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Abstract

Background: Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus with key symptoms of
oscillopsia and gait disturbance. Gait disturbance could be a result of impaired visual feedback due to the involuntary ocular
oscillations. Alternatively, a malfunction of cerebellar locomotor control might be involved, since DBN is considered a
vestibulocerebellar disorder.

Methods: Investigation of walking in 50 DBN patients (age 72611 years, 23 females) and 50 healthy controls (HS) (age
70611 years, 23 females) using a pressure sensitive carpet (GAITRite). The patient cohort comprised subjects with only
ocular motor signs (DBN) and subjects with an additional limb ataxia (DBNCA). Gait investigation comprised different
walking speeds and walking with eyes closed.

Results: In DBN, gait velocity was reduced (p,0.001) with a reduced stride length (p,0.001), increased base of support (p,
0.050), and increased double support (p,0.001). Walking with eyes closed led to significant gait changes in both HS and
DBN. These changes were more pronounced in DBN patients (p,0.001). Speed-dependency of gait variability revealed
significant differences between the subgroups of DBN and DBNCA (p,0.050).

Conclusions: (I) Impaired visual control caused by involuntary ocular oscillations cannot sufficiently explain the gait
disorder. (II) The gait of patients with DBN is impaired in a speed dependent manner. (III) Analysis of gait variability allows
distinguishing DBN from DBNCA: Patients with pure DBN show a speed dependency of gait variability similar to that of
patients with afferent vestibular deficits. In DBNCA, gait variability resembles the pattern found in cerebellar ataxia.
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Introduction

Downbeat nystagmus (DBN) is the most common form of

acquired fixation nystagmus [1]. Patients who have DBN typically

report dizziness with oscillopsia, especially during eccentric gaze.

Within the last decades, the characteristics of these oculomotor

abnormalities have been intensively investigated (for overview see

[2]). Most patients with DBN also report instability while standing

and walking. So far, however, a detailed investigation of their gait

behavior is missing. A few studies have focused on the balance

control of DBN during stance; the findings of these studies point to

increased postural sway in the anterior-posterior direction which

intensifies when standing with eyes closed [3].

The majority of DBN patients have cerebellar dysfunction due

to toxic, degenerative, inflammatory, or neoplastic pathologies [1].

One third of the patients show an idiopathic form, i.e. no

underlying cerebellar disorder can be identified. The pathophys-

iological model of DBN suggests a dysfunction of vestibulo-

cerebellar regions. Brain imaging studies and cerebellar lesion

studies give more precise evidence for a hypofunction, a

hypometabolism, and a reduction of gray matter volume in the

flocculus and paraflocculus [4,5]. The flocculus and paraflocculus

project to the central connections of the anterior semicircular

canal and of the otoliths [6] in the ipsilateral superior and medial

vestibular nuclei, and the y-group [7]. The relevance of otolith

function for DBN is further stressed by its dependence on head

position in relation to gravity [8]. The vestibulocerebellum seems

to mediate the integration of graviceptive information, thereby

stabilizing gaze in the vertical direction [9]. It is not known

whether these mechanisms are also relevant for locomotor control.

Two principal processes could contribute to a gait disturbance

of DBN patients. First, impaired visual feedback related to

oscillopsia during walking might be involved. Previous studies

have shown that visual deprivation or perturbation affect multiple

aspects of gait kinematics, such as heading direction, walking

speed, cadence, stride length, stance phase duration, swing limb

trajectory, foot elevation, gait variability, foot positioning and

upper body stability [10,11]. Alternatively, the vestibulocerebellar

dysfunction of DBN patients may directly affect locomotor control.

The aim of the current study was to investigate and characterize

the gait performance of patients with DBN. We also investigated

whether the gait disturbance of DBN patients is mainly affected by
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impaired visual feedback control during walking or a dysfunction

of cerebellar locomotor control.

Methods

Ethical standard
The study protocol was approved by the Institutional Review

Board of the ethics committee of the Ludwig-Maximilians

University Munich (No. 333-07). The study was conducted

according to the principles expressed in the Declaration of

Helsinki. All subjects gave their informed written consent prior

to the experiments.

