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Abstract

Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and
action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity
between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in
undesired motion cues to the investigated system. Understanding actual simulator responses to different motion
commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this
work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion,
and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion
as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate
the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator’s
inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-
Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion
amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion
intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude
that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of
uncertainty in self-motion perception.
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Introduction

For more than a century, motion simulators have been

employed in neurophysiological, psychophysical and behavioural

studies that aim to inform the neural and cognitive processes of

self-motion perception [1–8], as well as predicting human

behaviours such as balance or aircraft control [9–11]. In all these

studies, motion trajectories executed by the simulator inevitably

deviate from the commanded motion. This deviation is due to the

mechanics of the device and results in motion distortions that

affect amplitudes, frequencies and phases of the commanded

trajectories [12]. Throughout this paper we define total noise as

the components of the actual motion that are not present in the

commanded motion. We further define the total noise as the sum

of a deterministic component, reproducible across repetitions of

the same trajectory (e.g. mechanical deformations due to the

inertia of the simulator), and a stochastic component, representing

the random component of the total noise. All sensors, including

the human self-motion sensory systems (visual, vestibular, auditory

and somatosensory), are frequency dependent (see for example

[4,13]), and signal processing performance can be directly affected

by the level of total noise in the system. Moreover, the simulator

noise can provide indirect self-motion cues such as velocity

dependent vibrations [14]. Response measurements such as

neural, perceptual, eye movement or balance recordings should

therefore be analysed with a sound understanding of the simulator

capabilities and limitations, as well as the impact these limitations

have on the results, so as to avoid erroneous interpretations of the

data.

While there has been significant prior research on designing,

diagnosing and comparing motion systems [12], these methods are

not often employed by neuroscientists to dissociate simulator noise

from physiological noise in the interpretation of neurophysiolog-

ical, physiological and behavioural responses. Only a few studies

on human self-motion perception address the issue of simulator-

introduced noise by recording the actual motion produced. The

analyses presented in these perceptual studies can be graphical

and/or statistical. In a graphical analysis (see for example [15,16]),

a graphical representation of the simulator’s capability is provided

by plotting (in the time and/or frequency domain) the different
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motion recordings together. A statistical analysis, on the other

hand, objectively compares recordings of different motion profiles

by applying statistical tests. Note that both statistical and graphical

analyses can be used to compare either two different actual

motions or commanded versus actual motion. Here we summarize

the main statistical approaches used so far to assess the influence of

simulator noise on perceptual thresholds for self-motion and we

present new methodologies for the noise analysis. These method-

ologies take inspiration from classic techniques for measuring the

dynamic qualities of motion simulators [12] and adapt them where

necessary to better dissociate between simulator and physiological

noise.

To facilitate the description of the methodologies and their

relevance, we will use a psychophysical study conducted by the

authors [17]. Briefly, a motion simulator was used to investigate

human sensitivity to linear vertical self-motion in a range of 0–

2 m/s2. Participants were asked to discriminate a reference

motion, repeated unchanged for every trial, from a comparison

motion, iteratively adjusted in amplitude to measure the partic-

ipants’ motion discrimination thresholds. Different reference

motions were tested in different experimental conditions. When

interpreting the experimental results, the undesired noise intro-

duced by the simulator is of concern for two main reasons:

1. The total noise level of reference and comparison motions

within each condition, if noticeably different, would provide

additional cues to the participants.

2. The increase of the total noise level with motion intensity, if

non-linear, would lead to a non-constant Signal-to-Noise Ratio

(SNR), resulting in differences in stimulus quality across the tested

motion range.

Note that, although different experimental procedures have

been proposed and used in the literature to investigate the

perception of self-motion, none are immune to these problems.

