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Sum~J,z~ry. Tissue maceration was used to determine the absolute number and the distri- 
bution of eel] types in Hydra. It was shown that the total number of cells per animal as well 
as the distribution of cells vary depending on temperature, feeding eonditions, and state of 
growth. During head and foot regeneration and during budding the first detectable change 
in the cell distribution is an increase in the number of nerve cells at the site of morphogenesis. 
These results and the finding that nerve cells are most concentrated in the head region, 
diminishing in density down the body column, are discussed in relation to tissue polarity. 

Introduction 

To study processes of morphogenesis and differentiation in higher organisms 
at the cellular or molecular level, a simple organism like hydra provides several 
advantages. Among these are its high capacity of regeneration, a relatively 
simple morphology, and the occurrence of only a few cell types. 

Many studies have been carried out examining regeneration, polarity of 
regeneration, budding, and cell differentiation in hydra (reviewed by Kanaev, 
1952; Tardent, 1963; Burnett, 1966; Webster, 1971). These processes have been 
studied at the tissue level of organization, or if at the cellular level, then only 
qualitatively. For a better understanding of these phenomena it will be necessary 
to have quantitative knowledge of the changes occurring in the distribution of 
cell types. For example, the initial shift in cell type distribution in the budding 
zone and the subsequent appearance of cell types in the developing bud may help 
to frame the critical questions about the process of budding. Similarly, quan- 
titative changes in cell distribution of regenerating animals will help to evaluate 
the importance of cell migration and differentiation in this process and may 
give some indication of possible sources and targets of morphogenetic gradients 
which control hydra morphology. 

Hydra tissue consists of 7 basic cell types: epithelio-muscular, digestive, 
interstitial, gland, mucous, nematocytes, and nerves. The first 5 are dividing cell 
types while the last 2 are the non-dividing differentiation products presumably 
of the interstitial cell (Lentz, 1966). An understanding of the regulation of inter- 
stitial cell (I-cell) differentiation into nematocytes and nerves as well as its 
own (stem cell) proliferation requires knowledge of the pool sizes of cell types in 
the differentiation pathway and the transition of cells through these pools. Be- 
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cause of their  possible role in  morphogenesis and  tissue polari ty,  the changes 
in the d is t r ibut ion  of nerve cells dur ing budding  and  regenerat ion are of special 
interest .  

To ob ta in  such da ta  three methods are available.  Ta rden t  (1954) used a whole 
m o u n t  technique to examine the d is t r ibut ion  of in ters t i t ia l  cells th roughout  
the epithelial layer of hydra.  Bu rne t t  (1966) and  Campbell  (1967) used serial 
sections to count  epithelial, gland, interst i t ial ,  mucous,  and  nematob las t  cells in 
H. littoralis. I n  the present  paper  we use a macera t ion  technique (David, 1972), 
which allows a quan t i t a t i ve  examina t ion  of all the basic cell t ypes - - i nc lud ing  
nerve cells. 

We have used this macera t ion  technique to examine the d is t r ibut ion  of cell 
types in all regions of H. attenuata. Fur ther ,  we examined the changes t ha t  occur 
in the cell d i s t r ibut ion  of (1) a developing bud,  (2) a regenerat ing surface, (3) 
s tarving animals,  (4) animals  grown at  various temperatures .  The results show 
tha t  t empera ture  and  feeding condit ions ma in ly  influence the rate of growth and  
the size of the animal  (number  of cells/individuM), bu t  to a much lesser ex ten t  the 
overall cell d is t r ibut ion.  Dur ing  budding  and  regenerat ion (foot and  head) the 
first visible change in  the cell d is t r ibut ion  is an increase in  the densi ty  (or cell 
number )  of nerve cells suggesting their  possible role in  morphogenesis. 

