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Abstract

Equine recurrent uveitis is a spontaneous, lymphocyte-driven autoimmune disease. It affects horses worldwide and presents
with painful remitting-relapsing inflammatory attacks of inner eye structures eventually leading to blindness. Since
lymphocytes are the key players in equine recurrent uveitis, we were interested in potential changes of their protein
repertoire which may be involved in disease pathogenesis. To create a reference for differential proteome analysis, we first
unraveled the equine lymphocyte proteome by two-dimensional sodium dodecyl sulfate - polyacrylamide gel
electrophoresis and subsequently identified 352 protein spots. Next, we compared lymphocytes from ERU cases and
healthy horses with a two-dimensional fluorescence difference in gel electrophoresis approach. With this technique, we
identified seven differentially expressed proteins between conditions. One of the significantly lower expressed candidates,
septin 7, plays a role in regulation of cell shape, motility and migration. Further analyses revealed T cells as the main cell
type with decreased septin 7 abundance in equine recurrent uveitis. These findings point to a possible pathogenetic role of
septin 7 in this sight-threatening disease.
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Introduction

Equine recurrent uveitis (ERU) is a highly prevalent disease in

horses and presents with spontaneously occurring, painful

remitting-relapsing inflammation of inner eye structures [1]. Prior

to an uveitic attack, activated peripheral-blood derived lympho-

cytes infiltrate the eye by crossing the blood-retinal barrier and

destruct their main target, the retina [2–4]. With every subsequent

relapsing inflammatory phase, lymphocyte infiltration from

periphery reoccurs and inflammation increases in severity

eventually leading to blindness [5]. Not only does this organ-

specific autoimmune disease have severe, sometimes fatal conse-

quences for diseased horses, it is also the only spontaneous model

for relapsing autoimmune uveitis in man, due to remarkable

clinical and immunopathological similarities [6]. Although it is

known that in ERU, autoaggressive lymphocytes are predomi-

nantly targeted against retinal autoantigens [2,7–9] and epitope

spreading is a possible explanation for remitting-relapsing

character of disease [10], underlying molecular mechanisms

affecting lymphocyte function in ERU are still elusive. Changes

in protein expression pattern of these immune cells might be a

potential indicator for altered lymphocyte function contributing to

pathogenesis. Since autoaggressive lymphocytes are present in

peripheral blood directly before onset of an uveitic attack [10],

differential proteome analysis of peripheral blood-derived lym-

phocytes in ERU is a valuable technique to gain further insights

into these pathological processes. To create a solid basis for these

analyses, however, knowledge of the equine lymphocyte protein

repertoire is essential. Therefore, we unraveled the equine

lymphocyte proteome and subsequently used two-dimensional

fluorescence difference in gel electrophoresis (2D-DIGE) to screen

the lymphocyte proteome for differences in protein abundance

comparing peripheral lymphocytes of healthy horses and ERU

cases. Taken together, this study aimed at finding differentially

expressed proteins which might affect lymphocyte function and

thereby contributing to pathogenesis of ERU.

Materials and Methods

Ethics statement
No experimental animals were used in this study. Horses were

treated according to the ethical principles and guidelines for

scientific experiments on animals according to the ARVO

statement for the use of animals in Ophthalmic and Vision

research. Blood from ERU horses was withdrawn as part of

patient’s diagnostics. Withdrawal of blood samples from healthy

horses was permitted by the local authority (Regierung von

Oberbayern; permit number: AZ 55.2-1-54-2532.3-21-12).
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Selection of animals used in the study
All ERU diseased horses were those brought to the Equine

Clinic of the LMU Munich. ERU was diagnosed by clinical signs

of acute uveitis accompanied by a documented history of

recurrent eye inflammation. Horses with ERU included in this

study had had at least three uveitic attacks. Blood from ERU

cases was withdrawn prior to therapeutic pars plana vitrectomy,

in quiescent stage of disease. The horses used in this study

received topical medication solely to the eye, if at all, but did not

receive systemical medication. Therefore, no influence was taken

through treatment on the peripheral lymphocyte population

investigated. Healthy horses used as controls were matched in sex

and age.

Sample preparation
Lymphocytes from 29 healthy horses and 27 ERU cases were

examined in this study. In detail, peripheral blood derived

lymphocytes (PBL) of 1 healthy horse were used for two-

dimensional lymphocyte proteome reference map, 5 healthy

controls and 5 ERU diseased horses were used for 2D-DIGE

screening experiment. For Western blot analysis, lymphocytes of

12 healthy controls and 11 ERU cases were used. PBL from 11

healthy horses and 11 ERU cases were analyzed by flow

cytometry. All blood samples from ERU diseased horses were

obtained from the Equine Clinic in Munich without prior selection

for a respective experimental condition (DIGE profiling, Western

blot verification, flow cytometry). Diseased and healthy horses

were matched in age and sex for DIGE screening experiments.

Equine venous blood was collected in lithium-heparin coated tubes

(Kabe, Nümbrecht-Elsenroth, Germany). After rough sedimenta-

tion of erythrocytes, lymphocytes were isolated from plasma by

density gradient centrifugation (room temperature (RT), 290

relative centrifugal force (rcf), 25 min, brake off) using Biocoll

separating solution (Biochrom, Berlin, Germany). Lymphocytes

were extracted from intermediate phase, washed twice in PBS

(4uC, 453 rcf, 10 min) and number of lymphocytes was counted to

ensure comparable sample composition for further analyses. Cells

were then either used immediately or stored at 220uC (pellet) or

280uC (vital cells, cryopreservated).