Subjects
Fifty patients with downbeat nystagmus (DBN) and 50 age-

matched healthy subjects (HS) were recruited in our Dizziness

Clinic (German Center for Vertigo and Balance Disorders and

Department of Neurology).

Exclusion criteria for DBN patients and HS were concomitant

gait disorders due to Parkinson’s disease, stroke, neoplasia of the

brain or of the spinal cord, and orthopedic or cardiovascular

diseases affecting locomotion. All subjects underwent a complete

neurological and physical examination including testing of

vestibular, postural, and sensory functions.

Experimental setup and procedures
Gait analysis was performed using a 6.7-m-long pressure-

sensitive carpet (GAITRite, CIR System, Havertown, USA) with a

sampling rate of 120 Hz. The carpet system provides the mean

values and standard deviations for all relevant gait parameters.

The following parameters were analyzed: Functional Ambulation

Profile (FAP), a score with linear relationship of step length to leg

length ratio to step time when the velocity is ‘‘normalized’’ to leg

length [12], velocity, cadence, stride time, stride length, base of

support, double support percentage, and the coefficient of

variation (CV) of stride time, stride length and base of support

as a marker for the magnitude of gait variability. The gait

parameters were grouped into gait domains similar to previous

studies [13,14]. Based on a principal factor analysis approach the

domains are categorized in the following sections: pace (gait

velocity, stride length, cadence), cycle (swing and stance phases),

support (base of support, doubles support phases), and variability

(CV of stride time and CV of stride length, CV of base of support).

All patients and controls had to walk over the carpet at three

different speeds (preferred, slow, and maximally fast). Subsequent-

ly, patients were instructed to walk with preferred speed and eyes

closed over the carpet. Each condition was tested twice. The

spatiotemporal gait parameter values were calculated for each

single walk, and the mean of both walks (for each condition) was

used for further analysis. After testing of possible side asymmetries

(Wilcoxon, Mann-Whitney) for each walking condition, data of

both limbs were pooled in order to increase the number of step

events. Pooling the data yielded on average 16.361.5 steps during

walking at preferred speed, 24.264.1 steps during slow speed,

14.060.5 steps during fast walking, and 17.363.2 steps during

walking with eyes closed.

Data analysis
Matlab and SPSS were used for data analysis. A Matlab routine

was written to calculate the CV values by using the formula:

CV [%] = standard deviation of the parameter *100/mean of

the parameter.

Two different statistical models were used: (I) A two-way

Analysis of Variance (ANOVA) was performed with the factors

‘‘group’’ (DBN, HS) and ‘‘condition’’ (slow, preferred, maximally

fast, eyes closed) and the interaction effect ‘‘group6condition’’. (II)

In order to further determine subgroup differences of the DBN

cohort we applied a second, two-way ANOVA model with the

factors ‘‘subgroup’’ (pure DBN, DBN plus neuropathy (PNP),

DBN plus bilateral vestibular failure (BVF), DBN plus limb ataxia

(DBNCA)) and ‘‘condition’’ (slow walking, preferred, maximally

fast walking, eyes closed) and the interaction effect ‘‘subgroup6
condition’’. Significant interaction effects were then further

decomposed into simple main effects with Bonferroni corrections

for both models separately. To quantify the subjects’ ability to walk

with eyes closed (EC) compared to walking with eyes open (EO), a

Variation Rate (VR) in analogy to the Romberg quotient [15] was

calculated with the formula:

VR [%]= 100*(parametereyes open–parametereyes closed)/para-

metereyes open.

The results were considered significant if p,0.05.

Results

Demographic information of the enrolled subjects
Demographic data on DBN patients and HS are given in Table

S1. Mean duration of symptoms was 4.263.8 years.

The etiology of DBN was mainly idiopathic (,68%, n= 34).

