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Abstract
Particle_in_Cell-3D is a powerful method to quantify the cellular uptake of nanoparticles. It combines the advantages of confocal

fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied

to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC) in comparison to a cancer

cell line derived from the cervix carcinoma (HeLa). The absolute number of intracellular silica nanoparticles within the first 24 h

was determined and shown to be cell type-dependent. As a second case study, Particle_in_Cell-3D was used to assess the uptake

kinetics of 8 nm and 30 nm ceria nanoparticles interacting with human microvascular endothelial cells (HMEC-1). These small

nanoparticles formed agglomerates in biological medium, and the particles that were in effective contact with cells had a mean

diameter of 417 nm and 316 nm, respectively. A significant particle size-dependent effect was observed after 48 h of interaction,

and the number of intracellular particles was more than four times larger for the 316 nm agglomerates. Interestingly, our results

show that for both particle sizes there is a maximum dose of intracellular nanoparticles at about 24 h. One of the causes for such an

interesting and unusual uptake behavior could be cell division.
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Introduction
Measuring the interaction between nanoparticles and cells is a

mandatory step for the investigation of nanoparticles designed

for medical treatment, and also for a correct risk assessment of

nanoparticles. In both cases, knowledge regarding the kinetics

of particle internalization gives the dose as a function of the

time and allows for the investigation of a variety of parameters

on that might influence the uptake behavior. Typical examples

are particle characteristics such as size, morphology, chemical

composition, surface charge and functionalization [1-3]. In add-

ition, access to the number of intracellular particles is essential

in studies aimed to compare the effect of similar particles on

different cell types [4]. What all these investigations have in

common, though, is the need for a fast and accurate method to

quantify the uptake of nanoparticle by cells. In vitro cell culture
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experiments are well-known models to study the uptake of

nanoparticles into human cells. Basically, a monolayer of cells

is grown on the bottom of a culture well and nanoparticles are

added to this culture to interact with the cells.

Fluorescence microscopy is commonly the method of choice to

visualize this interaction because it can be performed on live

cells with high spatial and temporal resolution. Finally,

outcomes of the uptake process are normally assessed via

qualitative and semi-quantitative analyses of images.

The need for a method to rapidly quantify the absolute number

of nanoparticles internalized by cells led us to the development

of a highly innovative method that integrates high resolution

confocal microscopy with automatic image analysis. This

method is called Particle_in_Cell-3D and was described in

detail in a previous publication [5]. In this work we briefly

describe Particle_in_Cell-3D and present how it was success-

fully applied to precisely quantify the cellular uptake of silica

and ceria nanoparticles.

Silica nanoparticles have a wide range of applications such as in

chemical mechanical polishing, cosmetics, food, additives to

pharmaceutical drugs, and in biotechnological and biomedical

fields [6-9]. Ceria nanoparticles can be also found in many

applications, as in ultraviolet absorbers, automotive catalytic

converters, fuel additives, and oxygen sensing [10-13]. Due to

the extensive range of applications and to the potential risks of

nanomaterials, a growing number of studies regarding the cyto-

toxicity of silica and ceria nanoparticles can be found in the

literature. As regards silica nanoparticles, several investigations

showed that the toxicity increases with decreasing particle sizes,

increasing doses and longer exposure times [14-16]. In the case

of ceria nanoparticles, very contradictory findings have been

reported. On the one hand, the anti-inflammatory, antioxidant

and radio-protective properties have been described as benefi-

cial applications in nanomedicine [17-19]. On the other hand,

oxidative stress and impaired cell viability were shown to be a

function of the particle dose and the exposure time [1,20].

However, most of the studies concerning the interaction of

silica and ceria nanoparticles with cells cannot be directly

compared as they were performed by applying different cell

types and a variety of different particles. Nanoparticles, such as

ceria released from automotive catalytic converters, can be

taken up via the respiratory tract and then be transferred into the

blood stream [21]. Next, the nanoparticles will be in contact

with endothelial cells lining the inner surface of our blood

vessel system [22,23]. Endothelial cells play a crucial role in

many physiological processes and an altered endothelial cell

function can be found in innumerous diseases of the cardiovas-

cular, pulmonary, and neurologic systems [24,25]. Therefore,

endothelial cells such as the ones used in the present study

(HUVEC and HMEC-1) represent a very appropriate model

system to estimate the impact of nanoparticles on human health.

