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Descriptive Seasonal Adjustment by Minimizing 
Perturbations*) 

Ekkehart Schlicht, Ralf Pauly 

Zusammenfassung 

Das von Schlicht (1981) vorgeschlagene Saisonbereinigungsverfahren kann als ein Verfah- 
ren aufgefaet werden, welches Perturbationen (nichtstochastische Storungen) minimiert. 
Diese Sichtweise fuhrt zu einer Kritik des dort vorgeschlagenen Saisonkriterismus. Es wird 
ein neues Saisonkriterium vorgeschtagen, welches diese Nachteile nicht aufweist, und es 
wird das resultierende Saisonbereinigungsverfahren angegeben. 

1. Introduction 

The descriptive decomposition of a given time series into trend, seasonal component, and 
irregular component can be formulated as an optimization problem (Schlicht, 1981 ) .  The 
trend is to be chosen such that it is as smooth as possible; the seasonal component is to 
be chosen such that it exhibits a seasonal pattern as stable as possible; and trend and sea- 
sonal components ought to approximate the given time series as well as possible, i. 8. the 
irregular component is to be minimized. 

If x' = (xl, . . ., xT) denotes the given time series of length T, y' = ( y , ,  . . ., yT) is the 
trend, z' = (zl , . . ., zT) denotes the seasonal component and u' - (ul, . . ., uT) = xt-y' 
-2' denotes the irregular component, it is necessary to specify a trend criterion f (y) : 
RT -r R measuring the curvature of the trend, a seasonality criterion g : R~ -c R meas- 
uring the instability of the seasonal component, and an irregularily criterion h (u) : FlT -+ R 
measuring the size of the irregular component. If 

(1) f (y) + g(z)  + h(x--y-z) - min! 
Y,  * 

is minimized with respect to trend y and seasonal component z, this determines a trend 
and a seasonal component which minimize jointly the sum of the three criteria: curvature of 
the trend, instability of the seasonal component, and size of the irregular component. 

The purpose of this paper is to modify the seasonality criterion proposed in Schlicht (1981) 
while maintaining the trend and irregularity criteria and to prove that the modified set of cri- 
teria leads again to a unique solution of the decomposition problem without having re- 
course to initial values. 

') We thank P. A. Cholerre and H. Lutkepohl and an anonymous referee for helpful hints 



The view adopted is that the sum of the criteria ( I )  can be interpreted as a weighted sum of 
squares of individual perturbatibns - as a weighted regression. These perturbations are 
viewed here as exogenous shocks and not as random disturbances governed by a statisti- 
cal law(1). This view is slightly different from the view adopted in Schlicht (l981), but if it is 
adopted, it will be argued, this requires a reformulation of the seasonality criterion. 

The paper is organized as follows: In section 1, the criteria proposed in Schlicht (1981) are 
reformulated in terms of perturbations. This leads to criticism of the seasonality criterion 
(section 2). In section 3, a new seasonality criterion is introduced and compared with the 
older criterion. In section 4 it will be proved that a unique decomposition can be obtained if 
the old seasonality criterion is replaced by the new one. Some concluding remarks follow in 
section 5. 

2. The criteria as measures of perturbations 

The criteria proposed in Schlicht (1981) can be written as quadratic forms, namely: 

(4) h (u) p. Lou 

of order ( T-2) x T ,  

B (6) s from S T - ( R ' R + - - Q J Q )  ~ 2 0  
Y 

with 
column s 

1 
1' 1' . . 1 , o y o  

(7) R : = 

0-0,1,1, . . . 1  



of order ( T-s +.l) x T,  and 

column s + 1 

1 

of order ( T-s) x T 

where s denotes the length of the season (i. e. s = 12 in the case of monthly data). 

The *perturbationsu interpretation of the trend end irregularity criteria is straightforward: 

The trend perturbations v' - (b, . . ., vr)  represent changes in the direction of the trend, 
i. e. 

If the perturbations are viewed as causes, this amounts to 

The trend criterion (2) is simply the sum of squared perturbations 

Keeping the trend criterion as small as possible means keeping the perturbations in the di- 
rection of the trend as small as possible and hence the trend as smooth as achievable. 

The irregularity criterion (4) can be interpreted directly as the sum of squares of perturba- 
tions u '  = ( u , ,  . . ., u,) where 



(13) X I  - y, + 2, + u, r = 1 ) .  , .( T. 

Minimizing the irregularity criterion amounts to keeping the irregular perturbations - which 
are the differences between the original time series and the sum of trend and seasonal 
components - as mal t  as feasible. 

We shall maintain this in the following. 

