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Abstract

Neurons in sensory pathways exhibit a vast multitude of adaptation behaviors, which are assumed to aid the encoding of
temporal stimulus features and provide the basis for a population code in higher brain areas. Here we study the transition to
a population code for auditory gap stimuli both in neurophysiological recordings and in a computational network model.
Independent component analysis (ICA) of experimental data from the inferior colliculus of Mongolian gerbils reveals that
the network encodes different gap sizes primarily with its population firing rate within 30 ms after the presentation of the
gap, where longer gap size evokes higher network activity. We then developed a computational model to investigate
possible mechanisms of how to generate the population code for gaps. Phenomenological (ICA) and functional
(discrimination performance) analyses of our simulated networks show that the experimentally observed patterns may
result from heterogeneous adaptation, where adaptation provides gap detection at the single neuron level and neuronal
heterogeneity ensures discriminable population codes for the whole range of gap sizes in the input. Furthermore, our work
suggests that network recurrence additionally enhances the network’s ability to provide discriminable population patterns.
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Introduction

Behaviorally relevant auditory signals such as speech, or the

reverberations that convey information about the spatial environ-

ment, are characterized by temporal features in the lower

millisecond range. The intrinsic time scales of neurons that

represent the auditory information in the downstream cortical

processing centers are, however, much slower [1,2]. The general

view of the auditory pathway is thus that it translates the temporal

code of the acoustic wave into the population code of the cortex,

and relaxes the required temporal precision of cortical processing

to the time scale of tens of milliseconds [3–5]. This translation

between time and rate representation is assumed to gradually

occur along the multiple processing centers in the auditory

brainstem [6,7].

A central stage in the ascending auditory pathway is taken by

the inferior colliculus (the auditory midbrain), which collects most

afferent projections and transfers them to the thalamo-cortical

system [8]. In this sense the inferior colliculus acts as a hub,

meaning that most auditory information processed by cortical

centers has to be somehow represented in the inferior colliculus.

The neurons in the inferior colliculus are characterized by a large

diversity of in vivo responses [5,9,10] and cellular parameters, in

particular temporal ones such as onset vs. sustained firing [11],

membrane time constants and adaptation currents [12]. It is

therefore reasonable to assume that the inferior colliculus

population represents acoustic information in both spike timing

and rate [13,14]. Moreover, one expects the rich assortment of

neuronal behaviors observed at the inferior colliculus to play a

central role in the computational capacity of the population code.

In this paper, we investigate the transformation from a temporal

to a population representation using the simple paradigm of gap

stimuli. We re-analyzed in-vivo recordings from anesthetized

gerbils to show that such transformation indeed takes place at the

level of the inferior colliculus. We then construct a computational

model suggesting that the heterogeneity of biophysical properties

of the neurons, particularly of their adaptation time constants, can

explain the in-vivo phenomenology.

Materials and Methods

Ethics Statement
All experiments were approved according to the German

Tierschutzgesetz (AZ 55.2-1-54-2531-57-05 Regierung von Ober-

bayern). For more details see original data publication [15].

Data Analysis
We re-analyzed previously published single unit recordings from

91 inferior colliculus neurons of young adult Mongolian gerbils

with best frequencies from 2 to 12 kHz [15]. Each stimulus was

composed of a series of symmetric, broadband (500 Hz to 12 kHz)

sound pulses of 128 ms duration interjected with silent intervals

(gaps) of a fixed length, as shown in Figure 1A. The pulse-gap

interfaces used in the experiment were ramped with 1 ms rise and

fall times. These ramps are assumed to be negligible compared to

the duration of the sound pulse (128 ms) for further analysis of the
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population code, hence these ramps are shown as steps in the

schematics of Figure 1A. Between stimuli, the gap lengths range

exponentially from 2 to 128 ms (2
stimulus pulse train is characterized by the particular gap length it

carries.

Due to the limit on the total length of the stimulus, the number

of times the sound pulses are repeated per pulse train varies, as

illustrated in Figure 1A. The resultant pulse trains were presented

to the anesthetized animal through ear phones, and each neuron

was recorded over multiple (* 10) trials of the same pulse train

stimulus. For more detailed description of the experimental

procedures, we refer to [15].

The mean population rate response to each stimulus is shown in

Figures 1B–H. The network response to the stimulus typically

follows a transmission delay. By inspecting the ramp-up of the

population rate response relative to the first pulse in the stimulus,

we consistently found this latency to be 12 ms across different gap

stimuli. This transmission delay is already applied in Figures 1B–

H, where time = 0 denotes the onset of the network’s reaction to

the first (control) pulse of the stimulus (gap size = ?), and the

dashed lines represent the gap-to-pulse interfaces. All single-

neuron spike times for later analyses are latency-corrected

according to this transmission delay.

The spike times were translated into post-stimulus time

histograms ri(t,‘),i~1, . . . 91 (bin size 10 ms) by averaging over

all repetitions of post gap activity snippets, where i denotes the

neuron index, t denotes the post-gap time, and ‘ denotes the gap

length.

Independent Component Analysis
For our independent component analysis (ICA), we employ the

FastICA algorithm [16] on the vectors

~rr(t,‘)~½r1(t,‘), . . . ,r
T

considering all combinations of t
and ‘ as single measurements. As a means of noise-filtering, ICA is

applied on a low-dimensional subspace identified by the number

Npc of principal components of the full data set of 91 dimension.

