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Abstract

Objective: Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two
distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-b and gp130 (II), respectively. Aim of this study was to
analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation.

Methods: OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments,
signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR.
Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water
soluble tetrazolium assays.

Results: The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and
OSMR-b, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates
STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated
(adj.-p#0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories ‘‘immunity and defense’’
(p = 2.161027), ‘‘apoptosis’’ (p = 3.761024) and ‘‘JAK/STAT cascade’’ (p = 3.461026). Members of the SERPIN gene family
were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell
proliferation (p,0.05) and wound healing (p = 3.961025). OSM protein expression was increased in colonic biopsies of
patients with active inflammatory bowel disease (IBD).

Conclusions: OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro.
Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation
may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to
elucidate the exact role of OSM in intestinal inflammation and the potential of OSM as a drug target in IBD.
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Introduction

Oncostatin M (OSM) is a member of the IL-6 cytokine family,

which also includes IL-6, IL-11, leukemia inhibitory factor (LIF)

and cardiotrophin-1. OSM is mainly produced by activated T

cells, monocytes, and dendritic cells, and shows 27% amino acid

identity with LIF. The genes for both cytokines lie in close

proximity on chromosome 22q12. In a genome-wide association

study, a single nucleotide polymorphism (rs2412970) on chromo-

some 22 within proximity of LIF and OSM has recently been

identified as a susceptibility gene for Crohn’s disease (CD) [1]. IL-

6 is a proinflammatory cytokine up-regulated in chronic inflam-

matory diseases like inflammatory bowel disease (IBD), and a

monoclonal antibody against IL-6 (tocilizumab) is used in patients

with rheumatoid arthritis and in clinical studies for the treatment

of IBD [2]. IL-6 plays a pivotal role in development, immune

regulation, cell survival, growth and homeostasis [3]. gp130 (also

called CD130) is the shared receptor subunit for all members of

the IL-6 family of cytokines [4]. Two different OSM receptors

have been discovered so far: OSM type I, which consists of gp130

and the LIF receptor (LIFR), and OSM type II which consists of

gp130 and OSMR-b [5]. Upon ligand binding to these receptor

complexes, various signal cascades are activated, including JAK/
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STAT- and MAP kinase pathways [6,7]. While gp130 is

ubiquitously expressed, the specific OSM receptor subunits

OSMR-b and LIFR are confined to certain tissues, including

the kidney, pancreas, liver and the lung [6].

OSM plays an important role in hematopoiesis, immunity, bone

remodeling, and inflammation [7]. However, the exact role of

OSM in inflammation remains to be defined. There are several

studies demonstrating both pro- and anti-inflammatory effects of

OSM, e.g. inhibiting IL-1b secretion [8] vs. potentiating the effects

of IL-1b [9] in synovial fibroblasts. The inflammatory response is

mainly mediated via overexpression of acute phase proteins in the

liver [10,11]. Currently, there are only few data regarding

regulation of the OSM receptor expression and its detailed signal

transduction and specific biological functions in intestinal epithe-

lial cells (IEC) and intestinal inflammation. A previous study

showed that adenoviral vector transfer of OSM ameliorated

dextrane sodium sulfate (DSS)-induced colitis in mice compared to

IL-6, implicating a protective role for OSM in intestinal

inflammation [12]. However, when the authors used a different,

TH2-driven colitis model in mice (oxazolone), viral vector transfer

of OSM enhanced the pathology [12]. Therefore, our main study

aims were the analysis of OSM-mediated signaling and biological

functions in IEC. Our study reveals that OSM may promote

intestinal barrier functions via enhanced STAT3-dependent cell

proliferation and wound healing as well as upregulation of

SERPIN proteins. Increased OSM expression in colonic biopsy

specimens of patients with active IBD indicates an important role

in human intestinal inflammation. This study contains the first

detailed analysis of OSM-induced target genes in IEC and of

OSM expression in human IBD.

Methods

Ethical Statement
The study was approved by the Ethics committee of the

Ludwig-Maximilians-University Munich, Department of Medi-

cine, Munich-Grosshadern (project-nr. 343-09) and adhered to the

ethical principles for medical research involving human subjects of

the Helsinki Declaration. All patients gave written informed

consent prior to colonic biopsy sampling.

Reagents
Recombinant human OSM, IL-22 and TNF-a were purchased

from R&D Systems (Minneapolis, MN, U.S.A.). Antibodies were

from BD Transduction Laboratories, Franklin Lakes, NY, U.S.A.

(pSTAT1), Upstate Biotechnology, Lake Placid, NY, U.S.A.

(pSTAT3), and Santa Cruz Biotechnology, Santa Cruz, CA,

U.S.A. (OSM, OSMR-b, LIFR, gp130, STAT1, STAT3, actin,

PCNA). Horseradish peroxidase conjugated secondary antibodies

to mouse or rabbit IgG and chemiluminescent substrate (Super-

Signal West Dura Extended Duration Substrate) were from Pierce

(Rockford, IL, U.S.A.). Polyclonal antibodies to phosphorylated

janus-kinase-2 (JAK-2, Tyr221), extracellular signal-regulated

kinase (ERK)-1/2 (Thr183/Tyr185), phosphorylated stress-acti-

vated protein kinase (c-Jun N-terminal kinase) SAPK/JNK-1/2

(Thr183/Tyr185), and phospho-Akt (Ser473) were purchased

from Cell Signaling (Beverly, MA, U.S.A.). Anti-ERK-1/2, anti-

SAPK/JNK-1/2, and anti-Akt antibodies were also from Cell

Signaling (Beverly, MA, U.S.A.). Wortmannin and PD98059 were

from Tocris Bioscience (Bristol, UK). Horseradish peroxidase

linked anti-rabbit secondary antibody was purchased from

Amersham (Arlington Heights, IL, U.S.A.). STAT3- and control

siRNA were purchased from Ambion/Life Technologies (Darm-

stadt, Germany).

Cell culture
The human colorectal cancer-derived IEC lines SW480, Caco-

2, HT-29, HCT116, and DLD-1 were purchased from American

Type Culture Collection (Rockville, MD, U.S.A.). Cells were

grown in Dulbecco’s modified Eagle medium, high glucose (PAA,

Pasching, Austria), with 100 IU/mL penicillin, 100 mg/mL

streptomycin, and 10% heat-inactivated fetal calf serum (PAA,

Pasching, Austria) in a humidified 5% CO2 atmosphere at 37uC.

