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Abstract

Changing natural conditions determine the land’s suitability for agriculture. The growing demand for food, feed, fiber and
bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services.
Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate
conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food
and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We
present our results for current climate conditions (1981–2010), considering today’s irrigated areas and separately investigate
the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The
impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural
suitability is shown by comparing the time-period 2071–2100 with 1981–2010. Our results show that climate change will
expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China
and Russia). Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions,
where also the suitability for multiple cropping decreases.
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Introduction

Natural constraints are limiting the land’s suitability for

agriculture and cultivation practices. They consist of prevailing

local climatic, soil and topographic conditions determining the

available energy, water and nutrient supply for agricultural crops.

Besides natural conditions, complex interactions of social,

economic, political, and cultural aspects determine whether and

how land is used for agriculture. Agricultural land has become one

of the largest terrestrial biomes on the planet, occupying approx.

40% of the land surface [1]. Thereby, a variety of different land

use types and intensities determine heterogeneously distributed

patterns, including e.g. the choice of crop varieties, irrigation

practices, fertilization, terracing and the level of technological

input [2]. Thus, natural constraints are to a limited extent

suspended by human actions [3].

The demand for agricultural products is expected to increase by

70–110% by 2050, driven by a projected world population of 9

billion people, increasing meat consumption and a growing use for

bio-based materials and biofuel [4–15].

An increase in agricultural production can be accomplished by

agricultural intensification and expansion, while considering social

and environmental externalities and changing climate conditions

[5,16]. Bruinsma [16] concluded that additionally 1.2 million km2

of converted land are projected to be necessary until 2030 and

another 5% up to 2050 with most land expected to be transformed

in South America and Sub Saharan Africa, while latest studies

project an increase of cropland between 10-25% by 2050

compared to 2005 for different socio-economic and climate

scenarios [17]. Nonetheless, the expansion of agricultural land

into forested or protected areas must be viewed critically, in order

to conserve valuable ecosystem services e.g. for regulating climate

or conserving biodiversity [5–8].

Changing patterns of temperature and precipitation and man-

made degradation affect the suitability of land for agricultural use.

For example, 19-23 ha of suitable land are lost per minute due to

soil erosion and desertification [18,19]. Additionally, the area of

suitable land is decreasing due to urbanization, with an estimate of

1.5 million km2 until 2030 [20,21].

When focusing on the natural potentials of land for agricultural

use, suitability analyses give local evidence on todays and future

availability and quality. Thus, they help answering questions for

managing a transition towards a more environmentally efficient

and sustainable land use and involve better information on the

global scale impacts of land use decisions [1].
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The relationship between climate, soil, topography and

agricultural suitability has long been recognized. As such,

suitability analysis combine heterogeneous soil, terrain and climate

information and determine whether specific crop requirements are

fulfilled under the given local conditions and assumptions. A

variety of regional suitability studies for specific crops exist [22–

28], while only a few exist on a global scale and for a broad variety

of crops [3,29–31].

In the meantime, global soil and topography data are available

at high spatial resolution and global climate models have improved

their capabilities and spatial resolution. Previous analysis showed

that questions of scale play a major role in suitability analysis as

coarse data affect the validity of results [32]. In this context, we

present our results in modelling global crop-suitability using a

fuzzy logic approach at a spatial resolution of 30 arc seconds. The

results of this approach include the potentially suitable area for

agriculture differentiated for 16 crops for rainfed and irrigated

conditions, the start of the growing cycles and the number of crop

cycles. We analyze global distribution of agricultural suitability

and changes until 2100 considering the numbers of crop cycles.

Thereby, we identify changes, opportunities and challenges in

global agriculture related to the expansion of agricultural land

competing with protected and forested areas as ecosystem services.

Material and Methods

Local climate, soil and topography determine the natural

suitability of land for agricultural use. Thereby, the climatic, soil

and topographic requirements may vary over a wide range of

different agricultural crops. This analysis investigates the suitability

for the following 16 crops that are most important for the global

economy, food security and biofuel issues (see Table 1).

