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Abstract

Objectives: To evaluate the use of diffusion-weighted MRI (DW-MRI) and volume measurements for early monitoring of
antiangiogenic therapy in an experimental tumor model.

Materials and Methods: 23 athymic nude rats, bearing human colon carcinoma xenografts (HT-29) were examined before
and after 6 days of treatment with regorafenib (n = 12) or placebo (n = 11) in a clinical 3-Tesla MRI. For DW-MRI, a single-shot
EPI sequence with 9 b-values (10–800 s/mm2) was used. The apparent diffusion coefficient (ADC) was calculated voxelwise
and its median value over a region of interest, covering the entire tumor, was defined as the tumor ADC. Tumor volume was
determined using T2-weighted images. ADC and volume changes between first and second measurement were evaluated
as classifiers by a receiver-operator-characteristic (ROC) analysis individually and combined using Fisher’s linear discriminant
analysis (FLDA).

Results: All ADCs and volumes are stated as median6standard deviation. Tumor ADC increased significantly in the therapy
group (0.7660.0961023 mm2/s to 0.9060.1261023 mm2/s; p,0.001), with significantly higher changes of tumor ADC than
in the control group (0.1060.1161023 mm2/s vs. 0.0360.0961023 mm2/s; p = 0.027). Tumor volume increased significantly
in both groups (therapy: 347.86449.1 to 405.36823.6 mm3; p = 0.034; control: 219.7679.5 to 443.76141.5 mm3; p,0.001),
however, the therapy group showed significantly reduced tumor growth (33.30647.30% vs. 96.43631.66%; p,0.001). Area
under the curve and accuracy of the ADC-based ROC analysis were 0.773 and 78.3%; and for the volume change 0.886 and
82.6%. The FLDA approach yielded an AUC of 0.985 and an accuracy of 95.7%.

Conclusions: Regorafenib therapy significantly increased tumor ADC after 6 days of treatment and also significantly reduced
tumor growth. However, ROC analyses using each parameter individually revealed a lack of accuracy in discriminating
between therapy and control group. The combination of both parameters using FLDA substantially improved diagnostic
accuracy, thus highlighting the potential of multi-parameter MRI as an imaging biomarker for non-invasive early tumor
therapy monitoring.
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Introduction

Monitoring the response to anti-cancer treatment is an integral

part of oncology. With the introduction of novel molecular cancer

therapies to clinical routine it has become apparent that

conventional, solely morphology-based imaging criteria, such as

the Response Evaluation Criteria in Solid Tumors (RECIST) [1],

provide limited sensitivity to assess therapy response, particularly

during initial treatment [2,3]. Technical developments in recent

years introduced a variety of new functional imaging methods,

such as diffusion-weighted MRI (DW-MRI) or perfusion imaging.

These new methods complement established morphological

information and are also applicable as in-vivo imaging biomarkers

of therapy response for monitoring of anti-cancer treatment.
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DW-MRI is a method to visualize and quantify the mobility of

water molecules in the observed tissue [4,5]. The thermally driven

random motion, the so-called Brownian motion, is influenced by

the properties of the surrounding tissue microstructure, e. g.

cellular density and cell integrity. While qualitative DW-MRI is

already widely used in oncology for the detection of metastases,

several recent reviews have highlighted the potential of quantita-

tive DW-MRI, i.e. the measurement of the apparent diffusion

coefficient (ADC), to predict and to monitor response to anti-

cancer treatment [6–11]. Generally, malignant lesions are known

to exhibit lower ADCs compared to healthy tissue and benign

lesions, which is mainly a result of the commonly higher cellularity

of malignancies [12–17]. On the other hand, studies measuring

pre-treatment ADCs have found, that relatively high initial ADCs

in malignant lesions were predictive of poor therapy outcome [18–

21], while increasing ADCs over the duration of various anti-

cancer treatments were associated with therapy response in

malignant breast metastases [22], rhabdomyosarcomas [23],

prostate carcinoma xenografts [24], colorectal liver metastases

[25] and cholangiocarcinomas [26].