The cohort of DBN with secondary forms comprised patients with

sporadic, adult-onset cerebellar atrophy (SAOA) (,18%, n= 9),

alcoholic cerebellar atrophy (,8%, n= 4), autoimmune cerebellitis

(GAD antibody+; ,4%, n= 2) and midline cerebellar stroke

(,2%, n= 1).

Nine DBN patients (,18%) also showed limb ataxia which was

indicated by a dysmetria during goal-directed limb movements

and intentional tremor (seven patients with SAOA, one patient

with alcoholic cerebellar atrophy, one patient with GAD+
cerebellitis). Ten DBN patients (,20%) had a peripheral

neuropathy of the legs, which was indicated by a reduction of

the ankle jerk reflexes and distal sensory hypofunction (seven

patients with idiopathic DBN, two patients with alcoholic

cerebellar atrophy, one patient with midline cerebellar stroke).

Five DBN patients also had a bilateral vestibular hypofunction

with nystagmus ,5u/sec after caloric irrigation of the horizontal

semicircular canals (30uC/44uC) and pathologic head-impulse

tests [16] (four patients with idiopathic DBN, one patient with

alcoholic cerebellar atrophy).

One patient had peripheral neuropathy and bilateral vestibular

hypofunction (with alcoholic cerebellar atrophy). None of the

patients in the DBN cohort had a combination of peripheral

sensory loss and cerebellar limb ataxia.

Gait impairments of DBN patients
The gait performance of DBN patients compared to that of HS

was characterized by a significant reduction of gait velocity and

stride length (all p,0.001) accompanied by an increase of stride

time, base of support, double support percentage, CV of stride

length, and CV of stride time (all p,0.001) (Table 1). Significant

group6condition effects were found for the parameters gait

velocity (p,0.050), stride time (p,0.05) and CV of stride time (p,

0.001). Decomposing the significant interaction effect revealed that

during ‘‘walking with EC’’ and ‘‘walking with preferred speed’’ the

gait velocity was decreased (p,0.050) in DBN patients compared

to HS. Stride time (p,0.050) and CV of stride time (p,0.010)

were increased in DBN compared to HS during ‘‘walking with

EC’’ and ‘‘walking with preferred speed’’. For ‘‘walking with slow

speed’’ we found a significantly increased CV of stride time (p,

0.01) in the DBN cohort (Figure 1). For ‘‘walking with maximally

Gait Disturbance in DBN
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fast speed’’ the DBN cohort walked significantly slower than HS

(p,0.050).

Individual differences between walking with EO compared to

EC, calculated as Variation Rates (Table 2), were higher in DBN

than in HS for the parameters FAP, gait velocity, stride length (all

p,0.001), stride time (p,0.050), and double support percentage

(p,0.050) (Figure 2). Variation Rates for the CV of stride length,

CV of stride time and CV of base of support showed a high data

variance in both groups without any significant group differences.

Pearson’s correlations between the duration of symptoms of

DBN and the gait parameters revealed significant negative

coefficients for FAP, velocity, stride length, swing percentage,

Table 1. Results of the two-way ANOVA model (DBN vs. HS).

Gait domain Parameter Group (DBN/HS) Condition Group6Condition

Pace velocity [m/sec] F1=21.71, p,0.001 F3 =13.92, p,0.001 F1, 7 = 3.73, p,0.050

Pace cadence [min21] F1=15.92, p,0.001 F3 =12.06, p,0.001 F1, 7 = 0.36, n.s.

Pace stride length [m] F1=27.52, p,0.001 F3 =6.02, p,0.010 F1, 7 = 0.61, n.s.

Cycle stride time [s] F1=18.37, p,0.001 F3 =9.34, p,0.001 F1, 7 = 2.47, p,0.050

Cycle double support percentage [%] F1=15.32, p,0.001 F3 =28.83, p,0.001 F1, 7 = 1.91, n.s.

Support base of support [m] F1=7.81, p,0.010 F3 =4.86, p,0.010 F1, 7 = 0.26, n.s.