We aggregated the world into 23 regions in order to regionally

analyse the results (see Fig. 1). We applied a fuzzy-logic approach

[33,34] in order to calculate the crops’ suitability on the globe at a

spatial resolution of 30 arc seconds (0.00833u, approx. 1 km2 at

the equator). The length of the growing cycle (lgc) and the

‘membership functions’ that describe the crop-specific requirements

for each of the crops during the growing period (Fig. 2) are derived

from [35].

The membership functions representing climate constraints

describe the degree of membership of each selected crop with

regard to mean temperature and total precipitation during its

Table 1. List of investigated food, feed and energy crops.

Crop name

Barley (hordeum vulgare)

Cassava (manihot esculenta)

Groundnut (arachis hypogaea)

Maize (zea mays)

Millet (pennisetum americanum)

Oil palm (elaeis guineensis)

Potato (solanum tuberosum)

Rapeseed (brassica napus)

Paddy rice (oryza sativa)

Rye (secale cereale)

Sorghum (sorghum bicolor)

Soy (glycine maximum)

Sugarcane (saccharum officinarum)

Sunflower (helianthus annus)

Summer wheat (triticum aestivum)

Winter wheat (triticum gestivum)

doi:10.1371/journal.pone.0107522.t001

Figure 1. Map of the 23 world regions: AFR (Sub Saharan Africa), ANZ (Australia, New Zealand), BEN (Belgium, Netherlands,
Luxemburg), BRA (Brazil), CAN (Canada), CHN (China), FRA (France), FSU (Rest of Former Soviet Union and Rest of Europe), GBR
(Great Britain), GER (Germany), IND (India), JPN (Japan), LAM (Rest of Latin America), MAI (Malaysia, Indonesia), MEA (Middle East,
North Africa), MED (Italy, Spain, Portugal, Greece, Malta, Cyprus), PAC (Paraguay, Argentina, Chile, Uruguay), ROW (Rest of the
World), REU (Austria, Estonia, Latvia, Lithuania, Poland, Hungary, Slovakia, Slovenia, Czech Republic, Romania, Bulgaria), RUS
(Russia), SCA (Finland, Denmark, Sweden), SEA (Cambodia, Laos, Thailand, Vietnam, Myanmar, Bangladesh), USA (United States of
America).
doi:10.1371/journal.pone.0107522.g001
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respective growing cycle. Depending on the crop, membership

functions have different curves according to [35]. Three shapes are

in principle possible: ‘more is better’, ‘less is better’ and ‘optimum’.

For temperature e.g., the suitability is increasing from a minimum

towards an optimal temperature and again decreasing until a

maximum temperature is reached (Fig. 2). Eight soil parameters

are considered: texture, proportion of coarse fragments and

gypsum, base saturation, pH content, organic carbon content,

salinity, and sodicity. Terrain is considered by the slope. The

fuzzy-logic approach calculates fuzzy values based on the

ecological rules (between 0 and 1), which determine the crops’

suitability on a specific location by the lowest membership value of

all parameters.

An overview of the applied global datasets is given in Table 2.

The climate data applied in this study are outputs from the global

circulation model ECHAM5 of the Max-Planck Institute for

Meteorology (MPI-M) [36,37]. It uses radiative forcing, sea surface

temperature and sea ice concentrations from a 20th century/

SRES A1B scenario simulation. The 6-hourly dataset (tempera-

ture, precipitation) are converted to daily values for the climate

period of 1981–2010 and 2071–2100. The daily data is spatially

downscaled from its original resolution of 0.56u to 0.00833u (30

Figure 2. Membership functions for climatic, soil and topographic conditions.
doi:10.1371/journal.pone.0107522.g002

Table 2. Applied global datasets.

