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Abstract

Background: With one quarter of the world population infected, the intestinal nematode Ascaris lumbricoides is one of the
most common infectious agents, especially in the tropics and sub-tropics. Infection is caused by oral intake of eggs and can
cause respiratory and gastrointestinal problems. To identify high risk areas for intervention, it is necessary to understand the
effects of climatic, environmental and socio-demographic conditions on A. lumbricoides infection.

Methodology: Cross-sectional survey data of 6,366 study participants in the Mbeya region of South-Western Tanzania were
used to analyze associations between remotely sensed environmental data and A. lumbricoides infection. Non-linear
associations were accounted for by using fractional polynomial regression, and socio-demographic and sanitary data were
included as potential confounders.

Principal Findings: The overall prevalence of A. lumbricoides infection was 6.8%. Our final multivariable model revealed a
significant non-linear association between rainfall and A. lumbricoides infection with peak prevalences at 17740 mm of mean
annual rainfall. Mean annual land surface temperature during the day was linearly modeled and negatively associated with
A. lumbricoides infection (odds ratio (OR)=0.87, 95% confidence interval (Cl)=0.78-0.97). Furthermore, age, which also
showed a significant non-linear association (infection maximum at 7.7 years), socio-economic status (OR=0.82, Cl=0.68—
0.97), and latrine coverage around the house (OR=0.80, CI=0.67-0.96) remained in the final model.

Conclusions: A. lumbricoides infection was associated with environmental, socio-demographic and sanitary factors both in
uni- and multivariable analysis. Non-linear analysis with fractional polynomials can improve model fit, resulting in a better
understanding of the relationship between environmental conditions and helminth infection, and more precise predictions
of high prevalence areas. However, socio-demographic determinants and sanitary conditions should also be considered,
especially when planning public health interventions on a smaller scale, such as the community level.
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Introduction negative impact on cognitive function and educational achieve-

ment in school children is controversially debated [7-10].
Infection occurs through the oral intake of eggs, usually

contained in soil or food. Adult worms live in the lumen of the

The intestinal nematode Ascaris lumbricoides is one of the most
common causes of infection among the soil-transmitted helminths
(STH). Common in the tropics and sub-tropics, it is estimated that
more than one quarter of the world population is infected with this
helminth [1-3].

The highest morbidity is found in children, especially in those
with a high worm burden. A. lumbricoides can lead to reduced
physical fitness, growth retardation, and respiratory and gastroin-
testinal problems [3-6]. Evidence if A. lumbricoides infection has a

small intestine where the female lays unembryonated eggs which
are excreted with the feces. In the open, the eggs have to go
through three stages of development in order to become infectious;
a time during which they are exposed to environmental conditions
[5,11,12]. When embryonated eggs are swallowed by a human
host, the larvae hatch in the small intestine, have a short migratory
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phase (venous system, liver, lungs, trachea, esophagus) after which
they return to the small intestine where they mature and mate
[13,14].

Recently, remotely sensed environmental data have increasingly
been used to get a better understanding of the epidemiology and
spatial distribution of STH [15-22]. The use of environmental
data in combination with geographic information systems (GIS)
has become a powerful tool for mapping and predicting STH, with
the main purpose to identify high risk areas for intervention [23—
26].

However, there are still challenges in the statistical modeling of
environmental data. One problem is the consideration of non-
linear relationships between outcome and predictor variables.
Although non-linear relationships between environmental data
and STH infection are a recognized fact [16,22], this has rarely
been taken into account in multivariable analysis. A further
complication is the need to take care of potential confounders.
Especially risk factors linked to transmission, such as poor
sanitation facilities, crowding, and high population density
[2,6,12,14,27-32], need to be considered when associations
between environmental factors and STH infection are analyzed.

Therefore, the main objective of this study was to assess
associations between remotely sensed environmental data and 4.
lumbricoides infection while considering potential non-linear rela-
tionships and confounders. A manuscript that examines associa-
tions of hookworm infection with environmental factors has
recently been accepted [33], and manuscripts regarding Trichuris
trichiura and schistosome infection are presently being prepared.

Methods

Ethics Statement

The study was approved by the ethics committee of the
Tanzanian National Institute for Medical Research and conducted
according to the principles expressed in the Declaration of
Helsinki. All participants provided written informed consent
before enrolment into the study; parents consented for their
children below 18 years of age. Specifically, children who were old
enough to understand the process were asked to participate in the
consenting procedure, and children who were 12 years old or
older were asked to sign/thumbprint the document in addition to
their parent’s signature/thumbprint.

Study Area and Epidemiological Data Collection

Data for this study were collected in nine study sites in the
Mbeya Region in south-western Tanzania (Figure 1) from June
2008 until June 2009 during the third annual survey of the EMINI
(Evaluating and monitoring the impact of new interventions)
cohort study. The region is predominantly rural and most income
generating activities are related to agriculture. During an initial
population census in the nine sites, more than 42,000 houscholds
were identified and their geographical positions recorded, using
handheld geographical positioning system (GPS) devices (Spor-
Trak handheld GPS, Magellan Navigation Inc., Santa Clara, CA,
USA). Geographically stratified random selection was used to
choose 10% (4,283) of these households to participate in the main
EMINI cohort study. During each annual survey these households
were visited once to collect biological specimen and interview data.
All participants provided written informed consent before
inclusion into the study, with parents or care takers consenting
for their minors.