The 'perturbations' interpretation of the seasonality criterion is more difficult, however. 
First, there are several alternatives: We can choose S of order T x TI but then no intuitive 
interpretation seems to be available. Another way is to take: 

where d - ($1 l J2  

This has a direct interpretation in terms of the perturbations 

and 

The perturbation 

measures the deviation of the seasonal pattern from an average of zero and the perturba- 
tion 

measures the change of the seasonal components from one year to the next. However, r 
and q cannot be taken to be (functionally) independent since they are directly connected 
by the seasonal component. Hence the minimization of their sum of squares - as implied 
by ( I )  and (3) - makes not very much sense. This difficulty is illuminated by reformulating 
( I )  as a weighted regression: 

(19) minimize u ' u  + U V ' V  + y r ' r  + yq'q 
with respect to y and z subject to 



Here the disturbances r and q measure closely related deviations separately(2). Further- 
more, the interpretation and choice of 1 raises some problems. 

Hence some reflections on the seasonality criterion are needed. 

3. A criticism of the two-part seasonality criterion 

tn order to study the change of the seasonal pattern implied by f14), we trace the system's 
response to the so-cailed "typical shock" in one period (Sims, 1980): We look at the time 
profile of the impact of a perturbation injected at time t while keeping all other perturba- 
tions hypothetically equal to zero. 

Under the specification (la), the seasonality criterion (3) can be written in two-part form 
(compare also (19)) : 

First we shall look at the impact of one perturbation r, on gl while keeping the other pertur- 
bations r,, z =I= r equal to zero. By evaluating this from (77), we arrive at figure 1. 

It turns out that r, increases z, by r, and decreases z,+f, z,+,+$, z,+2,+1, . . . by the same 
amount, leaving all other components unaffected. This is not an attractive feature since it is 
reasonable to assume the effect of a perturbation r, on other seasonal components z,, 
r > t to be more evenly distributed. 

In a similar fashlon we can trace the effect of a perturbation q, on the seasonal pattern while 
keeping all q,, 2 9 t equal to zero by evaluating (78) (figure 2). 

it turns out that a perturbation q, increases the seasonal component z, and all following 
z,+,,, referring to the same period in the seasonal pattern without affecting the other sea- 
sonal components. This is not a convincing mechanism either because it increases the sum 
of the seasonal components permanently. Such a permanent increase, however, is to be 
reckoned as an increase in the trend level. The effect of several perturbations can be 



Figure I 

Tha Impact of 8 pelturb8tlon In th. tint part of the se8ronJlty crlterlon on the scrasonsl pattern 

I undisturbed seasonal component 
I 

seasonal component disturbed by ra 
1 
I 

thought of as the summation of the effects of individual perturbations. Hence the problems 
illustrated above will remain. 

If these two aspects are combined in the two-part seasonality criterion - or in the 
weighted regression (79), (20) - this will mitigate both disadvantages, but it will not neces- 
sarily be a reasonable compromise. 

4. A new seasonality criterion 

If we want to keep the sum of the seasonel corn ponents close to zero, this will n sarily 
induce a negative impact on the following seasonal components. Under the criterion g, ,  
this is accomplished by simply reducing the following seasonal component by the increase 
in the current seasonal component as can be seen from (17) if we re-write it as 

A more sensible formulation would be to distribute the negative impact of a perturbation 
evenly over the whole length of the season. This leads to 



Figure 2 
Tho impmt of p.rturb.tbn In the recond part of the seasonality crltedm on the mssonal pattern 

I undisturbed seasonal pattern 

I 
I 

seasonal pattern disturbed by 9~ I 
I 

where w' = (w, . . ., wT) is the perturbation in the new seasonality criterion to be devel- 
oped(3). The impact of a single perturbation is illustrated in figure 3. 

The perturbation w, can be thought of as acting quite similarly as the perturbation q,. The 
difference is simply that the increase in the sum of the seasonal components induced by an 
increase in one single component is eliminated - as should be done; and, in fact, the simi- 
larity between (18) and (23) is quite obvious as well as the similarity between (22) and (23). 
Thus (23) expresses the basic ideas formulated previously in the two parts of the old sea- 
sonality criterion (3). 

A more direct analogue to (17) can also be derived: From (23) we find 



Figure 3 
The Impact of a porturbotlan in th. proceu (B) on tho r~asonal p r t t m  

This constant can be interpreted as the sum of the undisturbed seasonal components and 
should hence be taken to be zero: 

s- 1 5-2 s-l-c 
(25) z 2,-r - z wt-r 

t-o r-0 S-1 

This can be written in matrix form as 

where R is as defined before in (7" and Z is 

of order (T-s+1) x (T-1). 



The new seasonality criterion requires the minimization of the inner product w' w .  As a first 
step, w'.w can be minimized for given z under the constraint (B). This leads to the La- 
grange condition 

where A is the vector of associated Lagrange multipliers. Using this together with (26) im- 
plies 

Since Z has full rank, the inverse (2  2') exists and we can write (28) as 

The new seasonality criterion is given by the sum of squares y w' w of these perturbations. 
U is obtained by replacing S by Z' ( Z  2')-' R in (3): 

(31) g * ( r ) = y z l R ' ( Z Z ' ) - ' R z  y > O  

This is the new seasonality criterion measuring the irregularity of the seasonal pattern. 

