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Abstract

Background: Information regarding the variability of metabolite levels over time in an individual is required to estimate the
reproducibility of metabolite measurements. In intervention studies, it is critical to appropriately judge changes that are
elicited by any kind of intervention. The pre-analytic phase (collection, transport and sample processing) is a particularly
important component of data quality in multi-center studies.

Methods: Reliability of metabolites (within-and between-person variance, intraclass correlation coefficient) and stability
(shipment simulation at different temperatures, use of gel-barrier collection tubes, freeze-thaw cycles) were analyzed in
fasting serum and plasma samples of 22 healthy human subjects using a targeted LC-MS approach.

Results: Reliability of metabolite measurements was higher in serum compared to plasma samples and was good in most
saturated short-and medium-chain acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids and
hexose. The majority of metabolites were stable for 24 h on cool packs and at room temperature in non-centrifuged tubes.
Plasma and serum metabolite stability showed good coherence. Serum metabolite concentrations were mostly unaffected
by tube type and one or two freeze-thaw cycles.

Conclusion: A single time point measurement is assumed to be sufficient for a targeted metabolomics analysis of most
metabolites. For shipment, samples should ideally be separated and frozen immediately after collection, as some amino
acids and biogenic amines become unstable within 3 h on cool packs. Serum gel-barrier tubes can be used safely for this
process as they have no effect on concentration in most metabolites. Shipment of non-centrifuged samples on cool packs is
a cost-efficient alternative for most metabolites.
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Introduction

The inclusion of the serum or plasma metabolome analysis in

clinical trials is an appealing approach for several reasons.

Observed changes in the metabolome could be linked to the

clinical response to a study medication or any other kind of

intervention. This could enable future predictions of drug efficacy

or side effects based on the metabolome. Other potential benefits

include a better understanding of an intervention’s mode of action.

However, two questions are critical in ascertaining whether such

an approach is feasible. The first question concerns the

reproducibility of metabolite measurements. Metabolite levels in

an individual need to be reasonably stable over time to allow for

the measurement of changes elicited by an intervention. Few

studies have investigated the reliability of metabolite concentra-

tions across repeated measurements [1–3]. However, these are

limited by a smaller number of metabolites analyzed. The second

issue arises from the fact that almost all larger clinical trials are

multicenter studies. To incorporate metabolomics into such

studies, one has to validate realistic and cost effective ways of
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pre-analytic sample handling, such as 1) shipment, 2) choice of

tube type and 3) repeated freeze-thaw cycles. To date, studies

investigating sample stability during shipment focus on a small

metabolite panel including cholesterol [4–6], vitamins [6] lipids

[6,7], amino acids [8], glucose [9] or acylcarnitines [10], or they

are limited by a small sample size [11].In this study, we address

questions regarding the reproducibility of targeted metabolomics

measurements in the same individual at three different time points

and of pre-analytic stability of metabolites.

Materials and Methods

Ethics Statement
All participants of this study gave written informed consent. The

study was conducted according to the principles expressed in the

Declaration of Helsinki and approved by the ethics committee of

the Ludwig-Maximilians-University Munich (LMU), Germany

(no. 086-06).

Sample Collection and Preparation
Blood samples were collected from 22 healthy volunteers (5 men

and 17 women), with a mean age of 30 (range: 22–52) after an

overnight fast. Gender was found to be no confounder in this

study. Information regarding medication and the last meal before

each fasting period was collected for each sampling day. All

participants were non-smokers. On day one, blood was taken from

20 participants (5 men and 15 women) in five 7.5 mL safety-

monovettes (Sarstedt, Nümbrecht). For preparation of plasma

(‘plasma-direct’), the K+EDTA–monovette was centrifuged directly

(20006g, 10 min). One monovette for serum preparation (‘serum

W’ with clot activator) was centrifuged after 30 min of coagulation

at room temperature (RT) (,21uC). Serum W and plasma-direct

samples were stored as 0.25 mL aliquots on dry ice and frozen at

280uC before measurement. The other three serum tubes (serum

gel-barrier tubes with clot activator) were stored on cool packs (CP)

(,4uC) for 3, 6 and 24 h before centrifugation. Aliquots of

0.25 mL were stored at 280uC before measurement.