Two-dimensional separation of the equine lymphocyte
proteome

PBL of a healthy horse were dissolved in lysis buffer (9 M

Urea, 2 M Thiourea, 1% Dithioerythritol, 4% CHAPS, 2.5 mM

EDTA) and processed using QIAshredder homogenizers (Qia-

gen, Hilden, Germany) for depletion of DNA precipitates.

Protein content of cell lysates was determined by Bradford

protein assay (Sigma-Aldrich, Deisenhofen, Germany). One mg

of lysate was loaded on 24 cm pH 3-11 NL IPG strips (GE

Healthcare, Freiburg, Germany) by overnight reswelling and

subjected to isoelectric focusing (IEF) on a 2117 Multiphor II

Electrophoresis Unit with an Amersham Electrophoresis Power

Supply EPS 3501 XL (Step 1: 2 h/50 V/2 mA/5 W, Step2:

11 h/600 V/10 mA/10 W, Step 3: 4 h/2000 V/10 mA/10 W,

Step 4: 12 h/3000 V/10 mA/10 W). Strips were then equili-

brated in 1% Dithiothreitol followed by 4.8% Iodoacetamide for

10 minutes each and sodium dodecyl sulfate - polyacrylamide gel

electrophoresis (SDS-PAGE) was subsequently performed in an

Ettan DALT Six Electrophoresis Unit 230 (GE Healthcare) with

an Amersham Electrophoresis Power Supply EPS 3501 XL (Step

1: 45 min/600 V/150 mA/9 W, Step 2: 1 h/850 V/300 mA/

60 W, Step 3: 8 h/1000 V/400 mA/90 W). Resulting gels were

colloidal coomassie stained and scanned on a transmission

scanner. As many spots as possible were cut from gels and

processed for mass spectrometry.

Two-dimensional fluorescence difference in gel
electrophoresis (2D-DIGE)

Approximately 16108 PBL of 5 ERU diseased horses and 5

controls each were dissolved in DIGE lysis buffer (7 M Urea, 2 M

Thiourea, 4% CHAPS, 30 mM Tris; pH 8.5) and processed using

QIAshredder homogenizers for depletion of DNA precipitates

(Qiagen). 50 mg protein of each sample was labeled separately with

400 pmol Cy3 or Cy5 fluorescent CyDyes (GE Healthcare)

according to minimal labeling technique. To exclude possible

dye-specific effects of labeling on one group, we applied reverse

labeling technique, labeling 2 control PBL lysates with Cy3 and 3

controls with Cy5 and vice versa in ERU cases. Additionally, a

pooled internal standard containing all 10 samples used in the

experiment was labeled with Cy2 (GE Healthcare). Labeling of

proteins at 4uC was terminated after 30 min by addition of lysine.

After 10 minutes of incubation, samples were pooled into sets,

each comprising three differently dyed 50 mg aliquots (diseased/

control/internal standard). The 150 mg protein compounds were

adjusted to a volume of 460 ml with lysis buffer, loaded on 24 cm

pH 3–11 NL IPG strips (GE Healthcare) and subjected to IEF

followed by equilibration and SDS-PAGE. Resulting gels were first

scanned at different wavelengths (488 nm for Cy2, 532 nm for

Cy3, 633 nm for Cy5 labeled proteins) with Typhoon Trio69

Scanner (GE Healthcare) and then silver stained for visualization

of protein spots.

Image analysis and detection of differentially expressed
proteins (DeCyder software)

Data of scanned DIGE gels were imported into DeCyder 6.5

software (GE Healthcare) and processed in DIA module for

separate analysis of each gel (intra gel analysis), comprising the

assignment of dye tag to images (internal standard: Cy2, control:

Cy3 or Cy5, diseased: Cy5 or Cy3 due to reverse labeling), spot

detection and normalization of Cy3 and Cy5 labeled spot

abundances to the internal standard as well as comparison of

spot abundances between control and ERU data sets. To avoid

detection of ‘‘false’’ spots, inclusion and exclusion criteria for spot

detection were set at: spot slope .2, spot volume ,30000,

threshold 2.5. After automatic detection and matching of spots by

software analysis was verified manually and corrected if necessary.

In BVA module, standardized protein spot abundances from each

gel data set generated in the experiment were compared (inter gel

analysis), enabling detection of protein abundance differences

between groups. Detected differences in protein abundance were

considered significant at p,0.05 (Student’s t test) and inclusion

criterion for further analysis was a fold change of .1.5.

Differentially abundant protein spots from digital DeCyder map

were located on matching silver stained gels and excised for

subsequent identification by mass spectrometry (MALDI/TOF-

TOF; ABI 4700 Proteomics Analyzer, Applied Biosystems,

Darmstadt, Germany).

Identification of proteins from spotmap as well as
differentially expressed proteins with mass spectrometry
(MALDI-TOF/TOF and LC-MSMS)

Selected spots from 2D-gels were excised manually and silver

stained spots were destained by repetitive washes in water and

buffer containing 30 mM potassium ferricyanide and 100 mM

sodium thiosulfate. Destained spots from silver stained gels as well

as spots from coomassie stained gel were shrunk in 100%
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acetonitrile (ACN), rehydrated in 50 mM NH4HCO3 (shrinking

and rehydration was performed twice) and dried in a SpeedVac

centrifuge. Spots were then digested with 0.01 mg/ml trypsin

(Sigma-Aldrich) in 50 mM NH4HCO3 overnight at 37uC. The

supernatant was collected and combined with eluates of subse-

quent elution steps with 80% ACN and 0.1% trifluoroacetic acid

(TFA). The combined eluates were dried in a SpeedVac centrifuge

and dissolved in 50% ACN and 0.1% TFA.