The first point has been raised already by [18] and by [19]. In

each of these studies, motions recorded from an inertial

measurement unit (IMU) at different commanded amplitudes

were analysed to assess their role in the experiments. In [18] each

of their commanded trajectories was recorded multiple times (13

to 19 repetitions) and the averaged signal was subtracted from

each trace to isolate the stochastic noise. Note that averaging over

many repetitions causes the stochastic noise to decrease with the

square root of the number of trials averaged [20], whereas the

deterministic component is always present in the average signal no

matter how many trials are averaged. The Fourier transform of

each trace was then computed to obtain the amplitude-frequency

spectrum of the stochastic noise. An ANOVA of the spectra (0.5 to

100 Hz in 0.5 Hz increments) showed no significant differences

between profiles. This method provides an objective way to

quantify the amount of stochastic noise in each profile by looking

at the amplitude spectrum of the frequencies after the average

signal is removed. Note that this procedure not only removes the

commanded motion signal but also any deterministic component

of the total noise. However, if there is reason to believe that the

deterministic noise also depends on the motion intensity (e.g. if the

amplitude of the deterministic noise increases with the amplitude

of the command), the deterministic noise should not be excluded

from the motion analysis, as it can provide a noticeable cue.

A different approach, employed by [19], suggests comparing

two different stimuli by treating the two digital IMU measures as

two different distributions after the commanded signal is filtered

out in the frequency domain. A t-test between these two

distributions is used to show that the amount of total noise is not

significantly different. Because the t-test is specifically designed to

compare the means of two populations, this method is able to

detect changes in the total noise mean but remains insensitive to

changes in the total noise amplitude (the distribution extremes) as

long as the two signals have similar means. It is however

reasonable to expect that the end-effector of the simulator

oscillates around the desired trajectory yielding mean simulator

noise close to zero for every trajectory. On the other hand, any

effect of motion intensity on the amplitude of the noise will not be

detected. For this reason, we did not apply this methodology in the

present work.

To the best of our knowledge, the second point, concerning

changes in the signal quality across the tested motion intensity

range, has never been addressed in any psychophysical study on

self-motion perception. Substantial evidence indicates that the

Figure 1. Acquired stimuli. Graphical representation of peak
amplitude for the acquired stimuli for both upward and downward
motion. The dashed lines indicate the reference intensities, around
which the higher and lower comparison were set.
doi:10.1371/journal.pone.0094570.g001

Figure 2. Example of an acquired motion profile and its
component. The total noise (grey dashed line) was obtained by
subtracting the input command (black dashed line) from the acquired
acceleration profile after low-pass filtering (black thick line). The figure
also illustrates the deterministic (black thin line) and stochastic (grey
thin line) components of the total noise of the recorded profile.
doi:10.1371/journal.pone.0094570.g002
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SNR of motion simulators depends on the commanded motion

intensity and frequency (cf. [12,21]) and that human self-motion

sensitivity is affected by stimulus SNR [22]. Therefore, we believe

that signal quality is a potential confound in the analysis of self-

motion responses and should always be given careful consider-

ation. It is not our goal here to investigate the effect of the motion

SNR on human self-motion sensitivity. Instead we present an SNR

analysis of the motion profiles, which constitutes an essential step

for a correct interpretation of experimental results.

For our chosen example study [17], it is most appropriate to

analyse the total noise because each trial consisted of both a

reference and comparison motion, of unequal amplitude, leading

to potential differences in both deterministic and stochastic noise.

Using total noise is best when the deterministic component may

alter the results. However, for comparison, here we also present

methodologies to quantify the relative contribution of stochastic

and deterministic components and their dependencies on the

commanded motion. Separate analysis of deterministic and

stochastic components is relevant, for example, in studies where

many repetitions of the same command are employed (e.g. for

measuring gains of the vestibular ocular reflex). In these cases the

actual motion stimulus is the motion command combined with the

deterministic noise, and deviations of eye traces from the actual

motion command are caused by physiological noise (focus of

interest) and stochastic noise (undesired simulator-introduced

variability).