Reverse transcriptase polymerase chain reaction (RT-
PCR), quantitative PCR and microarray analysis

For quantitative PCR, total RNA was isolated using Qiagen

RNeasy Kit from Qiagen (Hilden, Germany). RNA concentration

and purity was measured on the NanoDrop ND-1000 spectral

photometer (Peqlab, Erlangen, Germany) and RNA was reverse

transcribed with the Roche Transcriptor First Strand cDNA

synthesis Kit (Roche, Mannheim, Germany). Real-time qPCR was

performed on a LightCycler480 with SYBR Green PCR Master

Mix from Roche. Gene expression was normalized to b-actin in

the respective samples. Oligonucleotide primer pairs (Eurofins

MWG Operon, Ebersberg, Germany) were designed according to

the published sequences avoiding amplification of genomic DNA

and are listed in Table 1.

Table 1. Primers used for PCR and qPCR.

Gene Primer combination

gp130 forward 59-TCAACTTGGAGCCAGATTCC-39

gp130 reverse 59-CCCACTTGCTTCTTCACTCC-39

LIFR forward 59-ATGGGAAGACATTCCTGTGG-39

LIFR reverse 59-CGCAAGACCAGGTGGTAACT-39

OSMR-beta forward 59-GGAATGTGCCACACACTTTG-39

OSMR-beta reverse 59-ACATTGGTGCCTTCTTCCAC-39

OSM forward 59-GCTGCTCAGTCTGGTCCTTG-39

OSM reverse 59-CCCTGCAGTGCTCTCTCAGT-39

SERPINA3 forward 59-ACACAGGCAATGCCAGCGCA-39

SERPINA3 reverse 59-CCTGGCCCCTGTGATCCCTGA-39

STAT1 forward 59-TCGGCAGCAGCTTAAAAAGT-39

STAT1 reverse 59-CACCACAAACGAGCTCTGAA-39

STAT2 forward 59-GCTTCCTCTATCCCCGAATC-39

STAT2 reverse 59-TTGCAGTTCATCCACCTGTC-39

STAT3 forward 59-AGCTGCACCTGATCACCTTT-39

STAT3 reverse 59-AATTGGGGGCTTGGTAAAAA-39

STAT4 forward 59-AAGGAACGGCTGTTGCTAAA-39

STAT4 reverse 59-CCCCTTTCTGTTGGTCTTGA-39

STAT5A forward 59-CAAGGAGAACCTCGTGTTCC-39

STAT5A reverse 59-AGTCAAACTTCCAGGCGATG-39

STAT5B forward 59-CAACAGGCCCATGACCTACT-39

STAT5B reverse 59-TGCTTGATCTGTGGCTTCAC-39

STAT6 forward 59-TTGGCTTCATCAGCAAACAG-39

STAT6 reverse 59-GGTCCCTTTCCACGGTCA-39

GAPDH forward 59-CGGAGTCAACGGATTTGGTCGTAT-39

GAPDH reverse 59-AGCCTTCTCCATGGTGGTGAAGAC-39

b-actin forward 59-CCTCGCCTTTGCCGATCCGC-39

b-actin reverse 59-CCACCATCACGCCCTGGTGC-39

doi:10.1371/journal.pone.0093498.t001
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For microarray experiments, HCT116 cells were starved

overnight with medium containing 1% FCS after reaching 70%

confluency. On the next day, cells were stimulated in quadru-

plicates with 100 ng/mL OSM or left unstimulated. RNA was

isolated 6 hours after stimulation and RNA concentration and

purity was measured. For the analysis of the OSM-induced gene

expression, the Agilent Whole Human Genome Oligo Micro-

array was used in combination with a One-Color based

hybridization protocol. Signals were detected with the Agilent

DNA Microarray Scanner. Differential gene expression was

identified by applying biostatistics using the GeneSpring GX 10

analysis software (Agilent Technologies, Santa Clara, CA, U.S.A.)

to normalize and analyze the raw data. OSM-induced gene

expression was calculated in comparison to unstimulated cells at

the same time point. Welch’s approximate t-test (‘‘unpaired

unequal variance’’, parametric) was applied to the comparison of

the different groups. Resulting p-values were corrected for

multiple testing using the algorithm of Benjamini et al. [13].

Functional analysis (categories of biological processes, molecular

functions and pathway categories) of induced and repressed genes

was performed using analysis tools from the Panther homepage

[14]. By comparing OSM-regulated gene identification numbers

Figure 1. The OSM receptor complexes are expressed in intestinal epithelial cells. (A) mRNA expression of gp130, LIFR and OSMR-b in
various intestinal epithelial cell lines, were analyzed by semiquantitative RT-PCR analysis of mRNA derived from cells as indicated. Sterile water served
as negative control. (B) Immunofluorescence analysis demonstrated the expression of gp130, LIFR and OSMR-b in HCT116 cells. Nuclei (blue) were
stained with DAPI. In the isotype controls (rabbit for LIFR and gp139 and goat for OSMR-b) no specific stainings were detected. (C)
Immunhistochemical experiments in colonic biopsies of healthy volunteers, which confirms the expression of the OSM receptors gp130, LIFR and
OSMR-b in the human intestine (206magnification left panel, 406magnificantion right panel).
doi:10.1371/journal.pone.0093498.g001
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to the distribution of all gene identification numbers represented

on the Whole Human Genome Oligo Microarray (Agilent

Technologies), it was calculated whether a specific class is over-

or underrepresented. P-values of p,1025 (based on binomial test)

were considered as a sign of enrichment in the context of a

Panther analysis for biological processes, molecular functions and

pathway categories. All microarray data presented are MIAME

compliant and the raw data have been deposited in a MIAME

compliant database in Gene expression omnibus (GEO accession

number GSE53295).

siRNA transfection
HCT116 cells were transfected with siRNA using Lipofecta-

mine 2000 (Ambion/Life Technologies, Darmstadt, Germany)

and specific siRNA against STAT3, LIFR and OSMR or an

unspecific control siRNA according to the manufacturers’

recommendation.

Signal transduction experiments and immunoblotting
The signal transduction experiments were performed in

overnight serum-starved IEC lines as indicated. Cells were

stimulated with 100 ng/mL OSM. They were solubilized in lysis

Figure 2. OSM activates ERK-1/2, SAPK/JNK-1/2 MAP kinases, the PI3-kinase Akt and STAT1/3 in HCT116 cells and STAT3 activation
is dependent of the LIFR. (A) Stimulation with OSM (100 ng/mL) resulted in increased phosphorylation of ERK-1/2, SAPK/JNK-1/2 kinases and
induced PI3 kinase-dependent Akt phosphorylation. One representative experiment (n = 3) is shown. TNF-a (50 ng/mL) served as positive control. (B)
Activation and expression of phospho-STATs and protein loading of the respective STAT proteins were assessed by immunoblotting. STAT1 and
STAT3 phosphorylation was detected with a maximum at 10–30 min after stimulation with OSM (100 ng/mL). One representative experiment (n = 3)
is shown. IL-22 (100 ng/mL), for which we previously demonstrated STAT1 and STAT3 activation in IEC [44], served as positive control. (C) MEK
inhibition did not alter OSM-mediated STAT3 upregulation. Similarly, STAT3 inhibition had no significant effect on ERK-1/2 regulation. PCNA served as
house keeping control. (D) Knockdown of OSMR, but not LIFR in HCT116 cells resulted in decrease of STAT3-phosphorylation after OSM stimulation
compared to cells treated with control siRNA (co siRNA). One representative experiment (n = 3) is shown.
doi:10.1371/journal.pone.0093498.g002
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buffer containing 1% Nonidet P-40, 20 mM Tris-HCl (pH 7.4),

150 mM NaCl, 2 mM EDTA, 2 mM EGTA, 10 mg/mL aproti-

nin, 2 mM phenylmethylsulfonyl fluoride, 10 mg/mL leupeptin

and phosphatase inhibitors (400 mM sodium orthovanadate and

4 mM NaF) and were passed several times through a 21G needle.