Variability CV of stride time [%] F1=11.79, p,0.001 F3 =15.79, p,0.001 F1, 7 = 6.05, p,0.001

Variability CV of stride length [%] F1=17.08, p,0.001 F3 =30.6, p,0.001 F1, 7 = 1.50, n.s.

Variability CV of base of support [%] F1= 0.296, n.s. F3 = 0.27, n.s. F1, 7 = 1.28, n.s.

F-Values and p-values are indicated for a 2-way ANOVA (factor ‘‘group’’: HS, DBN; factor ‘‘condition’’: walking with slow, preferred and maximal speed, walking with eyes
closed).
Abbreviations: HS - healthy subjects. DBN - downbeat nystagmus syndrome. CV - coefficient of variation.
doi:10.1371/journal.pone.0105463.t001

Figure 1. Speed-dependent temporal gait variability. Boxplots with median, sample minimum and maximum, lower and upper quartile for
DBN patients (gray) and HS (black) * indicates p,0.05 of the two-way ANOVA (factor ‘‘group’’: DBN, HS; factor ‘‘speed condition’’ slow, preferred,
maximally fast speed) with posthoc Bonferroni posthoc analysis of the interaction effect ‘‘group6condition’’. Abbreviations: HS - healthy subjects.
DBN - downbeat nystagmus syndrome.
doi:10.1371/journal.pone.0105463.g001
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and significant positive coefficients for double support percentage,

stance percentage and the CV of stride length, all under the

condition of ‘‘walking with EC’’ (Table S2). For other gait

conditions (e.g., EO conditions), no significant correlation between

the duration of symptoms and gait parameters were found.

We also found significant correlations between the Variation

Rates (EO – EC) and the duration of symptoms for the parameters

gait velocity (Figure S1), FAP, cadence, stride length, stride time,

double support percentage, swing percentage, stance percentage,

the CV of base of support, and the CV of stride length (Table S2).

Gait performance and concomitant symptoms
Subgroup analysis for the DBN cohort showed significant group

effects for the parameters cadence, stride length, stride time,

double support percentage, CV of stride time, CV of stride length

(all p,0.001), and base of support (p,0.010). Significant

subgroup6condition effects were found for stride time (p,0.050)

and CV of stride time (p,0.001) (Table 3). Decomposing the

significant interaction effects revealed that the stride time was

higher in DBNCA compared to all other subgroups (p,0.050)

during all examined walking conditions. The CV of stride time

was significantly higher in DBNCA compared to all other DBN

subgroups for the condition ‘‘walking with maximally fast speed’’

(p,0.010) (Figure 3).

Discussion

Our main findings are as follows:

Table 2. Relative gait changes during walking with eyes opened and eyes closed.

HS DBN F p-value

Walking with eyes closed

VR for FAP [%] 6.9610.4 18.4618.3 14.675 ,0.001

VR for gait velocity [%] 6.7619.0 23.1618.2 18.957 ,0.001

VR for cadence [%] 1.6611.8 20.6610.8 1.315 n.s.

VR for stride length [%] 12.5611.5 23.2616.6 13.753 ,0.001

VR for base of support [%] 226.1619.7 220.5617.1 0.523 n.s.

VR for stride time [%] 4.769.8 20.6610.9 6.715 ,0.050

VR for double support percentage [%] 211.0617.4 218.8620.4 4.232 ,0.050

VR for stride length CV [%] 2142.16133.8 2115.76118.6 1.067 n.s.

VR for base of support CV [%] 262.6685.0 251.0674.3 1.911 n.s.

VR for stride time CV [%] 2109.16131.4 2131.76122.4 0.779 n.s.