Methods

The study was conducted using the Max Planck Institute

CyberMotion Simulator, a 6-degrees-of-freedom anthropomor-

phic robot-arm, able to provide a large variety of motion stimuli,

with a maximal vertical displacement of about 1.4 m and a

maximal vertical linear acceleration of about 5 m/s2 (for technical

details refer to Robocoaster, KUKA Roboter GmbH, Germany;

[23,24]). IMU traces were acquired for 10 reference stimuli (1 Hz

sinusoidal acceleration profiles with peak amplitudes of 0.07, 0.3,

1.1, 1.6 and 2 m/s2, both upward and downward) with a 3D

accelerometer (YEI 3-Space Sensor, 500 Hz) attached rigidly on

the back of the simulator seat. While our trajectories did not

involve rotations, it is important to note that for rotational

trajectories, seat and head motions differ and placing the IMU on

the participant’s head is a more sensible choice. For each reference

stimulus, we additionally recorded two comparison stimuli whose

peak intensity was raised (higher comparison) and lowered (lower

comparison) by two corresponding discrimination thresholds, so as

to quantify the noise level changes within stimuli of the same

condition. The discrimination thresholds associated with the

reference stimuli are 0.02 (unpublished observation), 0.09, 0.21,

0.23 and 0.25 m/s2, respectively [17]. Each profile (Fig. 1) was

recorded 20 times. Of the recorded profiles, only the frequency

components below 80 Hz were considered for further analyses,

under the assumption that for these profiles frequencies higher

than 80 Hz do not affect psychophysical performance (in

agreement with [19]). From each signal the 1 Hz input was

subtracted to obtain the total noise signal. Fig. 2 illustrates the

procedure for a downward acceleration with peak amplitude of

2.5 m/s2. The deterministic component was obtained by averag-

ing the total noise across repetitions of each profile, and the

stochastic component was obtained by subtracting the determin-

istic component from the total noise.

Two different methods were employed to analyse the total noise

level of the profiles: the amplitude-frequency spectrum and the

root mean square (rms). These methods are explained in more

details in the following sections. Additionally, for the 10 reference

stimuli, the SNR was computed to characterize the relationship

between the quality of the reproduced motion and the intensity of

the commanded motion (section Signal-to-noise ratio analysis). We

further analyse these stimuli in terms of the deterministic and

stochastic components of their total noise (section Deterministic

and stochastic noise analysis). Signal processing and statistical

analysis were performed in MATLAB (2012a) using custom-

written code and the Statistics toolbox.

Amplitude-frequency Spectrum Analysis
The total noise affecting the motion profiles can be objectively

quantified by its amplitude-frequency spectrum. Such an indicator

has the advantage of providing details about which frequencies are

more affected by the noise. This approach, based on [18], differs

from the original work described previously since from each

acquired trace only the input command is removed, rather than

the average over several repetitions (which contains both input and

deterministic noise). This allows for an analysis of the total rather

than the stochastic noise. Force/exponential windows of one and

two seconds, respectively, were applied to the original signals

according to equation 1. This allows for reduction of frequency

leakage [25,26] without altering the amplitude of the total noise

signal contained in the first second of the window.

x̂xi~

xi if 1ƒiv500

xi � exp { 10
N{1

� (i{500)
� �

if 500ƒiƒN

8><
>: ð1Þ

where xi hat is the i-th sample of the windowed signal, xi is the i-th

sampled measure of noise and N is the number of samples (in this

case 1500 samples).

After Fourier transforming the windowed signals we obtained 3

groups of 20 amplitude-frequency spectra for each condition

(Fig. 1): one group for the reference motion, one for the higher

comparison and one for the lower comparison. A typical

amplitude-frequency spectrum is presented in Fig. 3. Note that it

is possible to infer the main frequencies that compose the total

noise from spectral analysis. The 20 amplitude spectra of each

Figure 3. Amplitude-frequency spectrum. Example of an ampli-
tude-frequency spectrum for a reference of 1.6 m/s2 and corresponding
lower comparison. In this example the simulator noise mainly affects
frequencies around 4 Hz. Error bars represent standard deviations of
the 20 repetitions of each profile. The abscissa is limited to only the first
61 frequency components (0–20 Hz) out of the 241 (0–80 Hz) used for
the analysis for better graphical clarity.
doi:10.1371/journal.pone.0094570.g003
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reference motion were tested against the 20 amplitude spectra of

their corresponding higher and lower comparisons independently

by using an ANOVA with 2 factors: frequency (0 to 80 Hz in 0.33-

Hz increments, yielding 241 values) and motion profile (reference

or comparison).