Parameter Source Detailed Description

Climate ECHAM5 [37]

Soil Harmonized World Soil Database (HWSD) [41]

Topography Space Shuttle Topography Mission (SRTM) [39]

Crop-requirements FAO Land Evaluation Part III: Crop Requirements [35]

Irrigation Global Map of Irrigation Areas (GMIA) v5.0 [44]

Protected Areas International Union for Conservation of Nature (IUCN) Protected Areas [45]

Forested Areas GlobCover 2009 [46]

doi:10.1371/journal.pone.0107522.t002
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arc seconds), based on an approach by [38], using sub-grid terrain

information provided by the SRTM-dataset [39]. A bias-

correction is executed during the downscaling procedure for

temperature and precipitation based on monthly derived factors

from the WorldClim dataset [40].

Mean temperature ( �TT ) and total precipitation (�PP) are calculated

over the length of the growing cycle for each day of the year (doy)

(see eq. 1 and eq. 2). Starting on the 1st of January (doy = 1), the

growing cycle is shifted day by day until the 31st of December

(doy = 365). The suitability value (S) is calculated for each doy as

in eq. 3 for �TT and �PP according to the membership function (mf ).

�TTdoy~Tdoy, . . . ,Tdoyzlgc ðeq:1Þ

�PPdoy~
Xdoyzlgc

doy

P ðeq:2Þ

S(�TTdoy)~mf �TTdoy

� �
; S(�PPdoy)~mf �PPdoy

� �
ðeq:3Þ

Since the natural suitability of crop growth is limited by the

minimum value, the smaller value of the temperature and

precipitation fuzzy value determines the climate suitability S Cð Þ

which is calculated for each doy (eq. 4).

S(Cdoy)~min fS(�TTdoy),S(�PPdoy)g ðeq:4Þ

Among all daily fuzzy values of S Cð Þ within the year, the

maximum of S Cð Þ determines the climate suitability over the

growing cycle and thus, the optimal start of the growing cycle (eq.

5) for cultivation of a single crop within the entire growing season.

S(Cstart of the growing cycle)~max fS(Cdoy 1), . . . ,S(Cdoy 365)g ðeq:5Þ

In order to allow for the calculation of multiple cropping, the

fuzzy values for each possible combination of days for the start of

the growing cycle are tested as to how often they would fit within

one year. The number of multiple cropping is selected that

generates the highest accumulated value. Multiple cropping and

the start of the growing cycle(s) are obtained for single, double and

triple cropping. Hereby, the start of the growing cycle(s) in the

context of this paper describes an optimal time for cultivation of a

crop to reach the maximum suitability within a year. Crop mixing

is not considered. Regarding temporal demands for technical field

work, we assume a break of two weeks between crop cycles.

Moreover, the following assumptions are made: At least 20 mm

of precipitation are required within the first two weeks of the

growing season in order to provide enough soil moisture for

germination. No day within the growing period must be below

5uC and below 1uC for winter crops. Vernalisation requirements

are considered separately from the growing period for winter

Figure 3. Global comparison of agriculturally suitable area between GAEZ (Baseline period 1961–1990) and GLUES (1961–1990).
doi:10.1371/journal.pone.0107522.g003

Figure 4. Comparison of total agriculturally suitable area of GAEZ (Baseline period 1961–1990) and GLUES (1961–1990) for
different regions.
doi:10.1371/journal.pone.0107522.g004
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crops: Vernalisation period starts 150 days before the start of the

growing period. At least 20 days below 5uC must exist during the

vernalisation period and there must not exist more than 3 days

below 230uC. In order to consider permafrost conditions that

exclude agricultural use, mean annual temperature must not be

below 0uC. Mean daily incoming solar radiation must exceed 60

W/m2 to provide enough energy for crop growth.

Thus, suitability values, number of crop cycles and the start of

the growing cycle are calculated on each land surface pixel for

both rainfed and irrigated conditions. For irrigated conditions,

fuzzy values for precipitation are neglected during the calculation

process. Due to a lack of global information on irrigation practices,

we assume perennial irrigation on irrigated areas.