Mean values and standard deviation of the Variation Rates for the different gait variables under walking with eyes closed in respect to walking with eyes opened. F-
Values and p-values are indicated for a one-way ANOVA (factor ‘‘group’’: HS, DBN).
Abbreviations: HS - healthy subjects. DBN - downbeat nystagmus syndrome. VR - Variation Rates.
doi:10.1371/journal.pone.0105463.t002

Figure 2. Effect of absent visual control on gait variables in DBN and HS. Box plots of the individual Variation Rates with median, sample
minimum and maximum, lower and upper quartile for healthy subjects (grey) and patients with DBN (black). Gait variables were grouped in spatial
(A), temporal (B), and variability (C) gait parameters. Conventional spatiotemporal gait parameters were worse in patients with DBN under walking
with closed eyes, indicating a higher stabilizing effect of vision on balance control, despite the ocular oscillations in DBN. Note the scale enlargement
in the section C of the figure. * indicates p,0.050, ** indicates p,0.010, *** indicates p,0.001 of the two-way ANOVA (factor ‘‘group’’: HS, DBN;
factor ‘‘condition’’: eyes opened, eyes closed) with Bonferroni posthoc analysis of the interaction effect ‘‘group6condition’’ Abbreviations: HS -
healthy subjects. DBN - downbeat nystagmus syndrome. EO - eyes opened. EC - eyes closed.
doi:10.1371/journal.pone.0105463.g002
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1. Patients with DBN show gait impairments which depend on

the current walking condition and on the concomitant

symptoms of the patients.

2. Gait impairments of DBN patients depend on the actual

walking speed: slow walking is preferentially affected.

3. Impaired visual control caused by involuntary ocular oscilla-

tions cannot sufficiently explain the DBN gait disorder.

Table 3. Results of the two-way ANOVA model (DBN subgroups).

Gait domain Parameter Group (DBN/DBN+BVF/DBN+PNP/DBNCA) Condition Group6Condition

Pace velocity [m/sec] F3 = 1.25, n.s. F3=13.92,
p,0.001

F3, 15 = 1.73, n.s.

Pace cadence [min21] F3=15.92, p,0.001 F3=12.06,
p,0.001

F2, 15 = 0.36, n.s.

Pace stride length [m] F3=27.52, p,0.001 F3=6.02,
p,0.010

F3, 15 = 0.61, n.s.

Cycle stride time [s] F3=18.37, p,0.001 F3=9.34,
p,0.001

F3, 15 =2.47, p,0.050

Cycle double support percentage [%] F3=15.32, p,0.001 F3=28.83,
p,0.001

F3, 15 = 1.91, n.s.

Support base of
support [m]

F3=7.81, p,0.010 F3=4.86,
p,0.010

F3, 15 = 0.26, n.s.

Variability CV of stride
time [%]

F3=11.79, p,0.001 F3=15.79,
p,0.001

F3, 15 =6.05, p,0.001

Variability CV of stride
length [%]

F3=17.08, p,0.001 F3=30.6,
p,0.001

F3, 15 = 1.50, n.s.

Variability CV of base of
support [%]

F3= 0.296, n.s. F3 = 0.27, n.s. F3, 15 = 1.28, n.s.

F-Values and p-values are indicated for a 2-way ANOVA (factor ‘‘group’’: DBN/DBN+BVF/DBN+PNP/DBNCA; factor ‘‘condition’’: walking with slow, preferred and maximal
speed, walking with eyes closed).
Abbreviations: HS - healthy subjects. DBN - downbeat nystagmus syndrome. BVF - bilateral vestibular failure. PNP - sensory neuropathy. CA - cerebellar ataxia. CV -
coefficient of variation.
doi:10.1371/journal.pone.0105463.t003

Figure 3. Speed-dependent temporal gait variability of the DBN subgroups. Boxplots with median, sample minimum and maximum, lower
and upper quartile for patients with pure DBN (gray), patients with DBN plus BVF (black), patients with DBN plus PNP (gray with black dots) and
patients with DBN plus limb ataxia (gray with black squares). * indicates p,0.050, ** indicates p,0.010, *** indicates p,0.001 of the two-way ANOVA
(factor ‘‘group’’: pure DBN, DBN plus BVF, DBN plus PNP, DBNCA; factor ‘‘condition’’: slow, preferred, maximally fast speed) with Bonferroni posthoc
analysis of the interaction effect ‘‘group6condition’’ Abbreviations: DBN - downbeat nystagmus syndrome. BVF - bilateral vestibular failure. PNP -
peripheral sensory neuropathy.
doi:10.1371/journal.pone.0105463.g003
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Gait characteristics of patients with DBN
The gait of DBN patients was characterized by changes of