The collection of stool samples started in 2008. Due to logistic
constraints, households were randomized into two groups of equal
size of which only one was annually sampled for stool.
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Interviews to characterize the socio-economic status (SES) of
each household were conducted with the household head and
included questions regarding infrastructure of the household,
ownership of livestock, the availability of certain household assets,
and materials that were used to build the house(s) in each
homestead. Data on socio-demographic status (sex, age, marital
status, religious denomination, education, occupation etc.), rele-
vant behavior, knowledge and practices regarding various diseases
were collected in interviews with each individual household
member or — for children below 12 years — with their caretaker.
All interviews and medical examinations were performed at the
household and conducted in Kiswahili language.

Before stool collection started in the third survey round,
intestinal nematodes were neither diagnosed nor treated as part
of this study, and to our knowledge no other treatment programs
had been conducted in the region. Stool samples were collected in
pre-labeled screw-top containers, refrigerated at 4 °C directly after
collection, using mobile refrigerators (WAECO CoolFreeze CF-
50, WAECO, Emsdetten, Germany) and kept cool until slide
preparation in the laboratory within two days of collection. The 4.
lumbricoides infection status of participants was established by Kato-
Katz examination [34] of two sub-samples (41.7 mg each) from a
single stool specimen, which was thoroughly mixed before slide
preparation. Kato-Katz slides were examined for A. lumbricoides
eggs by experienced staff within two days after slide preparation.
A. lumbricoides infection was defined as the presence of at least one
A. lumbricordes egg in any of the two slides and infection intensity
was classified according to Montresor et al. [35]. To assure the
quality of our lab results all Kato-Katz slides were archived and a
sample of randomly selected slides were reexamined after at least
one month by different lab staff.

Helminth infected participants were offered treatment with
albendazole (for A. lumbricoides and other intestinal nematode
infections) and/or praziquantel (for schistosome infections),
according to their respective diagnosis.

Environmental Data

The following remotely sensed environmental data were
considered for this analysis: Elevation was obtained using the
NASA Shuttle Radar Topography Mission (SRTM) global digital
elevation model (DEM) version 2.1 [36]. These elevation data
were also used to calculate the slope. Mean annual rainfall and
ambient temperature were downloaded from the WorldClim —
Global Climate Data website [37]. Mean annual land surface
temperature during day and night (LST-day and LST-night) and
vegetation cover (Enhanced vegetation index (EVI)) which had
been collected during NASA’s Moderate-Resolution Imaging
Spectroradiometer (MODIS) Terra mission, were downloaded
from the Land Processes Distributed Active Archive Center (LP
DAAC) [38,39].

Household positions and inhabitant numbers from the initial
population census were used to calculate population density
around the houschold. Population density, ambient temperature,
elevation, rainfall, LST, EVI, and slope were averaged for a buffer
area within a 1,000 meter radius around each homestead in order
to characterize the environmental situation around the household.
This approach was preferred to using the respective spot values at
the homestead position because spot data are more prone to
random error than averages for a wider area. Latrine coverage in
the surroundings of each household was calculated as the inverse
distance weighted percentage of households with their own latrine
within one kilometer around the household.

Initial processing of remotely sensed data was done in Idrisi GIS
software v.32 (Clark Labs, Worcester, MA, USA). The GIS
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Figure 1. Location and altitude of the EMINI study sites. The large altitude range results in very diverse environmental conditions regarding

temperature, vegetation, slope etc.
doi:10.1371/journal.pone.0092032.g001

program Manifold System 8.0 Professional Edition (Manifold Net
Ltd, Carson City, NV) was used to combine household positions
and environmental data.

Socio-economic Status and Other Confounding Variables

Household income and expenditure data in developing
countries, especially in rural areas, are often unreliable because
many people do not have a regular cash income. To overcome this
problem we employed a modification of a method initially
proposed by Filmer and Pritchett (2001) that uses principal
component analysis to generate an SES score using proxy
variables [40-42]. The following proxy variables were used:
Household assets (clock or watch, radio, television, mobile
telephone, refrigerator, hand cart, bicycle, motor cycle, car,
savings account), construction materials for the house, and sources
of household fuels and drinking water. In addition to the above
described SES score, age, sex, population density, latrine coverage
around the household, and presence of a latrine in the household
were considered as potential confounders.

Statistical Analysis

All statistical analyses were performed using Stata/SE (Version
11.2, StataCorp LP, College Station, TX). Because our environ-
mental variables showed a high degree of correlation, mult-
collinearity was assessed using the variance inflation factor (VIF)
(VIF;=1/T;) calculated with the tolerance (T) (T;=1—R?). R? is
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the calculated variance of each covariate associated with the rest of
the other independent variables. A VIF higher than 10 indicates a
serious problem of multicollinearity [43-45].

After multicollinearity analysis we performed univariable linear
logistic regressions for each considered independent variable. All
variables with a univariable Wald’s p<<0.2 were included in the
multivariable analysis.

In our study design individual observations were clustered in
households and these were clustered within study sites. Therefore,
household clustering was accounted for by calculation of robust
standard errors using Huber/White variance estimates [46-48]
and the nine study sites were taken into account as dummy
variables.

Multivariable logistic regression with the inclusion of fractional
polynomials which is a flexible parametric approach for modeling
continuous factors was applied to analyze non-linear associations
between A. lumbricoides infection and environmental variables [49].
The power transformations x” are found with a predefined set of
powers S=—2,—1,—0.5,0,0.5,1,2,3 where x° is defined as In x. A
fractional polynomial model with one degree (FP1) takes the
formBy+ B3 xInx, with two degrees (FP2)By+8;x? 4 Brx?
*Inx. The restricion of powers and the consideration of
polynomials with degree 1 and 2 provide enough flexibility for
statistical modeling [50,51].