Materials and Methods 

Hydra attenuate were used for all experiments. The hydra were obtained from P. Tardent, 
Zfirich, in 1966, and have been cultured asexually in our laboratory since then. The hydra 
were mass cultured according to Loomis and Lenhoff (1956) in a medium containing 10 -3 M 
CaC12, 1.25 x i0 -5 M EDTA in tap water. The animals were fed daily with Artemia nauplii 
(1-2 Artemia per hydra) and washed about 4 hours later. The culture was maintained at 
about 18 ~ C. 

The animals used in all experiments were starved for at least 1 day. The various regions 
in standard animals (see Results) were defined according to Wolpert et al. (1971): the hypo- 
stomal region (including hypostome and tentacles) is cut just proximal to the base of the 
tentacles, the tentacles are removed afterwards; the gastric region (regions 1-4) extends 
from the hypostome cut to a cut just distal to the most immature bud; the budding region 
extends from the gastric region cut to a cut proximal to the most mature bud; the remainder 
of hydra is peduncle and basal disk whereby the peduncle is about a/4 of the length and the 
basal disk about 1/4. Budding stages and regenerating pieces are defined diagramatically in 
the text. 

The maceration technique for obtaining single cell suspensions from hydra tissue and 
the identification of cell types have been described in the preceding paper (David, 1972). 
The absolute number of cells in pieces or whole animals was obtained by macerating a known 
number of identical pieces or animals in a known volume of maceration solution and deter- 
mining the cell concentration with a Schilling Kreuznctz cell counter (0.1 ram depth). 

Mature nematocytes, although recognizable in maceration preparations, are difficult to 
count in battery cells. Since the mature organs are extremely stable to shearing they can be 
counted most accurately in homogenized preparations. Pieces of tissue were sheared by 
repeatedly forcing them through a number 16 needle attached to a syringe. Data on nemato- 
cytes in tentacles were obtained with this method. 

Presentation o/ the  Data--Statist ical  Analysis  

The data in the tables are expressed as the total number of cells per piece (animal) and as 
the percentage of a given cell type in a macerate of that piece. The number of cells of a spe- 
cific type was calculated from these two values. The data presented are the average of several 
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experiments.  The accuracy of the numerical da ta  is limited by errors in counting, errors in 
cell classification, and biological variabil i ty among animals. In  the following we have analyzed 
these effects. 

(1) Counting errors: Since macerates contain clusters of c~lls (e.g. nests of I-cells) the 
distr ibution of cells in a counting chamber or on slides is not  random. Therefore the counting 
error should be greater t han  predicted by the  Poisson distribution.  We have determined the 
counting error in our measurements  as follows. For any given sample the mean cell number  
(2) was determined from 4 independent  cell counts (each approximately 300 cells) of the same 
area in a cell counting chamber. From 10 such experiments we have calculated the mean of the 
s tandard  errors of the mean to be s~ ~ 5.76% (expressed as % of 2). 

(2) Biological variabil i ty in cell number  per hydra :  10 hydra  developing their  first bud 
were macerated individually and  the cell number  per hydra  determined (Hypostome and  
tentacles were excised before maceration). The mean cell number  per hydra  was found to be 
59071 :]- 14230 (standard deviation). Because of this var ia t ion in size among individual 
animals, samples containing 10 or more animals were macerated together in all experiments 
reported in this  paper. For 5 such preparations of 10 hydra  the mean cell number  per hydra  
was found to be 54506 :~ 5004 (standard deviation). 

(3) Cell classification errors: Classification of most  of the cells in a maceration preparat ion 
is not  difficult a l though the classification of a few cells is ambiguous (e.g. cells which differen- 
t iate from one type to another  and  are in between). For tunate ly  such cells are rare. In  one 
preparat ion of cells counted by  5 investigators (1000 cells/investigator) the s tandard deviation 
of the individual cell counts was: 2-3% for epithelial cells, I-cells and nematoblasts,  and 
0.5-1.0% for nerve ceils and gland cells. These s tandard deviations are about  the same as 
those expected from the statistics of counting alone and hence the  contr ibut ion of classi- 
fication errors to the final s tandard deviation is small. However, to minimize fur ther  the 
effect of such classification errors, the same investigators have counted all samples in each 
experiment.  The data  presented are the  average of these individual results. 