Results and Discussion
Particle_in_Cell-3D
Particle_in_Cell-3D [5] is a custom-made macro for the widely

used ImageJ software [26] and can be downloaded from the

ImageJ Documentation Portal [27]. It is a semi-automatic image

analysis routine designed to quantify the cellular uptake of

nanoparticles by processing image stacks obtained by two-color

confocal fluorescence microscopy. One emission channel is

reserved for the plasma membrane and the other one for the

nanoparticles. This means that cell membrane and particles

must be fluorescently labeled with spectrally separable markers.

The two image stacks acquired can then be processed by

Particle_in_Cell-3D.

Once the images are loaded, it will execute a series of ImageJ

commands to accomplish its goals. The initial part (files selec-

tion, input of analysis parameters and 3D reconstruction of the

cell) are user-assisted. After these preliminary steps, automatic

processing takes place (Figure 1). Particle_in_Cell-3D uses the

image of the membrane to define two subcellular regions or

interest: intracellular volume and membrane region. Each

particle (or agglomerate of particles) is pseudo-colored

according to its location and quantified according to its fluores-

cence intensity. A final analysis report delivers information

about the position of each object, the number of nanoparticles

forming that object, and its location in x,y,z coordinates. All

input parameters, processed images, and results are saved and

can be accessed at any time. Furthermore, as a calibration

experiment is needed for measuring the fluorescent intensity of

individual nanoparticles, Particle_in_Cell-3D has a routine to

perform these measurements.

Main features
The main advantages of this method are its speed, reliability

and accuracy. The complete analysis of one cell is performed in

a few minutes. Moreover, the results are consistent, that is to

say, Particle_in_Cell-3D substitutes the subjective character of

human-assisted image analysis by its unbiased outcomes.

The cell segmentation strategy employed by Particle_in_Cell-

3D includes the formation of a three-dimensional membrane

region. The width of this region is set by the user and defines an

enlarged transition region between extra- and intracellular

spaces. It is much wider than the real cell membrane. The accu-

racy of the cell segmentation strategy and the typical thickness

of the enlarged membrane region were studied by comparing

the results achieved with Particle_in_Cell-3D with quenching
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Figure 1: Particle_in_Cell-3D processing overview. (a) Representative confocal section image and orthogonal projections of a HUVEC cell membrane
stained with CellMask™ Deep Red. (b) The respective image of silica nanoparticles labeled with perylene, a fluorescent dye. The 3D location of an
intracellular particle is marked by the crossing yellow lines. (c) A smoothing filter is applied and the image of the cell is transformed into a white mask.
The image stack of masks is further processed to deliver a 3D reconstruction of the cell boundaries. Intracellular and membrane region are also
defined in this step. (d) The cell boundaries, or regions of interest, are then used to segment the image of the nanoparticles (yellow outline). The
segmentation procedure occurs throughout the image stack, leading to a 3D localization of the particles with respect to the cell. (e) Quantitative image
analysis takes place. The intensity of each object (particle or agglomerate) is compared to the intensity of a single particle previously measured in a
calibration procedure. Nanoparticles are pseudo-colored according to the cellular region. In this example the cell membrane is shown in cyan, the
intracellular nanoparticles appear in red, and the membrane-associated nanoparticles in yellow. (f) 3D representation of nanoparticle uptake after
evaluation. Intracellular nanoparticles can be seen through the window intentionally open in the membrane region (cyan). 3D scale bars = 5 µm.

experiments. It was shown that the typical width of the

membrane region is about 1.4 µm and that our method is able to

create a 3D reconstruction of the cell.