temporal and spatial variables of the pace, cycle, support, and

variability domains. Reduction of the walking pace was an overall

feature of DBN gait in nearly all gait conditions, and appears to be

in conflict with previous findings in patients with classical

cerebellar deficits [17,18]. The current concept of cerebellar

pacemaker function in the locomotor network is based on animal

findings [19] and human findings [20] of a midline cerebellar

region controlling for the stepping frequency and pace. We have

recently found that walking speeds and stepping frequency of

patients with cerebellar deficits were mainly reduced during fast

walking, but normal at preferred walking [21,22]. These findings

underline the hypothesis that cerebellar pacemaker function is

maximally loaded for high walking speeds. In this line, the overall

reduction of walking pace of DBN patients (under slow, preferred,

and maximally fast walking speeds) could also reflect a change of

the dynamic stability strategy; the patients reduce their walking

speeds and change their gait cycles, e.g., they reduce swing phases

and consecutively increase stance and double support phases.

Together with an increased base of support, these changes have a

stabilizing effect on the dynamic balance control during walking

[18].

Gait variability, which describes the stride-to-stride fluctuations,

is known to be a robust marker for gait stability. Thus, gait

variability reflects rather gait pathology than compensatory gait

impairments. It is known to be related to the risk of falling in

patients [23,24]. DBN patients showed increased levels of gait

variability in the fore-aft, but not in the medio-lateral direction.

This is in line with previous findings of patients with other

cerebellar disorders, who have increased levels of temporal and

spatial gait variability [21,22]. The further implications of this

finding will be discussed in the section entitled ‘‘Speed-dependency
of gait in DBN’’.

Gait of DBN patients with eyes closed
Visual feedback is used in HS to control dynamic balance

during gait, to control path integration, foot trajectory and

placement, and the adaptation of gait [11,25]. For DBN patients,

however, visual information is less reliable. Oscillopsia due to the

involuntary eye movements substantially impairs their ability to

fixate targets. The deterioration of visual control might affect the

gait performance of DBN patients. If impaired visual control is the

main contributor to gait impairment, one would expect a reduced

dependence of gait dynamics on the visual system, which would be

expressed in a stable or even improved walking behavior when the

disturbing visual input is absent (EC condition). However, our

results contradict this hypothesis since gait variables of DBN

patients deteriorated during absent visual control. This indicates

that the disturbed locomotor control of DBN patients cannot be

exclusively explained by a disturbed visual control due to

oscillopsia. Alternative pathophysiological hypotheses include the

direct coupling of the oculomotor system and the locomotor

system (thus independent on visual scene perception and retinal

slip). Previous investigations of the influence of eye movements per

se on postural control support this view [26,27].

Alternatively, there could be a separate, direct functional

connection from the vestibulocerebellum to the postural and

locomotor network (further discussion in the next section).

Individual Variation Rates between EO and EC were higher in

DBN patients than in HS, indicating that DBN patients utilize

visual inputs during walking even more. This phenomenon was

independent from concomitant sensory deficits in DBN patients

and reflects a second feature of DBN gait control. The weighting

of sensory inputs of DBN patients seems to be shifted towards the

visual system, a mechanism not expected a priori in a disorder

characterized by nystagmus and oscillopsia. Such a shift in sensory

dependency during stance and gait can be attributed to

compensatory postural strategies, supported by the finding of

significant correlations between the duration of symptoms of DBN

and the functional decline of gait parameters when the visual

feedback is absent. In this sense, we suggest that DBN patients

develop a vision-based compensatory strategy over a longer term.

For stance control of single subjects with DBN, it was likewise

found that patients utilize visual information for the control of

postural sway [3].

Speed-dependency of gait in DBN
There are several lines of evidence for a speed-dependent

integration of sensory information into the locomotor network.