PSTHs in this low dimensional space are denoted as ~RR(t,‘), i.e.,

every PSTH vector~rr(t,‘) is approximated by a linear superposi-

tion of Npc ICs ~aan, n~1, . . . ,Npc,

~rr(t,‘)&~RR(t,‘)~
XNpc

n~1

rn(t,‘)~aan : ð1Þ

The ICs are normalized, j~aanj~1, and rn(t,‘) denote the

projections to the subspace spanned by ~aan. Note that

f~aa1, . . . ,~aaNpc
g do not necessarily form an orthogonal basis set

and thus the projections are calculated as rn~~wwn
:~RR, using the

dual basis f~ww1, . . . ,~wwNpc
g defined by

~wwn
:~aam~dnm :

An important step is to find the minimum value of Npc that

captures all gap-sensitive components. To determine this value, we

begin with Npc = 1 and examine the resultant independent

component. We then increment Npc by 1 until we reach a final

Npc beyond which no more gap-sensitive ICs can be identified by

visual inspection. For most analyses we thereby obtained Npc~3,

explaining 73% of the data variance. This approach allowed us to

extract all gap-sensitive ICs that possess enough signal strength.

Neuron Model
As a neuronal model, we use the integrate-and-fire neuron,

where the membrane voltage vM integrates exponentially-decay-

ing synaptic currents (see Section Synapse Model). Simulations are

performed using the Neural Simulation Technology (NEST)

Initiative software package, version 2.0 [17], at a time resolution

of 0:1 ms.

The membrane time constant (tm~30 ms) and membrane

capacitance (C~120 pF) are taken from the mean experimental

values of [18] unless otherwise mentioned. The membrane

potential thus follows the dynamics

d

dt
vM~{(vM{Vr)=tzIS(t)=C:

where IS(t) denotes the synaptic current (see below). The resting

Figure 1. Gap stimuli and network rate response. (A) Schematics
of the gap stimuli used in the experiments. Each pulse is 128 ms long
and contains white noise between 0.5 and 12 kHz. For the 2, 4, 8, 16
and 32 ms gap sizes, 3 gaps are presented per stimulus. For the 64 ms
gap stimulus, 2 gaps are presented, whereas only a single 128 ms gap
was placed in the pulse train. (B) Mean firing rate of the gerbil inferior
colliculus network (91 neurons) in response to the 2 ms-gap stimulus.
Bin size = 10 ms. The dashed lines mark the locations of the gap-to-
pulse interfaces. (C)–(H) Mean network firing rate in response to the 4,
8, 16, 32, 64, 128 ms-gap stimuli.
doi:10.1371/journal.pone.0095705.g001
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1, . . . , 7         ms).  Therefore,  each



potential (and reset potential) of every neuron is Vr~{70 mV,

while the spike threshold is set to be Vth~{55 mV. These values

are only used for convenience of illustrations in the Figures. The

values are effectively irrelevant for the neuron model used

(integrate and fire with current-based synapses), since their

difference only acts as a scaling factor for synaptic strengths. After

a spike, the membrane voltage vM is reset to the resting potential

and the neuron goes through a refractory time of tref~2 ms

(limiting the maximal firing rate to below 500 Hz), before post-

synaptic currents are integrated again.

Adaptation is implemented as an exponentially-decaying

hyperpolarizing potential vA that follows the dynamics

d

dt
vA~{vA=tadp{Vadp

X

ts

d(t{ts) :

Each spike (at time ts) decrements vA by Vadp = {15 mV and

vA decays back to zero with a time constant tadp that may be

different for each neuron. This adaptation effect is additive; hence,

the resulting adaptation potential

vA(t)~{15mV
X

ts

exp½{(t{ts)=tadp�

and the membrane voltage vM are evaluated separately and

summed up afterwards to be compared to the threshold Vth.

Network Topography
For our standard network, we use the following parameters:

Ninp~1000 inputs are feed-forwardly directed to a network of the

same size (N~1000 neurons). Each input fiber projects to a small

random fraction of N|cinp~50 network neurons, where

cinp~0:05 is the input connectivity. Also the recurrent network

connectivity c~0:05 is sparse: each network neuron is connected

to N|c~50 other network neurons. Thus, the total impact of

feed-forward and recurrent connections is balanced.

In some simulations we use different values of N, Ninp, c, and

cinp as indicated.

Synapse Model
Synaptic currents

I~w
X

ti

exp½{(t{ti)=t�

are evoked by input spikes at times ti, and decay exponentially

with time constants t of 3 ms for inhibition and 2 ms for excitation

as measured in [18].

For the feed-forward input to the network, the excitatory

synaptic weight is set to be winp~v0~600 pA, roughly half of

what is needed to bring a neuron to threshold from resting

potential. Within the network, the weight of recurrent excitation

wexc is measured in units of vexc~600 pA/ N|p|cð Þ, where p is

the fraction of the excitatory neurons in the network. For

inhibition, the weight winh is given in units of vinh~600 pA/

N|(1{p)|cð Þ
All synaptic transmissions introduce an additional delay of 1 ms,

which is a typical value in many modelling studies.

Linear Classifier
To test how well the network activity discriminates between

different gap sizes in the input we trained a linear classifier. The

performance of the classifier on the test set (test accuracy) is used as

a criterion for discriminability. As a linear classifier we use the

LIBSVM support vector machine implementation provided by the

SHOGUN machine learning toolbox [19].