As regards the accuracy,  the counting strategy of

Particle_in_Cell-3D is based on the fluorescence intensity of the

nanoparticles. The mean intensity of a single nanoparticle,

obtained through a calibration experiment, is compared to the

intensity of each object and determines the number of nanopar-

ticles forming this object. It is therefore assumed that the self-

quenching of dyes in particle agglomerates is negligible. This

approach was proved to be accurate by independent stimulated

emission depletion (STED) microscopy, a super-resolution

technique [28,29].

Although developed for the absolute quantification of the

nanoparticle uptake by cells, this method was made flexible to

allow for the quantification in absolute and also in relative

values. For example, Particle_in_Cell-3D was used to compare

the uptake efficiency of therapeutic nanoparticles for gene

delivery functionalized with different targeting ligands [30]. In

addition, our method was successfully applied to measure the

influence of flow conditions on the cellular uptake of nanoparti-

cles. The flow is generated by a novel microfluidic reactor that

can be combined with live-cell imaging and is able to cover the

entire physiological range of shear rates [31].

Comparison to other methods
Customary techniques performed for achieving the dosage of

particles taken up by cells include flow cytometry, mass spec-

troscopy, electron and light microscopies [32-39]. Flow cytom-

etry provides sound statistics due to the large number of cells

evaluated in a short time. Nevertheless, it does not deliver

spatial information about the position of nanoparticles inter-
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acting with the cells, e.g., membrane-associated particles and

intracellular particles. Mass spectroscopy offers very high sensi-

tivity, but is a sample-destructive technique and spatial informa-

tion is not obtained. Moreover, results are normally expressed

in arbitrary units, and not in absolute numbers. Electron

microscopy allows one to achieve detailed information with

very high spatial resolution, but the price to pay is to work on

fixed cells, with an elaborated sample preparation and time-

consuming measurements.

Light microscopy can be used on live cells to acquire loads of

data relatively fast. On the other hand, standard light micro-

scopes such as confocal and wide-field instruments are limited

by diffraction. The resolution of light microscopes is not

enough to resolve particles smaller than approximately 200 nm

and a direct quantification of nanoparticles is not possible.

Complications to count nanoparticles are further increased by

their tendency to agglomerate in biological media [40]. Our

digital method was designed to circumvent the abovementioned

restrictions of conventional light microscopy. It does not enable

the absolute quantification of particles by overcoming the

diffraction barrier, but by inferring particle numbers based on

the fluorescence intensity of particles.

Cell type-dependent uptake of silica nanopar-
ticles
In a preceding publication [4] we found that both the uptake

behavior and the cytotoxicity of silica nanoparticles are cell

type-dependent, but not interconnected. In this section, we want

to present in detail how Particle_in_Cell-3D was used to study

the cell type-dependent uptake of 310 nm silica nanoparticles

into human vascular endothelial cells (HUVEC) and cancer

cells derived from the cervix carcinoma (HeLa).

The nanoparticle uptake by single cells was measured through

confocal microscopy in a time series between 1 and 24 h. The

concentration of nanoparticles was 39.5 µg·mL−1 (or

30000 nanoparticles per cell) in all experiments. We found that

within the first 4 h of incubation the number of intracellular

particles was up to 10 times higher for HUVEC than for HeLa

cells. However, after 10 or 24 h of interaction, the amount of

particles taken up by HeLa cells strikingly exceeded the amount

of silica particles taken up by HUVEC cells.

Characterization of silica nanoparticles
In order to allow for the investigation with live-cell imaging,

silica nanoparticles were labeled with perylene dye. A detailed

description of the synthesis can be found in a previous publica-

tion [41]. From experiments on the labeling efficiency of pery-

lene, it was estimated that dye molecules cover only about

0.16% of the surface of the particles and, therefore, should not

influence the interaction between particles and cells. In fact,

cytotoxicity measurements of labeled silica particles compared

to unlabeled silica particles showed that the label did not influ-

ence the interaction between nanoparticles and cells. The size of

the silica particles, 310 ± 37 nm, was determined by transmis-

sion electron microscopy (TEM). In addition, the hydrody-

namic diameter of the particles over time was determined by

dynamic light scattering (DLS) measurements in water and in

cell medium. Depending on the properties of the nanoparticles,

they may agglomerate in a given cell medium [40]. In the case

at hand, the silica particles became slightly agglomerated as the

mean particle size increased from 450 nm, when measured in

water, up to sizes between 550 nm and 650 nm for all time

points investigated. Besides the size, the zeta potential of the

particles was determined to be −14.1 ± 1.5 mV in cell medium.