Dogs and humans with acute unilateral vestibulopathy are better

off running than walking [28]. Using motor imagery in fMRI,

activations of sensory cortex areas were shown to decrease and

midline cerebellar activity increase during fast locomotion [29].

The role of the cerebellum in speed control is also supported by

animal experiments showing that fast locomotion is achieved by

highly automated central pattern generators in the spinal cord,

which are mainly driven by cerebellar pacemakers [30,31]. On a

behavioral level, investigations of speed-dependent gait variability

revealed characteristic patterns for patients with bilateral vestib-

ular failure and with cerebellar ataxia [21,22]. Both patient groups

have increased levels of gait variability during slow locomotion and

minimal, near-to-normal, values of gait variability during

preferred walking. During fast walking, gait variability of bilateral

vestibular failure further decreases while gait variability of

cerebellar ataxia patients increases again.

In this study both, HS and DBN patients showed a speed-

dependence of gait variables, but this speed-dependence appears

to be different for the two groups.

DBN patients exhibited increased temporal gait variability at

slow and preferred walking speeds, but not at fast walking speeds,

thus showing a speed-dependency of gait variability similar to that

of patients with bilateral vestibular failure [21]. In patients with

bilateral vestibular failure this was interpreted to reflect a disturbed

vestibular feedback control during slow locomotion, when sensory

feedback mechanisms are maximally loaded. This pattern was also

present in the DBN subgroup without an afferent sensory deficit,

so that a central origin of this speed-dependence can be assumed.

A possible, but not proven, explanation could be that the

dysfunction of the vestibulocerebellum in DBN patients leads to an

insufficient sensory integration into locomotion control. This could

result in speed-dependent gait changes comparable to those of

patients with afferent sensory deficits. The function of the

vestibulocerebellum has already been intensively investigated in

the context of the ocular motor system. Here, the flocculus is

known to integrate vestibular signals [32] for the adaptation of

vertical smooth pursuit and gaze holding. Moreover, ocular motor

deficits of DBN patients have been shown to depend on gravity

(and thereby on vestibular signals) and a model of a disturbed

otolith-ocular interaction in DBN patients was established [33,34].

Gait variability analysis during fast walking revealed two

different groups of patients with DBN. Patients who also have

symptoms of a cerebellar hemisphere involvement (indicated by

the presence of limb ataxia) showed high temporal gait variability

during fast walking. This pattern is comparable to one that we

recently found for patients with global cerebellar ataxia [21]. DBN

patients without limb ataxia were found to have normal temporal

gait variability at walking with maximally fast speed. Thus,

Gait Disturbance in DBN
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vestibulocerebellar control of locomotion differs from (hemispher-

ic) cerebellar control in terms of a sufficiently functioning

cerebellar pacemaker during fast walking.

Conclusion

Impaired locomotion in DBN patients is not solely caused by

visual disturbances associated with involuntary eye movements.

Instead, it reflects a deficit which may be explained by impaired

central vestibular integration. Alternatively, direct connections

between the oculomotor system and the locomotor system might

be present.

Supporting Information

Figure S1 Correlation of the duration of symptoms and
the effect of visual control on gait speed. Pearson’s

correlation of the 50 individuals with DBN (black dots). The

black lines indicate the correlation coefficient (inner line) with 0.95

confidential interval (outer lines). Abbreviations: EO - eyes open.

EC - eyes closed.

(TIF)

Table S1 Demographic, clinical and paraclinical char-
acteristics of the enrolled subjects. Abbreviations: HS -

healthy subjects. DBN - downbeat nystagmus syndrome. GAD -

glutamate-decarboxylase. MRI - magnetic resonance imaging.

(DOCX)

Table S2 Correlations between the duration of symp-
toms, the gait parameters and the Pearson’s correla-
tions with coefficient (R) and p-values between the
duration of symptoms [months] and the Variation Rates
for the different gait parameters. Abbreviations: HS -

healthy subjects. DBN - downbeat nystagmus syndrome. CV -

coefficient of variation. VR - Variation Rates.

(DOCX)
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