The same analysis was also performed on the stochastic noise so

as to allow for comparison with the analysis of vibration reported in

[18] (note the change in terminology from ‘‘vibration’’ to

‘‘stochastic noise’’). Results of these analyses are shown in Table 1.

Root Mean Square Analysis
The rms, or quadratic mean, is a measure of the magnitude of a

varying quantity. Here, its discrete formula is used to objectively

quantify the noise level of each 1 sec signal:

rms~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i~1

xi2

vuut ð2Þ

where xi is the i-th sampled measure of noise and N is the number

of samples (in this case 500 samples). For each condition we

obtained 3 groups of 20 rms values each: one group for the

reference motion, one for the higher comparison and one for the

lower comparison, which were all repeated 20 times. To determine

whether noise level changes within conditions are reliable cues for

motion amplitude discrimination, every reference rms group was

tested for statistically significant differences (unpaired 2-sample t-

test) against its corresponding higher and lower comparison

independently. This rms analysis was conducted on the total noise

as well as the stochastic component of the noise. Results of these

analyses are shown in Table 1.

Signal-to-Noise Ratio Analysis
The SNR is used to express the relative amount of commanded

signal and background noise present in each trajectory. A SNR

close to 1 indicates that the level of noise in the reproduced motion

is comparable to the level of commanded signal. This is often the

case for motion simulators when reproducing small accelerations

(e.g. ,10 cm/s2 for the simulator tested here) [21,27]. Higher

SNRs indicate a reproduced motion of higher quality, where the

signal level overcomes the noise. We computed the SNR for every

repetition of the 10 reference motions according to the following

formula:

SNR~
rmssignal

rmstotal noise

� �2

ð3Þ

Differences in the SNRs were tested with an ANOVA with 2

factors: direction (upward or downward) and motion intensity

(0.07, 0.3, 1.1, 1.6 and 2 m/s2). See Fig. 4 for results.

Deterministic and Stochastic Noise Analysis
Quantitative measures of the stochastic and deterministic noise

components in a reproduced motion allow for characterization of

the nature of the noise, perhaps providing important information

for deciding how to deal with the noise (see discussion). We

calculated the rms of the stochastic and deterministic noise for the

10 reference motions. The Deterministic-to-Stochastic Ratio

(DSR) introduced in equation 4 indicates which component is

dominant in an analysed profile and the way that the total noise

composition changes over different stimulus intensities. The results

are presented in Fig. 5.

DSR~
rmsdet noise

rmsstoc noise

ð4Þ

Instrumentation and Environmental Noise
Even when recording no motion, a certain level of background

activity is to be expected in any IMU recording. This is due to

electrical interferences as well as specific traits of the IMU, which

obviously do not reflect real motion. New software and hardware

improvements are continuously being developed to reduce this

sensor noise (see e.g. [20,28]), however it can never be completely

eliminated. The analyses proposed in this manuscript assume that

sensor noise, in comparison to motion noise, is negligible. This is

often the case for high quality sensors, where sensor shielding

strongly reduces electrical interferences. However, in this work the

demonstration of the proposed techniques was done using

commercial hardware, potentially sensitive to environmental noise

such as electrical interferences from the simulator motors. To

quantify the level of sensor noise affecting the recordings, IMU

data were acquired for approximately 4 minutes while the motion

platform was powered but not moving and the rms of the

acceleration signal was calculated according to equation 2.

Results

The tested reference/comparison pairs show significantly

different total noise levels both in terms of amplitude-frequency

spectrum and rms of the total noise signals in almost every tested

pair (table 1). This indicates that the total noise introduced by the

simulator depends on the commanded motion intensity.

As expected, the stochastic noise (quantified by its rms value)

correlates with the inverse of the square root of the number of

trials averaged (in all groups 0.77#r#0.99, average r = 0.89).