For the quantitative evaluation with Particle_in_Cell-3D, it was

necessary to measure the mean fluorescence intensity of a

single silica nanoparticle. This calibration experiment was

carried out by using the same microscope setup used for the

cellular uptake experiments, but instead of having cells incu-

bated with nanoparticles, the particles were deposited and

spread on a cover slip and, in order to maintain the same envi-

ronmental conditions, cell medium was added to the particles.

The acquired images were evaluated with the subroutine ‘Cali-

bration’ of our macro and the mean intensity showed a Gaussian

distribution with a mean value of 48090 pixel intensities per

nanoparticle for silica particles in the cell medium for HeLa

cells and 49430 pixel intensities per nanoparticle for silica parti-

cles in the cell medium for HUVEC cells.

Quantification of silica-nanoparticle uptake
In order to investigate the cell type-dependency of the uptake

kinetics of silica nanoparticles, living cells were incubated for

different time periods: 1, 2, 3, 4, 10 and 24 h. After incubation,

the cell medium the containing nanoparticles was removed and

the plasma membrane was stained. Confocal image stacks were

then acquired and analyzed with Particle_in_Cell-3D. Figure 2

shows representative 3D perspectives of silica nanoparticles

internalized by HUVEC and HeLa cells after 3 and 24 h. By

using this method it was possible to precisely localize and quan-

tify the particles interacting with the cells.

The number of intracellular particles varied considerably from

cell to cell. About 30 cells were evaluated per time point, thus

resulting in more than 360 cells in total. The statistics for the

number of taken up particles per HUVEC or HeLa cells are

plotted in Figure 3. A time-dependent increase of nanoparticles

from 1 to 24 h is clearly seen for both cell types. Interestingly,

HUVEC cells were more efficient than HeLa cells to incorpor-

ate particles within the first 4 h. However, the situation changed

completely after 10 or 24 h, when the number of intracellular
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Figure 2: Cell type-dependent uptake kinetics of silica nanoparticles. The figure shows representative three-dimensional reconstructions of 310 nm
silica nanoparticles interacting with HUVEC or HeLa cells after 3 and 24 h. The membrane region outlining the cells appears in gray. A window was
purposefully open in the 3D perspectives so as to allow the visualization of intracellular particles (in red). Particles situated within the membrane
region are shown in yellow. An increasing number of particles taken up in the cells over time is clearly observed for both cell types, while being much
more prominent for HeLa cells. 3D scale bars = 5 µm.

Figure 3: Uptake kinetics of silica nanoparticles in HUVEC (white) and
HeLa cells (dark gray). During the first 4 h the mean number of incor-
porated nanoparticles increased linearly for both cell types. The
average number reached 113 ± 24 nanoparticles for HUVEC cells and
only 20 ± 11 particles for HeLa cells. Remarkably, the situation was
reversed after 10 h, when a larger number of silica nanoparticles were
incorporated by HeLa cells. After 24 h, the mean value of taken up
particles for HUVEC cells was 256 ± 58, while for HeLa it was 570 ±
141. The histograms show the mean ± standard error of the mean of at
least three independent experiments (n = 28–32). Results were statisti-
cally different (*p < 0.05) for incubation times of 1 and 24 h and highly
statistically different (** p < 0.01) for all other time points.

particles for HeLa cells was significantly larger than that for

HUVEC cells.