(4) Biological variabil i ty in cell distr ibution:  Table i gives the mean percentage (2) and 
the s tandard  deviation (s) for each cell type averaged over 10 hydra  analyzed individually 
and in 5 samples containing 10 hydra  macerated together.  In  all experiments 1000-1500 cells 
were counted. The variabil i ty of the percentage of a given cell type among individual animals 

Table 1. Cell d is t r ibut ion--Sta t is t ica l  accuracy of the method 

Epithelio- Big Lit t le Nemato- Nerve 
m u s c u l a r +  inter- inter- blast  
digestive stitial stitial 

Gland 

Single animals ~ % 28.35 18.38 18.62 27.54 2.74 4.40 
s % 4.37 2.63 3.96 3.86 0.6i 0.95 

Preparat ions 2 % 24.83 18.64 19.61 29.16 2.95 4.81 
of 10 hydra  s % 1.47 2.69 1.95 2.40 0.48 0.89 

2 ~ 13550 10186 10709 15839 1590 2648 
s~ ~ 726 868 746 514 63 306 

Hydra  just  developing their  first bud  were selected. Hypostomes and tentacles were removed 
before macerat ion since counting nematocytes in ba t t e ry  cells is difficult in macerat ion prepa- 
rations. 10 animals were macerated individually and  the cell distr ibution determined by  
several investigators. (At least 1000 cells were counted per hydra). The results of all 10 animals 
were averaged (2) and the s tandard deviation (s) calculated. 

Preparat ions containing 10 hydra  each were macerated,  the cell distr ibution determined 
as above and the  total  cell number  per hydra  determined. The results of 5 such 10-hydra 
preparations were averaged (2) and the s tandard deviation (s) calculated. The number  of 
each cell type per hydra  in each preparat ion was also calculated. The average (2) of these 
values and the s tandard deviation of the mean (s~) are presented in the Table. 
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is small and is not much reduced by pooling 10 animals. Thus despite variations in total cell 
number among individual animals of ~= 25 % there are only very small variations in cell com- 
position. 

In each of the 5 samples of 10 animals the number of cells of each cell type was calculated 
from the total cell number per hydra and the percentage of each cell type. Table 1 gives the 
mean (2) of these 5 calculated values for each cell type and the standard deviation of the mean 
(8~). 

All the data presented in Results were obtained in preparations in which 10-20 hydra 
(pieces) were macerated together similar to the data in the last 4 lines of Table 1. The data in 
Results, however, are based on 2-3 times more counted cells per sample so that the standard 
deviation is smaller than in the experiments given in Table 1. For clarity of presentation 
most of the data in I~esults have been rounded off to the nearest percentage or 100 cells (50 
cells in the case of nerve and gland cells). Both procedures are within the standard deviation (8) 
for each cell type. 

Particular importance is given in the text to the distribution of nerve cells in different 
regions of hydra and to changes in nerve cell numbers during budding and regeneration. 
Although the differences mentioned are all considerably greater than the standard deviation 
in the nerve cell determinations, these differences have in all cases been further checked for 
significance with the Z 2 test. The statistical significance of differences between such numbers 
is given in the text and Tables as the probabilitiy of error, p. 

Results 

De]inition o] Standard Hydra  

Mass cultures of well-fed hydra  conta in  a mix ture  of animals :  paren t  animals  
having 2-3 buds each, small animals  wi thout  buds (these are most ly  buds which 
have fallen off a pa ren t  an imal  in  the previous 1-4 days), and  medium sized 
animals  with 1 bud. The " s t a n d a r d "  hydra  was defined as a large an imal  having 
2 buds, one completely developed and  one a t  an early stage of development .  
Such hydra  were used to ob ta in  the da ta  in Table 3, and  also those on developing 
buds (Table 4). For  regenerat ion experiments  animals  wi thout  buds were used 
from a well-fed culture (recently dropped-off buds.) 