However, sensor noise analysis revealed comparable noise levels

between the no-motion profile (rms mean +/2 std: = 0.05+/2
0.008 m/s2) and the motion profiles (see Fig. 5A). This suggests

that stochastic noise is likely to reflect predominantly sensor noise

rather than real motion noise, such that the level of stochastic

noise in the recorded trajectories is impossible to resolve with the

Figure 4. SNRs for motion profiles. The SNR for upward and
downward motion profiles increases as a function of motion intensity.
Error bars represent standard deviations of the 20 repetitions of each
profile.
doi:10.1371/journal.pone.0094570.g004
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current equipment. Results from the amplitude-frequency spec-

trum analysis and the rms analysis performed on the stochastic

noise alone (see table 1) should therefore be interpreted with

caution, as they likely reflect features of the sensor noise rather

than physical motion. The overall level of deterministic noise in

the motion trajectories (see Fig. 5A) is instead often higher than the

sensor noise rms, making it unlikely for the sensor noise to

significantly influence the analyses of the deterministic and total

noise components.

The total noise rms was found to increase non-linearly with the

amplitude of the commanded reference signal (F(4,199) = 25037,

p,0.001) over the tested range, which leads to SNRs that depend

on the motion intensity (Fig. 4). The results show SNRs one order

of magnitude higher for the stronger than for the weaker measured

profiles. Moreover, SNRs were overall better for downward

compared to upward motion (F(1,199) = 1560, p,0.001). These

results suggest that for perceptual systems whose sensitivity

increases with SNRs, regardless of motion intensity, motion

discrimination using this particular simulator should be propor-

tionally better for downward as compared to upward motions and

for higher as compared to lower motion intensities. Experimental

data on human motion sensitivity over wide motion ranges

[15,17,19,27], however, do not show such behaviour, suggesting

an additional noise source inherent to the perceptual system which

is proportional to stimulus intensity. Asymmetries in vertical

motion sensitivity [17], instead, might be entirely explained by the

results of the SNR analysis.

The rms of the stochastic and deterministic noise of each

reference profile for upward and downward movements is

presented in Fig. 5A. The level of the deterministic noise increases

notably with the stimulus intensity and overall is higher than the

level of the stochastic noise, which on the other hand remains

rather constant over the tested motion range. Consequently, DSRs

increase for stronger motion intensities. Note that, as stated above,

the stochastic components of the motion noise are likely lower

than the noise of the employed sensor. Therefore, the rms of the

stochastic noise represents an ‘‘upper bound’’ for the true rms

value of the stochastic noise in the motion profiles. Nevertheless,

from these results emerges a dominance of the deterministic

component of the total noise over the stochastic component,

particularly at the higher motion intensities. This suggests that

deterministic noise is more likely than stochastic noise to impact

self-motion perception in this experimental paradigm.

Discussion

The analyses presented here allow characterization of the noise

introduced by the simulator when reproducing commanded

trajectories. They provide sensitive methods to compare the noise

Figure 5. Relative contributions of deterministic and stochastic components to the total noise. Panel A: Each reference stimulus
recording is associated with the rms of its deterministic (filled triangles) and stochastic component (empty triangles) for both upward (upward
pointing triangles) and downward (downward pointing triangles) motions. Panel B: The DSR for upward and downward profiles. Both panels
indicate a predominance of deterministic over stochastic noise in the recorded profiles. Error bars represent standard deviations of the 20 repetitions
of each profile.
doi:10.1371/journal.pone.0094570.g005

Figure 6. Amplitude-frequency spectrum of the deterministic
and stochastic noise components. Amplitude-frequency spectrum
of the deterministic and stochastic noise components of the
acceleration profile whose total noise is illustrated in Fig. 3. The DSR
of this profile is 13.48.
doi:10.1371/journal.pone.0094570.g006
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level of different commanded stimuli and to graphically and

statistically describe the reproduced motion. Results show that the

total noise of the simulator increases with the amplitude of the

command in a nonlinear way, leading to an SNR that increases

with the motion intensity. Even for relatively small changes in the

amplitude of the commanded motion, changes in the measured

noise are statistically significant. This raises the question of

whether a human, when asked to report changes in the motion

intensity, could use changes in the simulator noise as a cue rather

than changes in the signal itself.