Besides climatic constraints, soil properties are limiting agricul-

tural suitability. According to the membership functions (Fig. 2),

the fuzzy values representing each of the soil properties are

calculated. The minimum of the eight values represents the value

of the soil suitability. Soil information was taken from the

Harmonized World Soil Database (HWSD) [41], considering the

topsoil (0–30 cm) of the dominant and all (up to 8) component soils

at a spatial resolution of 30 arc seconds [42]. Within the

calculation of soil suitability, fuzzy values of each of the

component soils are calculated and weighted according to their

share.

The suitability for crops to be cultivated is decreasing with

increasing slope (see Fig. 2). The slope must not exceed 16% for

the considered crops, except for oil palm and paddy rice. The

slope was calculated and resampled to 30 arc seconds from Shuttle

Radar Topography Mission (SRTM) data [39].

Across all climate, soil and topography fuzzy values, the lowest

fuzzy value quantifies the crops’ suitability at a certain location.

The highest value across all crops determines the suitability for

agriculture at a certain location.

This methodology does not allow for yield estimations, in which

socio-economic and bio-physical aspects, which our approach does

not consider, play an important role. However, this approach is

well suited to draw conclusions about where areas are agricultur-

ally suitable and how these areas may change with future climate

conditions.

Results

The Earth surface consists of 510 million km2 of which 149

million km2 are land surface. Up to 60uS, excluding Antarctica,

and considering a lack of input data, in total 127.5 million km2 of

land surface remain to be analyzed regarding their suitability for

agriculture. We classified the results of the suitability analysis into

four categories: not suitable (0), marginally suitable (.0.0),

moderately suitable (.0.33) and highly suitable (.0.75).

Comparison
Our results (further named GLUES in the Figures) highly

correlate with existing studies, such as the GAEZ approach [29],

when comparing the area of each of the four classified categories

in each of the 23 World Regions (R2 = 0.99).

The global aggregation of the classified areas and the regional

distribution of not suitable and suitable areas show a high level of

agreement (Fig. 3 and 4). Compared to the distribution of global

cropland in the year 2000 [43], our approach identifies 95.5% of

current cropland as suitable.

Rainfed
For the period 1981–2010, our suitability analysis shows that in

total 77.7 million km2 are potentially suitable for purely rainfed

agricultural cultivation, while 49.8 million km2 are not suitable for

rainfed conditions (Table 3). Further, 30.6 million km2 are

marginally suitable, 41.3 million km2 are moderately suitable

and 5.8 million km2 are highly suitable (Table 3).

Irrigation
Irrigated agriculture produces 40% of the world’s food (FAO)

on 3.1 million km2 [44]. When considering irrigation, suitability is

area weighted according to the fraction of rainfed and irrigated

agricultural area (given by GMIA Version 5.0 [44]). Thereby,

irrigation increases suitability on irrigated areas in global average

by 0.13, adds 1.8 million km2 of suitable land (Table 4) and allows

for multiple cropping on 1.2 million km2 (assuming sufficient water

available for irrigation). Accordingly, huge areas e.g. in the Nile

and Ganges delta are only becoming suitable due to irrigation.

Overall, 79.6 million km2 are suitable with spatially varying

patterns (Fig. 5).

Figure 5 represents the global distribution of agricultural

suitability as a result of local climate, soil and terrain conditions.

In boreal regions, the growing season over all stages of phenology

usually is too short for cultivation. The temperate zones seasonally

have adequate temperatures and enough precipitation and often

sufficient soil, while in subtropical regions, the annual distribution

of precipitation strongly determines crop growth and soils often

are alkaline. In inner tropics have adequate temperature and

moisture throughout the year, but soil quality often restricts

cultivation due to low organic content and acidity [3].

Table 3. Classified suitability considering rainfed conditions (1981–2010).

Not Suitable Marginally Suitable Moderately Suitable Highly Suitable

49.8 million km2 30.6 million km2 41.3 million km2 5.8 million km2

doi:10.1371/journal.pone.0107522.t003

Table 4. Classified suitability considering rainfed and irrigated conditions (1981–2010).