For protein identification with MALDI-TOF/TOF mass

spectrometry, 0.5 ml of a 1:1 mixture of sample and a matrix

solution consisting of 2.5 mg/ml a-cyano-4-hydroxy-cinnamic

acid (Bruker, Bremen, Germany) were spotted on a MALDI

target. Mass spectra were acquired using a Proteomics Analyzer

4700 mass spectrometer (Applied Biosystems). For each MS

spectrum, 2500 laser shots were averaged and processed with

external calibration. Peptide mass fingerprint (PMF) spectra were

not smoothed and background was not subtracted. Monoisotopic

peak masses were automatically determined within the mass

range 800–4000 kDa with a signal to noise ratio minimum set to

5 and the local noise window width m/z 200. Up to eight of the

most intense ion signals with signal to noise ratio above 30 were

selected as precursors for MS/MS acquisition excluding com-

mon trypsin autolysis peaks and matrix ion signals. In MS/MS

positive ion mode 4000 spectra were averaged with 1 kV

collision energy, collision gas air at a pressure of 1.6610-6 torr

and default calibration. Monoisotopic peak masses were auto-

matically determined with a signal to noise ratio minimum set to

10 and the local noise window width m/z 200. Combined PMF

and MS/MS queries were performed using the MASCOT

search engine (Matrix Science, London, UK; http://www.

matrixscience.com) embedded into GPS-Explorer Software

(Applied Biosystems).

LC–MSMS mass spectrometry was performed as previously

described [11]. Briefly, the digested peptides were loaded

automatically to a HPLC system (Thermo Fisher Scientific)

equipped with a nano trap column in 95% buffer A (5% ACN,

0.1% formic acid (FA) in HPLC-grade water) and 5% buffer B

(80% ACN, 0.1% FA in HPLC-grade water). After 5 min, the

peptides were eluted and separated on the analytical column

(75 mm inner diameter615 cm, Acclaim PepMap100 C18,

3 mm, 100 Å, Dionex) by a gradient from 5% to 50% of buffer

B at 300 nl/min flow over 120 min followed by a 5 min gradient

from 50% to 100% buffer B in 5 min. The eluting peptides were

analyzed online in a LTQ OrbitrapXL mass spectrometer

(Thermo Fisher Scientific) coupled to the HPLC system with a

nano spray ion source. The mass spectrometer was operated in

the data-dependent mode to automatically switch between

Orbitrap-MS and LTQ-MS/MS acquisition. Survey full scan

MS spectra (from m/z 200 to 1500) were acquired in the

Orbitrap with high-resolution (60,000 full-width half maximum).

The method used allowed sequential isolation of the most intense

ions (up to ten), depending on signal intensity, for fragmentation

on the linear ion trap using collisional induced dissociation at a

target value of 100,000 ions. High-resolution MS scans in the

Orbitrap and MS/MS scans in the linear ion trap were

performed in parallel. Target peptides already selected for MS

MS/MS were dynamically excluded for 30 s.

MALDI PMF and MSMS spectra as well as LC-MSMS-derived

MS/MS spectra were analyzed using Mascot (version 2.2, Matrix

Science, London, UK; http://www.matrixscience.com), set up to

search the Ensemble Horse protein database (version 2.66,

12722794 residues, 22644 sequences, http://www.ensembl.org)

setting trypsin as digestion enzyme and allowing fragment ion

mass tolerance of 0.3 Da and a parent ion tolerance of 65 ppm for

MALDI analyses. One missed cleavage was allowed and

iodacetamide derivatives of cysteines as stable modifications as

well as oxidation of methionine and deamidation of asparagine

and glutamine as variable modifications were specified for Mascot

searches.

Protein identifications were accepted if the probability based

MOWSE protein score was above the p,0.01 significance

threshold for the database and contained at least two identified

peptides with at least 80.0% probability as specified by the Peptide

Prophet algorithm [12]. Additionally, theoretical isoelectric point

(pI) and molecular weight (Mw) from most search results

correlated to the position of the corresponding spot in the gel.

Proteins that contained similar peptides but could not be

differentiated based on MS/MS analysis alone were grouped to

satisfy the principles of parsimony.

Quantification of septin 7 expression differences
(Western blot)

Lymphocytes were lysed in lysis buffer (9 M Urea, 2 M

Thiourea, 1% Dithioerythritol, 4% CHAPS, 2.5 mM EDTA)

and incubated with laemmli buffer (4% SDS, 20% glycerol,

10% 2-mercaptoethanol, 0.004% bromphenol blue, 0.125 M

Tris; pH 6.8) for 5 minutes at 95uC and 750 rpm on a bench

top shaker. From each sample, 10 mg protein was separated by

SDS-PAGE on 8% gels and blotted semidry onto PVDF

membranes (GE Healthcare). Unspecific binding was blocked

in 1% Polyvinylpyrrolidone with 0.05% Tween20 (PVP-T) for

1 h at room temperature. Blots were incubated with mouse anti-

septin 7 antibody (SantaCruz Biotechnology, Heidelberg,

Germany, 1:1000) at 4uC overnight. Before and after incubation

with HRP-coupled anti-rabbit IgG antibody (Sigma-Aldrich,

1:3000) for 1 h at room temperature, blots were washed in

phosphate buffered saline solution with 0.05% Tween20 (PBS-

T). Signals were detected by enhanced chemiluminescence on

X-ray film (SUPER-2000G ortho, Fuji; Christiansen, Planegg,

Germany). Films were scanned on a transmission scanner and

densitometric quantification of Western blot signals was

performed using ImageQuantTL software (GE Healthcare).