It is reasonable to assume that, if our analyses of the IMU

signals do not demonstrate these differences, the human will also

not detect them. It is however erroneous to conclude the opposite.

The simulator motion is available to the CNS only after being

processed by the sensory systems (vestibular, somatosensory and

proprioceptive), whose dynamics are imperfect due to frequency

dependences and noise [29,30]. Furthermore, the way that the

CNS deals with these signals is likely different from the statistical

analysis employed here. Consider as an example the mp3 and

AAC encoding techniques in music: even though the frequency

spectra of the original and compressed signals look dramatically

different, they are virtually indistinguishable to a human observer

due to the inability of the auditory system to perceive the

differences [31]. Although the frequency response range of the

otolith organs of the vestibular system is estimated to be between

0 Hz and 1.6 Hz [32], the contribution of the other sensory

systems should not be neglected. For this reason we did not filter

the data with a model of the vestibular system.

Given these results and the previous considerations, speculations

can be made as to how simulator noise affects human perception

of motion intensity. To distinguish between motions at different

intensities, differences in the neuronal signals that reach the CNS

need to overcome the internal noise level [33–35]. If the internal

noise is small relative to the total noise of the motion, motion

stimuli with high SNR are likely to generate neuronal signals that

also have a high SNR. This would facilitate the process of

detecting changes in the motion intensity. Additionally, human

self-motion sensitivity could be enhanced by changes in the motion

noise level if those changes are captured by the human sensors and

successfully processed by the CNS. An accurate analysis of the

noise of the experimental setup is therefore of great importance for

the active research field investigating the noise in the nervous

system and its effect on information processing [36].

By including a demonstration of the proposed methodologies in

this paper, we raise the practical concern of sensor noise, which

affects any measuring setup regardless of the sensor nature (e.g.

IMUs, optical trackers, etc.). Sensor measures during no motion

allowed us to estimate the level of sensor noise and to conclude

that stochastic components of the noise motion are likely smaller

than the level of sensor noise, indicating that simulator-introduced

noise is primarily of deterministic nature. A more precise

quantification of the stochastic motion noise was precluded by

the stochastic sensor noise. Overall, caution is advised in the

interpretation of sensor measurements as much as in the

interpretation of responses to noisy self-motion stimuli.

To address the stochastic and deterministic composition of the

total noise, we have provided their formal definitions and a

methodology for extracting them from IMU recordings. Other

than using the DSR introduced here, deterministic and stochastic

noise can also be compared using a frequency analysis, which is

particularly useful for highlighting the frequency ranges affected

by the two types of noise (see the examples in Fig. 6).

Whenever possible effort should be spent in minimizing the

deterministic noise, so that its impact during experiments is also

minimized. This is particularly beneficial in cases where a DSR

analysis indicates a predominantly deterministic nature of the

noise. Deterministic noise can be reduced by using iterative

learning control algorithms [37,38]: given a desired trajectory

these algorithms iteratively process IMU recordings of the

simulator motion and modify the simulator commands so as to

track the desired trajectory as closely as possible.

Conclusion

Simulator-introduced noise is a recurrent concern for neurosci-

entists who use motion simulators to investigate the neural and

cognitive mechanisms of self-motion perception. In this work we

developed straightforward graphical and statistical techniques for

the analysis of motion stimuli commonly employed in self-motion

studies. Rather than measuring the dynamic qualities of a motion

system, these analyses allow for dissociation between simulator and

physiological noise and therefore constitute a valuable set of tools

for the interpretation of neurophysiological and behavioural

responses, as well as for meaningful comparisons across the

existing literature. We further illustrated these analyses and their

relevance using a prior study on human self-motion perception.

Results clearly demonstrate the importance of noise, including

both stochastic and deterministic components. It should be noted

that, although the methods are of general application, the

presented results hold for the employed simulator only and other

simulators are expected to show substantial differences in their

dynamic responses.
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