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SUMMARY

The miR-34 family was originally found to be a direct
target of p53 and is a group of putative tumor
suppressors. Surprisingly, mice lacking all mir-34
genes show no increase in cancer formation by
18 months of age, hence placing the physiological
relevance of previous studies in doubt. Here, we
report that mice with prostate epithelium-specific
inactivation of mir-34 and p53 show expansion of
the prostate stem cell compartment and develop
early invasive adenocarcinomas and high-grade
prostatic intraepithelial neoplasia, whereas no such
lesions are observed after inactivation of either the
mir-34 or p53 genes alone by 15 months of age.
Consistently, combined deficiency of p53 and
miR-34 leads to acceleration of MET-dependent
growth, self-renewal, and motility of prostate stem/
progenitor cells. Our study provides direct genetic
evidence that mir-34 genes are bona fide tumor
suppressors and identifies joint control of MET
expression by p53 and miR-34 as a key component
of prostate stem cell compartment regulation, aber-
rations in which may lead to cancer.

INTRODUCTION

The microRNA-34 (miR-34) is highly evolutionarily conserved

(Corney et al., 2007; He et al., 2007). In mammals, the miR-34

family is composed of three processed microRNAs (miRNAs)

that are encoded by two different genes: miR-34a is encoded

by its own transcript, whereas miR-34b and miR-34c share a

common primary transcript as a cluster. Due to the high homol-

ogy among these three members, they havemany similar targets

and may be functionally redundant (He et al., 2007). miR-34 was

the first miRNA reported to be directly transactivated by tumor

suppressor p53 (aka Trp53/TP53) and is considered to be an

important component of the p53 network (Hermeking, 2012).
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In addition to a transactivation-dependent decrease in expres-

sion levels in p53-deficient tumors, mir-34 is also deleted or

epigenetically downregulated in multiple cancer cell lines and

human malignancies (Bader, 2012; Hermeking, 2012). Ectopic

expression of miR-34 has been shown to counteract various

oncogenic processes by regulating target genes that function

in cell cycle, apoptosis, senescence, cell migration, and invasion

(Hermeking, 2012). Furthermore, treatment with miR-34 mimics

inhibits cancer formation in transplantation experiments (Bader,

2012; Liu et al., 2011).

Contrary to the expectations raised from experiments based

on nonphysiological approaches, such as exogenous miR-34

introduction and miR-34 knockdown, only minor defects have

been reported in studies of mice with targeted inactivating

mutations of mir-34 (Concepcion et al., 2012; Wei et al., 2012).

Moreover, complete genetic inactivation of miR-34 did not

impair the p53 response in a variety of ex vivo and in vivo assays

(Concepcion et al., 2012). Most surprisingly, no increase in

spontaneous or irradiation-induced carcinogenesis has been

observed in mice lacking all mir-34 genes by 18 month of age

(Concepcion et al., 2012). The absence of all mir-34 genes also

did not accelerate B cell lymphomagenesis in mice overexpress-

ing c-Myc under the control of the Em promoter (Concepcion

et al., 2012). These data question the native tumor-suppressive

function of miR-34. Clarification of the miR-34 role as a tumor

suppressor is of particular importance because reintroduction

of this miRNA into cancer cells has already reached phase 1 clin-

ical trials (Bouchie, 2013).

A number of recent studies have provided evidence of p53-

independent expression of miR-34. For example, miR-34a can

be upregulated to repress MYC during oncogene-induced

senescence in human TIG3 fibroblasts (Christoffersen et al.,

2010) and contributes to megakaryocytic differentiation of

K562 cells (Navarro et al., 2009) in a p53-independent fashion.

Consistent with these observations, levels of all miR-34 family

members remain high in the brains, testes, and lungs of mice

lacking p53 (Concepcion et al., 2012).