Specific binding of septin 7 antibody to horse septin 7 was

verified with immunoprecipitation and subsequent mass spec-

trometry analysis, clearly identifying equine septin 7 bound by

the antibody. Blots were then incubated in stripping buffer

(100 mM NaOH, 2% SDS, 0.5% DTT) for 1 hour at 55uC,

washed with PBS-T and blocked with 1% PVP-T for 1 hour at

room temperature. After repeated washing with PBS-T, blots

were re-incubated with mouse anti-beta actin antibody (Sigma-

Aldrich; 1:5000) followed by secondary HRP-coupled anti-

mouse IgG antibody (Sigma-Aldrich, 1:5000) and signals were

developed as described above. Subsequently, all septin 7 signal

abundances were normalized to respective beta actin values.

Statistical analysis of septin 7 expression level comparison

between ERU samples and controls was performed using

Student’s t test and differences in protein expression were

considered significant at p,0.05.

Analysis of septin 7 expression differences with flow
cytometry

Equine PBL were isolated from plasma by density gradient

centrifugation as described above. Cell staining was performed

either directly (CD4, CD8, CD21) or after permeabilization of

cells (septin 7) in 96 well roundbottom plates with 16106 cells per

well. Mouse IgG1 anti-equine CD4, mouse IgG1 anti-human

CD21 (both Serotec, Puchheim, Germany, 1:10) and mouse IgG3

Septin 7 Expression in Equine Recurrent Uveitis
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anti-equine CD8a (VMRD, Pullman, Washington, United States,

1:50) antibodies were diluted in staining buffer (1% BSA + 0.001%

NaN3 in PBS) and incubated with cells for 30 minutes at 4uC.

After washing with staining buffer, respective secondary antibodies

were added (anti mouse-IgG1:PE, SantaCruz, 1:200 or anti

mouse-IgG3:PE, Biozol, Eching, Germany, 1:200) and incubated

for 30 min at 4uC. Subsequently, cells were permeabilized (BD

Cytofix/Cytoperm fixation/permeabilization kit; BD Biosciences,

Heidelberg, Germany) and washed twice with staining buffer.

Diluted anti-septin 7 antibody (SantaCruz, 1:50) incubated with

cells for 30 minutes at 4uC. After washing with staining buffer,

anti-rabbit IgG:Alexa488 antibody (Invitrogen, Karlsruhe, Ger-

many, 1:200) was added for 30 minutes at 4uC. Cells were stored

at 4uC in staining buffer with 1% PFA until further processing.

Measurement of cells was performed on FACS Canto II with

FACS Diva 6.1.3 software (both BD Biosciences). Lymphocytes

were gated according to forward scatter (cell size) and side scatter

(intercellular granularity) properties of cells. Compensation was

performed manually. 5000 cells were measured per staining.

Further analysis of flow cytometry data was performed using open

source Flowing Software 2.5.0 (Perttu Terho, Turku Centre for

Biotechnology, Finland).

Results

Two-dimensional separation of the equine lymphocyte
proteome

To analyze the equine lymphocyte protein repertoire, we

separated lymphocytes from healthy horses by 2D-PAGE. High-

resolution protein pattern was made visible by colloidal coomassie

staining (figure S1, representative 2D-gel with lymphocyte

proteome pattern of one healthy horse; a total of 94 2D-PAGE

experiments with different specimen were performed in this study)

and showed single, well-separated protein spots with minimal

streaking. 352 protein spots were unambiguously identified by

mass spectrometry and represented 229 different proteins (figure

S1 and table S1).

Seven proteins show altered expression in ERU
As we were interested in the characterization of lymphocyte

protein expression pattern differences between healthy horses and

ERU cases, we used 2D-DIGE technique for comparative

proteome screening. With this approach, we were able to detect

seven differentially abundant proteins in ERU (Figure 1, figure S2;

p,0.05, fold change .1.5), which could clearly be identified by

mass spectrometry (Table 1). One of these proteins, lactotransfer-

Figure 1. Spot map of equine PBL proteome generated by DeCyder 6.5 software. Protein spots detected on gel after scanning and
processing were encircled in green. Spots with differential abundance between control- and ERU specimen (n = 5 each) were encircled in red and
numbered according to table 1. Spot numbers referring to proteins with higher abundance in ERU were highlighted in grey, those with lower
abundance in ERU are shown in white. Septin 7 spot (No. 7) showed diminished expression in ERU PBL proteome.
doi:10.1371/journal.pone.0091684.g001
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rin, showed higher expression levels in lymphocytes of ERU cases,

whereas six of the identified candidates were lower abundant in

ERU. Among the latter were glyceraldehyde-3-phosphate dehy-

drogenase, protein tyrosine phosphatase non-receptor type6,

voltage-dependent anion-selective channel protein 2, programmed

cell death 6-interacting protein, ezrin and septin 7 (Table 1).

Septin 7 expression in lymphocytes of ERU cases
decreases to 62% of physiological expression level

We decided to further analyze septin 7 (Figure 1, spot no. 7) due

to its role in regulation of cell shape, motility and migration [13].