On day two, blood was taken from the same 20 participants in

six 7.5 mL tubes. One tube for serum (serum W) and one for

plasma (plasma-direct) were prepared as described above. The

remaining four plasma tubes from each person were stored on CP

(,4uC) for 3, 6 and 24 h and one tube at RT (,21uC) for 24 h

before centrifugation. Aliquots of 0.25 mL plasma were stored at

280uC before measurement.

Figure 1. Median ICC with confidence intervals of serum metabolites. (A) Metabolites with median ICC-values below 0.65 and (B)
metabolites with median ICC values above 0.65 are displayed.
doi:10.1371/journal.pone.0089728.g001
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On day three, blood was collected from the same 20

participants in two 7.5 mL tubes for serum W and plasma-direct

preparation (see above). For a subgroup of 13 volunteers (4 men

and 9 women), blood was collected in three 7.5 mL serum gel-

barrier tubes. One serum gel-barrier tube from each person was

frozen immediately at 220uC and stored at 280uC without

additional thawing before measurement (for thawing and tube

type experiments). Aliquots of 0.25 mL of the remaining two

serum gel-barrier tubes were frozen at 220uC and thawed once

and twice after one week, respectively before storage at 280uC.
From five subjects of this subgroup a second set of serum gel and

serum W samples was collected for the thawing and tube type

experiments during an additional collection day (1 men, 4

women). Additionally, 30 mL blood was taken from two different

participants (2 women) in four 7.5 mL tubes, one for serum W and

three for serum gel preparation (thawing and tube type

experiments).

Metabolite Analysis
The targeted metabolomics approach was based on electrospray

ionization liquid chromatography–mass spectrometry (ESI-LC-

MS/MS) and MS/MS measurements using the AbsoluteIDQTM

p180 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria).

The assay allows simultaneous quantification of 188 metabolites

out of 10 mL plasma, including free carnitine, 40 acylcarnitines

(Cx:y), 21 amino acids (19 proteinogenic amino acids, citrulline

and ornithine), 21 biogenic amines, hexose (sum of hexoses –

about 90–95% glucose), 90 glycerophospholipids (14 lysophos-

phatidylcholines (lysoPC) and 76 phosphatidylcholines (PC diacyl

(aa) and acyl-alkyl (ae)), and 15 sphingolipids (SMx:y). The

abbreviation Cx:y is used to describe the total number of carbons

and double bonds of all chains, respectively (for more details, see

[12]). The method of the AbsoluteIDQTM p180 kit has been

proven to be in conformance with the FDA-Guideline ‘‘Guidance

for Industry - Bioanalytical Method Validation (May 2001’’) [13],

which implies proof of reproducibility within a given error range.

Measurements were performed as described in the manufacturer’s

manual UM-P180. The assay procedures of the AbsoluteIDQTM

p180 kit as well as the metabolite nomenclature have been

described in detail previously [12,14]. Sample handling was

performed by a Hamilton Microlab STARTM robot (Hamilton

Bonaduz AG, Bonaduz, Switzerland) and an Ultravap nitrogen

evaporator (Porvair Sciences, Leatherhead, U.K.). Mass spectro-

Figure 2. Histogram of within-subject coefficient of variance (WCV) in serum with mark at CV=0.25.
doi:10.1371/journal.pone.0089728.g002
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metric (MS) analyses were carried out on an API 4000 LC-MS/

MS System (AB Sciex Deutschland GmbH, Darmstadt, Germany)

equipped with 1200 Series HPLC (Agilent Technologies Deutsch-

land GmbH, Boeblingen, Germany) and HTC PAL auto sampler

(CTC Analytics, Zwingen, Switzerland) controlled by the Analyst

1.5.1 software. For the calculation of metabolite concentrations,

internal standards served as a reference. Concentrations of all

metabolites were calculated in mM. The analytical variance was

determined by measuring metabolite concentrations of a reference

sample of pooled human plasma with four to six replicates on each

of the six plates.