Methylation of mir-34a and mir-34b/c has been found in

prostate cancers carrying mutant p53 (Fujita et al., 2008; Kojima

et al., 2010; Liu et al., 2011; Lodygin et al., 2008). Furthermore,
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frequent hypermethylation of mir-34 in cancers with a high

occurrence of p53 mutations, such as ovarian and mammary

carcinomas and soft tissue sarcomas (Corney et al., 2010;

Lodygin et al., 2008; Vogt et al., 2011), suggests the coexistence

of both alterations in the same neoplasms. These findings,

together with reports of p53-independent regulation of miR-34,

suggest that p53 and miR-34 may cooperate in cancer suppres-

sion. This possibility is also supported by our observation

that p53 and miR-34 may jointly regulate MET receptor tyrosine

kinase as part of a coherent feedforward loop in primary ovarian

surface epithelium cells (Hwang et al., 2011). However, there is

no direct experimental evidence for p53 andmiR-34 cooperation

in MET regulation in animal models. By using newly generated

mice carrying conditional alleles of mir-34a and mir-34b/c, we

show that miR-34 cooperates with p53 in suppression of

prostate carcinogenesis by joint MET-mediated control of the

stem cell compartment.

RESULTS

miR-34 Cooperates with p53 in Suppression of Prostate
Carcinogenesis
By using gene targeting ofmir-34a andmir-34b/c loci (Figure S1)

and subsequent crosses of mice, we prepared mice with con-

ventional (mir-34a�/�mir-34b/c�/�) and conditional (floxed,

mir-34aloxP/loxPmir-34b/cloxP/loxP) triple knockout alleles and

designated them as mir-34�/� and mir-34L/L, respectively.

Consistent with a previous report by Concepcion et al. (2012),

our findings indicate that germline genetic inactivation of

mir-34 has only a minor effect on normal development (Supple-

mental Results, Supplemental Discussion, and Figure S2). We

also have not observed any significant pathological phenotypes,

including cancers, in mir-34�/� mice (n = 19) between 15 and

18 months of age.

To rule out the possibility that mice somehow physiologically

compensate for germline mir-34 deficiency, we performed

prostate epithelium-specific mir-34 deletion. This was accom-

plished by using a PB-Cre4 transgene, in which a modified

probasin promoter drives postnatal expression of Cre re-

combinase in the prostate epithelium (Chen et al., 2005;

Zhou et al., 2006). Consistent with previous reports and our

findings in mir-34�/� mice, mice lacking all mir-34 genes in

the prostate epithelium cells (mir-34PE�/� mice) did not show

any atypical lesions by 15 months of age (Figures 1A, 1B,

and S3A; Table S1).

To test if miR-34 may have p53-independent function, we

determined the expression levels of the miR-34 family after

p53 deletion in FACS-purified p53L/L prostate epithelium cells

exposed to Ad-Cre. Significant levels of miR-34 expression

were still detected after p53 inactivation (Figures S3B and S3C).

To test if p53 and miR-34 may cooperate in suppressing

prostate carcinogenesis we generated p53PE�/� and p53PE�/�

mir-34PE�/� mice by crossing p53L/L mice with mir-34L/L and

PB-Cre4 mice. Consistent with previous reports on lack or low

frequency of neoplastic lesions in mice with prostate epithe-

lium-specific p53 inactivation (Chen et al., 2005; Zhou et al.,

2006), only 1 out of 11 p53PE�/� mice (9%) showed prostatic

intraepithelial neoplasia 1 (PIN1) by 9 months of age in the
Ce
distal regions of prostatic ducts. By 15 months of age more of

p53PE�/� mice developed PINs. However, all of them were of

low-grade (PIN1 or PIN2; Figures 1A, 1B, and S3A; Table S1).

No significant changes were observed in the proximal regions

of prostatic ducts, which are known to encompass a prostate

epithelium stem cell compartment (Leong et al., 2008; Tsujimura

et al., 2002).