We began by constructing P unique pairs of spike trains

snippets. Each snippet pair was then used to build 2 input patterns,

one with gap size A and the other with gap size B. The resultant

input patterns were fed to the network to train the classifier. Each

output vector was generated by counting the spikes in the time bin

corresponding to the onset of the 2nd snippet, where the bin size

was chosen to be 30 ms to match the average time constant of the

cell membrane [18]. Once the classifier was trained using the

output vectors, we shuffled the order of the original input patterns

and laid these shuffled patterns over a new background noise. This

‘‘test input’’ was then streamed into the same network for a new set

of output vectors, and the accuracy at which the previously trained

classifier identified the gap sizes associated with each output vector

was used as the quantity to gauge the network’s capacity to encode

gaps. To avoid over-fitting, we keep P§10 such that many

realizations of each gap size are processed. For each parameter set,

the experiment was repeated 100 times to gain statistical

significance.

Results

Population Coding of Gaps in Gerbil inferior colliculus
Temporal features of auditory stimuli on the millisecond scale

are preserved in the time course of the firing rates of inferior

colliculus neurons [15]. To see whether they are represented as

population patterns in the inferior colliculus as well, we performed

a population rate analysis (see Materials and Methods section on

ICA). The underlying data are illustrated in Figures 2A–C, which

show two typical neuronal responses to a pulse train with 64 ms

gaps. Each neuron was measured during multiple trials of the same

stimulus, and the resultant latency-corrected post-gap spike times

were binned and averaged to render a post stimulus time

histogram (PSTH) representing this neuron’s response to the

stimulus, as illustrated at the bottom in Figures 2A–C. Because

gap-encoding necessarily occurs after the presentation of the gap,

only those spike counts during the 2nd and latter pulses were

considered for further analysis. For each cell, the sets of post-gap

PSTH were averaged to improve signal-to-noise ratio. This

averaging across pulse-responses is justified because we observed

no discernable pattern arising as a function of pulse-repetition in

our data (Figure 2D and inset). Hence, for each gap size, we

obtained a population spike count raster matrix as shown in

Figure 2E.

For each gap size in Figure 2E, we obtained the network-

averaged spike count and its variance as a function of time

(Figure 2F). These results suggest that (1) the network encodes gap

size by the neuronal spike rates immediately following the gap,

with large gap sizes eliciting high rate responses and vice versa,

and (2) gap size is encoded in the first 30 ms after the gap, and

beyond this point, the network has reached a steady balance

between external stimulation and intrinsic activity. To extract the

underlying patterns from the noisy data, we collected the first

70 ms of each spike count raster matrix in Figure 2E and

concatenated them for independent component analysis (ICA).

ICA found 3 population patterns (explained variance: 73%) that

correspond to well-known inferior colliculus response types: onset,

delayed onset, and sustained (Figure 3A). Our ICA procedures (see

Population Code for Gaps
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Materials and Methods) indicated the onset response to be the

most predominant component, followed by the sustained and the

delayed onset component. Beyond Npc = 3, no more discriminant

patterns were found. While the sustained component yields no

discriminability, the onset and the delayed onset components

clearly encode gap sizes early on during the post-gap network

response with the same rate-encoding mechanism, and the

separation is lost during the latter part of the pulse (Figure 3B).

These ICA results are consistent with the firing rate responses of

Figure 2F. In fact, the onset and the delayed onset components

likely originate from the same population dynamics, and their

differentiation stems only from binning. In Figure 3C, we applied

the same analytical procedures to our data, this time with 5 ms bin

size, to reach 4 independent patterns (62% explained variance), 3

of which display gap-discrimination. Comparing the gap-encoding

patterns of Figure 3A to their counterparts in Figure 3C, we

observe two delayed onset components indicating a continuous

temporal code of the gap sizes. One thus may generalize that gap-

discrimination in these gerbil inferior colliculus neurons arises

from one predominant mechanism: the time course of activity

within 30 ms post-gap. Generally, larger gap sizes are encoded by

higher network firing rate. Upon closer inspection of Figure 2F, a

plausible neurophysiological explanation is that after a longer gap

the cells’ excitability has recovered better than after a shorter gap.

Along these lines, the fact that these neurons fire briskly after a

Figure 2. Population rate response to gap sizes. (A)–(C) Exemplary gerbil inferior colliculus neurons and their responses to repeated trials of the
same stimulus. The stimulus is comprised of three 128 ms broadband pulses that are separated by two 64 ms silent intervals (gaps). The resultant
trial-averaged post-stimulus time histograms (PSTHs) are generated with a 10 ms bin size. The first two neurons show fast onset responses, while (C)
shows delayed onset behavior. (D) The mean network PSTH during the first (solid line), second (long dashed) and third (point dashed) post-gap pulse
of the 2 ms gap stimulus. One sees no clear pattern as a function of pulse-repetition. Inset: the same mean PSTHs for the 32 ms gap stimulus. (E) Grey
level plot of cell-wise normalized post-gap PSTHs for all 91 cells and all gap sizes obtained from averaging over all pulses in the train following a gap.
The cells are ordered according to their PSTH peaks for the 128 ms gap stimulus. (F) Mean network spike count over the 13 bins for each gap size.
Dark to bright means short to long gap sizes. The dashed line is the mean network response during the first pulse, i.e. the control response. Inset: the
mean network spike count variance over all gap sizes during the post-gap time series. The dips in the last bin reflect the fact that it only contains
8 ms of stimulation for a 10 ms bin size.
doi:10.1371/journal.pone.0095705.g002

Population Code for Gaps
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long gap before dropping to a lower, steady-state rate also points to

the possibility of adaptation in the network.