Statistical Analysis
All statistical analyses were performed with the statistic platform

R, version 2.14.1 [15]. 29 metabolites were excluded from further

analysis as they did not pass quality control (with more than 12%

of measurements at zero concentration or missing and concentra-

tions below LOD in more than 95% of all samples). 16 metabolites

had a coefficient of variance (CV) across all plates above 25% in

reference samples (see table S1). These were not excluded but

labeled (*) in the tables and figures, as these metabolites may have

a lower CV across all plates in future investigations.

Figure 3. Stability of metabolites in plasma during shipment simulation. Example of (A), (D) decreasing and (B), (C) increasing metabolite
concentration of plasma samples at room temperature (RT) and on cool packs (CP). Stars in boxplots indicate significant difference in concentration
compared to baseline (0 h). (Wilcoxon signed rank test, significance level p,0.01).
doi:10.1371/journal.pone.0089728.g003

Identification of Reliable and Stable Metabolites

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e89728



Between and within-subject CVs (BCV and WCV) and between

and within-plate CVs were calculated as the square root of the

between- and within-subject/plate variance as determined using

random effects models (R package nlme) divided by the mean

metabolite concentration. The median within-plate CV was

9.31% and the median between-plate CV was 1.74E-4% (table

S2). Reliability was expressed by the intraclass correlation

coefficient (ICC (1)), calculated as between-subject variance

divided by the sum of between- and within-subject variance

[16]. Bias corrected and accelerated bootstrap confidence intervals

were calculated for between- and within-subject CVs and ICC (1)

using 10,000 bootstrap samples [17].

In order to explore time and temperature effects during

simulation of transport in serum and plasma samples and the

effect of tube type and number of thawing cycles on metabolite

concentration in serum samples, nonparametric Friedman tests

were performed [18]. Significant changes in concentration during

the Friedman tests were afterwards tested in a pairwise manner

against the reference (0 h) with Wilcoxon signed-rank tests.

Similarly, significant differences in metabolite concentrations

between serum and plasma baseline samples (serum W and

plasma-direct) were tested in a pairwise manner using Wilcoxon

signed-rank tests. For all performed tests the level of statistical

significance was set at p,0.01.

A power analysis was performed for each metabolite for selected

settings. The minimum concentration change between two paired

settings (e.g. 0 h and 24 h) was calculated, for which the present

study had a power of 80% to recognize it as significant, at the

given sample size of 20 and at an alpha level of 0.01. To account

for the reduced power of the non-parametric Wilcoxon signed-

rank as compared to a parametric paired t-test, an asymptotic

relative efficiency of 0.955 was assumed [19]. Results are given in

table S3.

Results

Reliability of Serum and Plasma Metabolite
Concentrations
Samples taken from 20 healthy human subjects on three

different days were used to calculate the intraclass correlation

coefficient (ICC), the within-person CV (WCV) and the between-

person CV (BCV) for 159 metabolites in serum (figure 1) and

plasma (figure S1). Table S4 summarizes results for ICC, WCV

and BCV. In serum and plasma metabolites, 80% of WCV and

70% of BCV values were below 0.25 (figure 2, figure S2). In

serum, the median WCV was 0.15 (range: 0.08–1.09) and the

median BCV 0.20 (range: 0.05–1.56). Median WCV values of

metabolite subclasses were concordant in serum and plasma

samples, whereas median BCV values were slightly higher in

serum samples. Both within- and between-person variance

contribute to the ICC. Accordingly, the median ICC was higher

in serum as compared to plasma samples.