In contrast, beginning at 3months of age p53PE�/�mir-34PE�/�

mice showed dysplastic lesions characterized by varying degree

of nuclear atypia and loss of normal cellular arrangement in the

proximal regions of prostatic ducts (Figures 1A and S3A; Table

S1). From 9 months of age majority of mice had advanced

dysplastic lesions which frequently filled up expanded ducts,

and 15% and 36% of mice developed early invasive adenocarci-

nomas at 9 and 15 months, respectively (Figures 1A and S3A;

Table S1). In the distal regions of prostatic ducts, the first PIN1

lesions were detected already by 3 months of age (Figures 1B

and S3A; Table S1). High-grade PIN lesions (PIN3 and 4) have

been observed by 9 months of age and 64% (9 out of 14) of

mice had such lesions at 15 months of age. Consistent with

these findings, adenocarcinomas and high-grade PIN lesions

of the proximal and distal regions of prostatic ducts, respec-

tively, characterized by elevated expression of markers of early

prostate cancer, such as AMACR and EZH2, and increased

number of CK5 and p63-positive cells (Figure 1C). Similarly,

higher proliferative activity has been observed in both proximal

and distal regions of prostatic ducts of p53PE�/�mir-34PE�/�

mice (Figures 1D and 1E). In summary, these results show that

miR-34 and p53 cooperate in suppression of prostate

carcinogenesis.

p53 and miR-34 Cooperate in the Control of Prostate
Stem/Progenitor Cell Activity
According to our pathological evaluation, the stem/progenitor

cell-enriched proximal regions of prostatic ducts were specif-

ically affected in p53PE�/�mir-34PE�/� mice. To test if combined

p53 and miR-34 deficiency affects functional properties of

prostate stem/progenitor cells, we isolated such cells by fluo-

rescence-activated cell sorting (FACS) as a CD49fhi/Sca-1+

fraction. Mice with prostate-specific deletions of either mir-34

or p53 had slightly more stem/progenitor cells than back-

ground-matched wild-type (WT) mice (Figure 2A). However,

the pool of CD49fhi/Sca-1+ cells deficient for both miR-34

and p53 increased by 39% and constituted 7.1% of the pros-

tate epithelium versus 5.1% in WT. Notably, the CD49fhi/

Sca-1+ fraction isolated from the prostates of p53PE�/�mir-

34PE�/� mice formed prostaspheres far more efficiently and

of larger size (Figures 2B and 2C). Both higher frequency and

the size of spheres formed by p53 and miR-34-deficient

CD49fhi/Sca-1+ stem/progenitor cells were maintained over

multiple passages (dissociation and clonal formation), suggest-

ing a role for these genes in the control of self-renewal. At the

same time, no difference among genotypes was observed in

CD49flo/Sca-1� luminal cells (Figure 2D). These cells formed

very few spheres after the first plating, and no spheres were

observed after the first passage. Thus, miR-34 and/or p53

deficiency is unlikely to reprogram differentiated cells toward

the stem cell state.
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Figure 2. Deletions of Both p53 and mir-34

Promote Prostate Stem/Progenitor Cell

Expansion and Sphere-Forming Capacity

(A) A quantitative analysis of distribution of

CD49fhi/Sca-1+ stem/progenitor cells and

CD49flo/Sca-1� luminal cells from 3-month-old

WT, mir-34PE�/�, p53PE�/�, and p53PE�/�mir-

34PE�/� mice (n = 3). Red and blue frames repre-

sent stem/progenitor cell and luminal cell pop-

ulations, respectively.

(B–D) The frequency (B and D) and size (C)

of spheres formed by CD49fhi/Sca-1+ stem/

progenitor cells (B and C) and CD49flo/Sca-1� (D)

luminal cells from 3-month-old WT, mir-34PE�/�,
p53PE�/�, and p53PE�/�mir-34PE�/� mice (n = 3).

P0–P3, passages 0–3.