Spot analysis with DeCyder 6.5 software confirmed statistically

significant differences in spot abundance (Student’s t test p,0.05)

(Figure 2 A–D) with a fold change of 1.9 between conditions

(Table 1, column i). Furthermore, differentially abundant septin 7

spot was detected in every single gel included in analysis (Figure 2,

Graph; Table 1 column h). Subsequently, expression differences of

septin 7 between conditions found with 2D-DIGE technique was

verified with Western blots, quantifying septin 7 abundance in a

cohort of healthy horses (Figure 3, white column, average

expression level set to 100%) in comparison to ERU cases

(Figure 3, grey column). Average expression of septin 7 in ERU

significantly decreased to 62% of expression level in controls, as

determined by statistical analysis (Student’s t test, p,0.05).

Differential septin 7 expression is located in T cells
Since we were interested in expression differences of septin 7 in

lymphocyte subsets, we used flow cytometry for further analysis.

To determine whether septin 7 expression differences were

localized in B cells or T cells, we examined septin 7 expression

in double staining with two T cell markers (CD4 and CD8) and

one B cell marker (CD21) in lymphocyte populations of controls

and ERU cases (Figure 4). Septin 7 was highly expressed in all

lymphocyte subsets of controls (Figure 4 E). In B cells, septin 7

showed no change in expression intensity between conditions

(CD21+ B cells; figure 4 A). In T cells, however, we found a clear

decrease of septin 7 expression in ERU down to 75% (CD4+ T

cells; figure 4 B) and 73% (CD8+ T cells; figure 4 C) of expression

level in healthy specimen. Differences in septin 7 expression on

lymphocyte subsets detected by flow cytometry were not

statistically significant.

Discussion

Equine recurrent uveitis is a lymphocyte-driven organ-specific

autoimmune disease with high prevalence in horses [4,14].

Starting spontaneously, painful inflammatory attacks of the inner

eye alternate with quiescent phases [1]. Through the remitting-

relapsing character of the disease, uveitic attacks become more

and more severe over time and inner eye structures, predom-

inantly the retina, are destroyed [3,5,7]. Up to date, therapy

remains symptomatic, providing only moderate relief [15,16].

Horses in advanced stage of disease often face enucleation of

respective eye. If this involves both eyes, diseased horses have to be

killed. Not only does ERU affect the well-being of the equine

population worldwide, it also serves as the only spontaneous model

for relapsing autoimmune uveitis in man [6] due to striking

immunopathological and clinical resemblance such as comparable

immune reactions to retinal S-antigen [2,17–19], IRBP [7] and

CRALBP [8,9] as well as spontaneous onset of disease with

remitting-relapsing character and unsolved etiology.

Prior to an uveitic attack, autoaggressive lymphocytes infiltrate

the eye by crossing the BRB [20]. These cells can be isolated from

peripheral blood of ERU cases and are a valuable biological

T
a

b
le

1
.

D
if

fe
re

n
ti

al
ly

e
xp

re
ss

e
d

P
ro

te
in

s
in

ER
U

d
e

te
ct

e
d

b
y

2
D

-D
IG

E
an

d
id

e
n

ti
fi

e
d

b
y

m
as

s
sp

e
ct

ro
m

e
tr

y.

a
N

o
b

P
ro

te
in

N
a

m
e

c
A

cc
N

o
d

M
w

(k
D

a
)

e
p

I
f P

ro
t

S
co

re
g

P
e

p
t

C
o

u
n

t
h

A
p

p
e

a
r-

a
n

ce
i F

o
ld

C
h

a
n

g
e

k
t

te
st

l E
x

p
r

in
E

R
U

1
La

ct
o

tr
an

sf
e

rr
in

O
7

7
8

1
1

7
7

8
.0

3
1

5
0

2
1

6
(1

5
)

2
.0

0
.0

4
0

m

2
G

ly
ce

ra
ld

e
h

yd
e

-3
-p

h
o

sp
h

at
e

d
e

h
yd

ro
g

e
n

as
e

P
0

0
3

5
5

3
6

8
.3

2
1

7
0

1
0

1
5

(1
5

)
1

.6
0

.0
1

7
.

3
T

yr
o

si
n

e
-p

ro
te

in
p

h
o

sp
h

at
as

e
,

n
o

n
-

re
ce

p
to

r
ty

p
e

6
Q

5
3

X
S4

6
8

8
.0

8
9

2
1

5
6

(1
5

)
2

.1
0

.0
0

8
.

4
V

o
lt

ag
e

-d
e

p
e

n
d

e
n

t
an

io
n

-s
e

le
ct

iv
e

ch
an

n
e

l
p

ro
te

in
2

P
6

8
0

0
3

3
2

7
.5

9
1

7
6

1
4

1
5

(1
5

)
2

.8
0

.0
3

8
.

5
P

ro
g

ra
m

m
e

d
ce

ll
d

e
at

h
6

-i
n

te
ra

ct
in

g
p

ro
te

in
Q

8
W

U
M

4
9

6
6

.3
3

6
9

1
2

1
2

(1
5

)
2

.2
0

.0
2

7
.

6
Ez

ri
n

P
1

5
3

1
1

6
9

6
.3

4
1

7
3

1
9

6
(1

5
)

2
.0

0
.0

3
8

.

7
Se

p
ti

n
7

Q
6

Q
1

3
7

4
8

8
.9

6
1

1
0

1
3

1
5

(1
5

)
1

.9
0

.0
3

1
.

D
if

fe
re

n
ti

al
ly

e
xp

re
ss

e
d

p
ro

te
in

s
in

ly
m

p
h

o
cy

te
s

o
f

sp
o

n
ta

n
e

o
u

s
ER

U
ca

se
s.