6. f he decompoaltion theorem 

The following proposition will be proved now: 

Theorem: For any given time series x, the minimum of 

with respect to y and z  is uniquely defined by the equation 

where 



Proof: We have 

Since we can write 

(37) H* - K ' K  

where 

the matrix H* is nonnegative definite. Hence (33) is a necessary and sufficient condition for 
a minimum, In order to prove existence and uniqueness of the solution it is sufficient to 
prove that H* is nonsingular. 

We have 

i P', 0 , I )  = (P', R 9 ( Z Z * ) - '  z,o i - - 0, R' (22')-' 2 ,  I 0, 0 , I 

Since 

24 



where the last equality has been proved in Schlicht (1981), the proof is completed. 

Hence the new seasonality criterion g*@) leads to a unique decomposition of the time 
series into trend, seasonal component, and irregular component. 

The associated regression problem would read - analogously to (19), (20): 

(41) minimize u ' u  + a v ' v  + y G' ( Z Z ' ) - '  G 
with respect to y and z subject to 

This would lead to the same solution. The weighting matrices applied to the perturbations 
u ,  v, and + are I ,  n 1, and y (22')-' , respectively(5). Schlicht (1983) gives a stochastic 
motivation for that. 

6. Concluding comments 

Under the "perturbations' point of view, the seasonality criterion proposed here reflects 
the two basic ideas underlying the two parts of the old seasonality criterion in one closed 
expression while avoiding the shortcomings of each of them. 

There remains much freedom, of course, concerning the choice of the weights a and y .  
Their meaning is quite obvious, however: They reflect the supposed variability of the pertur- 
bations. The trend will be smooth and the seasonal pattern will be stable when the shocks v 
and w are assumed to be small. This amounts to choosing iarge values for a and y .  In the 
descriptive framework the effect of alternative weights might be investigated by an evalua- 
tion of the sums of squared ex-post prediction errors. 

The decomposition problem can be formulated stochastically, however, by interpreting u, 
v ,  end w as white noise with covariance matrices a: I, o: I, and a,,? I. This would lead to a 
regression problem formally similar to (41) and (42), but involving an initial value problem. 
(See the approaches by Akaike, 1980, Pauly, 1982. Schlicht, 1983, solves the problem with- 
out recourse to initial values, however.) 



Estimates for 0:. at, and could be obtained, and the weights can be taken as a -ui/u; 
and y - oi/o:. However, an exact treatment is beyond the scope of this paper. 

Two descriptive features of the method proposed here are perhaps worth mentioning. De- 
note by y (x) and z (x) the trend and the seasonal components belonging to a given time 
series x, i. e. the solution to (33). These functions are linear: 

for all x', x2 E R~ 

This is a reasonable descriptive property which gives a justification for using quadratic cri- 
teria. 

Furthermore the method is what Burman (1979) called 'weakly symmetricu: Define the ma- 
trix 

This matrix, applied to x, reverses the time sequence, i .  e. 

It is immediate that a seasonal adjustment of the reversed series gives the same result as 
the reverse of the seasonally adjusted original series(6): 

This seems to be a sensible feature of a descriptive method and it illustrates that a causal 
model, where perturbations affect only the future, is not inconsistent with the use of weakly 
symmetric filters. Hence this implies an objection against de Vos' (1976) argument in favour 
of onesided filters. With regard to empirical applications of the method, see Astier - Du- 
heme1 ( 1 982). 
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8. Notes 

(1) A random shock interpretation - as in Leser (1963) with regard to the trend, in Akaike (1980) and 
In Kitegawa (1981) - would involve some conceptual problems regarding the relevance of our metho- 
dology of studying the properties of the criteria by tracing the system's response to so-called 'typical 
shocks". This technique has been described by Sims (1980). 

(2) With regard to Akaike's (1980) Bayesian formulation, similar objections can be raised. Akaike's 
(1980) approach differs from (191, (20) in that the rectangular matrices P, R ,  and Q are augmented to 
square matrices. This induces an initial value problem for y and z .  

(3) The alternative formulation 



is equivalent since it can be obtained from (23) by replacing 

(4) Denote the first term in (24) by Zf end the second term by W f .  Equation (23) can be re-written 
equivalently as 2, - 2,- I - Wl - WI-I  . Hence 2,- W, - 2 1 - 1  - WI- 1 for all t which implies (241. 
This formula states that the impact of a perturbation on Zl is linearily declining over time. 

(6) For matrices J of appropriate order, the following holds true: J - J', J J - I ,  J P J - P, J R J - 
R, J Z Z 'J  - Z Z'. Together with (33) and (34, this implies (46). 
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