(E and F) The relative frequency of sphere forma-

tion by CD49fhi/Sca-1+ stem/progenitor cells (E)

and CD49flo/Sca-1� luminal cells (F) isolated from

WT, mir-34L/L, p53L/L, and p53L/Lmir-34L/L mice

followed by Ad-Cre infection (n = 3). Sphere

counts were normalized to the Ad-blank-infected

spheres of each passage.

**p < 0.01; ***p < 0.001. Error bars denote SD.
To test whether the observed properties represent the direct

effects of p53 and/or miR-34 on prostate stem/progenitor

cells, we have isolated CD49fhi/Sca-1+ stem/progenitor cells

and CD49flo/Sca-1� luminal cells from the prostates of WT,

mir-34L/L, p53L/L, and p53L/Lmir-34L/L mice and, followed by

infection with Ad-Cre or Ad-blank, subjected them to the

prostasphere-formation experiments (Figures 2E and 2F). Con-

sistently, the lack of both p53 and miR-34 had the most

pronounced effect on the frequency of stem/progenitor cells

in consecutive passages.
Figure 1. miR-34 and p53 Cooperate in Suppression of Prostate Carcinogenesis

(A and B) A quantitative analysis of the frequency of neoplastic lesions in proximal (A) and distal (B) regions of p

lesions; AC, adenocarcinoma; LG, low-grade PIN; HG, high-grade PIN.

(C) Proximal (left two columns) and distal (right two columns) regions of prostatic ducts in 15-month-old WT

invading the surrounding stroma (arrows) and filling up the lumen (arrowheads) in the proximal regions of th

shown. PIN4 (arrows) in the distal regions of the prostatic ducts of p53PE�/�mir-34PE�/�mice is shown. As co

adenocarcinomas and PIN4 (arrows) show higher expression levels of AMACR and EZH2 and an increased

toxylin and eosin staining. The ABC Elite method with hematoxylin (AMACR, CK5) or methyl green (EZH2, a

100 mm for all images.

(D and E) A quantitative analysis of the proliferation rate in proximal (D) and distal (E) regions of prostatic du

See also Figure S3A.
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p53 andmiR-34Regulation of Stem/
Progenitor Cells Depends on MET
In addition to the invasive growth of cells

in the prostate stem cell compartment

of p53PE�/�mir-34PE�/� mice, we have

noted that some of the cells from the

p53 and miR-34-deficient prostaspheres

were spreading into the surrounding ma-

trix (Figure 3A). Because MET plays a

crucial role in regulation of cell motility

and invasion (Trusolino et al., 2010) and

is a known target of p53 (Hwang et al.,

2011) and miR-34 (Corney et al., 2010;
He et al., 2007; Hwang et al., 2011), we have tested its expres-

sion in FACS-isolated populations of the prostate epithelium.

CD49fhi/Sca-1+ prostate stem/progenitor cells had far higher

levels of expression as compared to CD49flo/Sca-1�luminal

cells (Figure 3B). Deficiency for either miR-34 or p53 slightly

increased MET levels in stem/progenitor cells, whereas such

cells from p53PE�/�mir-34PE�/� showed the highest MET

expression (Figures 3B and 3C). Consistently, CD49fhi/Sca-1+

prostate stem/progenitor cells deficient for both miR-34 and

p53 had the highest motility in the migration assay (Figure 3D)
rostatic ducts. N, normal; PRD, proximal dysplastic

and p53PE�/�mir-34PE�/� mice. Adenocarcinomas

e prostatic ducts of p53PE�/�mir-34PE�/� mice are

mpared to the prostate epithelium of WTmice, both

number of CK5 and p63-positive cells. HE, hema-

nd p63) counterstaining was performed. Scale bar,

cts. *p < 0.05; **p < 0.01. Error bars denote SD.
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Figure 3. MET Expression Is Essential for the Increased Growth, Sphere-Forming Capacity, Motility, and Invasion of p53 and miR-34-