The novel oral multi-kinase inhibitor regorafenib exhibits anti-

angiogenic and anti-proliferative effects on glioblastoma, breast,

and renal cell carcinoma xenografts [27] and is clinically approved

for treatment in metastatic colorectal cancer [28]. Pharmacolog-

ically, regorafenib belongs to the group of multi tyrosinekinase

inhibitors and inhibits multiple membrane-bound and intracellular

kinases involved in tumorigenesis, neoangiogenesis and in the

preservation of the tumor microenvironment. In vitro, regorafenib

has been shown to inhibit the activity of VEGFR-1, VEGFR-2,

VEGFR-3, PDGFR-a, PDGFR-b, FGFR-1, FGFR-2, RET, KIT,

TIE2, DDR2, TrkA, Eph2A, RAF-1, BRAF, SAPK2, PTK5 and

Abl at concentrations that can be achieved clinically [27].With

Table 1. MRI acquisition parameters.

Parameter DW-MRI T2-weighted MRI

Acquisition plane Axial Axial

Repetition time (ms) 2500 9560

Echo time (ms) 55 91

Signal averages 8 3

Acquisition matrix 68652 1926192

Reconstructed matrix 1366104 1926192

Field of view (mm2) 65650 60660

Slice thickness (mm) 2 1.5

Slice gap (mm) 0.4 0

Number of slices 12 35

Parallel imaging factor 2 (GRAPPA) 2 (GRAPPA)

Fat supression On Off

b-values (s/mm2) 10, 25, 50, 80, 130, 200, 350, 550, 800 -

Acquisition time (min) 10:08 6:53

doi:10.1371/journal.pone.0106970.t001

Figure 1. Voxelwise calculated ADC maps in the subcutaneous
colon carcinoma of a therapy animal before and after 6 days of
therapy with regorafenib laid over diffusion-weighted images
with b = 10 s/mm2. The ADC maps display a prominent increase,
which is also reflected in the median tumor ADC value for this animal:
ADCB = 0.76261023mm2/s at day 0, ADCF = 1.13761023mm2/s at day 7.
doi:10.1371/journal.pone.0106970.g001

Figure 2. Region of interest (ROI) placement on diffusion-
weighted images with b = 10 s/mm2 over 4 example slices to
calculate the median tumor ADC. Total ROI extends over 10 slices
for this measurement.
doi:10.1371/journal.pone.0106970.g002
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reported pro-apoptotic effects of regorafenib in colon carcinoma

xenografts [29] and studies reporting significant positive correla-

tions between ADCs and the number of apoptotic tumor cells [30],

we hypothesized that quantitative ADC measurements would be

applicable to sensitively assess the effects of regorafenib in an

experimental model of human colon cancer. An anticipated

potential limitation of this approach as reliable imaging biomarker

is necrotic tumor transformation with progressing tumor growth.

Necrotic transformation also leads to augmented water mobility

[15] and potentially impairs the specificity of ADC measurements

for assessing treatment response. A meaningful combined evalu-

ation of tumor morphology and DW-MRI could reduce the

individual limitations of each approach, allowing for non-invasive

response monitoring during initial treatment. Such a combination

is constituted by Fisher’s linear discriminant analysis (FLDA) [31],

which has been demonstrated to increase the accuracy to separate

between malignant and benign lesions in the vertebral bone

marrow by incorporating ADC and T2 relaxation time values

compared to using each classifier individually [32].

The purpose of this study was to evaluate quantitative DW-

MRI and tumor growth measurements, individually and com-

bined using a discriminant analysis approach, as means of

distinguishing between therapy and control group of human

colorectal carcinoma in rats under regorafenib or placebo therapy.

We hypothesized that the combination of both approaches

outperforms each classifier individually and can be used to

monitor anti-angiogenic therapy non-invasively.