Multivariable fractional polynomial (MFP) models, an extended
algorithm introduced by Royston and Sauerbrei, were used to
detect non-linear associations. The MIP algorithm contains a
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function selection procedure which compares null, linear, and FP1
sub models for each covariate with an FP2 model based on the
deviance [52]. A detailed description of the MFP algorithm is
found in Ambler and Royston (2001) and in Sauerbrei and
Royston (2008) [53,54]. For the function selection procedure a
lower p-value than 0.05 is recommended to avoid over fitting [50].
Therefore, a p-value of 0.01 was chosen as cut off when non-linear
sub models were compared.

Our final model was calculated by removing variables with a p-
value above 0.05. Changes of the Akaike Information Ciriterion
(AIC) [55] and the Bayesian Information Ciriterion (BIC) [56],
measuring the relative goodness of fit, were simultaneously
considered. In order to asses spatial autocorrelation in the raw
A. lumbricoides infection data and in the deviance residuals of our
final logistic model the Stata module ‘“‘spatcorr” was used to
calculate Moran’s I [57].

Results

Descriptive Results

The overall prevalence of A. lumbricoides infection in the study
population was 6.8% (n=433/6,366). Most infections were of low
intensity, moderate and high intensity infections were rare. The
highest prevalences were found in Kyela (25.2%) and Isongole
(16.9%). sites. Figure 2 demonstrates that A. lumbricoides infection
was clustered both between and within sites.

Men (47%) and women (53%) were almost equally represented
in the study and the mean age was 23.6 years. Thus the majority of
the study population were children and adolescents and the peak
of A. lumbricoides infection occurred before the age of ten years
(Figure 3). Nearly all households (97.5%) had their own latrine,
which was a pit latrine in most cases (Table 1). The prevalence of
A. lumbricoides infection was similar in female (6.57%) and male
(7.11%) participants.

Univariable Logistic Regression and Multicollinearity
Analysis

In univariable analysis, all considered environmental variables
were significantly associated with A. lumbricoides infection (Table 2).
Elevation, LST-day and slope showed an inverse association,
whereas all other environmental variables were positively associ-
ated. Therefore, all environmental variables apart from elevation
and ambient temperature were included in the multivariable
analysis. Sex, household size, and population density were
excluded because their p-values were above 0.2, the threshold
which was chosen for the inclusion in multivariable analysis.

Due to high multicollinearity of the wvariables elevation
(VIF =116.65), ambient temperature (VIF=71.05) and LST-
night (VIF=17.19), elevation and ambient temperature were
excluded from multivariable analysis, since their VIFs by far
exceeded the threshold of 10. We decided to include LST-night
not only because of its lower VIF, but more importantly, because
soil temperature appears to be more directly linked to helminth
egg development than elevation or ambient temperature, as eggs
develop in the soil or at the soil surface.

Multivariable Logistic Regression with Fractional
Polynomials

In MFP analysis we found a non-linear relationship of rainfall
and age with A. lumbricoides infection. In the full and in the final
reduced model a fractional polynomial transformation with two
degrees (FP2) was implemented.

For the other variables the linear assumption was retained and
odds ratios (ORs) were calculated. The full and the final reduced
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multivariable regression models are shown in Table 3. Rainfall
and LST-day were kept as significant environmental variables in
the final model. LST-day showed an inverse association with A.
lumbricoides infection. With every degree Celsius increase in LST-
day the odds of being infected with A. lumbricoides decreased by
about 13%.

The calculated beta coefficients for the non-linear functions of
rainfall and age are not directly interpretable as ORs. For rainfall,
the odds of A. lumbricoides infection are increasing until a rainfall
maximum of 1,740 mm and are decreasing again at higher values
(Figure 4). For age there is a steep increase until an infection
maximum at 7.7 years, after which the odds are decreasing (curve
not shown). This is in agreement with the unadjusted age
prevalence curve shown in figure 2.

Except for latrine ownership in the household, all included
confounding variables (age, SES score and latrine coverage) were
significantly negatively associated with A. lumbricoides infection and
therefore retained in the final multivariable model.

In order to check our final model for plausible interactions we
calculated interaction terms between each beta of rainfall and
LST-day and between SES and latrine coverage. However, none
of these interactions were significant (data not shown).

The raw A. lumbricordes infection data show strong positive
spatial autocorrelation within separation distances of up to 8 km
(Figure 5). The lower values for Moran’s I in the deviance residuals
of our final model indicate that the variables in the model account
for a large part of this autocorrelation.

Discussion

Our univariable results show that A. lumbricoides infection is
significantly associated with several environmental factors. Of
these, mean annual rainfall and mean annual LST-day remained
significant in the multivariable model. LST-day had a linear
negative association with A. lumbricoides infection, whereas the
association of rainfall and age was non-linear with maximum
infection odds at 1,740 mm of mean annual rainfall and at an age
of 7.7 years. SES and latrine coverage around the household
showed significant negative associations with A. lumbricoides
infection, both in univariable and multivariable analyses.