Deficient Prostate Stem/Progenitor Cells

(A–H) Prostasphere formation (A), western blot (B), and qRT-PCR (C) of Met expression, migration (D and F), and invasion (E and G) by CD49fhi/Sca-1+ stem/

progenitor cells (A–E) and CD49flo/Sca-1� luminal cells (B, F, and G) of 3-month-old WT,mir-34PE�/�, p53PE�/�, and p53PE�/�mir-34PE�/� mice (n = 3). (A) Note

the outgrowth of cells from prostaspheres prepared from p53PE�/�mir-34PE�/� mice (arrow). (H) MET expression in the cells of proximal and distal regions of

prostatic ducts of 3- and 15-month-oldWT,mir-34PE�/�, p53PE�/�, and p53PE�/�mir-34PE�/�mice is shown. MET expression (arrows) is detected in the proximal

regions of the prostatic ducts of 3- and 15-month-old p53PE�/�mir-34PE�/� mice and in the PIN4 of the distal region in 15-month-old p53PE�/�mir-34PE�/� mice.

PIN1 (arrowheads) in the distal regions of prostatic ducts lacks MET expression in both p53PE�/� and p53PE�/�mir-34PE�/� mice. The ABC Elite method with

hematoxylin counterstaining was performed. Scale bars, 100 mm.

(I–N) qRT-PCR (I) and western blot (J) of Met expression, prostasphere size (K), sphere-forming capacity (L), migration (M), and invasion (N) of CD49fhi/Sca-1+

stem/progenitor cells isolated from 3-month-old WT, p53PE�/�mir-34PE�/�, and p53PE�/�mir-34PE�/�MetPE�/� mice (n = 3).

*p < 0.05; **p < 0.01; ***p < 0.001. Error bars denote SD.
and some trend, albeit not statistically significant, toward

increased invasive activity (Figure 3E). To the contrary, luminal

cells deficient for p53 and/or miR-34 had no significant differ-

ences in their motility (Figure 3F) or invasion (Figure 3G).

Consistent with ex vivo results, we also observed

elevated levels of MET expression in cells of the proximal

regions of prostatic ducts of p53PE�/�mir-34PE�/� mice, as

compared to WT mice and mice with inactivation of either

mir-34 or p53 (Figure 3H). MET expression was below detectable

levels in the epithelium of the distal regions of the prostatic

ducts in all strains. The only exception was elevated MET

expression in high-grade PINs in p53PE�/�mir-34PE�/� mice,

suggesting a possible increase in the number of stem cell-like

cells in such lesions.

To test if MET overexpression is essential for the observed

phenotypes, Met was inactivated using a conditional MetL/L
1004 Cell Reports 6, 1000–1007, March 27, 2014 ª2014 The Authors
allele. Met inactivation abrogated growth, sphere-forming ca-

pacity, cell motility, and invasion of p53 and miR-34-deficient

CD49fhi/Sca-1+ prostate stem/progenitor cells (Figures 3I–3N).

Effects of MET downregulation on growth, sphere-forming

capacity, cell motility, and invasion of WT prostate stem/

progenitor cells were less prominent (Figures 4A–4G), consistent

with the lower levels of MET expression in such cells. However,

2-fold induction of MET expression by hypoxia resulted in a

comparable increase of all the above parameters (Figures

4A–4G). Similar to p53/mir-34-inactivation experiments, this

phenotype was reversed after MET knockdown, indicating a

critical role for MET in prostate stem/progenitor cell regulation.