Materials and Methods

Animal Model
This study was approved by the Government of Upper Bavaria

Committee for Animal Research (Gz.55.2-1-54-2532-33-10) and

was carried out in accordance with the guidelines of the National

Institute of Health for the care and use of laboratory animals. For

the experiments twenty-three female athymic rats (7–8 weeks old,

Harlan Laboratories Inc., Indianapolis, IN) were used. 26106 cells

of the human colon carcinoma cell line HT-29 (ATCC HTB-38)

suspended in a total volume of 0.5 mL as a 1:1 mixture of

phosphate buffered saline pH 7.4 (PBS) and Matrigel (BD

Biosciences, San Jose, CA) were injected subcutaneously into the

left flanks. Prior to MRI the xenografts were allowed to grow to a

reasonable size for imaging of approximately 400 mm3 (assessed

by daily caliper measurements in three dimensions (a6b6c60.5))

and the animals were randomly assigned to either the therapy

(n = 12) or the control group (n = 11). After the initial MRI on day

0 the animals and were treated daily for one week with the multi-

tyrosine kinase inhibitor, regorafenib (Bayer HealthCare, Lever-

kusen, Germany), respectively with the placebo. On day 7 a

follow-up MRI was performed to assess the effects of regorafenib

on tumor growth and the ADC, after which the animals were

euthanized via intracardiac injection of potassium chloride.

Tumor Therapy
The therapy group was administered 10 mg/kg body weight of

regorafenib daily, formulated as a solution in polypropylene

glycol/PEG400/Pluronic F68 (42.5/42.5/15 + 20% Aqua), via

gastric gavage, using a dedicated 16-gauge curved buttoned

cannula. The control group received volume-equivalent applica-

tions of the regorafenib solvent daily.

MR Image Acquisition
Prior to MR imaging, animals were anaesthetized with

isoflurane (5% for induction, 2.5% for maintenance, administered

in pure oxygen). Scans were conducted on a clinical 3-Tesla

whole-body MRI system (MAGNETOM Verio, Siemens Health-

care, Erlangen, Germany) with a small 4-channel flex coil

(Siemens Healthcare, Erlangen, Germany).

DW-MRI was performed using a diffusion-weighted single-shot

spin-echo sequence with echoplanar imaging (EPI) readout. A

modified monopolar diffusion encoding scheme [33] was used to

achieve a reduction in TE and therefore an increase in signal

intensity. Trace diffusion-weighted images were calculated by

averaging images obtained with diffusion gradients in 3 orthogonal

directions. A total of 9 diffusion weightings (b-values) were

acquired (b = 10; 25; 50; 80; 130; 200; 350; 550; 800 s/mm2)

with the parameters listed in Table 1. To assess the tumor

volumes, a T2-weighted turbo-spin-echo sequence with a high in-

plane resolution of 0.360.3 mm2 was used (Table 1).

Image Analysis
Image analysis was performed on a dedicated workstation using

our in-house software PMI (Platform for Research in Medical

Imaging) [34] written in IDL (ITT Visual Information Systems,

Boulder, CO).

DW-MRI. Prior to quantitative analysis, the diffusion-weight-

ed images were rigidly registered along the b-value-dimension

using a Fourier cross-correlation method to keep bulk-motion from

affecting the diffusion coefficients. The ADC of each voxel was

calculated by non-linear least-squares fitting of the measured

signal intensities from all acquired b-values to the monoexponen-

tial diffusion model: S(b) = S06exp(2 b6ADC), where b is the b-

value and S0 the signal intensity at b = 0 (Figure 1).

Obtaining quantitative parameters from MRI measurements is

highly dependent on region of interest (ROI) placement, which

often suffers from poor reproducibility. To obtain robust results

and to minimize subjective influences on the ROI definition, we

defined a 3D volume of interest (VOI) covering the entire tumor

on multiple slices of the diffusion-weighted data for each animal

and measurement (Figure 2). The median of the ADC distribu-

tions inside the VOIs were then taken as the representative tumor

ADCs for statistical analysis. The tumor ADCs are denoted ADCB

and ADCF for the baseline and follow-up measurements,

respectively.