Our results concerning LST-day are in line with the published
literature [21,23-25]. Two studies from Cameroon and Southeast
Asia found that a higher LST was significantly associated with a
lower risk of A. lumbricoides infection because high soil temperatures
reduce humidity and thus lead to desiccation of Ascaris eggs
[23,24]. These studies considered mean, minimum and maximum
LST, not LST for day and night as in our analysis. However, in
both studies minimum LST was excluded from multivariable
analysis which is in parallel to the exclusion of our LST-night
variable. Maximum LST was significantly negatively associated
with infection which is in agreement with the significant LST-day
variable in our final model. One study from Uganda found that 4.
lumbricoides prevalence is <5% where maximum LST exceeds 36
37°C [21] and a study conducted in 20 schools in the Chad
predicted no A. lumbricoides prevalence in areas where mean LST
exceeds 37 °C [25].

Denser vegetation, as indicated by a higher EVI, showed a
strong positive association with A. (lumbricoides infection in
univariable analysis, which, however, turned non-significant when
including other variables in the multivariable model. Our
significant univariable result for EVI is in line with multivariable
results from former studies [23,24,58]. The non-significance of
EVI in multivariable analysis is likely due to differences in local
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Figure 2. A. lumbricoides prevalence in the study sites. Color coding indicates household prevalence, labels indicate site name and site
prevalence. A. lumbricoides infection is strongly clustered both between and within sites.
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Table 1. Description of variables.

Ascaris lumbricoides and Environmental Factors

Variables N Mean or percentage 2 Std. Dev. Min Max
Ascaris infected 6,366 6.8%
Ascaris infection intensity
No infection (0 EPG) 5933 93.2%

Low intensity (1-1,999) 317 4.98%
Moderate intensity (2,000-3,999 EPG) 66 1.04%
Heavy intensity (=4,000 EPG) 50 0.97%
Elevation [m] 6,366 1455 486 479 2313
Mean annual ambient temperature [°C] 6,366 19.8 2.8 14.7 25.0
Mean annual rainfall [mm] 6,366 1437 378 1013 2342
Mean annual LST-day [°C] 6,366 324 2.5 225 386
Mean annual LST-night [°C] 6,366 14.5 34 9.2 214
Mean annual EVI 6,366 0.288 0.058 0.151 0.472
Slope [°] 6,366 3.03 2.21 0.35 13.64
Age [years] 6,366 236 19.2 0 97.7
Male gender 6,317 47.0%
Household size [persons] 6,363 6.5 3.6 1 30
Population density [persons/km?] 6,366 1875 3179 10 13133
SES 6,363 —0.52 117 —2.82 4.08
Households with latrine 6,363 97.5%
Latrine coverage in surroundings [%] © 6,366 95.8 8.2 29.6 100

socio-economic score.
b)According to Montresor, 1998 [35].

doi:10.1371/journal.pone.0092032.t001

JMean for continuous and % for categorical variables.

Table 2. Univariable association of environmental and socio-
demographic factors with A. lumbricoides infection 2,

Huber/White variance estimates.

participant’s household.
doi:10.1371/journal.pone.0092032.t002
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temperature; EVI = enhanced vegetation index; SES =
@Results of logistic regression models adjusted for household clustering using

Variables OR (95% CI) p-value
Elevation, per 100 meters 0.88 (0.84 to 0.91) <0.001
Mean annual ambient temperature, per 1°C  1.23 (1.14 to 1.32) <0.001
Mean annual rainfall, per 1000 mm 7.93 (5.85 to 10.75)  <0.001
Mean annual LST-day, per 1°C 0.73 (0.70 to 0.76) <0.001
Mean annual LST-night, per 1°C 1.20 (1.13 to 1.27) <0.001
Mean annual EVI, per 0.1 units 5.91 (4.10 to 8.50) <0.001
Slope, per 1 ° 0.72 (0.63 to 0.83) <0.001
Age, per 10 years 0.95 (0.90 to 1.00) 0.060
Sex 1.09 (0.90 to 1.32) 0.389
Household size 1.01 (0.96 to 1.07) 0.603
Population density, per 1000/km? 0.98 (0.94 to 1.03) 0.379
SES, per 1 unit 0.59 (0.48 to 0.73) <0.001
Latrine in household (yes/no) 0.24 (0.13 to 0.46) <0.001
Latrine coverage, per 10%" 0.57 (0.50 to 0.65)  <0.001
OR = odds ratio; 95% Cl = confidence interval; LST = land surface

b’Percentage of households with a latrine within one kilometer around the

socio-economic score.

N = number of observations; Std. Dev. = standard deviation; EPG = eggs per gram of feces; LST = land surface temperature; EVl = enhanced vegetation index; SES =

9Percentage of households with a latrine within one kilometer around the participant’s household.

soil moisture, and land surface temperature have a strong impact
on embryonation [22]. Laboratory studies showed that higher
humidity facilitates larval development [59,60]. A multiple
regression analysis of rainfall, number of wet days and ambient
temperature in Sri Lanka found a significant association between
increased number of wet days per month and higher rates of 4.
lumbricoides infections [61]. These findings are in line with the first
part of our predicted non-linear curve showing higher infection
odds when rainfall increases. However, another laboratory study
showed that the development of eggs located on an extremely wet
soil surface was delayed due to evaporation and the resulting low
temperatures [59]. Since, in contrast to hookworm larvae, A.
lumbricoides eggs are non-motile [12], they are directly exposed to
rainfall and LST on the soil surface. Crompton states that eggs
may be washed away by rainfall, too [5]. Increased rainfall can
lead to a leaching effect and eggs are washed to deeper regions of
the soil [62]. All these findings indicate that up to a certain
amount, increasing rainfall supports larval development but that
too much rain can delay larval development and thus reduce
transmission.