Previously, it has been shown that p53may negatively regulate

MET expression by the miR-34-mediated targeting of MET (Cor-

ney et al., 2010; He et al., 2007; Hwang et al., 2011). Supporting

these observations, we have detected the preserved 30 UTR



Figure 4. MET Is Essential for the Growth, Sphere-Forming Capacity, Motility, and Invasion of WT Prostate Stem/Progenitor Cells and Is

Partially Regulated by SP1 Interacting with p53

(A–G) qRT-PCR (A) and western blot (B and C) of Met expression, prostasphere size (D), sphere-forming capacity (E), migration (F), and invasion (G) of CD49fhi/

Sca-1+ stem/progenitor cells isolated from 3-month-old WT mice (n = 3) and cultured under normoxic (20% O2, A, B, and D–G) and hypoxic (0.2% O2, A–G)

conditions. *p < 0.05; **p < 0.01; ***p < 0.001. Error bars denote SD. Very similar results were obtained in separate experiments with two different Met small

interfering RNAs (siRNAs).

(H and I) Coimmunoprecipitation of cell lysates with SP1 (H) or p53 (I) antibodies followed by western blot with p53 or SP1 antibodies, respectively (upper panels).

Samples of the same lysates were used for western blot with p53 or SP1 antibodies before immunoprecipitation (lower panels). CD49fhi/Sca-1+ stem/progenitor

cells isolated from 3-month-old WT mice (n = 3) were used. IP, immunoprecipitation. BIP, before immunoprecipitation.

(J) The effect of mithramycin A (100 nM) on MET expression of CD49fhi/Sca-1+ stem/progenitor cells isolated from 3-month-old WT, mir-34PE�/�, p53PE�/�,
and p53PE�/�mir-34PE�/� mice (n = 3).
carrying two binding sites for miR-34 in prostate stem/progenitor

cells (Figure S4). We have also reported that p53 also represses

MET expression by miR-34-independent inhibition of SP1 bind-

ing to the Met promoter in the ovarian surface epithelium cells

(Hwang et al., 2011). Consistent with this mechanism, MET

reciprocal coimmunoprecipitation experiments have shown

that p53 physically interacts with endogenous SP1 in the pros-

tate stem/progenitor cells (Figures 4H and 4I). Furthermore,

SP1 inhibition results in reduction of MET expression in the pros-

tate stem/progenitor cells deficient for either p53 or both miR-34

and p53, but not for miR-34 alone (Figure 4J).

DISCUSSION

Our study provides direct genetic proof that miRNAs of the

miR-34 family may act as tumor suppressors in concert with

other genes, such as p53. These findings offer a solid physiolog-

ical basis for the rational design of diagnostic and therapeutic
Ce
approaches. Because the lack of mir-34 genes alone is insuffi-

cient for cancer initiation, their downregulation is likely to occur

at some point during tumor progression. However, the preexis-

tence of mir-34 methylation in some normal cells cannot be

excluded. Further genomic studies in conjunction with animal

modeling should be able to address this question. Although

our current studies have been focused on prostate cancer,

tissue-specific inactivation of mir-34 and p53 in other tissues

will address likely interactions of these genes in other cell

lineages.

Our observations confirm the earlier findings that p53 may

negatively regulate MET expression by miR-34-mediated target-

ing of MET and by miR-34-independent inhibition of SP1 binding

to the MET promoter. Notably, according to our previous ex vivo

studies, inactivation of both mechanisms is required to achieve

the highest MET overexpression, cell motility, and invasion

(Hwang et al., 2011). Our present study supports this possibility

in an autochthonous model of cancer. Our findings also
ll Reports 6, 1000–1007, March 27, 2014 ª2014 The Authors 1005



show that miR-34 effects on MET regulation occur both in a

p53-dependent and -independent manner. Specific mecha-

nisms for p53-independent miR-34 regulation remain to be

determined.

Previous studies have shown that p53 and miR-34 affect

induced pluripotent stem cell reprogramming (Choi et al., 2011;

Krizhanovsky and Lowe, 2009). p53 mediates the onset of the

senescence of endothelial progenitor cells (Rosso et al., 2006)

and negatively regulates the proliferation and survival of neural

stem cells (Meletis et al., 2006). Constitutive p53 activation re-

sults in depletion of adult stem cells in bone marrow, brain,

and testes (Liu et al., 2010). It has been reported that ectopic

expression of miR-34a may inhibit prostate cancer-propagating

cells (also known as cancer stem cells or cancer-initiating cells)

and metastasis by directly repressing CD44 (Liu et al., 2011).