Sp
o

ts
w

e
re

e
xc

is
e

d
fr

o
m

si
lv

e
r

st
ai

n
e

d
2

D
-D

IG
E

g
e

ls
an

d
id

e
n

ti
fi

e
d

b
y

M
A

LD
I-

T
O

F/
T

O
F

m
as

s
sp

e
ct

ro
m

e
tr

y;
p

ro
te

in
s

lis
te

d
w

e
re

id
e

n
ti

fi
e

d
w

it
h

a
p

ro
b

ab
ili

ty
sc

o
re

th
at

w
as

si
g

n
if

ic
an

t
w

it
h

p
,

0
.0

5
.

(a
)

p
ro

te
in

n
u

m
b

e
r

as
sh

o
w

n
in

fi
g

u
re

1
,

(b
)

p
ro

te
in

n
am

e
an

d
(c

)
ac

ce
ss

io
n

n
u

m
b

e
r

as
lis

te
d

in
En

se
m

b
l

h
o

rs
e

p
ro

te
in

d
at

ab
as

e
(w

w
w

.e
n

se
m

b
l.o

rg
),

(d
)

th
e

o
re

ti
ca

l
m

o
le

cu
la

r
w

e
ig

h
t

an
d

(e
)

th
e

o
re

ti
ca

l
is

o
e

le
ct

ri
c

p
o

in
t

o
f

re
sp

e
ct

iv
e

p
ro

te
in

,(
f)

p
ro

b
ab

ili
ty

b
as

e
d

M
O

W
SE

sc
o

re
;s

co
re

is
-1

0
*L

o
g

(P
),

w
h

e
re

P
is

th
e

p
ro

b
ab

ili
ty

th
at

th
e

o
b

se
rv

e
d

m
at

ch
is

a
ra

n
d

o
m

e
ve

n
t.

P
ro

te
in

sc
o

re
s

g
re

at
e

r
th

an
6

0
w

e
re

si
g

n
if

ic
an

t
(p

,
0

.0
5

),
(g

)
p

e
p

ti
d

e
co

u
n

t
fr

o
m

M
A

LD
I-

T
O

F/
T

O
F

an
al

ys
is

.D
if

fe
re

n
ti

al
p

ro
te

in
ab

u
n

d
an

ce
w

as
d

e
te

ct
e

d
b

y
D

e
C

yd
e

r
6

.5
so

ft
w

ar
e

,p
ro

vi
d

in
g

(h
)

th
e

ap
p

e
ar

an
ce

o
f

e
ac

h
p

ro
te

in
sp

o
t

am
o

n
g

th
e

D
e

C
yd

e
r

m
ap

im
ag

e
s

o
f

th
e

e
xp

e
ri

m
e

n
t

(n
u

m
b

e
r

in
p

ar
e

n
th

e
se

s:
th

re
e

im
ag

e
s

w
e

re
g

e
n

e
ra

te
d

p
e

r
g

e
l:

co
n

tr
o

l,
ER

U
an

d
in

te
rn

al
st

an
d

ar
d

,
ad

d
in

g
u

p
to

a
m

ax
im

u
m

o
f

1
5

p
o

ss
ib

le
sp

o
t

m
ap

s)
,

(i
)

fo
ld

ch
an

g
e

(.
1

.5
)

an
d

(k
)

th
e

p
-v

al
u

e
fo

r
d

if
fe

re
n

ti
al

e
xp

re
ss

io
n

o
f

p
ro

te
in

s
co

m
p

ar
in

g
h

e
al

th
y

st
at

e
an

d
ER

U
ca

se
s

(S
tu

d
e

n
t’

s
t

te
st

).
(l

)
Ex

p
re

ss
io

n
in

ER
U

sp
e

ci
m

e
n

w
as

co
m

p
ar

e
d

to
co

n
tr

o
ls

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
1

6
8

4
.t

0
0

1

Septin 7 Expression in Equine Recurrent Uveitis

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e91684

www.ensembl.org


source for analysis of disease-specific alterations in lymphocytes.

To enable detection of possible protein expression differences in

diseased state, we first needed detailed knowledge about the

physiological protein repertoire of equine lymphocytes. Two-

dimensional gel-based studies on physiological lymphocyte

proteome were performed in several species [21–25], however,

the horse was not analyzed so far. Using 2D SDS PAGE, we

separated, displayed (figure S1) and subsequently identified 352

protein spots from the equine lymphocyte proteome (table S1),

giving us detailed information about the equine lymphocyte

protein repertoire and therefore a solid basis for further differential

proteome analyses in ERU.

Previous gel-based differential proteome studies on lymphocytes

in autoimmune disease by other research groups, such as

rheumatoid arthritis in man and a mouse model for type 1

diabetes, led to the identification of several differentially expressed

proteins speculated to be involved in disease pathogenesis [26,27].

Apart from previous studies in our group concerning granulocytes

in ERU [28,29], however, to our knowledge, there were no gel-

based studies on immune cells in autoimmune uveitis. Hence, with

a comparative 2D-DIGE based screening of the equine lympho-

cyte proteome (Figure 1), we now aimed at finding differences in

protein expression which may act as possible indicators of

pathological abnormalities in lymphocytes of ERU cases. We

decided to use biological, rather than technical replicates for a

screening-study of a disease that occurs spontaneously among a

heterogeneous group of individuals. Hence, we compared five

biological replicates with outbred genetical background from

healthy horses to five replicates from ERU diseased state and

detected seven differentially expressed candidate proteins (Table 1).

Since the individual variation in biological replicates masks the

statistical significance of differential protein expression to a certain

extent, proteins showing differential expression subsequent to this

pre-selection might be especially robust in disease pathogenesis.