Variat ions in  the size of hydra  are due no t  only to the differences between 
the young bud  and  the ma tu re  parent ,  bu t  also to the t empera ture  of the culture 
and  the feeding conditions. Fig. 1 gives the n u m b e r  of cells per hydra  (not in- 
cluding tentacles) as a func t ion  of t empera ture :  for newly dropped buds (buds 
which dropped from paren t  dur ing preceding 24 hours), for animals  with a very 
young bud  (with jus t  visible bud  tip), and  for mature  animals  with several buds. 
Animals  grown at  16 ~ C are larger in  size and  in  cell n u m b e r  t h a n  hydra  grown 
at  20 ~ C. This is t rue  for all three types of animals,  l~Msing the t empera ture  to 
26 ~ C has li t t le addi t ional  effect. 

Table  2 a shows the effect of s ta rva t ion  on cell n u m b e r  and  cell dis tr ibut ion.  
Dur ing  the first days of s ta rva t ion  the animals  still increase in  cell n u m b e r  (from 
approximate ly  45000 cells the first day  to 80000 cells the th i rd  day). F rom the 
th i rd  or fourth day  on the cell n u m b e r  drops sha rp ly - in  the exper iment  cited 
in  Table  2 a -  from 80000 cells the th i rd  day  to 50000 cells the four th  day. Control 
animals  which were fed dai ly meanwhile  had increased to 150000 cells. Longer 
periods of s ta rva t ion  lead to fur ther  decreases in  cell n u m b e r  un t i l  the animals  
seemed to consist of head and  foot only. The smallest animals  invest igated after 
9 days of s ta rva t ion  had only 3000-5000 cells. 
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Fig. 1A--C. Influence of temperature on cell number. Hydra were cultured with daily feeding 
at the indicated temperatures for 1-2 weeks before assaying. Tentacles and buds were re- 
moved from animals before macerating the body column and counting cells. 5-110 mature 
animals or 15-30 buds or hydra with one bud were macerated together and the total cell 
number/animal determined. The values given are the mean and the standard error of the 
mean of 3-5 independent determinations. A mature hydra (individuals with 2-4 buds); 
B hydra with one bud (freshly dropped buds were collected and cultured until the first bud 
started to appear); C buds dropped from mature animals during the previous 24 hours 

Whereas the effect of t empera ture  and  feeding is very  marked  on the n u m b e r  
of cells per animal ,  the changes in the cell composit ion are less extreme. As 
Table 2b  shows, heavy  feeding (5-8 Artemia/day)  versus normal  feeding (1-2 Ar- 
temia/day)  leads in  the body  column to an increase in epithelial cells relat ive to 
other cell types, especially nematoblas ts .  S ta rva t ion  (Table 2 a) on the other h a n d  
results in  a relative increase in  nerve and  gland cells over epithelial cells and  in a 
slight decrease in li t t le I-cells and  nematoblas ts .  Growth at  16 ~ C causes a small  
increase in big and  li t t le I-cells relat ive to nematoblas ts  ; growth at  26 ~ C leads 
to an  increase in  nematoblas ts  and  to a minor  ex ten t  in  nerve cells. 

Cell Distribution Standard Hydra 

Table 3 gives the d is t r ibut ion  ot cell types and  the tota l  n u m b e r  of cells in each 
region for an  average-sized s t andard  hydra .  These animals  were grown at  18 ~ C 
and  had  their  buds removed jus t  before analysis. Since epithel io-muscular  cells 
(or ba t t e ry  cells in  the tentacles) basically make  up the outer  tissue layer of the 
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Fig. 2. Relative densities of cell types in different regions. The density of a specific cell type 
is defined as the ratio of the number of that cell type to the number of epithelio-museular 
cells (battery cells in tentacles). The abscissa indicates the relative size of each region in terms 
of epithelio-museular cells (battery cells in the tentacles). Tentacles (T), hypostomal region (H), 
upper gastric region (1/2), lower gastric region (3/4), budding region (B), peduncle (P), basal 

disk (D) 

animal, the ratio of the number of a particular cell type to the epithelio-museular 
cells in tha t  region is perhaps a more adequate indication of gradients of cell 
densities through the body regions than are percentages. These ratios arc used 
to construct Fig. 2. 