Strikingly, our results regarding the cytotoxicity of silica

nanoparticles [4] did not reflect our finding for the uptake

kinetics. Exposure to silica nanoparticles over 24 h induced cell

death in HUVEC but not in HeLa cells. Yet, after 24 h the

number of particles internalized by HeLa cells was twice as

large as the number of particles incorporated by HUVEC cells.

Quantitative determination of nanoparticle uptake with

Particle_in_Cell-3D helped to show that the nanotoxicity of ma-

terials cannot be generalized and transferred from one cell type

to another.

Size-dependent uptake kinetics of ceria
nanoparticles
This section is devoted to present quantitative results on the

particle size-dependent uptake kinetics of ceria nanoparticles of

8 nm and 30 nm. A massive agglomeration of nanoparticles in

cell medium was found. Ceria nanoparticles of 8 nm and 30 nm

clustered into 417 nm and 316 nm agglomerates, respectively.

Nanoparticles at a concentration of 10 µg·mL−1 were incubated

with human microvascular endothelial cells (HMEC-1) for 3,

24, 48 and 72 h and imaged through live-cell confocal

microscopy. Cytotoxicity assays performed on similar nanopar-

ticles have shown that, in general, the impact of ceria nanoparti-

cles on endothelial cells (HUVEC and HMEC-1) is not signifi-

cant, and that adverse effects can only be observed at concentra-

tions as high as 100 µg·mL−1 [42]. Such doses exceed the

maximum possible in vivo concentrations.

Characterization of ceria nanoparticles
In order to be investigated with fluorescence microscopy,

the particles were marked with Atto 647N. The synthesis of the

ceria nanoparticles investigated in this study is described

in the literature [43]. The labeling of these particles with Atto

647N did not alter the biological response of the cells, as

assessed by cytotoxicity assays. HMEC-1 cells were incubated

over 48 h with 100 µg·mL−1 of either non-labeled or Atto
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Figure 4: Particle size-dependent uptake kinetics of ceria nanoparticles by HMEC-1 cells. Representative three-dimensional images of 8 nm and
30 nm ceria nanoparticles interacting with endothelial cells for 3, 24, 48 and 72 h are shown. Due to the strong agglomeration of particles, the indi-
vidual particles quantified by Particle_in_Cell-3D are actually individual agglomerates of 417 nm (CeO2-8 nm) and 316 nm (CeO2-30nm). The
membrane region outlining the cells appears in gray. The intracellular nanoparticles can be visualized in magenta and particles interacting with the
membrane appear in yellow. The agglomerates are taken up by cells inside endosomes and accumulate at the perinuclear region. The amount of
internalized particles is increasing over 24 h, but after this incubation time, however, the number of particles inside the cells starts to decrease. This
effect is more remarkable for the 8 nm nanoparticles than for the 30 nm nanoparticles. 3D scale bars = 5 µm.

647N-labeled ceria nanoparticles. After this period, the relative

adenosine triphosphate (rATP) content was analyzed to deter-

mine the metabolic impact of nanoparticles on cells. One

hundred percent rATP content would mean that the cellular

viability of the cells treated with nanoparticles matches the

viability of untreated cells. As shown by Strobel et al. [42],

incubation with non-labeled 8 nm and 30 nm ceria nanoparti-

cles resulted in rATP values (mean ± standard deviation) of

82.0 ± 5.6% and 76.3 ± 10.8%, respectively. The rATP contents

measured after the exposure to Atto 647N-labeled nanoparti-

cles of 8 nm and 30 nm were 80.1 ± 6.2% and 79.5 ± 14.9%,

respectively. Therefore, the fluorescent labeling of the ceria

nanoparticles presented in this work did not significantly alter

the cytotoxicity of these particles on HMEC-1 cells. The prima-

ry size of the two nanoparticles was determined through TEM.

One particle type has a diameter of 8 nm and is spherical

(CeO2-8nm), while the other particle type has a diameter of

roughly 30 nm (CeO2-30nm) (ellipsoid of 27 nm × 30 nm). It

has been shown that the smaller the nanoparticles, the stronger

the agglomeration [40]. This has been confirmed in the

determination of the hydrodynamic diameter of these particles.