Regarding the examined possible confounding variables, our
univariable and multivariable results indicate that low SES and
bad sanitary conditions in and around the household are risk
factors for A. lumbricoides infection which is in line with former
publications [12,14,27,28,30,32]. The non-linear association
between age and A. lumbricoides infection describing a higher risk
in children and an infection peak in later childhood, is in line with
former epidemiological studies [3-6]. Although none of these
variables substantially confounded the associations of A. lumbricoides
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infection with environmental variables, it is important to consider
such factors when planning interventions or further studies on a
smaller scale, e.g. the community level.

In the literature, non-linear associations between environmental
variables and STH infection have rarely been analyzed in a

Log Odds
-2
|

© |

Table 3. Multivariable association of environmental and socio-demographic factors with A. lumbricoides infection using logistic
regression with fractional polynomials (n=6,363).

Full Model Final Model after Backward Elimination
Covariables B/OR (95% ClI) p B/OR (95% CI) p
Mean annual rainfall, per 1000 mm B1=1.92 (0.33 to 3.51) 0.018 B1=1.58 (0.14 to 3.02) 0.032
(FP2 polynomial transformation®) B2=—2.08 (—3.63 to —0.52) 0.009 B2=—1.78 (—3.19 to —0.37) 0.013
Mean annual LST-day, per 1 °C OR=0.82 (0.73 to 0.93) 0.002 OR=0.87 (0.78 to 0.97) 0.012
Mean annual LST-night, per 1 °C OR=1.24 (0.81 to 1.90) 0.315
Mean annual EVI, per 0.1 units OR=0.79 (0.42 to 1.50) 0.471
Slope, per 1 ° OR=0.90 (0.72 to 1.12) 0.324
Age, per 10 years B, =2.57 (1.38 to 3.76) <0001  P;=2.56 (1.38 to 3.74) <0.001
(FP2 polynomial transformation®) B>=1.13 (0.57 to 1.70) <0.001 B2=1.13 (0.56 to 1.69) <0.001
SES, per 1 unit OR=0.84 (0.70 to 1.00) 0.052 OR=0.82 (0.68 to 0.97) 0.024
Latrine in household (yes/no) OR=0.68 (0.32 to 1.43) 0.310
Latrine coverage, per 10%% OR=0.82 (0.68 to 0.99) 0.043 OR=0.80 (0.67 to 0.96) 0.018
AIC 2178 2178
BIC 2313 2287
B= beta coefficient; OR = odds ratio; 95% Cl = confidence interval; LST = land surface temperature; EVI = enhanced vegetation index; SES = socio economic score,
AIC = Akaike information criterion; BIC = Bayesian information criterion.
dadjusted for household clustering using Huber/White/Sandwich variance estimates and for study sites.
PFractional polynomial transformation with two degrees and powers p=3: B;xP+B,x"*In x.
9Fractional polynomial transformation with two degrees and powers p=—0.5: B;xP+BxP*In x.
Ypercentage of households with a latrine within one kilometer around the participant’s household.
doi:10.1371/journal.pone.0092032.t003

multivariable context. Brooker et al. [21] predict the prevalence of
various STH infections with generalized additive models in a
spatial analysis in Uganda and found that the predicted prevalence
of A. lumbricoides infection showed non-linear relationships with
LST and rainfall. A case study in Cameroon observed non-linear

T T T
1000 1500 2000
Rainfall in mm

T
2500

Figure 4. Non-linear partial prediction of the log odds of A. lumbricoides infection by annual rainfall. The partial predicted curve is
adjusted for LST-day, slope, SES, age, latrine coverage and the nine study sites. The maximum is at 1740 mm of mean annual rainfall. Grey shadings

indicate 95% confidence band.
doi:10.1371/journal.pone.0092032.g004
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Figure 5. Spatial autocorrelation of A. Jlumbricoides infection within sites. Moran'’s | for spatial autocorrelation of A. lumbricoides infection in
the raw data and in the deviance residuals of the final multivariable model. Values above 0 indicate positive, values below 0 negative spatial
autocorrelation. The figure only considers autocorrelation between households within the same sites.

doi:10.1371/journal.pone.0092032.g005

associations between environmental variables (LST, rainfall and
vegetation) and 4. lumbricoides infection in scatterplots of prevalence
and environmental data [22]. Our results suggest that the MIFP
procedure can be effectively used as a multivariable parametric
approach to detect non-linear associations between environmental
data and 4. lumbricoides infection. Especially when a turning point
within a non-linear prediction is detected, such as for rainfall in
our study, the MFP procedure can provide new insights into the
relationship between environmental conditions and STH infec-
tion. A more precise understanding of such relationships could
play an important role in the future prediction of high prevalence
areas to be targeted for interventions.

However, non-linear analysis also has its limitations. Trans-
formed variables are not directly interpretable, and thus hard to
generalize and compare between studies. Moreover, fractional
polynomials are very sensitive to outliers and over fitting, and
transformations can often be due to extreme observations. To
avoid this, it is very important to analyze transformed variables for
outliers and define lower p-values for the function selection
procedure when non-linear models are compared. Besides that, it
is recommended to analyze non-linearity only if prior knowledge
for non-linear relationships exists [54].