After 30 minutes on ice, lysates were centrifuged at 10.000 g for

20 minutes. The protein concentration of each sample was

quantified by the Bradford method. Immunoblotting was

performed as previously described [15].

Cell proliferation assays
HCT116 cells were seeded onto 96 well plates and were allowed

to attach overnight. Cells were then stimulated with 100 ng/mL

OSM, or with cytokine-free medium (negative control) for the

indicated time intervals. Cell proliferation was determined by the

WST-1 (water soluble tetrazolium) assay (Roche, Mannheim,

Germany) and CellTiterGlo assay (Promega, Madison, U.S.A.)

according to the manufacturer’s instructions. The WST-1 assay

quantifies a combination of cellular proliferation, viability, and

cytotoxicity; the CellTiterGlo assay is a luminescence cell viability

assay which measures ATP of metabolic active cells in a luciferase

reaction to determine the amount of viable cells. For each

experiment, 16 wells were analyzed.

Wounding assay
Wounding assays were performed as previously described [16].

Briefly, HCT116 cells were grown in 6 well or 96 well plates to

complete confluency. Using a sterile pipet tip, circular wounds

were created in each well. Detached cells were removed by

washing with PBS, and the cell medium was changed from 10%

FCS containing medium to 1% FCS containing medium. The cells

were stimulated with OSM (100 ng/mL) or left unstimulated. The

next day, the overgrown area was calculated under a confocal laser

scanning microscope 510 (Zeiss, Jena, Germany) using AxioVision

4.6 (Zeiss, Jena, Germany). For each group (OSM stimulated and

medium stimulated), 16 or more wells were analyzed.

Apoptosis assays
Similar to cell proliferation experiments, HCT116 cells were

seeded onto 96 well plates at a density of 105 cells/well and were

allowed to attach overnight. Cells were then stimulated with 10 or

100 ng/mL OSM or with cytokine-free DMEM medium

containing 1% FCS (negative control) for 6 hours. Apoptosis was

measured using the caspase-3/7 chemoiluminescence assay

(Promega, Madison, U.S.A.) according to the manufacturer’s

instructions. TNF-a (50 ng/mL) was used as positive control.

Colonic biopsies
Biopsies for immunohistochemical and qPCR analysis were

taken from patients with CD and UC undergoing routine

diagnostic colonoscopy. Written informed consent was obtained

from all study patients.

Immunohistochemical and immunofluorescent staining
Immunohistochemical staining of paraffin-embedded tissue of

colonic biopsies was performed using standard procedures.

Briefly, sections were subjected to heat-induced epitope retrieval

solution(pH = 6) and endogenous peroxidase was blocked with

0.3% H2O2, followed by blocking in 5% normal serum (Dako,

Glostrup, Denmark) and avidin and biotin blocking solution

(Vector Laboratories, CA, U.S.A.). Primary anti-OSM, anti-

OSMR, anti-LIFR and anti-gp130 antibodies (Santa Cruz

Biotechnology, Santa Cruz, CA, U.S.A.) was applied overnight

at 4uC, and detected using a biotinylated secondary antibody

together with streptavidin-HRP (all from Dako, Glostrup, Den-

mark). For immunofluorescent staining, HCT116 cells were fixed

for 1 minute in methanol:glacial acetic acid (1:1), washed and

rehydrated in PBS for at least 30 minutes. Blocking was done for

1 hour at room temperature (RT) in 5% normal serum, followed

by incubation with the respective primary antibodies or isotype

controls overnight at 4uC. The next day, immunofluorescent

staining was achieved by incubation with the appropriate

secondary antibody (AlexaFluor488- or AlexaFluor546-conjugat-

ed, Life Technologies, Darmstadt, Germany) for 30 minutes at

RT. Nuclei were stained with DAPI (Life Technologies,

Darmstadt, Germany) and sections were mounted and images

acquired on a Zeiss LSM 510 confocal microscope (Zeiss, Jena,

Germany).

Measurement of OSM mRNA levels in colonic biopsies of
IBD patients

RNA from colonic biopsies was isolated using ceramic bead-

assisted homogenization in a MagNALyser (Roche, Mannheim,

Germany). RNA was reverse transcribed and subjected to qPCR.

mRNA levels were calculated using a standard-curve which was

previously acquired by the measurement of reverse-transcribed

serial dilutions of pooled RNA. These arbitrary values were

normalized to the median mRNA level of the housekeeping genes

YWHAZ, HPRT1 and RPL13A. In cases where no OSM

expression was detected, the cycle threshold of the corresponding

sample was set to that of the negative control (no reverse

transcriptase control).

Statistical analysis
If not stated otherwise, statistical analyses were performed by

using the two-tailed Student’s t-test. P values,0.05 were

considered as statistically significant. Standard errors of the mean

(SEM) were calculated by dividing the standard deviation (SD) by

the square root of the number of single data in the respective

group.

Results

Intestinal epithelial cells express OSM receptors
To determine if the OSM receptor complexes consisting of

gp130 and LIFR (type I) and gp130 and OSMR-b (type II) are

expressed in IEC, we analyzed mRNA expression in several

human IEC lines (CaCo-2, DLD-1, SW480, HCT116, HT-29).

RT-PCR analysis demonstrated gp130 and OSMR-b mRNA

expression in all cell lines tested, whereas LIFR was only

Table 2. Number of up- and down-regulated genes after
6 hours with different stringency criteria.

adj.-p#0.01 adj.-p#0.05

FC$2 FC$2

up down S up down S

OSM vs. untreated 50 9 59 79 15 94

The left group represents hits from the initial screening with uncorrected p-
value of #0.01 vs. untreated cells. The right group depicts the number of
regulated genes after the p-value was adjusted for multiple testing. FC = fold-
change.
doi:10.1371/journal.pone.0093498.t002
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expressed in HCT116 cells. Accordingly, qPCR analyses

confirmed that HCT116 cells express all receptors at a higher

level compared to other IEC (Fig. 1A and Fig. S1).