Not Suitable Marginally Suitable Moderately Suitable Highly Suitable

48.0 million km2 31.8 million km2 41.8 million km2 5.9 million km2

doi:10.1371/journal.pone.0107522.t004
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Protected Areas
Protected areas globally account for 8.3 million km2. Informa-

tion on actual protected areas is gathered from IUCN [45]. When

excluding protected areas from the suitability calculation, 74.8

million km2 remain suitable for cultivation. Thereby, protected

areas are mainly situated in not suitable or marginally suitable

areas (Table 5). Only 2% (0.2 million km2) of the global protected

area are located on land highly suitable for agriculture, 25% (2.1

million km2) are on moderately suitable land, 30% (2.4 million

km2) on marginally suitable land while 43% (3.6 million km2) are

situated on unsuitable land. Overall, only 57% of global protected

areas are suitable for agriculture.

Forested Areas
Dense forests are highly important to provide numerous

ecosystem services. Densely forested areas account for 23.3 million

km2 according to GlobCover [46] and 23.5 million km2 according

to [47]. GlobCover defines forests as being dense when 75% of the

pixel is forest [46]. Only 1.5 million km2 or 6.2% of the global

densely forested areas are currently protected.

4.9% (1.1 million km2) of the densely forested areas (excluding

forests within protected areas) are located in highly suitable land,

49.4% (11.1 million km2) in moderately suitable land, 37.5% (8.4

million km2) in marginally suitable land and only 8.2% (1.9 million

km2) are situated on unsuitable land. Overall, 92% of densely

forested areas are potentially suitable for agriculture which

indicates that global forests are subject to increasing societal stress.

Current Use of Suitable Land and Trade-Offs
When excluding both, protected areas and dense forests from

the suitability calculation, 54.1 million km2 remain suitable

(Table 6). In comparison, currently used agricultural land

(including pasture) today covers 49.1 million km2, of which 15.5

million km2 (status for 2011) are arable land (land under

temporary and permanent crops; double-cropped areas are

counted only once) [48]. Accordingly, 91% of all suitable land is

already occupied by agriculture when today’s protected and

densely forested areas are preserved in the future. This illustrates

that agricultural expansion is only possible by substituting other

uses/covers of land which causes high social and ecological

externalities. Figure 6 gives an overview of the current use/cover

of suitable areas in the different regions of the world.

Figure 6 shows, that the current fraction of suitable area, which

is not protected or dense forest is highly variable across regions.

The most efficient use of current agriculturally suitable land is

obvious in the USA, where only 2% of currently suitable land is

not yet used or protected/dense forest.

In Africa, about 20% of the agriculturally suitable area is

currently not used for agriculture or is statistically not recorded in

the data of currently used agricultural land (Ramankutty et al.,
2008). This shows the extraordinary potentials of Africa for future

expansion of agricultural land. However, agricultural expansion

would always take place at ecological costs (e.g. conversion of

tropical rainforest, grassland and savannah). In Latin America

large suitable areas are protected or covered with dense forest and

Table 5. Classified suitability for 1981–2010 considering rainfed and irrigated conditions, excluding protected areas.

Not Suitable Marginally Suitable Moderately Suitable Highly Suitable

44.4 million km2 29.4 million km2 39.7 million km2 5.7 million km2

doi:10.1371/journal.pone.0107522.t005

Figure 5. Agricultural suitability considering rainfed conditions and irrigated areas (1981–2010).
doi:10.1371/journal.pone.0107522.g005
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the current fraction of remaining suitable area is smaller than in

Africa, India is the prototype of a country, which is already using

very large parts of its suitable agricultural land - and by for using

the largest proportion (58%) of current cropland. Australia and

larger parts of Asia still have reasonable land resources left for

future expansion (Fig 6).

Future Change
For the investigation of future agricultural suitability for the

time-period 2071–2100 as determined by the simulated climate

effects of the SRES A1B emission scenario, we assume no changes

in irrigated areas, soil properties, terrain or any adaptations, such

as crop breeding. As result, when again excluding protected and

densely forested areas, the global area being highly suitable for

agriculture decreases from 4.6 to 3.9 million km2, while marginally

and moderately suitable areas increase (Table 7). In total,

agriculturally suitable areas increase by 4.8 million km2 due to

the selected climate change scenario. However, most of the

additional area is only marginally suitable for agricultural use.