Simulation Paradigm
To gain a mechanistic understanding of how such a population

code may be generated, we devised a simple computational

network model (see Materials and Methods and Figure 4A), which

was inspired by our previous work [20]. The network consists of N
integrate-and-fire neurons with simple adaptation behavior. These

neurons receive input from Nin input fibers with low connectivity

cin. The input spikes are supposed to mimic the activity evoked by

the noise pulses. Focusing on high-frequency channels of the

auditory pathway (recorded IC neurons had best frequencies

above 2 kHz) in which phase-locking is absent, we assume that

there is no inherent temporal structure in the input spike trains

and model them as Poisson processes. Each input pattern is

comprised of a silent interval of a certain length, surrounded by

two snippets of such neuronal population spike trains. All snippets

are of identical duration (130 ms) and all fibers fire at an identical

mean rate (Poisson density) of 10 Hz, unless otherwise stated. In

addition, ongoing spontaneous background spikes (noise) are

imposed along each nerve fiber according to a second independent

Poisson process. For simplicity, patterns are presented with a

900 ms spacing in-between to avoid serial correlations.

In response to the temporal input patterns, the network

produces temporally distinct rate patterns that encode the different

gap sizes (Figure 4B). These rate patterns are directed downstream

to a model of the thalamo-cortical system for read-out. We employ

a linear classifier as a stand-in for the thalamo-cortical read-out, as

it could be easily represented by neural elements and requires the

fewest assumptions about the read-out structure. In other words,

we use the linear separability of the output population patterns as a

benchmark to evaluate the network’s ability to encode different

gap sizes. While it is possible that the thalamo-cortical system

implements a non-linear classification algorithm, such a criterion

would be much more prone to overfitting. Conversely, linear

classification has the advantage of being a very conservative

measure for discriminability.

Under these assumptions we optimized the network’s gap-

discrimination performance with respect to adaptation variables

and recurrence strengths. More specifically, we studied the

network using a binary classification task, where the network is

asked to distinguish between two different gap sizes (see Materials

and Methods, Linear Classifier).

In the following, this paradigm will be used to evaluate the

influence of cellular and network parameters on discrimination

performance.

Single Neuron Gap Discrimination
We began our simulation study with an example that illustrates

how adaptation supports gap discrimination tasks at the single

neuron level (N~1). We constructed two noise-free stimuli on a

single input fibre with one stimulus containing a 64 ms gap while

the other contained an 128 ms gap size. This time, for simplicity,

the input snippets for both patterns consisted of periodic input

spikes of 500 Hz, where the second snippet was limited to only

30 ms in length for illustration (Figure 5). The choice of 500 Hz

input rate here reflects the average input spike rate received per

neuron in our network study to be presented later, where Ninp

= 1000, cinp = 0.05 and the spike rate per input fiber is 10 Hz. We

first tested the two stimuli separately on a non-adapting neuron

and observed its membrane potential over time. While the

membrane potential at the onset of the second snippet changed

slightly between the two cases, the difference was insignificant such

Figure 3. Gap-encoding network patterns. (A) Independent component analysis (ICA) of the population response matrices in Figure 2E, taking
only the first 70 ms of each neuronal response. ICA reveals 3 significant independent components (ICs) that can be interpreted as onset, delayed
onset and sustained (dark to bright means short to long gap sizes). All three vertical axes possess the same scale and, for illustration purposes, the
baseline values for the different gaps are shifted equidistantly relative to each other. (B) Projections onto the subspace spanned by the onset and the
delayed onset components for different points in time as indicated. Based on these two components it is possible to distinguish the responses to
different gap sizes (gray levels as in A) for a few tens of milliseconds after the onset of the subsequent noise pulse. (C) ICs from analyzing our neuronal
spike data with 5 ms bin size.
doi:10.1371/journal.pone.0095705.g003
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that the two stimuli elicit identical spike counts during the second

snippets, failing to encode the different gap sizes in terms of the

neuron’s spike count.

Conversely, performing the same test on an adapting neuron

with tadp~150 ms resulted in different spike counts between the

two stimuli (Figure 5, bottom). In the 64 ms case, the membrane

was still much depressed upon the presentation of the second

snippet such that only one spike was induced, whereas 128 ms

after the first snippet, the membrane had recovered sufficiently

such that the second snippet produced two spikes. Gap discrim-

ination was hence achieved by distinct recovery from adaptation.

The greater sub-threshold depression from the shorter gap also

means a longer integration time before the neuron reacts with an

action potential. This adaptation-based single-neuron model can

already help explain the network firing rate behavior observed in

Figure 2F. In Figure 2F, the short gaps leave the network

substantially hyperpolarized such that its initial firing rate response

is in fact below the steady state value. On the other hand, the

longer gaps evoke more rapid responses from the cells due to their

further recovery.

To explore the relevant parameter space of the single neuron

example and to quantify how much adaptation aids in gap

discrimination, we next applied our binary classification paradigm

to the single neuron case. We first restricted the input spike trains

to periodic, 500 Hz snippets, and we presented each stimulus 10

times along a single fiber against 5 Hz background noise. The

classification results for three different gap pairs are shown in

Figure 6A as a function of the adaptation time constant tadp,

which was used as a free neuronal parameter. Not too surprisingly,

the classification performance strongly depended on the gap sizes

as well as on the adaptation time constant tadp. For each gap pair

we observed islands of tadp in which the accuracy was well above

chance. These accuracy peaks represented regions where the

neuron produced different spike counts for the two gap sizes,

whereas in the regions outside these peaks the spike counts were

the same.

One first notes that smaller gap pairs manifested lower and

narrower tadp peaks. Hence the task of correctly classifying the 4–

8 ms gap pair was not only highly selective in tadp values, but the

performance was also very susceptible to noise (Figure 6A). On the

other hand, the accuracy curve for the 64–128 ms gap pair

exhibited robust performance for a wide range of tadp values

(Figure 6A). In fact, the broadest peak existed beyond the 200 ms

scope in Figure 6A, where the neuron fired once to encode 128 ms

gaps and stayed silent for 64 ms gaps.