Immunofluorescence analysis confirmed OSMR-b, gp130

and LIFR protein expression in HCT116 cells, which were

therefore used in the following experiments (Fig. 1B). More-

over, we performed immunhistochemical stainings in colonic

biopsies of healthy volunteers which confirmed the expression

of the OSM receptors gp130, LIFR and OSMR-b in the

human intestine (Fig. 1C).

OSM activates the MAP kinases ERK-1/2, SAPK/JNK-1/2,
and the PI3 kinase Akt and induces phosphorylation of
the STAT1 and STAT3 transcription factors in intestinal
epithelial cells

To analyze if the IEC-expressed OSM receptor complexes are

functional, we investigated MAP kinase and STAT signaling upon

OSM stimulation in IEC. OSM induced phosphorylation of ERK-

1/2 and SAPK/JNK-1/2 MAPK (Fig. 2A), whereas total ERK-1/

2 and SAPK/JNK-1/2 levels remained unchanged. In addition,

we detected an increased phosphorylation of Akt after OSM

stimulation (Fig. 2A). Since recent studies have demonstrated

Table 3. Top 20 genes whose expression was most strongly induced (p,0.01) by OSM in HCT116 cells after 6 hours of stimulation
vs. unstimulated HCT116 cells.

Gene ID Gene symbol Description OSM treatment fold increase

NM_002974 SERPINB4 Homo sapiens serpin peptidase inhibitor,
clade B (ovalbumin), member 4 (SERPINB4), mRNA
[NM_002974]

39.43

NM_006919 SERPINB3 Homo sapiens serpin peptidase inhibitor. clade B
(ovalbumin). member 3 (SERPINB3).
mRNA [NM_006919]

36.31

NM_152321 ERP27 Homo sapiens chromosome 12 open reading
frame 46 (C12orf46). mRNA [NM_152321]

10.42

NM_001085 SERPINA3 Homo sapiens serpin peptidase inhibitor. clade A
(alpha-1 antiproteinase. antitrypsin). member 3
(SERPINA3). mRNA [NM_001085]

9.16

NM_030641 APOL6 Homo sapiens apolipoprotein L. 6 (APOL6). mRNA
[NM_030641]

6.65

NM_145641 APOL3 Homo sapiens apolipoprotein L. 3 (APOL3). transcript
variant beta/a. mRNA [NM_145641]

5.63

NM_002241 KCNJ10 Homo sapiens potassium inwardly-rectifying channel.
subfamily J. member 10 (KCNJ10). mRNA [NM_002241]

5.25

NM_003955 SOCS3 Homo sapiens suppressor of cytokine signaling 3
(SOCS3). mRNA [NM_003955]

5.09

NM_003955 SOCS3 Homo sapiens suppressor of cytokine signaling 3
(SOCS3). mRNA [NM_003955]

5.02

NM_005178 BCL3 Homo sapiens B-cell CLL/lymphoma 3 (BCL3). mRNA
[NM_005178]

4.54

THC2664989 THC2664989 Q40J89_EHRCH (Q40J89) Cation efflux protein.
partial (6%) [THC2733597]

4.07

NM_031458 PARP9 Homo sapiens poly (ADP-ribose) polymerase family.
member 9 (PARP9). mRNA [NM_031458]

4.05

NM_000246 CIITA Homo sapiens class II. major histocompatibility
complex. transactivator (CIITA). mRNA [NM_000246]

3.92

NM_000204 CFI Homo sapiens complement factor I (CFI). mRNA
[NM_000204]

3.64

NM_001712 CEACAM1 Homo sapiens carcinoembryonic antigen-related cell
adhesion molecule 1 (biliary glycoprotein) (CEACAM1).
transcript variant 1. mRNA [NM_001712]

3.58

NM_030641 APOL6 Homo sapiens apolipoprotein L. 6 (APOL6). mRNA
[NM_030641]

3.38

NM_032945 TNFRSF6B Homo sapiens tumor necrosis factor receptor
superfamily. member 6b. decoy (TNFRSF6B). transcript
variant M68C. mRNA [NM_032945]

3.37

NM_144586 LYPD1 Homo sapiens LY6/PLAUR domain containing 1 (LYPD1).
transcript variant 1. mRNA [NM_144586]

3.13

NM_032206 NLRC5 Homo sapiens NLR family. CARD domain containing 5
(NLRC5). mRNA [NM_032206]

3.13

NM_138287 DTX3L Homo sapiens deltex 3-like (Drosophila) (DTX3L). mRNA
[NM_138287]

3.04

doi:10.1371/journal.pone.0093498.t003
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STAT activation by OSM in several cell types, we analyzed the

influence of OSM on phosphorylation levels of STAT1 and

STAT3 in IEC. Tyrosine phosphorylation of STAT1 was

increased after stimulation with OSM, as well as tyrosine

phosphorylation of STAT3 with a transient and time-dependent

maximum phosphorylation level after 10–30 minutes (Fig. 2B).

To determine if MEK inhibition modulates STAT3 activation

and vice versa, we performed western blots experiments analyzing

pERK-1/2 and pSTAT3 after 60 min of OSM stimulation with

and without pretreatment with siRNA against STAT3 and the

MEK inhibitor PD98059. We demonstrated that there is no

crosstalk between MEK and STAT signaling, since MEK

inhibition did not alter or diminish OSM-mediated STAT3

upregulation. Similarly, STAT3 inhibition had no significant effect

on ERK-1/2 regulation. Significant knockdown of STAT3 using

STAT3 siRNA and ERK1/2 using PD98059 is also shown in this

experiment (Fig. 2C).

STAT3 phosphorylation mediated by OSM is dependent
on OSMR

To determine which receptor subunit is crucial for STAT3

phosphorylation induced by OSM, we performed western blot

experiments with specific siRNA knockdown of LIFR and OSMR

in HCT116 cells which express both receptors. We demonstrated

that knockdown of the OSMR resulted in a decrease of STAT3

phosphorylation after OSM stimulation compared to cells treated

with control siRNA, while pretreatment with LIFR siRNA had no

inhibitory effect on STAT3 phosphorylation (Fig. 2D).

Genes involved in immunity, defense and apoptosis are
upregulated upon OSM stimulation of intestinal
epithelial cells

Having demonstrated that OSM activates MAP kinases, PI3

kinase and STATs, we next analyzed the impact of OSM on the

expression of putative target genes. The OSM-induced gene

expression in HCT116 cells was analyzed by RNA microarray

experiments. Cells were stimulated for 6 hours with 100 ng/mL

OSM, while controls were left unstimulated for the same time

interval. A total of 94 genes were significantly regulated by OSM

(79 genes up-regulated, 15 down-regulated; adj.-p#0.05; Table 2).