From the data contained in Table 3 and Fig. 2 the following general con- 
clusions can be drawn: 

(~) The epithelial layer of the tentacles consists of bat tery  cells, which are 
modified epithelio-mnscular cells. Embedded in each ba t te ry  cell are about 
20 nematocytes.  The density of nerve cells is quite high (0.5). Compared to the 
1-4 region the density of digestive cells is low. 

(b) The hypostomal region is characterized by a very high density of nerve 
cells (30% of all nerve cells in hydra are in the hypostome). Normalized to the 
epithelial cells the head contains a 4-fold higher density than an equivalent 
piece of the body column. The numbers of big and little I-cells and nematoblasts 
are low. Mucous cells are found mainly in this region, gland cells are rare. 

(c) In  the other regions of the body column (regions 1-4 and the budding 
region) the distribution of cell types is quite uniform. The ratio of epithelio- 
muscular cells to digestive cells, big I-cells, little I-cells, and nematoblasts i s  
about  1:1:2:2:4 with a slight increase of ectodermal cells towards the budding 
region and a concomitant decrease in the density of the other cell types. Gland 
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cells show a gradient from the 1-2 region to the budding region; the nerve cell 
density also decreases from the 1-2 to the 3-4 region (p <0.05)  with a slight 
increase in the budding region. 

(d) The peduncle and, in particular, the basal disk have a higher density of 
nerve cells than  the body column. Some of these nerve cells are different morpho- 
logically from those in the body column (David, 1972). Normalized to epithelial 
cells, the nerve cell density is 2-fold higher than in the gastric region. In  the basal 
disk, as in the hypostome, big Z-cells and little Z-cells, nematoblasts, and 
gland cells are rare. 

Budding 
To study the changes in cell distribution which accompany bud formation, 

the cell distribution in the budding region of a mature  animal and in buds of 
various stages have been measured. The results are given in Table 4. 

The earliest visible stage of budding is the appearance of a small tip in the 
budding region. I f  a disk of the budding region containing this tip is cut out, and 
divided into angular sections (see Table 4), the section containing the tip shows 
a higher percentage of nerve cells (4 %) than  the section not containing the tip 
(1.5% nerve cells) (p<0.001) ,  which is similar to the 3-4 region of the animal 
(2%). The total  number of additional nerve cells in the tissue containing the 
budding tip is about 150. Therefore, even at the earliest visible stage of budding, 
there are already more than 100 nerve cells which would not be there in the 
absence of budding. 

A few hours later, when the bud is large enough to be divided into tip and 
base, the high density of nerve cells can be shown to occur only in the tip, not in 
the base of the bud. After 12-I5 hours, the bud contains about 300 nerve cells 
above average, and after 20 hours about 450, still concentrated in the tip region of 
the bud. After 12-15 hours the first 100 mucous cells appear. They increase to 
to 300 at 20 hours and to 850 after 3-4 days to form the inner tissue layer of the 
hypostome. Only after 2-3 days does the prospective foot area of the budding 
animal show a significant increase in nerve cell density. The cell distribution in 
the new animal immediately after the dropping of the bud ( 3 4  days after ini- 
tiation of budding) shows a distribution of cell types similar to that  of mature  
animal, but with a somewhat higher proportion of nerve cells and a lower pro- 
portion of nematoblasts  and nematocytes.  

Regeneration 
I f  the head (or foot) of a small hydra without a bud is cut off, a new head 

(or foot) regenerates within about  two days. For head regeneration animals were 
cut just below the tentacle ring. At various times the prospective head region and 
the region directly below were removed and the cell distribution of each measured 
(Table 5a). 28 hours after cutting, when the first tentacle " b u d s "  appear, there 
is a significant increase in nerve cells--from 3 to 6.8 % (p < 0.001)--which further 
increases to 9.2% after 48 hours (i8 ~ C). At 22 ~ C regeneration proceeds faster; 
in this ease the increase in nerve cell density is already observed at  24 hours. 
Concurrent with the nerve cell formation, there is a production of mucous cells, 
and a decrease in interstitial cells. Control experiments show tha t  the region below 
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the regenerating head does not change its cell distribution significantly during 
the same period of time. There is no change in nerve cell density, though some 
decrease in little I-cells and nematoblasts. 