Without excluding any areas, the impact of climate change

increases the potentially suitable areas on the globe by 5.6 million

km2. Marginally suitable areas increase by 4.2 million km2,

moderately suitable areas increase by 2.3 million km2, while highly

suitable areas decrease by 0.8 million km2 (Fig. 7).

A more regional analysis shows that the world is divided into

regions that receive additional suitable land and regions where

land that used to be suitable turns into not suitable land (Fig. 8).

Regions in the northern hemisphere, such as Canada (+2.1 million

km2 of suitable land), Russia (+3.1 million km2) and China (+0.9

million km2), benefit most.

On the global scale, suitability improves on 18.7 million km2

and worsens on 22.2 million km2. In total, the area with decreasing

suitability is 3.5 million km2 more than the area with increasing

suitability (Fig. 9). The highest absolute net loss of suitable areas is

found in Sub-Saharan Africa.

Thereby, the globally averaged suitability value (averaged over

all suitable areas), decreases from 0.41 to 0.39. The greatest losses

of suitability are simulated for France and the Mediterranean

(Fig. 10). The changing suitability is mapped in Fig. 11.

Growing Cycle and Multiple Cropping
The seasonal development of temperature and precipitation

determines the length of the growing season, the start of the

growing cycle and the potential number of annual cropping. Thus,

the option of multiple cropping represents an important measure

for farmers to increase production. Figure 12 shows the spatial

distribution of the start of the growing cycle for the time period

1981–2010, exemplarily for maize.

Changing climate does not only affect the suitability of land, but

also the start and length of the growing cycle. As an example, the

start of the growing cycle for maize in Germany shifts in average

23 days earlier in time, when comparing the period of 2071–2100

with 1981–2010. The shift of growing cycles again influences the

possibility for multiple cropping. Today’s maximal achievable

multiple cropping according to the course of temperature and

precipitation is shown in Fig. 13.

Our results suggest that climate change has huge impacts on the

areas suitable for multiple cropping under the assumed climate

scenario. Until 2100, 6.0 million km2 are globally lost for triple

cropping until 2100, while the area which is suitable for double

cropping increases by 2.3 million km2. Multiplying the area with

Table 6. Classified suitability for 1981–2010 considering
rainfed and irrigated conditions, excluding protected and
densely forested areas.

Not Suitable
Marginally
Suitable

Moderately
Suitable Highly Suitable

42.6 million km2 21.0 million km2 28.6 million km2 4.6 million km2

doi:10.1371/journal.pone.0107522.t006

Figure 6. Current use of suitable areas (1981–2010), considering forest cover [46], protected areas [45] and current pasture and
cropland (Ramankutty et al., 2008). If forested areas are agriculturally suitable and protected, they are attributed to ‘suitable protected area’.
doi:10.1371/journal.pone.0107522.g006

Table 7. Classified suitability for 2071–2100 considering
rainfed and irrigated conditions, excluding protected and
densely forested areas.

Not Suitable
Marginally
Suitable

Moderately
Suitable

Highly
Suitable

37.8 million km2 24.8 million km2 30.2 million km2 3.9 million km2

doi:10.1371/journal.pone.0107522.t007
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the number of cycles, this means a global decrease of 13.4 million

km2. Most of the increase in double cropping areas results from

the transformation from triple to double cropping. Again, no

change in irrigation is assumed in this calculation.