The 20 most strongly up- and downregulated genes for OSM are

shown in tables 3 and 4, respectively.

The differentially regulated genes were analyzed for affiliation

to biological processes, molecular functions and pathways using

the Panther classification [14]. Enrichment of these functional

classes compared to the distribution represented on the Agilent

Table 4. Top 20 genes whose expression was most strongly repressed (p,0.01) by OSM in HCT116 cells after 6 hours of
stimulation vs. unstimulated HCT116 cells.

Gene ID Gene symbol Description
OSM treatment
fold decrease

AF086547 AF086547 Homo sapiens full length insert cDNA clone ZE12B03. [AF086547] 2.99

ENST00000315707 ENST00000315707 Uncharacterized protein C17orf44. [Source:Uniprot/SWISSPROT;
Acc:Q8NAT9] [ENST00000315707]

2.79

AK092638 AK092638 Homo sapiens cDNA FLJ35319 fis, clone PROST2011577. [AK092638] 2.37

A_23_P90470 A_23_P90470 2.18

NM_024320 ATAD4 Homo sapiens ATPase family, AAA domain containing 4 (ATAD4),
mRNA [NM_024320]

2.17

NM_145176 SLC2A12 Homo sapiens solute carrier family 2 (facilitated glucose transporter),
member 12 (SLC2A12), mRNA [NM_145176]

2.16

NM_005502 ABCA1 Homo sapiens ATP-binding cassette, sub-family A (ABC1), member 1
(ABCA1), mRNA [NM_005502]

2.15

NM_004354 CCNG2 Homo sapiens cyclin G2 (CCNG2), mRNA [NM_004354] 2.14

NM_000499 CYP1A1 Homo sapiens cytochrome P450, family 1, subfamily A, polypeptide 1
(CYP1A1), mRNA [NM_000499]

2.09

NM_152500 CCDC17 Homo sapiens coiled-coil domain containing 17 (CCDC17), mRNA
[NM_152500]

2.08

NM_014417 BBC3 Homo sapiens BCL2 binding component 3 (BBC3), mRNA [NM_014417] 2.07

NM_001080474 FLJ43987 Homo sapiens similar to RIKEN cDNA 4930433I11 gene (FLJ43987), mRNA
[NM_001080474]

2.05

NM_014417 BBC3 Homo sapiens BCL2 binding component 3 (BBC3), mRNA [NM_014417] 2.03

AK091132 AK091132 Homo sapiens cDNA FLJ33813 fis, clone CTONG2002744. [AK091132] 2.01

NM_006813 PNRC1 Homo sapiens proline-rich nuclear receptor coactivator 1 (PNRC1), mRNA
[NM_006813]

2.01

NM_001008540 CXCR4 Homo sapiens chemokine (C-X-C motif) receptor 4 (CXCR4), transcript
variant 1, mRNA [NM_001008540]

1.95

BC039664 LOC400604 Homo sapiens hypothetical gene supported by BC039664, mRNA
(cDNA clone IMAGE:2901155). [BC039664]

1.94

THC2648781 THC2648781 Q7SCZ7_NEUCR (Q7SCZ7) Predicted protein, partial (5%) [THC2648781] 1.94

AL834280 AL834280 1.89

NM_176891 IFNE1 Homo sapiens interferon epsilon 1 (IFNE1), mRNA [NM_176891] 1.86

doi:10.1371/journal.pone.0093498.t004
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Whole Human Genome microarray was analyzed (Table 5).

Within the set of up-regulated genes of biological processes, the

classes ‘‘immunity and defense’’ (p = 2.161027) and ‘‘apoptosis’’

(p = 3.761024) were most significantly enriched (Fig. 3A). In

addition, JAK-STAT cascade, a subclass of the biological process

class of ‘‘signal transduction’’ was significantly enriched. Among

the up-regulated genes of class ‘‘other transcription factor’’, a

subclass of the molecular function class of ‘‘transcription factor’’,

was significantly enriched (Fig. 3B; p = 4.561027).

The genes up-regulated by OSM comprised genes of ‘‘immu-

nity, defense and apoptosis’’, including serine protease inhibitors

(SERPIN)-gene family members (SERPINB4: 39.4-fold, SER-

PINB3: 36.3-fold, SERPINA3: 9.2-fold; all p,0.01; Table 3).

In addition, SOCS3 (suppressor of cytokine signaling-3), which

represents a negative feedback regulator of cytokine signaling, was

up-regulated by OSM in microarray (5-fold). Interestingly, colonic

tissue samples of patients with Crohn’s disease demonstrated

increased STAT1 phosphorylation levels and, compared to

samples taken from ulcerative colitis patients, increased SOCS3

levels [17]. Another gene upregulated 4-fold by OSM is CIITA

(class II, major histocompatibility complex, transactivator), which

we recently demonstrated as a target gene of the STAT3-

activating cytokine IL-27 [18]. Moreover, mucin 1 (MUC-1) was

up-regulated 2.3-fold by OSM, which enhances vascular endo-

thelial growth factor (VEGF) via the Akt signalling pathway [19].

NLRC5, a member of the family of NOD-like receptors and

intracellular sentinel proteins, which are implicated in the

detection of microbes and danger signals and thereby controlling

several key innate immune pathways, was 3.1-fold up-regulated by

OSM. This receptor is known to be a negative modulator of

inflammatory pathways [20], underlying potential protective

effects of OSM in intestinal inflammation. Carcinoembryonic

antigen-related cell adhesion molecule 1 (CEACAM1), upregu-

lated 3.6-fold by OSM, is a protein expressed by T cells which

functions as a coinhibitory receptor after T cell activation.

Deficiency in the expression of CEACAM1 has been described

in IBD, might therefore be a novel potential therapeutic target in

the treatment of IBD [21,22]. Two SNPs on chromosomes 20q13

(rs2315008 and rs4809330), which are closely located to the

TNFRSF6B gene, which is upregulated 3.4-fold by OSM, have

been associated with pediatric-onset of IBD [23].

STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5A,
STAT5B, STAT6) are upregulated after OSM stimulation in
HCT116 cells

We investigated regulation of all STAT proteins (STAT1,

STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6) via

qPCR after 60 min OSM stimulation in HCT116 cells (Fig. S2).

We found a 2-fold increase of STAT1 and STAT3, 1.5-fold

increase of STAT6 vs. unstimulated HCT116 cells, while there

was no effect for STAT4. The most significant increase was found

for STAT5A, which was up to 16-fold increased vs. unstimulated

cells, while there was only a moderate increase (1.6-fold) for

STAT5B. Importantly, STAT5 is crucial for cell proliferation,

differentiation and apoptosis [24]. This is in line with published

data from fibroblast-like synoviocytes isolated from patients with

rheumatoid arthritis and stimulated with recombinant OSM, in

which OSM increased STAT1, STAT3 and STAT5 expression

[25].