Budding animals have a slow rate of head regeneration. The first doubling 
in nerve cell density is nevertheless observed after 24 hours. However, the mucous 
cells appear only after 48 hours, when the first tentacle buds become visible. 

For foot regeneration a cut was made through the peduncle region just above 
the basal disk. Regenerating sections showed an increase in nerve cell density 
(p <0.05) already 12 hours after cutting (Table 5b). 

Discussion 

(a) Cell Numbers and Distribution 

I t  has been shown that  the number of cells per animal and, to a minor extent, 
the cellular composition depend on the state of growth-- the  stage between newly 
dropped bud and mature animal--,  on feeding and on temperature. A well-fed 
"ma tu re"  animal, grown at 20 ~ C has about 120000 cells. A newly dropped bud 
from the same animal contains approximately 40000 cells. The 120000 cells are 
composed of 24 000 ectoderm, endoderm and battery cells, 57 000 nematoblasts and 
nematocytes, about 15000 big and 15000 little I-cells, 6000 nerve cells, 4000 
gland cells, and 2000 mucous cells. Lowering the temperature from 20~ to 
16 ~ C leads to an 1.5- to 2-fold increase in the number of cells per animal (parent 
and bud), starvation to an eventual decrease. Whereas the influence on the total 
cell number is marked, the cell composition is less affected. 
Nerve Cells 

The head (including hypostomal region and tentacles) of a standard animal 
contains more than 40% of all the nerve cells. Another 40% form a gradient 
decreasing from the 1 to the 4 region of the body column, followed by a slight 
increase in density in the budding region. The peduncle and basal disk are again 
rich in nerve cells. 

In the course of budding and during head and foot regeneration a region 
of low nerve cell density acquires the high nerve cell density characteristic of 
the region being formed. We have shown that  in all three cases the increase in 
nerve cell density is the first change detected in cell distribution. 

In  the process Of budding, the first 100 nerve cells (above the average value 
of the surrounding tissue) are already present, when the bud tip just becomes 
detectable, with more nerve cells appearing in the bud within the next two days. 
tIead regeneration is also accompanied by an early increase in nerve cell density 
which doubles about 1 day after cutting, with a further increase for 1-2 days. 
Since nerve cells can only appear some time after the determination of precursor 
cells, determination must occur very early in regeneration as well as budding. In  
foot regeneration the increase in nerve cell density is already observed 12 hours 
after cutting, and does not increase significantly thereafter. The earlier appearance 
of nerve cells in foot as compared to head regeneration implies that determination 
is rapid or that  the process of differentiation from precursor cell to nerve cell is 
shorter in the foot or that  predetermined and partially differentiated cells are 
triggered to complete differentiation. 



Cell Distribution in Hydra 283 

Interstitial Cells 
Intersti t ial  cells are widely considered as mult ipotent  cells. Probably,  par t  

of the I-cells counted represent uncommit ted mult ipotent  cells, another par t  
may be determined to become nerves and nematocytes.  

In  agreement with most sfndies on histological sections, we find that, inter- 
stitial cells do not accumulate significantly during budding or regeneration. These 
processes make use of the preexisting interstitial, epithelial and digestive cells 
of the gastric region. On the other hand, I-cell concentration is low in the head 
and foot region, where nerve cell density is high. Possibly, determination of nerve 
cells occurs at  the expense of determination of nematoblasts,  and might, in 
addition, lead to a local depletion of the truly mult ipotent  fraction of interstitiM 
cells. 