Figure 3. Region of interest (ROI) placement on T2-weighted
images over 4 example slices to measure the tumor volume.
Total ROI extends over 22 slices for this measurement.
doi:10.1371/journal.pone.0106970.g003
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Volume Measurement. The tumor volumes were deter-

mined based on the morphologic T2-weighted images, which

allowed for a clear delineation of the subcutaneous xenografts. For

each animal and each measurement, a VOI was placed over

several slices to cover the entire tumor (Figure 3). The combined

volume of all voxels inside each VOI was defined as the tumor

volume (the slice gap is 0 mm and therefore did not need to be

taken into account) and denoted as VOLB and VOLF for the

baseline and follow-up measurements, respectively. To accommo-

date for varying pre-therapy tumor sizes, tumor growth was

assessed in percentages relative to the baseline value rather than

absolute growth.

Statistical Analyses
All statistical analyses were performed using the statistical

computing language R [35]. Within each group, median values

and standard deviations of the evaluated parameters over all

animals were determined. For intragroup comparison between

baseline and follow-up parameters, the paired Wilcoxon signed-

rank test was used. The comparison of the parameters between the

therapy and control group was performed using the non-paired

Mann-Whitney U test. The observed changes for both tumor

ADCs (DADC) and volumes (DVOL) from baseline to follow-up

were also used for analyses. To evaluate diagnostic performance of

either DADC or DVOL in discriminating therapy from control

group, the receiver operating characteristics (ROC) curves were

analyzed using the R package pROC [36]. Parameters of interest

were the area under the curve (AUC) as well as the optimal

threshold and the resulting sensitivity, specificity, and diagnostic

accuracy. The statistical significance of the difference between the

AUCs was determined using the method as described by DeLong

et al. [37] based on generalized U-statistics to generate an

estimated covariance matrix.

Additionally, for each group the linear correlation between

DADC and DVOL was determined using Pearson’s product-

moment correlation. To assess if the combination of both

parameters, DADC and DVOL, increases the ability to distinguish

between therapy and control group compared to the individual

classifiers, Fisher’s linear discriminant analysis [31] was performed

using the R package Bioconductor [38,39]. FLDA is a statistical

method used to find a linear combination of given classifiers, in

our case DADC and DVOL, which allows for an optimal

separation of a group of classes. The result from the determined

linear combination was then again used for statistical comparison

between the two groups and as a classifier to perform a ROC

curve analysis. For all analyses, p-values of less than 0.05 were

considered statistically significant.

Results

Tumor ADC
Median tumor ADCs with standard deviations and the results

from the statistical analyses are summarized in Table 2 (see Table

S1 for voxelwise calculated ADC distributions and Table S2 for

individual tumor ADC values (median of the distributions) for

each animal and measurement). A statistically highly significant

(p,0.001) difference in tumor ADC between baseline and follow-

up measurement was found in the therapy group, where the

median increased from ADCB = 0.782(60.085)61023 mm2/s to

ADCF = 0.911(60.121)61023 mm2/s. Conversely, no significant

alteration was found in the control group

(ADCB = 0.740(60.087)61023 mm2/s to ADCF = 0.770

Figure 4. Box plots (first, second, and third quartile, range and outlier) of (a) DADC, (b) DVOL and (c) the results from the linear
combination calculated with Fisher’s linear discriminant analysis (FLDA) for each group and the corresponding p-value for the
difference between them. Although significantly different, DADC and DVOL display distinctive overlaps between the two groups. The result from
FLDA demonstrates a marked improvement in the group discrimination with nearly no overlap, resulting in a highly significant difference.
doi:10.1371/journal.pone.0106970.g004

Table 2. Median tumor ADCs 6 standard deviation for each measurement and group.

Group ADCB (1023mm2/s) ADCF (1023mm2/s) DADC (1023mm2/s)

Therapy 0.7660.09* 0.9060.12*1 +0.1060.11{

Control 0.7360.09 0.7560.071 +0.0360.09{

Note: ADCB: baseline tumor ADC; ADCF: follow-up tumor ADC, DADC: tumor ADC changes between measurements.
*Therapy ADCB vs. therapy ADCF: p,0.001.
1Therapy ADCF vs. control ADCF: p,0.001.
{Therapy DADC vs. control DADC: p = 0.027.
doi:10.1371/journal.pone.0106970.t002
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(60.070)61023 mm2/s, p = 0.24). Statistically significant differ-

ences between the two groups were found for the follow-up tumor

ADCs (p,0.001) as well as for the observed changes in tumor

ADCs (therapy: DADC = 0.130(60.110)61023 mm2/s; control:

DADC = 0.030(60.087)61023 mm2/s; p = 0.268; Figure 4a). The

ROC curve analysis for DADC is illustrated in Figure 5a. The

AUC was 0.773 and using an optimal threshold of

DADC = 0.32961023 mm2/s (above = therapy), a sensitivity of

91.7%, a specificity of 63.6%, and a diagnostic accuracy of 78.3%

in differentiating between therapy and control group based on

ADC changes was obtained (Table 3).

Tumor Volume
Median tumor volumes with standard deviations and the results

from the statistical analyses are summarized in Table 4 (see Table

S3 for individual tumor volumes for each animal and measure-

ment). Both groups displayed a statistically significant increase in

tumor volume from baseline to follow-up measurements (therapy:

p = 0.034; control: p,0.001), however, the observed relative

volume increase in the therapy group (DVOL = 33.29(647.30)%)

was significantly smaller than in the control group

(DVOL = 96.43(631.66)%); p,0.001; Figure 4b). The ROC

curve analysis for DVOL is illustrated in Figure 5b. The AUC

was 0.886 and using an optimal threshold of DVOL = 61.35%

(below = therapy) a sensitivity of 81.8%, a specificity of 83.3%, and

a diagnostic accuracy of 82.6% in differentiating between therapy

and control group based on tumor growth was obtained (Table 3).

There was no statistically significant difference between the AUC

from DADC and DVOL (p = 0.419). The control group displayed

a moderate correlation between DADC and DVOL (r = 0.65,

p = 0.0319, figure 6a, dotted red line), which was not the case for

the therapy group (r = 0.05, p = 0.887, Figure 6a, dashed blue

line).

Fisher’s Linear Discriminant Analysis
The results from FLDA are also shown in Figure 6. The two

groups display a statistically highly significant difference (p,

0.00001, Figure 4c) between the results from the determined linear

combination (FLDA(DVOL, DADC) = 0.00336DVOL[%] 2

1.03666DADC[1023mm2/s]). The ROC curve analysis for

FLDA is illustrated in Figure 5c. The AUC was 0.985 and using

an optimal threshold of FLDA = 0.139 (below = therapy) a

sensitivity of 91.7%, a specificity of 100%, and a diagnostic

accuracy of 95.7% in differentiating between therapy and control

group based on FLDA was obtained (Table 3). The AUC yielded

by FLDA was significantly larger than the AUC yielded by DADC

(p = 0.036), however, there was no significant difference compared

to the AUC yielded by DVOL (p = 0.145).

Discussion

In this study, we used MRI in an experimental colon carcinoma

model to evaluate the influence of the recently FDA-approved

multi-kinase inhibitor regorafenib [28] on the water diffusivity in

the tumorous tissue and on tumor growth to assess the potential for

non-invasive therapy monitoring using ADC and tumor volume

Table 3. Results from the ROC curve analysis using DADC, DVOL, and FLDA.

Classifier AUC Threshold Sensitivity Specificity Accuracy

DADC 0.773* 0.03361023mm2/s 91.7% 63.6% 78.3%

DVOL 0.886 +61.35% 81.8% 83.3% 82.6%

FLDA 0.985* +0.139[a.u.] 91.7% 100% 95.7%

Note: DADC: tumor ADC changes between measurements, DVOL: tumor volume changes between measurements, FLDA: result from Fisher’s linear discriminant
analysis, AUC: area under the curve.
*AUC using DADC vs. AUC using FLDA: p = 0.035.
doi:10.1371/journal.pone.0106970.t003

Figure 5. ROC curve analysis using (a) DADC, (b) DVOL and (c) the result from the linear combination calculated with Fisher’s linear
discriminant analysis (FLDA) to illustrate performance in differentiating therapy from control group. The combined approach using
FLDA outperforms the use of DADC and DVOL notably. Optimal sensitivity and specificity for each parameter and the corresponding thresholds are
summarized in Table 3. * AUC using DADC vs AUC using FLDA: p = 0.035.
doi:10.1371/journal.pone.0106970.g005
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measurements. We observed that the one-week treatment signif-

icantly increased tumor ADCs as well as significantly reduced

tumor growth, however, ROC curve analyses using each

parameter individually revealed a lack of accuracy (with values

of about 80%) in discriminating between therapy and control

group. The combination of both parameters using Fisher’s linear

discrimination distinctively increased the diagnostic accuracy to

more than 95%, thus advocating the capability for therapy

monitoring.