One problem when assessing STH infection by Kato-Katz (and
most other microscopy based techniques) is the low sensitivity of
the method. This is best compensated by the examination of more
than one stool specimen, which was logistically impossible in our
study. Instead, we examined two separate Kato-Katz slides from
the same sample. Although this should have increased sensitivity,
we have inevitably missed some of the lighter infections. However,
the Kato-Katz examination of a single stool specimen shows a
better sensitivity for the detection of A. lumbricoides infection than
for other STH infections [63,64].

Another limitation of our study is the lack of information
concerning soll types in our study sites, which could be important
in the context of rainfall and the survival of Ascaris eggs. Beaver
states that A. lumbricoides infections were more common in regions
with clayey soils [65,66]. Sandy soils are more permeable and are

PLOS ONE | www.plosone.org

unable to keep moisture. Moreover, in sandy soils eggs are more
likely to be washed down to deeper soil strata. IFurthermore we are
unable to account for seasonal aspects of rainfall or the intensity of
rainfall within a short time. Gunawardena et al. [61] found out
that the number of wet-days per month were more significantly
associated with 4. lumbricoides infection than the total amount of
rainfall. In this context they state that heavy rains facilitate the
scattering of eggs both vertically and horizontally, whereas steady
rainfall helps to maintain soil moisture.

Although our final model was able to account for most of the
spatial autocorrelation in the raw A. lumbricoides infection data
(Figure 5), the figure also shows some remaining positive spatial
autocorrelation in the deviance residuals of our final model. This
might have influenced the variance estimates of the model and in
turn might have led to spuriously low p-values for some of our
environmental variables. Therefore, these p-values should be
interpreted with caution.

To conclude, A. lumbricoides infection was associated with several
environmental, socio-demographic and sanitary factors in univari-
able analyses. Of these, mean annual rainfall, mean annual LST-
day, age, SES and latrine coverage remained significant in
multivariable analysis. MFP models can be used as an effective
statistical tool to get a better understanding of the — often non-
linear - relationship between environmental factors and A.
lumbricoides infection. Future studies should therefore consider
potential non-linear relationships between environmental factors
and STH in a multivariable context to yield more precise
predictions. However, if data are available, socio-demographic
and sanitary conditions should also be considered, especially when
planning interventions.

Supporting Information

Checklist S1 STROBE checklist.
DOC)

March 2014 | Volume 9 | Issue 3 | 92032



Acknowledgments

We thank the participants of the EMINI study for their participation and
continued support, and the field and laboratory teams at MMRP for their
hard work.

References

1.

22.

23.

Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, et al. (2006) Soil-
transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet

367: 1521-1532.

. de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, et al. (2003) Soil-

transmitted helminth infections: updating the global picture. Trends Parasitol
19: 547-551.

. de Silva NR, Chan MS, Bundy DA (1997) Morbidity and mortality due to

ascariasis: re-estimation and sensitivity analysis of global numbers at risk. Trop
Med Int Health 2: 519-528.

. de Silva NR, Guyatt HL, Bundy DA (1997) Worm burden in intestinal

obstruction caused by Ascaris lumbricoides. Trop Med Int Health 2: 189-190.

. Crompton DWT, Pawlowski ZS (1985) Life history and development of Ascaris

lumbricoides and the persistence of human ascariasis. In: Crompton DWT,
Nesheim MC, Pawlowski ZS, editors. Ascariasis and its public health
significance: a volume based on the agenda and discussions of the 1984 Banff
conference, organized by WHO Parasitic Diseases Programme and Division of
Nutritional Sciences, Cornell University, New York. London; Philadelphia:
Taylor & Francis.pp. 9-23.

Scott ME (2008) Ascaris lumbricoides: A review of Its Epidemiology and
Relationship to Other Infections. Annales Nestlé 66: 7-22.

. Drake LJ, Jukes MCH, Sternberg R]J, Bundy DAP (2000) Geohelminth

Infections (Ascariasis, Trichuriasis, and Hookworm): Cognitive and Develop-
mental Impacts. Seminars in Pediatric Infectious Diseases 11: 245-251.

. Abidin SAN, Hadidjaja P (2003) The effect of soil-transmitted helminth infection

on the cognitive function of schoolchildren. In: Crompton DWT, Montresor A,
Nesheim MC, Savioli L, editors. Controlling disease due to helminth infections:
World Health Organization. pp. 67-71.

. Dickson R, Awasthi S, Williamson P, Demellweek C, Garner P (2000) Effects of

treatment for intestinal helminth infection on growth and cognitive performance
in children: systematic review of randomised trials. BMJ 320: 1697-1701.

. Taylor-Robinson DC, Maayan N, Soares-Weiser K, Donegan S, Garner P

(2012) Deworming drugs for soil-transmitted intestinal worms in children: effects
on nutritional indicators, haemoglobin and school performance. Cochrane

Database Syst Rev 7: CD000371.

. Anderson RM (1982) The population dynamics and control of hookworm and

roundworm infections. In: Anderson RM, editor. The Population dynamics of
infectious diseases: theory and applications. London; New York: Chapman and

Hall.pp. 68-108.

. Crompton DWT, Savioli L (2007) Handbook of helminthiasis for public health.

Boca Raton: CRC/Taylor & Francis. 362 p.p.

. Crompton DW (2001) Ascaris and ascariasis. Adv Parasitol 48: 285-375.
. O’Lorcain P, Holland CV (2000) The public health importance of Ascaris

lumbricoides. Parasitology 121 Suppl: S51-71.

. Brooker S, Clements AC, Bundy DA (2006) Global epidemiology, ecology and

control of soil-transmitted helminth infections. Adv Parasitol 62: 221-261.