Furthermore, while the test performance peaks tended to be

situated around the order of the gap sizes involved, their widths

Figure 4. Gap discrimination paradigm. (A) Schematic of the input stream to the network. Sensory-evoked spikes (black ticks) from Poisson
processes (3 shown) and spontaneous background spikes (gray) are fed into a network. Each box marks a 130 ms snippet, and the gap size is defined
as the silent interval (with noise) between the two snippets. Two input patterns, with identical snippets (P~1) and differing only in the gap sizes (gap
A and gap B), are shown in a single input stream, with a 900 ms spacing between them. (B) Schematic of the network’s output is read out at the onset
of the second snippet with a bin size of 30 ms (the first black box, latency-corrected). The output patterns are translated into population vectors of
spike counts and then used to train a linear classifier (filled circle) to distinguish the gap A vectors from the gap B vectors. Later on, when we perform
ICA on simulated networks, the bin size is switched to 10 ms to collect 13 bins from the second snippet.
doi:10.1371/journal.pone.0095705.g004

Figure 5. Single neuron gap encoding. Two different input stimuli
are shown at the top, with the gray pattern delivering a 64 ms gap and
the black pattern delivering a 128 ms gap. The snippets are constructed
using identical, 500 Hz periodic spikes along a single noiseless fiber. The
membrane potential (clipped at {55 mV) in response to each stimulus
is displayed in the middle panel, for a non-adapting neuron. The
difference in membrane potential between 64 ms (gray) and 128 ms
(black) after the first snippet is not significant enough to result in
different spike counts during the second snippet. On the other hand,
for an adapting neuron with tadp~150 ms, the hyperpolarization and
recovery result in a large difference in membrane potential at the two
time points such that the neuron produces a different spike count
during the second snippet.
doi:10.1371/journal.pone.0095705.g005
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and distribution were partly sensitive to the makeup of the input

snippets. As a validation, we performed the same experiment, this

time using two different instantiations of 500 Hz Poissonian

snippets to construct our input patterns (Figures 6B–C). We found

that, although the islands of high accuracy were at different values

of tadp, the distribution of these islands were very similar as with

periodic input spikes.

Lastly, for comparison, we applied our binary classification

paradigm to a non-adapting neuron with variable membrane time

constant tm. Using the same 500 Hz periodic input snippets,

Figure 6D shows that, without adaptation, the neuron performs

poorly. The results from Figure 6 therefore suggest that adaptation

is a quintessential, and perhaps necessary element in gap

discrimination tasks.

From these single neuron simulations, we draw two major

conclusions: (1) In order to encode arbitrary gap lengths, we

require several neurons with different adaptation time constants,

whose islands of high discrimination accuracy cover the whole

range of possible gaps lengths. (2) If gap lengths are to be encoded

by spike count, the number and size of parameter islands in which

spike counts of a single neuron differ for different gap sizes

generally improves with an increased number of output spikes.

This spike rate may be increased by multiple factors, such as input

rate, input connectivity, and recurrent connectivity.

Gap Discrimination in a Network
As a next step we studied a network of adapting neurons (see

Materials and Methods) and investigated how its tadp heteroge-

neity and connectivity parameters influence the classification

paradigm.

We first compared heterogeneity to homogeneity in classifying

gap pairs of 4–8 ms, 6–12 ms and 8–16 ms with non-connected

networks. We constructed the heterogeneous network by random-

ly choosing each neuron’s tadp value from a uniform distribution

between 0 and 20 ms, and we compare this network’s perfor-

mance to that of a set of homogeneous networks with different

constant values of tadp. The results are shown in Figure 7A. As

expected, the optimum value of tadp for performing classification

in a homogeneous network changed as the gap sizes changed.

Also, as far as the linear classifier is concerned, the heterogeneous

network provided just as much gap encoding as an optimum

homogeneous network. That was because the classifier only

required a few units out of the entire population to encode the

gaps with high fidelity to correctly perform classification, and in

the case of N~1000 network neurons, a uniform distribution

between 0 and 20 ms already supplied a sufficient number of good

neurons to equal the performance of a good homogeneous

network. Thus, in an environment where the afferent fibers carry a

wide variety of gap sizes and spike statistics, it is a viable strategy to

achieve good gap discrimination by providing a wide distribution

of adapting neurons, such that gap encoding can always be found

somewhere within the population response.

We next looked into the advantage of network recurrence by

conducting the same experiment, this time with excitatory network

recurrence (c~0:05, p~0:8, Wexc~1 vexc and Winh~0 vinh).

The results, in Figure 7B, indicated that excitatory recurrence

enhances a network’s ability to create separable patterns to

differentiate gaps. One may qualitatively interpret this observation

as follows. When input patterns of different gap sizes are presented

to a non-connected network, the good neurons will exhibit

differential firing while the non-discriminant neurons will produce

identical firing counts. Once the neurons are connected, the non-

discriminant neurons will receive non-identical numbers of action

potentials from the good neurons in response to different gap sizes,

creating further separation in the spiking responses of these non-

optimum neurons. How a good neuron can proliferate separability

Figure 6. Two-gap classification with a single neuron. (A) Binary classification performance of an adapting neuron for varying adaptation time
constant and gap pairs of 4–8 ms (solid black), 16–32 ms (solid gray) and 64–128 ms (broken black). The input patterns are made of 130-and-30 ms
snippets, as in Figure 3, containing identical 500 Hz periodic signal spikes. Each input pattern is repeated 10 times against 5 Hz background noise
along a single input fiber. (B)–(C) The same experiment as in the top panel, this time with a particular instantiation of 500 Hz Poisson spike train for
the input snippets, showing how changing spike timing can alter the peaks. (D) Same experiment as in the top panel, this time varying the
membrane time constant tm of a non-adapting neuron, as further evidence of the advantage of adaptation in gap detection tasks.
doi:10.1371/journal.pone.0095705.g006
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to a non-discriminant neuron is illustrated in Figure 8. In our

network simulation such proliferation of separation may propagate

for a short time before gap information is destroyed by later input

spikes, noise and intrinsic network activity.