Tumor ADC
Diffusion-weighted MRI revealed microstructural changes in

the tumorous tissue reflected by an increased water diffusivity

induced by a one-week therapy with regorafenib. The significant

increase in tumor ADC in the therapy group is likely due to

apoptosis, which was shown to be significantly unregulated by

regorafenib therapy in the same tumor cell line (HT29) [29]. A

correlation between apoptosis and water diffusivity in tumorous

tissue has been observed in various published studies [30,40–42].

Zhang et al. examined mice bearing CT26 colorectal carcinoma

tumors under radiotherapy using DW-MRI and histological

analysis [40], which led the authors to identifying a significant

positive correlation between the percentage of ADC changes and

the apoptotic index (TUNEL).

The significant increase in tumor ADCs in the therapy group

and more importantly the significant differences in the observed

tumor ADC changes between the two groups mark DW-MRI as a

potential biomarker for monitoring of molecular cancer therapy,

including multi-tyrosine kinase inhibitors such as regorafenib.

While Thoeny et al. have reported an initial decrease in water

diffusivity in the first hours after anti-cancer therapy initiation

[23], an increasing ADC in the tumorous tissue after several days

of anti-cancer treatment has widely been associated with therapy

response [21–23,26,43–45]. However, in our study the median

tumor ADC in the control group also displayed a moderate

increase, yet of no statistical significance. The rapid tumor growth

and the significant correlation of growth and tumor ADC changes

between baseline and follow-up measurement observed in the

control group indicate that this increase in water diffusivity is most

likely caused by progressing necrotic transformation, which is

expected particularly in the untreated control group. Herneth et al.

studied ADCs of squamous cell tumors implanted in mice at

Figure 6. Fisher’s linear discriminant anaylsis of volume and ADC data. Panel (a) illustrates thescatterplot of DVOL vs. DADC for each tumor.
The solid grey line represents the optimal threshold determined by the ROC curve analysis; the linear regressions for each group (dashed line for
therapy, dotted line for control) are annotated with Pearson’s correlation coefficient r and p-value. (b) Results from the FLDA-derived linear
combination of DADC and DVOL (FLDA = 0.00336DVOL[%] - 1.03666DADC[1023 mm2/s]).
doi:10.1371/journal.pone.0106970.g006

Table 4. Median tumor volumes 6 standard deviation for each measurement and group.

Group VOLB (mm3) VOLF (mm3) DVOL (%)

Therapy 347.86449.1* 405.36823.6* 33.30647.30{

Control 219.7679.51 443.76141.51 96.43631.66{

Note: VOLB: baseline tumor volume; VOLF: follow-up tumor volume, DVOL: tumor volume changes between measurements.
*Therapy VOLB vs. therapy VOLF: p = 0.034.
1Control VOLB vs. control VOLF: p,0.001.
{Therapy DVOL vs. control DVOL: p,0.001.
doi:10.1371/journal.pone.0106970.t004
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various tumor sizes [15], reporting that ADCs increased signifi-

cantly with tumor progression and the areas with increased ADCs

correlated well with histologically determined areas of necrosis.

While regorafenib seems to have a significant effect on water

diffusivity, the overlap in the observed tumor ADC changes

between therapy and control group leads to a less accurate

discrimination and therefore to a limitation of the therapy

monitoring capabilities of DW-MRI. To increase diagnostic

accuracy it is therefore advisable to combine ADC measurements

with additional information about tumor progression, such as

tumor volume.