However, biomarker candidates for the individual animal are

possibly overlooked using this approach, letting personalized

medicine to the side. Nonetheless, this screening-study resulted in

the identification of a solid amount of differentially expressed

proteins, none of which have been described in association with

spontaneous autoimmune uveitis.

The enzyme glyceraldehyde-3-phosphate dehydrogenase [30]

(figure S1 spot 263 and table 1) was not associated with

autoaggressive lymphocytes so far. Further, this study describes

the first identification of programmed cell death 6-interacting

protein (figure S1 spot 44 and table 1), which may play a role in

the regulation of both apoptosis and cell proliferation [31], as a

downregulated lymphocyte protein in autoimmune disease.

Lactotransferrin (figure S1 spot 13 and table 1) acts as a growth

stimulating factor for lymphocytes [32,33] with favorable effects

on the maturation and differentiation of T cells [34]. This is

interesting regarding the fact that, in present study, higher

expression of lactotransferrin in ERU points to the presence of

activated immune cells. On the contrary, tyrosine-protein phos-

phatase non-receptor type 6 (figure S1 spot 123 and table 1),

involved in signal transduction cascade of immune cells [35], was

decreased in lymphocytes of ERU cases. Interestingly, this protein

also showed decreased expression in T cells from patients with

psoriasis, which led to enhanced inflammatory processes and

autoimmune responses [36], therefore its role in immune cells is an

interesting feature regarding pathogenesis of ERU as well.

Figure 2. Septin 7 expression as detected in 2D-DIGE
experiment. (A, B) Enlarged view of septin 7 spot from DeCyder-
generated spot map. (C, D) Three-dimensional view of septin 7 spot.
(Graph) Comparison of spot abundance on different gels (number of
gels: 5; number of specimen: 10; proteins per gel were paired); spot
highlighted in A–D is displayed in red, internal standard is displayed in
yellow. Septin 7 clearly decreases in diseased state.
doi:10.1371/journal.pone.0091684.g002

Figure 3. Septin 7 expression differences quantified and
verified by Western blot. Septin 7 expression decreases in PBL of
ERU diseased horses (n = 11, grey column, Septin 7 expression reduced
to 62%) compared to PBL of healthy controls (n = 12, white column, set
to 100%). Signal intensities of septin 7 were normalized to beta-actin
abundances obtained after stripping and re-incubation of respective
blots. Statistical analysis was performed using Student’s t test (* p,
0.05). Representative protein signals are shown above respective
columns; upper Septin 7 signal was used for quantification, lower
signal derived from unspecific binding of the antibody to beta actin and
was not included in the analyses.
doi:10.1371/journal.pone.0091684.g003
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Voltage-dependent anion-selective channel protein 2 (figure S1

spot 253 and table 1) is crucial for mitochondrial metabolism

[37,38]. Interestingly, this protein was described as a new

candidate autoantigen for autoimmune uveitis in man [39]. Ezrin

(figure S1 spot 79 and table 1) belongs to the protein family of

cross linkers between the plasma membrane and the cortical

cytoskeleton [40]. Ezrin’s effect on enhanced T cell activation

through changed expression has already been described in studies

on rheumatoid arthritis [26] and humoral immunity [41]. The

impact of its expression differences on disease pathogenesis in

ERU needs to be further investigated in future studies.

In this study, we focused on diminished expression of Septin 7

(Figure 1 spot 7, figure 2, table 1, figure S1 spot 144, figure S2),

due to its involvement in regulation of cell shape and motility

[13,42]. Septin 7 belongs to the evolutionarily conserved group of

GTP-binding and filament-forming proteins originally discovered

in yeast [43,44] and recently described in vertebrates as important

part of the cell division cycle [45]. Not only do septins interact with

the actin cytoskeleton [46] and regulate microtubule stability

within the cell [47], they also seem to coordinate changes in

membrane organization of cells [42]. Septin 7 has a corset-like

function providing cell compression and rigidity [13,48], an

interesting feature regarding pathogenesis of autoimmune disease,

where activated immune cells cross anatomical barriers. Septin 7

was not described in association with autoimmune diseases to date,

however, septin 7 was studied in other diseases such as acute

myeloid leukemia, where septin 6, forming a complex with septins

2 and 7, showed significantly lower expression in the spinal cord of

patients, indicating deficient regulation of cell cycle [49]. In

neurodegenerative disease such as down syndrome, the diminished

expression of septin 7 in diseased brain of human fetuses was

connected to inhibition of synaptogenesis and synaptic function

[50]. In neoplasia, especially in the brain, septin 7 was reported to

be involved in malignant glioma cell growth due to its inhibitory

effect on cell proliferation [51], which may also be of importance

in ERU, where cells with diminished septin 7 expression could be

those proliferating.

In blood-derived lymphocytes from ERU cases, septin 7

expression level decreased to 62% of expression level in controls

(Figures 1+2, table 1; figure 3). Interestingly, further analyses of

septin 7 expression on lymphocytes revealed that T cells are the

predominant cell type with decreased septin 7 abundance in ERU.