DLS measurements were carried out and the size of CeO2-8nm

increased up to 417 nm in cell medium. In the case of the CeO2-

30nm particles, the diameter in cell medium was determined to

be 316 nm. The zeta potential was also assessed in cell medium:

−11.3 mV for the 8 nm particles and −12.3 mV for the 30 nm

particles.

The same procedure described for the silica nanoparticles in the

previous section was used to measure the mean fluorescence of

single ceria particles. The results were intensities of

131201 pixels (CeO2-8nm) and 742814 pixels (CeO2-30nm),

respectively. There is an important particularity to be mentioned

here. The mean intensity of the single particles is in fact the

mean intensity of single agglomerates, as it was not possible to

obtain single nanoparticles of primary sizes for the calibration

experiments. Those agglomerates, however, are in fact the parti-

cles that interact with the cells.

Quantification of ceria nanoparticle uptake
With the purpose of investigating the size-dependent uptake

kinetics of ceria nanoparticles for a longer time than tradition-

ally, HMEC-1 cells were incubated with 8 nm (417 nm) and

30 nm (316 nm) nanoparticles for 3, 24, 48 and 72 h. Figure 4

presents illustrative images of the interaction of ceria nanoparti-

cles with endothelial cells.
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Approximately 15 single cells were measured per time point

and per particle type, resulting in a total of 115 cells analyzed in

great detail by Particle_in_Cell-3D. These quantitative results

are presented in Figure 5 and show that the number of incorpo-

rated particles increases steeply between 3 and 24 h, with no

significant difference between the two particle sizes. The

number of internalized agglomerates of CeO2-8nm nanoparti-

cles increased from 337 ± 66 to 2069 ± 248, whereas it

increased from 363 ± 37 to 2567 ± 297 for CeO2-30nm agglom-

erates. After this point in time, however, the number of intracel-

lular particles is decreased back to initial levels, 185 ± 61

agglomerates for CeO2-8nm and 836 ± 155 for CeO2-30nm

particles. The dilution of intracellular nanoparticles has been

shown to be caused by cell division, as reported in a recent

publication [44]. As cells undergo mitosis, intracellular parti-

cles of the mother cells are shared with the daughter ones. Cell

division may therefore have direct influence by decreasing the

number of taken up particles with time. Since the doubling time

of HMEC-1 cells is 28.6 h [45], and the dilution of intracellular

ceria nanoparticles occurs after 24 h, cell division probably

plays an important role in our findings.

Figure 5: Uptake kinetics of 8 nm (white) and 30 nm (dark gray) ceria
nanoparticles in HMEC-1 cells. The number of internalized nanoparti-
cles after 3 h is practically the same for both particle sizes. These
numbers then escalates to reach a maximum at around 24 h. After 48
and 72 h, however, the number of particles incorporated by the cells is
reduced back to amounts similar to that measured after 3 h. The
histograms show the mean ± standard error of the mean of at least two
independent experiments (n = 12–16). Results were statistically
different (*p < 0.05) for an incubation time of 48 h and highly statisti-
cally different (**p < 0.01) for 72 h.

Cell division is probably among the dominant causes for the

observed dilution of nanoparticles. Yet, other time-dependent

parameters may also influence the uptake dynamics. For

example, degradation of intracellular particles, exocytosis, cell

uptake behavior (e.g., cell-cycle phase dependency, and load

capacity), and the number of nanoparticles available for uptake.

Conclusion
The possibility to quantify nanoparticles on the single-cell level

is an important step to better understand the mechanisms of

nanoparticles-cell interactions. In this work it was demon-

strated that results achieved with Particle_in_Cell-3D were

decisive to determine the cell type-dependent uptake kinetics of

silica nanoparticles. Moreover, the quantification of intracel-

lular ceria nanoparticles showed that there is a significant

difference in the uptake kinetics of 8 nm (agglomerate size

417 nm) and 30 nm (agglomerate size 316 nm) nanoparticles.