OSM-induced SERPINA3 gene expression is STAT3-
dependent

STAT3 is known to be a key transcription factor which

mediates OSM signaling in several cell systems. Therefore, we

further investigated, if SERPINA3 upregulation is STAT3-

dependent, since SERPINA3 has been shown to be a prototypic

acute phase molecule up-regulated upon OSM stimulation in

hepatoma cells [11] as also demonstrated in IEC in our

microarray experiments. Using quantitative PCR analysis, OSM

significantly upregulated SERPINA3 mRNA expression (p = 0.02,

Student’s t-test; OSM-stimulated vs. unstimulated control siRNA

transfected HCT116 cells), while siRNA-mediated knock-down of

STAT3 almost completely abolished up-regulation of SERPINA3

mRNA (p = 0.22, Student’s t-test; OSM-stimulated vs. unstimu-

lated STAT3 siRNA transfected HCT116 cells) upregulation after

stimulation of HCT116 cells with OSM (Fig. 4).

OSM promotes intestinal epithelial cell proliferation and
wound healing via STAT3 and MEK1 kinase signaling
pathways

Previous studies have demonstrated that OSM and SERPINA3

induce migration of keratinocytes in vitro [26] and skin repair in vivo

[27], respectively, which implicates an important role of OSM in

cell reconstitution. Since activation of STAT3, ERK1/2 and Akt is

associated with cell proliferation [21,22], and microarray analysis

revealed up-regulated of genes involved in proliferation and

apoptosis by OSM, we next analyzed if OSM promotes wound

healing in intestinal epithelial cells.

At 100 ng/mL, OSM significantly increased cell proliferation of

HCT116 cells (p = 0.02) measured by WST-1 assay. The OSM-

Figure 3. Functional categorization of OSM-induced gene expression. In all classifications, p-values,1025 comparing OSM-induced genes
vs. the distribution of all genes on the microarray chip were considered as significant enrichment. Main classification groups are depicted in bold
letters. (A) Following OSM stimulation, genes of the biological processes, ‘‘immunity and defense’’ (p = 2.161027), ‘‘apoptosis’’ (p = 3.761024) and
‘‘JAK/STAT cascade’’ (p = 3.461026) were significantly enriched after OSM stimulation. (B) Within the enrichment class molecular functions,
‘‘transcription factors’’ (p = 4.561027) were the most strongly upregulated gene group following OSM stimulation. In the legends, the gene classes
are listed in a clock-wise order, starting at the ‘‘12 o’clock’’ position.
doi:10.1371/journal.pone.0093498.g003

Table 5. Functional classification of OSM-induced genes in
HCT116 cells after 6 hours of stimulation regarding the
categories of biological processes and molecular functions.

Enrichment class:biological processes induced by OSM (p-value)

Apoptosis 3.761024

JAK-STAT cascade 3.461026

Immunity and defense 2.161027

Interferon-mediated immunity 4.561027

Enrichment class: molecular functions induced by OSM (p-value)

Other transcription factor 4.561027

Serin protease inhibitor 2.861025

Enrichment class: pathways induced by OSM (p-value)

Interleukin signaling pathway 7.161025

p-values,1025 vs. the distribution of all genes on the microarray chip were
considered as significant enrichment.
doi:10.1371/journal.pone.0093498.t005
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induced cell proliferation was not impaired by the pretreatment

with the Akt inhibitor wortmannin (p = 0.57 compared to cells

stimulated with OSM only, Fig. 5). In contrast, inhibition of the

ERK pathway using the MEK-1 inhibitor PD98059 decreased

OSM-mediated cell proliferation (Fig. 5, p = 0.01 compared to

OSM stimulated cells). Since expression of the anti-apoptotic

protein SERPINA3 upon OSM stimulation was significantly

reduced by blocking STAT3, we further investigated if HCT116

cells proliferation is also STAT3-dependent. We could demon-

strate, that siRNA-mediated STAT3 knock-down significantly

reduced the OSM-induced proliferative effect (Fig. 5, p = 0.006

compared to OSM stimulated cells). Taken together, these finding

suggest that OSM-induced cell proliferation is MEK-1 kinase- and

STAT3-dependent.

Next, we investigated the effect of OSM on IEC wound healing

in vitro. In standardized wounding assays, sterile circular wounds

(Fig. 6A and 6B) were created in HCT116 cells. Sixteen hours

after wounding, the overgrown area was measured. These

experiments demonstrated a significant increase of overgrown

area after OSM stimulation in this assay (p = 3.961025 vs.

unstimulated controls, Fig. 6C). Since the proliferation assays

demonstrated that OSM-induced proliferation is MEK-1- and

Figure 4. OSM-induced SERPINA3 expression is STAT3-dependent. Stimulation with OSM induced SERPINA3 mRNA (*p = 0.02) and
transfection with STAT3 siRNA abrogated OSM-mediated induction of SERPINA3 mRNA; (p = 0.22, OSM-stimulated vs. unstimulated STAT3 siRNA
transfected HCT116 cells). SERPINA3 mRNA expression in unstimulated control cells was arbitrarily set to 1.0.
doi:10.1371/journal.pone.0093498.g004

Figure 5. OSM induces cell proliferation in HCT116 cells which is mediated by MEK-1- and STAT3 signaling. After stimulation with
100 ng/mL OSM for 48 hours, cell proliferation was significantly higher in OSM-treated cells in comparison to unstimulated cells as determined by
WST-1 assay; * p = 0.02 vs. control. Pretreatment with the ERK-1/2-inhibitor PD98059 and transfection with STAT3 siRNA reduced OSM-mediated cell
proliferation, while there was no effect by the PI3 kinase inhibitor wortmannin; ** p = 0.01, # p = 0.006, ` p = 0.57 vs. OSM-stimulated. In all
experiments, proliferation in unstimulated control cells was arbitrarily set to 1.0.
doi:10.1371/journal.pone.0093498.g005
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STAT3-dependent, we pretreated HCT116 cells with the MEK-1

inhibitor PD98059 which resulted in a significant reduction of

OSM-mediated cell migration in the wounding assay

(p = 1.761025 vs. OSM stimulated, Fig. 6C). Pretreatment with

a STAT3 inhibitor reduced OSM-mediated cell migration in a

similar manner (p = 0.01 vs. OSM stimulated, Fig. 6C)

Apoptosis of intestinal epithelial cells is down-regulated
by OSM stimulation

In the next step, we analyzed whether the proliferative effects of

OSM are the result of decreased apoptosis in IEC, given that

STAT3, ERK-1/2 and Akt activation have been linked to anti-

apoptotic pathways [28,29,30]. Moreover, RNA microarray

revealed that anti-apoptotic genes such as SERPINs are strongly

up-regulated by OSM. Treatment of HCT116 cells with OSM in

the concentrations of 10 ng/mL and 100 ng/mL for 6 hours

significantly reduced caspase-3/7 activity compared to unstimu-

lated HCT116 cells (p = 0.03 and p = 0.02, respectively; Figure 7).