The aforementioned classification enhancement is not limited to

purely excitatory recurrence: The same improvement can also be

seen in Figure 7C, where mixed (excitatory/inhibitory) networks

were used (c~0:05, p~0:8, 2vexc and 0:5vinh). The results from

Figures 7B–C hence again suggest that the key parameter

governing a population’s classification capacity is its firing rate.

To prove this, we conducted the same binary classification

experiment as above, but this time the input fibers delivered 8–

16 ms, 12–24 ms and 16–32 ms gap pairs, while the neurons had

a uniform distribution of adaptation time constants tadp from 0 to

120 ms. We then looked at the network’s classification perfor-

mance as a function of its onset (first 30 ms) firing rate (Figure 7D).

Firing rate was changed by either increasing the input rate or

recurrent synaptic weights (see caption for details).

The results illustrate that first, network performance scales

monotonically with firing rate from the input fibers. This was not

surprising, since we expected from the single neuron study

(Figure 5) that a higher spike rate along the input fibers triggers

higher network spike counts, hence providing more locations along

the spike count dimension where separations can be found.

Second, as seen in Figure 7D, the effect of proliferation of

separability from a network’s recurrence reached a maximum

value at roughly the same firing rate for all three gap pairs tested.

We interpret this maximum as a point where the strong intrinsic

activity starts to generate stereotyped firing patterns that are no

longer related to the input features and, as a result, the activity

traces induced by the gaps start to become weaker.

The effect of recurrence and the effect of input rate are

relatively independent, as is illustrated in Figure 7E, where we

raised input rate to the recurrent network in the 8–16 ms task. The

incremental effect of increasing input spike rate simply shifts the

starting point of the curve to a higher network spike rate and

higher performance point, while increasing recurrent weight

exhibits the same general behavior, always bringing the perfor-

mance to a maximum point before deteriorating.

To check how robust our findings were with respect to

heterogeneities in the neuron populations we repeated the analysis

of Figure 7D for a network with neurons that had capacitance and

time constants distributed according to experimental measure-

ments [18] (Figure 7F). Test accuracy shows that such cellular

heterogeneity further improves separability of the network patterns

for high firing rates, but not for low firing rates.

Simulated Independent Components
From our previous sections we concluded that heterogeneity in

adaptation is a key property of a network to encode gaps in

population patterns. We therefore set out to see whether the

experimental recordings analyzed by ICA (Figure 3A) were

consistent with such heterogeneity. To this end, we fed input

Figure 7. Heterogeneity and recurrence. (A) Network performance is compared between a heterogeneous, non-connected network (broken
lines, tadp uniformly distributed from 0 to 20 ms) and a non-connected network that is homogeneous in tadp (solid lines), in tasks of classifying 4–
8 ms (black), 6–12 ms (dark gray) and 8–16 ms (light gray) gap pairs. N = Ninp = 1000, cinp = c = 0.05, with 10 Hz signal rate and 0.1 Hz noise rate.
(B) The same experiment as (A), this time with excitatory recurrence (1.0 vexc, p = 0.8), showing classification improvement from a non-connected
network. (C) Same experiment as in (B), this time with a mixture of excitatory and inhibitory recurrence (2.0 vexc and 0.5 vinh), essentially reproducing
the improvement seen in (B). (D) Test accuracy as a function of firing rate for heterogeneous adaptation. Network firing rate is tuned by either
changing input firing rate (broken lines), starting from 10 Hz signal and 1 Hz noise and keeping signal-to-noise ratio the same, or by changing
network recurrent weights, either through pure excitation (solid line) or through exc./inh. mixture (symbols), with 10 Hz signal and 1 Hz noise. The
tasks are to classify 8–16 ms (black), 12–24 ms (dark gray) and 16–32 ms (light gray) gap pairs. The effect of network recurrence exhibits a maximum
and can be roughly traced either through pure excitation or through exc./inh recurrence, along the network firing rate axis. (E) The 8–16 ms
classification task for increasing excitatory recurrence, with input rates of 10 Hz (solid), 20 Hz (long dashed) and 30 Hz (point dashed) and a fixed ratio
of background noise of 10% of the input rate. (F) Same as D for networks of neurons with distributed basic properties: Gaussian distribution of
membrane time constants t with mean of 30 ms and standard deviation of 15 ms; Gaussian distribution of capacitance C with mean 120 pF and
standard deviation 60 pF.
doi:10.1371/journal.pone.0095705.g007
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patterns of gap sizes 2, 4, 8, 16, 32, 64 and 128 ms to the network,

as in the gerbil experiments [15].

We used a network containing a uniform distribution of tadp

values from 0 ms to 1000 ms, so as to cover all gap sizes, and the

recurrent weights for both networks were tuned such that their

average onset firing rates match the average onset firing rate of the

91 gerbil neurons measured (* 30 Hz). We set the mean Poisson

input spike rate to be 10 Hz, against 1 Hz background noise, and

use 130 ms snippets to construct our input patterns constructed

from ten unique snippet pairs (P~10). Each input pattern was

repeated 10 times. We then followed the same ICA steps as done

for the experimental data by collecting the network’s response

during each second snippet (10 ms bins) and looked for the most

prominent independent components.