. Magalhaes RJ, Clements AC, Patil AP, Gething PW, Brooker S (2011) The

applications of model-based geostatistics in helminth epidemiology and control.

Adv Parasitol 74: 267-296.

. Brooker S, Hay SI, Bundy DA (2002) Tools from ecology: useful for evaluating

infection risk models? Trends Parasitol 18: 70-74.

. Brooker S, Clements AC (2009) Spatial heterogeneity of parasite co-infection:

Determinants and geostatistical prediction at regional scales. Int J Parasitol 39:
591-597.

. Brooker S, Rowlands M, Haller L, Savioli L, Bundy DA (2000) Towards an atlas

of human helminth infection in sub-Saharan Africa: the use of geographical
information systems (GIS). Parasitol Today 16: 303-307.

. Brooker S, Kabatereine NB, Smith JL, Mupfasoni D, Mwanje MT, et al. (2009)

An updated atlas of human helminth infections: the example of East Africa.
Int J Health Geogr 8: 42.

. Brooker S, Kabatereine NB, Tukahebwa EM, Kazibwe F (2004) Spatial analysis

of the distribution of intestinal nematode infections in Uganda. Epidemiol Infect
132: 1065-1071.

Brooker S, Michael E (2000) The potential of geographical information systems
and remote sensing in the epidemiology and control of human helminth
infections. Adv Parasitol 47: 245-288.

Brooker S, Hay SI, Tchuente LAT, Ratard R (2002) Using NOAA-AVHRR
data to model human helminth distributions in planning discase control in
Cameroon, West Africa. Photogramm Eng Rem S 68: 175-179.

. Brooker S, Singhasivanon P, Waikagul J, Supavej S, Kojima S, et al. (2003)

Mapping soil-transmitted helminths in Southeast Asia and implications for
parasite control. Southeast Asian J Trop Med Public Health 34: 24-36.

. Brooker S, Beasley M, Ndinaromtan M, Madjiouroum EM, Baboguel M, et al.

(2002) Use of remote sensing and a geographical information system in a

PLOS ONE | www.plosone.org

Ascaris lumbricoides and Environmental Factors

Author Contributions

Conceived and designed the experiments: MH LM SM IK TL ES.
Performed the experiments: PC IK AN CM SM LM CG ES. Analyzed the
data: SAS HR RPL ES. Contributed reagents/materials/analysis tools:
DOK ES. Wrote the paper: SAS ES.

26.

28.

30.

32.

33.

34.

36.

37.

39.

40.

41.

42.

43.

44.

46.

47.

48.

49.

national helminth control programme in Chad. Bull World Health Organ 80:
783-789.

Pullan RL, Gething PW, Smith JL, Mwandawiro CS, Sturrock HJ, et al. (2011)
Spatial modelling of soil-transmitted helminth infections in Kenya: a disease
control planning tool. PLoS Negl Trop Dis 5: €958.

. Kan SP (1985) Ascaris lumbricoides in Malaysia. In: Crompton DWT, Nesheim

MC, Pawlowski ZS, editors. Ascariasis and its public health significance: a
volume based on the agenda and discussions of the 1984 Banfl' conference,
organized by WHO Parasitic Diseases Programme and Division of Nutritional
Sciences, Cornell University, New York. London; Philadelphia: Taylor &
Francis.pp. 69-82.

Stephenson LS (1985) Factors affecting the prevalence and control of Ascaris
lumbricoides infection in Kenya. In: Crompton DWT, Nesheim MC, Pawlowski
78, editors. Ascariasis and its public health significance: a volume based on the
agenda and discussions of the 1984 Banff conference, organized by WHO
Parasitic Diseases Programme and Division of Nutritional Sciences, Cornell
University, New York. London; Philadelphia: Taylor & Francis.pp. 113-127.

. Tshikuka JG, Scott ME, Gray-Donald K (1995) Ascaris lumbricoides infection

and environmental risk factors in an urban African setting. Ann Trop Med
Parasitol 89: 505-514.

Walker M, Hall A, Basanez MG (2011) Individual predisposition, household
clustering and risk factors for human infection with Ascaris lumbricoides: new
epidemiological insights. PLoS Negl Trop Dis 5: €1047.

. Forrester JE, Scott ME, Bundy DA, Golden MH (1988) Clustering of Ascaris

lumbricoides and Trichuris trichiura infections within households. Trans R Soc Trop
Med Hyg 82: 282-288.

Carneiro I'F, Cifuentes E, Tellez-Rojo MM, Romieu I (2002) The risk of Ascaris
lumbricoides infection in children as an environmental health indicator to guide
preventive activities in Caparao and Alto Caparao, Brazil. Bull World Health
Organ 80: 40-46.

Riess H, Clowes P, Kroidl I, Kowuor DO, Nsojo A, et al. (2013) Hookworm
infection and environmental factors in mbeya region, Tanzania: a cross-
sectional, population-based study. PLoS Negl Trop Dis 7: €2408.

WHO (1991) Basic laboratory methods in medical parasitology. Geneva: World
Health Organization. viii, 114 p.p.

. Montresor A, Crompton DW, Bundy DAP, Hall A, Savioli L (1998) Guidelines

for the evaluation of soil-transmitted helminthiasis and schistosomiasis at
community level. Geneva: WHO. 45 p.

Farr TG, Rosen PA, Caro E, Crippen R, Duren R, et al. (2007) The shuttle
radar topography mission. Reviews of Geophysics 45.