We found that septin 7 expression was diminished in both CD4+
and CD8+ lymphocytes (Figure 4 B + C), whereas B cells showed

no expression difference between conditions (Figure 4 A). This

finding is very interesting regarding the fact that, among all

possible immune cells involved in autoimmune uveitis, T cells have

the strongest impact on target tissue [11,52–54]. The differential

expression of septin 7 in these lymphocytes indicates association

with mechanisms in disease pathogenesis. Septin 7 was recently

reported to affect glucose uptake in cells [55]. In this study, 81%

knock-down of septin 7 in podocytes increased their uptake

capacity of glucose by affecting GLUT4 storage vesicle trafficking

[55]. When lymphocytes shift from quiescent to activated state,

their glucose metabolism increases drastically [56,57]. Hence,

decreased expression of septin 7 in T cells of ERU cases might

Figure 4. Characterization of septin 7 expression intensity on lymphocyte subsets by flow cytometry. Mean intensity of septin 7
expression decreases in lymphocyte subsets of ERU cases (n = 11, dark grey curve) compared to controls (n = 11, light grey curve). Histograms of
representative specimen showed unchanged expression in B cells (A + E, CD21). In T cells, septin 7 expression intensity decreased to 75% (B + E, CD4)
and 73% (C + E, CD8) of physiological expression level. Lymphocytes were gated according to forward- and sideward-scatter (D). Respective values of
all 11 healthy and 11 ERU specimen used in this study are shown in graph (E).
doi:10.1371/journal.pone.0091684.g004

Septin 7 Expression in Equine Recurrent Uveitis

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e91684



additionally correlate with activated state of T cells in disease. This

is supported by the fact that septin 7 is a potent inhibitor of cell

proliferation [51] and its decrease in expression level may support

inflammatory events in pathogenesis. Interestingly, Tooley et. al.

earlier described altered migration characteristics in septin 7

deficient cells [13]. In respective study, a murine T cell line that

expressed a short hairpin RNA to septin 7 was used, resulting in

over 80% knock-down of septin 7 expression within the cell.

Although this had an impact on coordinated crawling, septin 7

depletion allowed enhanced T cell migration through pores

normally too narrow for passage of cells [13]. Hence, decreased

septin 7 expression in equine lymphocytes of ERU cases might

indicate changes in cytoskeleton and cell rigidity possibly leading

to changes in migration ability. However, further studies are

necessary to analyze possible connection of altered septin 7

expression and transmigration of cells in autoimmune uveitis.

The DIGE technique used as a discovery method in this study

proved to be an effective tool for the detection of changes in the

equine lymphocyte proteome of ERU cases. This was already

shown in previous studies, where we detected differentially

expressed talin 1 in the equine granulocyte proteome in ERU

and subsequently identified its interactors [28,29]. However, this

method deprived us of the analysis of membrane-associated

proteins since these tend to precipitate during IEF and are poorly

soluble in aqueous solutions as those used in 2D-PAGE [58,59].

Gel-free, detergent-based methods are more suitable for the

analysis of this interesting fraction of lymphocyte proteins [11,60]

and will be performed in future studies to complete the analysis of

proteome changes on inflammatory cells in ERU.

The detection of septin 7 downregulation in lymphocytes of

cases with spontaneous autoimmune uveitis is a very interesting

finding in our opinion and its functional pathogenetic role in ERU

merits further analysis. Especially the connection of differences in

septin 7 expression and the activation of autoreactive T cells

deserves detailed studies, not only in peripheral blood-derived

lymphocytes but also in intraocular cells, which accumulate in the

vitreous in course of this sight-threatening disease.

Supporting Information

Figure S1 Representative map of the equine lymphocyte
proteome. Equine lymphocyte proteome of a healthy horse was

separated by 2D-PAGE on 12% SDS gel loaded with 500 mg

lymphocyte protein lysate, stained with colloidal coomassie

(number of total lymphocyte 2D-PAGE experiments performed:

94). 352 protein spots were identified by mass spectrometry.

Numbers of encircled spots correspond to protein identifications

given in table S1.

(TIF)

Figure S2 Differentially expressed proteins of the
equine lymphocyte proteome as detected by DeCyder
6.5 software. (A, B) Enlarged view of protein spot from

DeCyder-generated spot map. (C, D) Three-dimensional view of

protein spot. (Graph) Comparison of spot abundance on different

gels (number of gels: 5; number of specimen: 10); every dot in

graph represents respective protein in a different gel and condition

(proteins per gel were paired), spot highlighted in A-D is displayed

in red, internal standard is displayed in yellow.

(TIF)

Table S1 Protein identifications from equine lympho-
cytes by mass spectrometry. 352 protein spots (representing

229 different proteins) from equine lymphocytes identified by mass

spectrometry; (column A) number of corresponding spot from

master-gel in figure S1, (column B) protein name and (column C)

accession number as listed in Uniprot protein database (www.

uniprot.org), (column D) probability based MOWSE protein score

from MALDI-TOF/TOF analysis; score is -10*Log(P), where P is

the probability that the observed match is a random event. Protein

identifications were accepted if the MOWSE score was above the

p,0.01 significance threshold for the database and contained at

least two identified peptides with at least 80.0% probability as

specified by the Peptide Prophet algorithm. Percentage scores

derived from identification of proteins with LC-MSMS mass

spectrometry describe the percent probability of correct protein

identification as well as the number of peptides sequenced (shown

in parentheses), (column E) Peptide count from MALDI-TOF/

TOF analysis. In comparison to a human lymphocyte proteome

study by Vergara et al., where a total of 246 spots were identified,

representing 174 different proteins [21], we could overall identify

more proteins, however, the general protein pattern and

identifications resemble each other in both species. Several of

the differentially expressed proteins detected in the DIGE

screening experiment (Figure 1 and table 1) were also present in

the human proteome map. Septin 7 was not detected in the

human lymphocyte proteome in that experiment, however, other

septins were identified [21].

(XLSX)
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