The results for the heterogeneous recurrent network are shown

in Figure 9B. For comparison, we performed the same study on a

recurrent homogeneous network (Figure 9C), a non-connected

heterogeneous network (Figure 9D) and a recurrent non-adapting

network (Figure 9E). All networks were tuned to the same firing

rate (* 30 Hz). We found that the two heterogeneous networks

manifested qualitatively the same onset, delayed onset, and

sustained components as observed from the gerbil inferior

colliculus neurons. Functionally, in this multi-gap classification

task, the heterogeneous recurrent network (Figure 9B) performed

slightly better than the non-connected heterogeneous network

(Figure 9D; 67.4% vs. 64.2% test accuracies), followed by the

homogeneous adapting network (Figure 9C; 61.8%). Lastly, the

non-adapting network (Figure 9E) displayed distinctly inferior

accuracy (38.6%) than its adapting counterparts.

Figure 9D shows that the three dominant ICs can be observed

without the effect of intrinsic connectivity. This implies that the

onset, delayed onset, and sustained patterns arise from individual

neurons. Recalling our single neuron study, we imagine that the

various input patterns are processed by all neurons along the tadp

axis, eliciting onset response from some, delayed onset response

from some others, and sustained responses from yet some other

neurons. When one homogenizes the adapting network, the

diversity along the tadp axis is lost, and hence so is the variety of

response types. This is shown in Figure 9C, where a homogeneous

network of tadp = 50 ms only renders delayed onset and sustained

patterns. Lastly, the non-adapting network essentially contains

only sustained components, which provide scant gap-encoding

capacity, as evidenced by its poor classification performance (cf.

Figure 7A for tadp~0).

In summary, our results thus indicate that (1) gap encoding in

the gerbil inferior colliculus is consistent with heterogeneity in

adaptation, and that (2) this encoding is best achieved at moderate

recurrent drive from the network.

Invariance of the Gap Code
We finally asked, whether the observed population activity

patterns not only encode gaps within the tight constraints of our

paradigm, but also show some degree of invariance against

changes of the parameter regime. First, we analyzed the gerbil

data obtained for the same gap sizes but with varying durations of

the preceding noise pulses and compared their projections onto

the onset and delayed onset ICs (from 128 ms pulses) to

projections of the original 128 ms pulses. For short gap sizes

(dark dots), the independent components capturing onset and

delayed onset responses were relatively invariant with respect to

pulse length (Figure 10A). Deviations from invariance occurred for

longer gap sizes (brighter dots) and were relatively gradual and

systematic such that a downstream station could easily achieve

invariant decoding by a linear transformation. This finding was

not necessarily unexpected, since gap length discrimination was

shown to depend on pulse length in human psychophysics as well

[21].

Next, we did the same analysis for our simulated network with

heterogeneous adaptation and excitatory and inhibitory recurrent

couplings. Also there, onset and delayed onset components showed

gradual and systematic deviations (Figure 10B). Particularly the

behavior of the delayed onset component (IC2) matches that of the

physiological data well. To test invariance from a functional

perspective, we then used the linear classifier and trained it with

pulse lengths of 32, 64 and 128 ms, before testing it with a whole

range of pulse lengths between 16 and 256 ms (Figure 10C). The

test accuracy was almost invariant for pulse lengths of 32 ms and

larger, verifying that invariance can be functionally extracted from

IC patterns, at least for some of the pulse lengths. As a last test we

also varied the firing rate by first training the classifier with input

rates of 10, 15 and 20 Hz and found that the classifier works well

(Figure 10D) in a relatively broad range of input rates (10 to

25 Hz).

From these tests, we conclude that heterogeneous adaptation

allows a linear classifier to extract gap durations with some degree

of invariance to pulse lengths and background rate and thus likely

provides a robust code for gap size that only changes gradually

with variations of the stimulus paradigm.

Figure 8. Proliferation of separation. The same paradigm from
Figure 5 is employed, with the input snippets connected to three
different neurons with thyp~50,70 and 70 ms. In addition, the top
neuron (thyp~50 ms) has an excitatory synapse (weight ~v0) on the
middle neuron, resulting in its discriminating firing behavior. The
bottom panel shows a stand-alone thyp~70 ms neuron that exhibits no
discrimination to the two gap stimuli.
doi:10.1371/journal.pone.0095705.g008
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Discussion

We investigated gap encoding in the inferior colliculus, through

both analysis of experimental data from gerbils and simulation of

neural networks. Our independent component analysis revealed

that, when presented with stimuli containing multiple gap sizes,

neurons responded with three prominent population patterns:

onset, delayed onset, and sustained. Only the onset and delayed

onset components showed gap-encoding capacity. In our compu-

tational effort to understand gap processing in inferior colliculus,

we employed a simple input/network/read-out paradigm that

emulated some of the basic features of the auditory midbrain.

Then, starting from a single adapting neuron, we showed that

experimentally-observed population patterns could arise from

heterogeneous adaptation in a network. Moreover, network

recurrence could serve to further enhance the network’s ability

to provide discriminable population patterns.

Psychophysical experiments in gerbils [22] and rats [23] show

gap detection thresholds as short as a few milliseconds. This

finding imposes a strong constraint on the shortest adaptation

time-scales in the model. Gap discrimination tasks in rodents are

rather rare. In [23], it was shown that rats can learn to distinguish

a 15 ms from a 60 ms gap, which could be easily explained by the

differences in the independent components from our gerbil

recordings. In [24] gap discrimination in rats was measured for

two reference gap sizes (15 and 40 ms). For both gap sizes the

relative gap discrimination error was about 40%. These results are

also in rough qualitative agreement with the clearly observable

differences in the (gerbil) independent components for gap sizes of

8, 16, 32, and 64 ms (Fig. 1E).