These findings suggest that the proliferative and ‘‘wound healing’’

effects of OSM in IEC results at least partly from an anti-apoptotic

effect of OSM.

Figure 6. OSM-mediated wound healing in HCT116 cells is MEK-1- and STAT3-dependent. Wounding assays were performed to analyze
cell migration. Presented are representative images of unstimulated HCT116 cells at baseline (left panel) and after 16 hours (right panel) (A) and OSM-
stimulated cells at baseline (left panel) and after 16 hours (right panel) (B). (C) OSM (100 ng/mL) induced a significant increase of cell migration
(* p = 3.961025 vs. unstimulated controls). Preincubation with the MEK-1 inhibitor PD98059 (10 mM) and STAT3 siRNA (5 mM) reduced OSM-induced
cell migration in the wounding assay (** p = 1.761025 and # p = 0.01 vs. OSM-stimulated cells). In all experiments, relative cell overgrowth in
unstimulated control cells was arbitrarily set to 1.0.
doi:10.1371/journal.pone.0093498.g006
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OSM expression is increased in the inflamed colonic
mucosa of patients with active inflammatory bowel
disease

It is assumed that the development of IBD is caused by barrier

dysfunction of the intestinal epithelium [31]. Our experiments

indicate that OSM promotes wound healing and has proliferative

and anti-apoptotic effects on IEC. Thus, we hypothesized that up-

regulation of OSM in active IBD might contribute to a

stabilization of the intestinal epithelial barrier in a counter-

regulatory manner to pro-inflammatory cytokines. We therefore

analyzed OSM expression in patients with active and non-active

IBD. Criteria for non-active IBD were the absence or minimal

signs of inflammatory lesions in the endoscopic and histological

analysis of colonic biopsies and also evaluation of clinical activity

scores. For CD, the Crohn’s disease activity index (CDAI) was

calculated and values $150 were assigned to active disease. For

UC, the colitis activity index (CAI) was calculated and values $5

were assigned to active disease. Immunohistochemical analyses for

OSM expression in biopsy samples of both patients with active and

quiescent Crohn’s disease (CD) and ulcerative colitis (UC) showed

that OSM staining was more pronounced in inflamed colonic

biopsy samples in both active CD and UC patients compared to

non-inflamed colonic lesions of IBD patients in remission. OSM

expression was found in IEC and more intense staining was found

in lamina propria cells (Fig. 8A and 8B). In order to verify

increased OSM levels during active IBD, we additionally

measured OSM mRNA levels in inflamed vs. non-inflamed

mucosa of 33 consecutive IBD patients and found significantly

higher OSM levels in inflamed lesions (mean arbitrary OSM value

6.25) compared to non-inflamed lesions (mean arbitrary OSM

value 0.07) of patients with CD (p = 0.001), but not in UC (mean

arbitrary OSM value inflamed lesions 2.72 vs. non-inflamed

lesions 0.28; p = 0.11; Fig. 8C and 8D). CRP values of CD patients

correlated with OSM values in inflamed lesions (r = 0.66; Fig. S3),

which indicate OSM as a valuable marker of inflammation in CD.

Demographical and clinical data of all analyzed patients are

provided in Tables S1–3 in File S1.

Discussion

Oncostatin M (OSM), an IL-6 family member demon-

strated ambivalent roles during inflammation in previous studies.

Pro-inflammatory properties of OSM were reported in the skin,

adipose tissue, lung, heart and liver [32,33,34,35,36]. In contrast,

other studies demonstrated anti-inflammatory effects of OSM, e.g.

through up-regulation of antiproteases like a1-antitrypsin in lung

epithelial cells [37]. Another study demonstrated that OSM inhibits

LPS-induced TNF-a expression [38], which represents a key

inflammatory cytokine in inflammatory bowel disease (IBD) and

other chronic inflammatory diseases.

In our study, we investigated OSM receptor expression, OSM-

mediated biological functions and gene expression patterns in IEC

and OSM expression in IBD for the first time. We demonstrated

that the OSM receptor complexes I and II are functionally

expressed in IEC. Furthermore, OSM induced phosphorylation of

the transcription factors STAT1 and STAT3 in IEC. In addition,

OSM activates ERK-1/2 and SAPK/JNK-1/2 MAP kinases in

IEC. Two recent studies demonstrated that SAPK/JNK-1/2 is

activated in Crohn’s disease (CD) [39,40]. Importantly, the

activation of ERK-MAP kinases and Akt has been linked to cell

migration [41,42], and in previous studies, we demonstrated that

activation of Akt and STAT proteins by various cytokines

modulates IEC proliferation and migration [43,44,45,46,47].

Similarly, our experiments demonstrated that OSM receptor

activation results in increased IEC migration and epithelial wound

healing which could be blocked using a MEK-1 kinase inhibitor

(PD98059) and by siRNA-mediated STAT3 inhibition. Activation

of the STAT3 pathway is common for cytokines which mediate

cell migration [48], and in line we could demonstrate a STAT3-

dependent mechanism for OSM-induced cell migration. We

further demonstrated in siRNA gene knockdown experiments

that OSM-induced STAT3 phosphorylation in HCT116 cells is

dependent on OSMR. STAT3 seems to be the key mediator of

IEC wound healing activated by various cytokines, e.g. IL-22 [49].

Very recently, we could demonstrate that the IL-6 family member

IL-27, which also signals via gp130, promotes IEC cell restitution

via STAT3 [50]. STAT3 was also shown to control the expression

of antimicrobial peptides, such as RegIII and S100A proteins. Of

note, during skin inflammation, the antimicrobial peptides

S100A7 and beta-defensin 2 are upregulated by OSM [26].

The integrity of the intestinal mucosal surface barrier is

disrupted in conditions like IBD, and epithelial restitution

(mucosal healing) is an important goal of IBD treatment [51].

As demonstrated in wounding assays in our study, OSM

Figure 7. Apoptosis of HCT116 cells is downregulated after OSM stimulation. Treatment with OSM (10 ng/mL and 100 ng/mL) for 6 hours
significantly reduced caspase-3/7 activity (* p = 0.03; **p = 0.02, respectively) compared to unstimulated HCT116 cells. TNF-a (50 ng/mL) served as
positive control (# p = 0.007 vs. unstimulated HCT116 cells).
doi:10.1371/journal.pone.0093498.g007
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stimulation may promote this epithelial restitution. Although our

in vitro data demonstrated that OSM promotes the integrity of the

intestinal barrier, additional in vivo experiments are necessary to

clarify the role of OSM in intestinal wound healing. An increased

cell proliferation after OSM stimulation has been demonstrated in

keratinocytes [26] and also wound healing in diabetic mice in vivo

[52], suggesting that OSM increases the innate immunity of

epithelial tissues such as skin and intestine. Moreover, as

demonstrated in an OSMR knockout mouse model, OSM is a

key mediator of liver regeneration by preventing hepatocyte

apoptosis [53], which we also demonstrated in IEC in our study.

