncating

high frequencies (low-pass filter at 8 Å) during the whole refinement process

(Scheres and Chen, 2012). In order to redundantly confirm for the obtained

structure the lack of any potential overfitting and for validating the molecular

model, the data set was also refined applying the ‘‘gold-standard’’ procedure.

To this end, the data set was split in two halves, and each half was refined inde-

pendently. As expected, the resolution judged by gold-standard Fourier shell

correlation (FSC 0.143) is identical to the one obtained by the frequency limited

refinement protocol (Figure S2). The final volume was B-factor sharpened

using the program EM-BFACTOR (Fernández et al., 2008). The local resolution

was determined using the software ResMap.

Model Building

For the interpretation of the obtained cryo-EM density, we fitted the structure

of an E. coli 70S ribosome that was cocrystallized with the antibiotic erythro-

mycin as a rigid body (Dunkle et al., 2010) (PDB 3OFR) using UCSF Chimera

(Pettersen et al., 2004). The experimental density showed excellent agreement

with the fitted crystal structure. The model for the P-site tRNA was fitted by

rigid-body docking of a previous model (Seidelt et al., 2009) (PDB 2WWL,
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2WWQ); the model for amino acids 12–24 of the TnaC leader peptide was

both built de novo and refined using COOT (Emsley and Cowtan, 2004). The

surface of the ribosomal exit tunnel until the central constriction and the PTC

was carefully inspected and six bases (U2585, U2586, A2602, U2609,

G2608, A752) and three side chains of amino acids of the proteins uL22

(K90 and R92) and uL4 (R61) of the central constriction were adjusted and

refined using COOT (Emsley and Cowtan, 2004) to fit the experimental density

(see also Figure S3). After building of the model for the nascent chain and the

tunnel wall, two additional small and isolated densities remained unexplained

in the ribosomal tunnel that based on their size and flat shape were interpreted

representing two free L-tryptophane molecules.

To test for overfitting, the model was used to calculate FSCs with both (gold

standard) half volumes. Both curves nearly overlap, indicating that the model

has not been overfitted (Figure S2).

Figure Preparation

All figures showing molecular models and electron densities were prepared

with the software UCSF Chimera (Pettersen et al., 2004).
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