The inferior colliculus is a very heterogeneous brain structure,

morphologically and physiologically [25], in terms of its inputs [7],

but, most prominently, in terms of its responses. Some neurons’

responses are very specifically related to the ethology of the animal

such as breath-selective [26] or wingbeat-specific [27] neurons.

Some are more general responses that are simple combinations of

elementary receptive fields such as duration tuned neurons [28],

target-distance-specific responses in echolocating bats [29], or

combinations of temporally segregated frequencies [30,31].

In light of this variety of receptive fields, it may not come as a

surprise that there are only few general theories on inferior

colliculus function. One of these theories [4], suggests two general

types of inferior colliculus responses. One type of receptive fields

contains stimuli that are essential for the survival of animals and

the outputs are directly conveyed to the motor system (for example

neurons that are selective to wing-beat patterns of prey). These

receptive fields have to be very specific and detailed. The other

type of receptive fields are rather general and unspecific (e.g.

combination-specific neurons) and can be seen as multi-purpose

primitives that are useful to further cortical processing. For both

response types the downstream stations (motor and cortical)

operate on a slower time scale than that of the auditory input and
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Figure 9. Independent components of network simulations. (A) Independent components from experiment. Replotted from Figure 1E for
comparison. (B) Independent components of a heterogeneous recurrent network. The gap sizes (gray levels: dark to bright means 2 ms to 128 ms)
are the same as those presented to the gerbils in [15], and the network contains tadp values uniformly distributed from 0 to 1000 ms. Recurrent
weights (4 vexc and 4 vinh) are tuned such that the network’s onset firing rate matches that of the gerbil inferior colliculus neurons (* 30 Hz). (C)
Independent components from a recurrent, homogeneous network of tadp = 50 ms (4 vexc and 12 vinh). (D) Independent components from a non-
connected, heterogeneous network (tadp between 0 and 1000 ms). An input rate of 9 Hz with 0.9 Hz noise rate were needed to achieve * 30 Hz of
network firing rate. (E) Independent components from a non-adapting recurrent network (4 vexc and 28 vinh).
doi:10.1371/journal.pone.0095705.g009
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thus the inferior colliculus has to encode information in rate (or

population pattern).

The translation from time to rate can occur by means of

adaptation (as in our model) but can also result from intricate

combinations of inhibition and excitation via delay lines [32], a

degree of freedom we have neglected in this paper. While we have

focused most of our attention on the heterogeneity in adaptation

time constants, there are several other conceivable mechanisms

that would generate an analogous effect. One such mechanism is

the initial amplitude of the adapting hyperpolarization, Vadp,

since, at the single neuron level, the slope of the recovery in

membrane potential (Figure 3) linearly scales with Vadp. Thus, in

principle the heterogeneity in adaptation slopes could also be

achieved by a heterogeneity in adaptation strengths Vadp. Also

different levels of delayed feed-forward inhibition can generate a

heterogeneity in re-depolarization time courses, which would have

the same effect as the heterogeneity in adaptation time constants.

For the present study, we chose to only explore tadp in an effort to

coarse-grain our investigation of heterogeneous adaptation. In the

bigger picture, we expect each neuron’s membrane behavior to be

a function of all neuronal parameters as well as the external inputs:

heterogeneity may arise along all pertinent parameter dimensions

to optimize the network’s performance. This idea, of course, also

pertains to other nuclei that have been suggested to contribute to

gap encoding, such as the paraolivary nucleus [33], for example,

via heterogeneity of its postinhibitory rebound spikes.

Our model can be generalized to also describe population

coding of amplitude-modulated (AM) signals. Neurons in the

inferior colliculus discharge phase-locked to AM stimuli [34,35].

Intrinsic neuronal properties inducing adaptation effects have

been shown to strongly influence single unit phase-locking in a

model [36]. Our results predict that, beyond single unit responses,

population patterns are also highly informative about AM

frequency due to the heterogeneous cellular adaptation time

constants.

Adaptation is ubiquitous along sensory pathways [37–41] and

there are several specific accounts of its functional role related to

the processing of temporal stimulus features [42–44]. Also the

benefits of heterogeneity have already been studied [45]. This

paper proposes a further mechanism, both at the single neuron

level and at the network level, of how adaptation provides

improved discriminability of temporal gaps and selective process-

ing of amplitude modulations in an auditory stimulus. Beyond the

auditory system, our model can be generalized to other modalities.

For example, in the visual domain, spatial motion can be

interpreted as the movement of brightness patches, which

translates to amplitude modulations of brightness at one retinal

location.
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Figure 10. Invariance of the gap code. (A) Projections r
length): projections of activity from reduced pulse lengths (32 and 64 ms as indicated) vs. original (128 ms pulse length). Dark dots indicate short gap
lengths, bright dots indicate long gaps. Dashed lines indicate identity. (B) Same as A for simulations of the network from Figure 9B. (C) Test accuracy
of a linear classifier for gap discrimination trained on the simulated network from B for multiple pulse lengths (32, 64, and 128 ms). Gap pairs were
128 ms vs. 64 ms (solid line), 64 ms vs. 32 ms (dashed line), and 8 ms vs. 4 ms (dotted lines). (D) Test accuracy of a linear classifier for gap
discrimination trained on the simulated network from B for multiple input rates (10, 15, 20 Hz). Gap pairs as in C.
doi:10.1371/journal.pone.0095705.g010
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