Nematocytes and Nematoblasts 
Most nematocytes are found in the tentacles, whereas almost all nematoblasts  

occur in the gastric region. In  the course of maturat ion they migrate to the 
bat tery  cells of the tentacles. The total  number of nematocytes is similar to tha t  
of nematoblasts under the conditions of growth studied, suggesting that  the 
turnover t ime of nematocytes is of the same order of magnitude as that  of nema- 
toblasts. Nematoblasts  are fairly evenly distributed along the body eolmnn, 
whereas their concentration in the head region through which they must  pass 
is low. This indicates tha t  nematoblasts  may  migrate only during a small fraction 
of their maturat ion time, close to or upon maturation. 

Gland Cells', Mucous Cells 
Gland cells show a gradient in the gastric region, and are nearly absent in the 

hypostome and foot region. Mucous cells are present primarily in the hypostomal 
region. During head regeneration, the first mucous cells appear when tentacle 
buds become visible and thereafter increase continuously for several days. Thus, 
in contrast to nerve cells which appear very early in the development of a bud 
or during regeneration, the mucous cells appear only when the final morpho- 
logical structure, the hypostome, is being formed. Since mucous cells are not 
present in the regenerating piece at  0 hours, they must arise from other cells. Later  
dm'ing regeneration the density of gland cells first increases and then decreases as 
soon as mucous cells appear. This m a y  be taken to indicate that  gland cells, or 
cells with the morphological appearance of gland cells, are the precursors or inter- 
mediates in the development of mucous cells. However, as earlier work (reviewed 
by Kanaev,  1952) has suggested, another possibility is tha t  they arise from the 
I-cells (basal cells) of the endoderm. 

(b ) Polarity, Morphogenetic Gradients, Di//erentiation 
Any concept of regeneration in hydra  has to deal with polari ty effects. Pieces 

of body column usually regenerate the head distally and the foot proximally. 
Polari ty could be due to a polar array of polarized cells. Another possibility would 
be a gradient of substances within one cell type, e.g. epithelial cells. In  these 
eases, polarity would not necessarily be reflected in the distribution of cell types. 
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On the other hand, polar i ty  could be due to a graded distr ibution of one or 
several cell types.  Obviously, only cell types  showing a graded distribution along 
the body  column could be responsible for polar i ty  in this ease. 

Possibly, the gland cells, or some as ye t  unidentified subgroup of the inter- 
stitial cells, could define polarity.  I n  view of the data,  however, a more suggestive 
hypothesis  would be to a t t r ibute  polar i ty  par t ly  or mainly  to nerve cells. Their 
densi ty  is highest in the head region, and a gradient  in nerve cell densi ty extends 
down the body  column in both  mature  hydra  (Table 3) and dropped buds (Table 4). 
Nerve cells have been implicated as sources of morphogenet ical ly  active sub- 
stances by  Lentz  (1966) and by  Burne t t  (1966). 

The shght  increase in nerve cells in the budding region m a y  be due to newly- 
forming buds, since it is not  typical  for non-budding tissue in this region. Th i s  
hypothesis,  however,  requires the assumption t h a t  foot  nerve ceils do no t  con- 
t r ibute  to  the p r imary  morphogenet ic  gradient  which defines polarity.  Increased 
nerve densi ty in peduncle and basal disk m a y  indicate a secondary center of tissue 
organization as is also suggested by  the tissue t ransplanta t ion experiments of 
MacWilliams et al. (1970). 

Determinat ion of nerve cells occurs early in the course of regeneration and 
budding.  This shows t h a t  the morphogenet ic  gradient  causing nerve cell deter- 
minat ion cannot  itself be the produc t  of long processes of differentiation, bu t  
is p robably  triggered and established in preexisting cells. The observat ion t h a t  
nerve cell densities continue to increase over longer periods of t ime indicates 
t ha t  nerve cell determinat ion is not  confined to a single event.  The da ta  presented 
here indicate t ha t  some cell determinat ion,  such as nerve cell determination,  
p robab ly  occurs too early to  be dependent  on morphogenet ie  events. On the  
other hand,  to  wha t  extent  morphogenesis depends on nerve cell format ion 
remains to be decided. 
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