After 48 h, the particles that form smaller agglomerates, i.e.,

30 nm nanoparticles, are internalized more efficiently by

endothelial cells. In addition, our findings offered a new insight

into the remarkable dilution of intracellular nanoparticles,

possibly influenced by cell division.

Particle_in_ell-3D can be applied to investigate the dose-depen-

dent effects for the risk assessment of nanoparticles. Add-

itionally, this method can be used to study which factors are

determinant for the successful attachment, internalization and

cargo release of nanoparticles designed for medical applica-

tions.

Experimental
Nanoparticle characterization
Nanoparticle size was determined by transmission electron

microscopy (TEM). TEM micrographs were acquired by a JEM

2011 (JEOL, Japan) transmission electron microscope. The

nanoparticle dispersion was diluted with EtOH or MeOH and

applied onto a carbon-coated copper grid (Plano, Formvar coal-

film on 200 mesh-net). The sizes of the nanoparticles were then

determined from TEM images through digital image analysis

with the ImageJ software [26].

Zeta potentials and hydrodynamic diameter (through dynamic

light scattering) were measured in ultrapure water and in cell

medium (see section ‘Cell culture’ for details) with a Zetasizer

Nano (Malvern Instruments, UK). In order to break down

agglomerates, the resulting solution was vortexed for 10 s,

treated in an ultrasonic bath for 10 min and vortexed again for

10 s.

Cell culture
HeLa and HUVEC cells were grown as described previously

[4]. HMEC-1 cells were grown in MCDB-131 medium

(Life  Technologies ,  Germany)  supplemented wi th

10% fetal bovine serum (Life Technologies), 1% Glutamax

(Life Technologies), 10 ng·mL−1 human epidermal growth

factor (Life Technologies) and 1 µg·mL−1 hydrocortisone

(Sigma-Aldrich). Cells were kept in a humidified 5% CO2

atmosphere at 37 °C.
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Uptake experiments
For live-cell imaging experiments, cells were seeded 24 h

before imaging in 8-well Nunc™ Lab-Tek™ II chamber slides

(Thermo Fisher Scientific Inc., Germany) at a density of

1.1 × 104 cells·cm−2. HeLa and HUVEC cells were incubated

with silica nanoparticles as described before [4]. HMEC-1 cells

were incubated with ceria nanoparticles in humidified 5% CO2

atmosphere at 37 °C. The 10 µg·mL−1 solution of ceria

nanoparticles was prepared in the same cell medium used for

cell growth. Before addition to cells, the solution was vortexed

for 10 s, treated in an ultrasonic bath for 10 min and vortexed

again for 10 s. After the incubation time, and just before

measurements, the cell membrane was stained with a solution of

10 µg·mL−1 wheat germ agglutinin, Alexa Fluor® 488 (Life

Technologies) in cell medium, incubated at 37 °C for 1 min,

and washed twice with warm cell medium.

Cytotoxicity assay
The procedure for the determination of the relative cellular ATP

level of ceria nanoparticles is described in detail by Strobel et

al. [42].

Live-cell imaging
Imaging was performed on a Zeiss spinning disk confocal fluo-

rescence microscope equipped with a Zeiss Plan Apochromat

63× /1.40 Oil/DIC objective. Samples were in 5% CO2 atmo-

sphere at 37 °C during imaging and were illuminated with laser

light alternating between 488 nm and 639 nm, exciting the cell

membrane stain and the Atto 647N dye (labeling the ceria

nanoparticles), respectively. Image sequences were captured

with an electron multiplier charge-coupled device camera

(Evolve 512, Photometrics, USA). Several planes of the cells

were imaged with a spacing of 250 nm and a detection time of

100 ms per confocal section.

Statistics
The unpaired Student’s t-test was used for statistical analyses.

Values were expressed as the mean ± standard error of the

mean. Results were considered to be statistically different at

p < 0.05 and highly statistically different at p < 0.01. For the

determination of the relative ATP content, values represent the

means ± standard deviation (n = 3).
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