Hijmans R]J, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high
resolution interpolated climate surfaces for global land areas. Int J Climatol 25:
1965-1978.

. NASA Land Processes Distributed Active Archive Center (LP DAAC) (2001)

MODIS 11A2. USGS/Earth Resources Observation and Science (EROS)
Center, Sioux Falls, South Dakota.

NASA Land Processes Distributed Active Archive Center (LP DAAC) (2001)
MODIS 13Q]. Resources Observation and Science (EROS) Center, Sioux
Falls, South Dakota.

Kolenikov S, Angeles G (2009) Socioeconomic Status Measurement with
Discrete Proxy Variables: Is Principal Component Analysis a Reliable Answer?
Rev Income Wealth 55: 128-165.

Filmer D, Pritchett LH (2001) Estimating wealth effects without expenditure
data—or tears: an application to educational enrollments in states of India.
Demography 38: 115-132.

Vyas S, Kumaranayake L (2006) Constructing socio-economic status indices:
how to use principal components analysis. Health Policy Plan 21: 459-468.
Alin A (2010) Multicollinearity. WIREs Computational Statistics 2: 370-374.
Harrell FE (2001) Regression modeling strategies: with applications to linear
models, logistic regression, and survival analysis. New York: Springer. xxii, 568
p- p-

. Menard SW (2002) Applied logistic regression analysis. Thousand Oaks, Calif.:

Sage Publications. viii, 111 p. p.

Huber PJ (1967) The behavior of maximum likelihood estimates under
nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability 1: 221-223.

White H (1980) A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity. Econometrica 48: 817-830.

Rogers WH (1993) Regression standard errors in clustered samples. Stata
Technical Bulletin 3: 19-23.

Royston P, Altman DG (1994) Regression Using Fractional Polynomials of
Continuous Covariates - Parsimonious Parametric Modeling. Appl Stat] Roy
St C 43: 429-467.

March 2014 | Volume 9 | Issue 3 | 92032



53.

54.

56.

57.

58.

59.

. Royston P, Ambler G, Sauerbrei W (1999) The use of fractional polynomials to

model continuous risk variables in epidemiology. Int J Epidemiol 28: 964-974.

. Royston P, Altman DG (1997) Approximating statistical functions by using

fractional polynomial regression. Statistician 46: 411-422.

Sauerbrei W, Meier-Hirmer C, Benner A, Royston P (2006) Multivariable
regression model building by using fractional polynomials: Description of SAS,
STATA and R programs. Comput Stat Data An 50: 3464-3485.

Ambler G, Royston P (2001) Fractional polynomial model selection procedures:
Investigation of type I error rate. J Stat Comput Sim 69: 89-108.

Royston P, Sauerbrei W (2008) Multivariable model-building: a pragmatic
approach to regression analysis based on fractional polynomials for modelling
continuous variables. Chichester, England; Hoboken, NJ: John Wiley. xvii, 303

p- p-
. Akaike H (1974) A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19: 716-723.

Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6:
461-464.

Pisati M (2001) Tools for spatial data analysis. Stata Technical Bulletin 60: 21
37.

Saathoff E, Olsen A, Kvalsvig JD, Appleton CC, Sharp B, et al. (2005)
Ecological covariates of Ascaris lumbricoides infection in schoolchildren from rural
KwaZulu-Natal, South Africa. Trop Med Int Health 10: 412-422.

Otto GF (1929) A study of the moisture requirements of the eggs of the horse,
the dog, human and pig ascarids. Am J Hyg 10: 0497-0520.

PLOS ONE | www.plosone.org

10

60.

62.

63.

64.

66.

67.

Ascaris lumbricoides and Environmental Factors

Spindler LA (1929) The relation of moisture to the distribution of human
trichuris and ascaris. Am J Hyg 10: 0476-0496.

Gunawardena GS, Karunaweera ND, Ismail MM (2004) Wet-days: are they
better indicators of Ascaris infection levels? J Helminthol 78: 305-310.

Storey GW, Phillips RA (1985) The survival of parasite eggs throughout the soil
profile. Parasitology 91 (Pt3): 585-590.

Tarafder MR, Carabin H, Joseph L, Balolong E Jr, Olveda R, et al. (2010)
Estimating the sensitivity and specificity of Kato-Katz stool examination
technique for detection of hookworms, Ascaris lumbricoides and Trichuris
trichiura infections in humans in the absence of a ‘gold standard’. Int J Parasitol
40: 399-404.

Knopp S, Mgeni AF, Khamis IS, Steinmann P, Stothard JR, et al. (2008)
Diagnosis of soil-transmitted helminths in the era of preventive chemotherapy:
effect of multiple stool sampling and use of different diagnostic techniques. PLoS
Negl Trop Dis 2: e331.

. Beaver PC (1975) Biology of Soil-Transmitted Helminths - Massive Infection.

Health Lab Sci 12: 116-125.

Beaver PC (1952) Observation on the epidemiology of ascariasis in a region of
high hookworm endemicity. Journal of Parasitology 38: 445-453.

Elkins DB, Haswell-Elkins M, Anderson RM (1986) The epidemiology and
control of intestinal helminths in the Pulicat Lake region of Southern India. I.
Study design and pre- and post-treatment observations on Ascaris lumbricoides
infection. Trans R Soc Trop Med Hyg 80: 774-792.

March 2014 | Volume 9 | Issue 3 | 92032