However, the role for miR-34 in regulation of normal adult stem

cells has been unclear. Our study fills this gap by showing that

miR-34 regulates prostate stem/progenitor cells in cooperation

with p53. It will be of interest to see if a similar cooperation of

miR-34 and p53 may play a role in the stem cell compartments

of other cell lineages.

It has been previously reported that prostate cancer-propa-

gating cells express MET, and depletion of MET results in a

decrease in prostasphere formation (Rajasekhar et al., 2011).

However, the direct role of MET in regulation of normal prostate

stem/progenitor cells andmechanisms controlling its expression

have been uncertain. Our studies on prostate cells collected

either in the early stages of carcinogenesis or immediately after

mir-34 and p53 inactivation provide a missing link between

normal biological functions of MET and promotion of aberrant

expansion of the stem/progenitor cell pool, whichmay eventually

lead to cancer. Considering that MET is particularly overex-

pressed in stem/progenitor cells lacking both p53 and miR-34,

its therapeutic targeting may be especially effective in p53 and

miR-34-deficient cancer cases.

Some cancers arise from stem/progenitor cells (Flesken-

Nikitin et al., 2013; Schepers et al., 2012), whereas others may

originate from more differentiated cells (Friedmann-Morvinski

et al., 2012). In our study, we have observed that neoplastic

lesions in the distal regions of prostatic ducts, which are mainly

populated by transit-amplifying and differentiated cells, never

progress to frank invasive adenocarcinomas. These findings

support observations in other models that cancers arising from

stem cell compartments are more aggressive (Flesken-Nikitin

et al., 2013). Our autochthonous mouse model of prostate can-

cer based on prostate epithelium-specific inactivation of p53

and mir-34 should provide a valuable tool for further elucidation

of the role of individual cell subpopulations in prostate cancer

pathogenesis.

EXPERIMENTAL PROCEDURES

Generation of Mice with mir-34 Conventional and Conditional

Targeted Mutations

All animal experiments were carried out in strict accordance with the recom-

mendations of the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health. The protocol was approved by the Institutional

Laboratory Animal Use and Care Committee at Cornell University. mir-34a

and mir-34b/c gene-targeting vectors were introduced into embryonic stem
1006 Cell Reports 6, 1000–1007, March 27, 2014 ª2014 The Authors
cells, and homologous recombinants were identified by positive/negative

selection and by a quantitative approach, respectively. After germline trans-

mission of the targeted allele, a FRT-flanked Neo cassette was excised by

crosses with FLPeR transgenic mice. The resulting mice carrying conditional

(floxed) alleles were crossed to EIIa-Cremice to obtain conventional null alleles

(Figures S1A and S1B). The lack of individual miR-34 family members was

confirmed by qRT-PCR of the brain and the prostate of mir-34�/� mice

(Figure S1C).

Animal Phenotyping, Cell Culture, and Molecular Biological

Experiments

Pathological assessment, immunohistochemistry, and quantitative image

analysis were performed as described earlier (Hwang et al., 2011; Zhou

et al., 2006) and in the Supplemental Information. miRNA in situ hybridization,

cell culture, qRT-PCR, western blot analysis, and coimmunoprecipitation were

performed according to earlier established protocols (Corney et al., 2010;

Hwang et al., 2011) and are described in detail in the Supplemental

Information.

Statistical Analysis

Statistical analyses were performed with InStat 3.10 and Prism 6 software

(GraphPad). A two-tailed unpaired t test, direct Fisher’s tests, and a log rank

Mantel-Haenszel test were used as appropriate.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results and Discussion,

Supplemental Experimental Procedures, four figures, and one table and

can be found with this article online at http://dx.doi.org/10.1016/j.celrep.

2014.02.023.
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