Since activated T cells are major sources of OSM [54] and CD

represents a TH1/TH17-mediated type of intestinal inflammation

[55], while ulcerative colitis resembles more a TH2 mediated colitis

[56], OSM may play a crucial role in both disease

entities. Previously, we demonstrated that the cytokines IL-22,

IL-26, IL-27 and IL-31 are significantly up-regulated in the

inflamed mucosa of patients with CD [44,50,57,58]. In this study

we showed that OSM expression is increased in inflamed lesions in

patients with active CD compared to non-inflamed lesions and

that OSM values in inflamed lesions positively correlates with

CRP values in these patients. This up-regulation may suggest a

counter-regulatory mechanism by which increased OSM expres-

sion contributes to stabilization of the intestinal epithelial barrier.

Interestingly, the TH2 cytokine IL-31 shares the receptor subunit

OSMR-b with OSM and we demonstrated, that the two receptor

subunits gp130 and OSMR are also expressed at high levels in

IEC and are increased in inflamed intestinal tissue [50,58].

Our microarray analysis of OSM-stimulated vs. unstimulated

HCT116 cells revealed activation of genes involved in immunity

Figure 8. OSM is up-regulated in colonic biopsies of patients with active inflammatory bowel disease. OSM expression in colonic
biopsies was higher in inflamed colonic biopsy samples in both active CD and UC patients than in non-inflamed colonic lesions of patients in
remission. OSM in inflamed lesions is highly expressed in epithelial cells but also in sub-epithelial laminar propria mononuclear cells. Overall, biopsy
specimens of 4 CD and 4 UC patients with active disease and in remission were analyzed. Representative images (206and 406magnification) of CD
patients in remission and active disease (A) and UC patients in remission and active disease (B) and isotype controls are shown. (C) OSM mRNA levels
in inflamed mucosal lesions of 23 patients with CD were significant higher than in non-inflamed lesions (*p = 0.001). (D) OSM mRNA levels were not
significant different in inflamed lesions compared to non-inflamed lesions of 10 patients with UC (p = 0.11).
doi:10.1371/journal.pone.0093498.g008
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and defense, interferon-mediated immunity and the JAK-STAT

cascade. The most strongly up-regulated genes were SERPINS,

which belong to the family of serin peptidase inhibitors with

antiprotease activities, most of them serine and cysteine proteases.

SERPINB4, SERPINB3 and SERPINA3 were the genes with the

strongest up-regulation, also verified in qPCR. Recent data

demonstrated that overexpression of SERPINB4 in tumor cells

inhibited recombinant granzyme M-induced as well as NK cell-

mediated cell death [59]. Accordingly, OSM-induced SERPIN

up-regulation may contribute to the anti-apoptotic and prolifer-

ative effects of OSM found in our experiments. However, during

colitis many proapoptotic cytokines like TNF-a are likely to be

present, which might interfere with OSM-mediated effects on

apoptosis in vivo. It has been shown, that SERPINB3 significantly

attenuates apoptosis by contrasting cytochrome c release from the

mitochondria and by antichemotactic effects for NK cells [60].

Also, SERPINB3, which is over-expressed in human hepatocel-

lular carcinoma [61], has been shown to induce apoptosis

resistance, epithelial-to-mesenchymal transition and increasing

cellular invasion [62]. Of note, it is speculated that deregulation of

apoptosis plays a major role in autoimmunity characterized by the

disability to terminate the immune response. SERPINA3 (a-1

antichymotrypsin) is a secreted acute phase protein strongly

associated with numerous inflammatory diseases. Its up-regulation

by OSM has formerly been demonstrated in HepG2 cells and rat

primary hepatocytes [11]. A recent study showed that SERPINA3

is strongly up-regulated by dexamethasone and the proinflamma-

tory cytokine TNF-a in lung cells in vitro and in both lung and liver

tissues in vivo when C57BL/6 mice were treated with dexameth-

asone and TNF-a [63]. Moreover, a pivotal role of SERPINA3

has been recently described in skin repair [27]. For SERPINB1,

another member of the SERPIN family, which was up-regulated

1.8-fold by OSM in the microarray, a recent study demonstrated

protective effects for SERPINB1 in colonic epithelial cells and up-

regulation in inflamed colonic tissue of UC patients [64].

In summary, we demonstrated that IEC express functional

OSM receptors. Binding of OSM to the OSM receptor leads to

phosphorylation of STAT1/3, Akt, and the MAP kinases ERK-1/

2 and SAPK-JNK-1/2 in IEC. In microarray experiments, OSM

strongly induced genes involved in immunity and defense,

interferon-mediated immunity and the JAK-STAT cascade. The

most up-regulated genes were SERPINS, which belong to the

family of serin peptidase inhibitors which have anti-apoptotic

properties. OSM also increased MEK1- and STAT3-dependent

IEC proliferation and wound healing. OSM may play therefore a

pivotal role in autoimmune processes and gut inflammation

potentially mediated via STAT3-dependent up-regulation of

SERPINS, which influence apoptosis and therefore cell restitution

in inflammatory conditions. The expression of OSM is up-

regulated in inflamed colonic lesions in patients with active IBD

which may indicate a counter-regulatory role of OSM by

stabilizing the disrupted intestinal epithelial barrier. Further in

vivo mouse studies analyzing functional/conditional knockout of

OSM in inflammatory bowel models are warranted to elucidate

the exact role of OSM in intestinal inflammation and the potential

of the OSM system as a drug target in IBD.

Supporting Information

Figure S1 Relative mRNA expression of the OSM
receptor units gp130, LIFR and OSMR-b in intestinal
epithelial cell lines analyzed by quantitative PCR. Sterile

water served as negative control.

(TIF)

Figure S2 Relative mRNA expression of STAT 1–6 after
stimulation with 100 ng/mL OSM.

(TIF)

Figure S3 Correlation between CRP values (mg/dL)
and arbitrary OSM values in inflamed lesions of
patients with Crohn’s disease (r = 0.66).

(TIF)

File S1 File S1 includes the following: Table S1.

Demographics of IBD biopsy patients (IHC). Table S2.

Demographics of Crohn’s patients (qPCR). Table S3. Demo-

graphics of ulcerative colitis patients (qPCR).
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