The largest decrease in multiple copping area can be found in

Brazil (BRA) and in Sub-Saharan Africa (AFR), where areas

suitable for triple cropping decrease by 1.7 (AFR) and 2.9 million

km2 (BRA) (Fig. 14), while the area for double cropping increases

by 0.2 and 1.3 million km2, respectively. In total, this means a

decrease of multiple cropping area by 1.5 (AFR) and 1.6 million

km2 (BRA). This is equivalent to the amount of 4.7 and 6.1 million

km2 respectively, which are lost for agriculture, when multiplying

the area with the number of possible crop cycles. This corresponds

to 20.2 (AFR) and 28.8% (BRA) of today’s potentially suitable area

for multiple cropping. In the same manner, France (FRA) and the

Mediterranean (MED) lose 24.1 (FRA) and 13.2% (MED) of their

total equivalent area when considering the change of multiple

cropping, which means a decrease by 93 (FRA) and 55% (MED)

according to the multiple cropping area of 1981–2010. Regions

where areas that potentially allow for more than one crop cycle

increase due to climate change are CHI, IND, JPN, MEA, REU,

RUS and USA, while the total area considerably increases mainly

in the USA for both, double (0.35 million km2) and triple (0.12

million km2) cropping (Fig. 14).

Conclusions

The analyses of the present situation demonstrats that there is

extraordinary potential e.g. for Sub Saharan Africa for future

expansion of agricultural land without expanding into protected or

forested areas. Further research is necessary to identify the

environmental and social costs and consequences of agricultural

expansion in these regions. Also further investigation is needed to

give answers on how this land could be managed sustainable with

benefit to local food systems and socio-economy.

Our results show at high spatial resolution how agricultural

suitability may change until 2100 due to changing climate under

the chosen scenario (SRES A1B), assuming no adaptation

measurements by farmers. First, suitable areas increase especially

in the northern regions such as Canada, China and Russia, where

new land will be available for agricultural use. The increase in

suitable areas mainly takes place in sparsely populated areas,

which could imply a lack of labor for open up new agricultural

land and prepare soils. Certainly, it will be related with high

investment costs and it will take a long time to extend agriculture

here. Secondly, global average suitability decreases under the

chosen climate scenario. Especially the extend of highly suitable

areas is reduced by the effect of climate change. Finally, suitable

areas indirectly are reduced due to a substantial global reduction

of the suitability for multiple cropping, especially in Sub Saharan

Africa, and Brazil.

Figure 7. Global changes in agricultural suitability categories (million km2) between 1981–2010 and 2071–2100.
doi:10.1371/journal.pone.0107522.g007

Figure 8. Regional change in agricultural suitability categories (million km2) between 1981–2010 and 2071–2100.
doi:10.1371/journal.pone.0107522.g008
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Figure 9. Regional change of agriculturally suitable area due to A1B climate change scenario between 1981–2010 and 2071–2100.
doi:10.1371/journal.pone.0107522.g009

Figure 10. Regional changes in the average suitability between 1981–2010 and 2071–2100.
doi:10.1371/journal.pone.0107522.g010

Figure 11. Change in agricultural suitability between 1981–2010 and 2071–2100. Green areas indicate an increase in suitability while
brown areas show a decreasing suitability.
doi:10.1371/journal.pone.0107522.g011
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Overall, the Global North regionally increases suitability and

the number of crop cycles, while the Global South and the

Mediterranean area lose agriculturally suitable land without

adaptations. This will decisively affect smallholder farmers as

their options for adaptations through e.g. irrigation are limited.

Scientific knowledge on the geographical distribution has

decisively being increased with the availability of global data sets,

also based on remote sensing. The tensions between both limits of

land expansion and intensification within the context of sustain-

able agricultural intensification stresses the ongoing debate on

Figure 12. Start of the growing cycle for maize (1981–2010). The start of the growing cycle is illustrated for rainfed conditions and for
irrigated conditions on predominantly irrigated areas (irrigated area . 50%). In case of multiple cropping, the map shows the start of the first
growing cycle.
doi:10.1371/journal.pone.0107522.g012

Figure 13. Suitable areas for single, double and triple cropping (1981–2010). Multiple cropping is illustrated for rainfed conditions and for
irrigated conditions on predominantly irrigated areas (irrigated area . 50%).
doi:10.1371/journal.pone.0107522.g013
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global land management, considering the complex interplay and

trade-offs between different uses of land and ecosystem services.
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