Tumor Volume
The tumor volume increased significantly between baseline and

follow-up measurement in both groups. This strongly indicates

that the Response Evaluation Criteria in Solid Tumors (RECIST)

[1] based on morphologic properties of the target lesion (longest

diameter), is not suitable to monitor early response of anti-

angiogenic tumor therapy [2,3]. However, the relative tumor

growth was significantly reduced by the regorafenib therapy, as the

control group tumors displayed a median relative tumor growth of

96.4% while therapy group tumors only grew by 33.3%. Similar

results were previously published by Abou-Elkacem et al. [46],

who observed that regorafenib therapy in a murine CT26

metastatic colon cancer model, amongst other anti-angiogenic

and anti-metastatic effects, significantly inhibited tumor growth.

The ROC curve analysis using relative tumor growth yielded a

slight increase in AUC compared to using tumor ADC changes,

nevertheless, tumor growth lacks diagnostic accuracy when used as

classifier to distinguish between control and therapy group animals

after 6 days of regorafenib therapy.

Fisher’s Linear Discriminant Analysis
Fisher’s linear discriminant analysis is an effective method to

combine two or more classifiers in separation problems [31]. Biffar

et al. demonstrated that the use of FLDA to combine ADC and T2

relaxation times of water in the vertebral bone marrow allowed for

increased sensitivity and accuracy in the separation between

malignant and benign lesions compared to using each classifier

individually [32]. In the present study, a significant correlation

between tumor ADC changes and relative tumor growth was

found in the control group but not in the therapy group. While this

indicates that the observed ADC changes are likely to have

different physiological causes, it further promotes the application

of a discriminant analysis for the purpose of increased diagnostic

accuracy. Accordingly, the combined classifier resulting from

FLDA of tumor ADC changes and relative tumor growth

improves the discrimination between therapy and control group

substantially compared to the individual use. All tumors, except for

one false negative (therapy group tumor classified as control group

tumor), were classified correctly using the optimal threshold

determined by the ROC curve analysis. This result highlights that

water diffusivity in tumorous tissue potentially reveals insight on

tumor therapy response, but has to be evaluated in a meaningful

way with regard to tumor morphology.

Limitations
The linear combination of ADC and volume changes calculated

with FLDA and also the thresholds determined with the ROC

curve analyses are specific to the tumor type, the therapy and the

time interval between measurements. These parameters may have

to be reevaluated according to the respective settings. However,

the concept of the method presented in this study to integrate

morphological and functional information as complementing

parameters should remain valid.

For further analysis, it may be possible to gain additional insight

on the tumor physiology by investigating the histogram shape (e.g.

variance or skewness) of the ADC distribution inside the VOI

(Figure 7) if the voxel count of the VOI is sufficiently large (i.e.

several hundred voxels per VOI). Other possible DW-MRI based

evaluations not included in this study are the assessment of

intravoxel incoherent motion [47,48] or diffusional kurtosis

parameters [49].

Conclusions

Using quantitative DW-MRI, we found that therapy of human

colon carcinoma xenografts with the multi-tyrosine kinase

inhibitor regorafenib significantly increased water diffusivity in

tumorous tissue after 6 days of treatment. We also observed that

regorafenib significantly reduced tumor growth compared to the

control group. Using either tumor ADC changes or tumor growth

to distinguish between therapy and control group resulted in

diagnostic accuracy of about 78% and 83%, respectively, which

Figure 7. Exemplary histogram distributions of the voxelwise
calculated ADCs inside the volume of interest for a (a) therapy
and (b) control group animal. The median tumor ADC increased in
both cases (therapy: 0.7261023 mm2/s to 0.9161023 mm2/s, control:
0.7361023 mm2/s to 0.8261023 mm2/s), however, the therapy tumor
grew by 36%, while the control group tumor grew by 76%.
doi:10.1371/journal.pone.0106970.g007
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we consider not sufficient for an imaging biomarker. The

approach to combine both parameters using Fisher’s linear

discriminant analysis, substantially improved the accuracy to

about 96%, thus highlighting the potential of multi-parameter

MRI as an imaging biomarker for non-invasive early tumor

therapy monitoring.
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