The median ICC in plasma was 0.63. The lowest reliability in

plasma was detected for PC ae C30:1* (ICC=2.28E-09,

confidence interval (CI): 0.00–0.47) and the highest for creatinine

(ICC=0.90, CI: 0.84–0.95). In serum samples, the median ICC

was 0.66. The lowest reliability in serum was observed for

asymmetric dimethylarginine (ADMA) (ICC=0.05, CI: 0.00–

0.38) and the highest for spermidine* (ICC=0.87, CI: 0.77–0.93).

Regarding metabolite subclasses, reliability was lowest for

acylcarnitines both in serum and plasma, as hydroxyacylcarnitines

showed low reliability due to low concentrations. Long chain (.

C10) and unsaturated acylcarnitines showed low reliability either

due to low concentration or due to higher within-person variability

compared to between-person variability. All other subclasses

showed good (ICC .0.50) reliability. 101 metabolite concentra-

tions were significantly higher in serum compared to plasma,

comparing the median values of the baseline samples that were

collected on three different days. Only sarcosine showed signifi-

cantly lower concentrations in serum compared to plasma samples

(table S5). There was no evidence of any effects of gender and last

meal composition before each overnight fasting on metabolite

concentrations (data not shown).

Stability of Metabolites during Shipment Simulation
Simulated shipment on cool packs and at room

temperature. We simulated different ways of sample collection

and shipment that might occur in multicenter clinical trials:

Transport of non-centrifuged samples on cool packs (CP) within 3,

6 and 24 hours (plasma and serum) or at room temperature (RT)

for 24 h (plasma only).

In plasma samples, 44 out of 159 metabolites showed significant

concentration changes between baseline (0 h) and any other

setting (table S6) as determined by Friedman tests (p,0.01). 145

plasma metabolite concentrations were stable for at least 24 h on

CP and 115 of these were also stable for at least 24 h at RT. Of

the 44 metabolites with significantly changed concentrations at

RT, 35 showed increasing concentrations after 24 h (figures S3,

S4, S5, S6, S7, S8, S9, S10, S11, and S12) whereas 9 showed

decreasing concentrations, including C4:1 (figure S4), arginine

(figure 3), methionine (figure S6), serotonin* (figure S9), four PC

Table 1. Impact of transportation simulation on metabolite
concentrations in serum samples.

Metabolite
p-value
(Friedman)

Acceptable delay
time on cool packs

C18:1 1.92E-04 3 h

C18:2 2.52E-03 6 h

Arginine 1.52E-04 3 h

Asparagine 1.49E-06 6 h

Aspartate 6.08E-11 3 h

Glutamate 1.20E-10 0 h

Glycine 4.79E-05 6 h

Leucine 1.01E-03 6 h

Lysine 8.49E-04 6 h

Ornithine 1.18E-09 3 h

Phenylalanine 2.69E-05 6 h

Serine 9.04E-07 6 h

Threonine 1.86E-03 6 h

Putrescine* 1.21E-06 0 h

Sarcosine 1.82E-03 6 h

Serotonin* 2.67E-03 3 h

Spermidine* 4.17E-04 0 h

Taurine 1.00E-07 3 h

Hexose 6.13E-07 3 h

* Metabolites with coefficient of variance across all plates above 25% in
reference samples.
Metabolites that showed significant changes in serum concentration on cool
packs for 3, 6 or 24 h compared to baseline (0 h) (Friedman test, p,0.01) and
acceptable delay time for each metabolite during transportation (Wilcoxon
signed rank test, p,0.01).
doi:10.1371/journal.pone.0089728.t001
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aa’s (PC aa C30:0, PC aa C32:1, PC aa C32:2 and PC aa C34:3,

see figure S12) and hexose (figure 3). Figure 3 shows examples of

significantly altered metabolite concentrations in plasma.

The compound class of amino acids was the least stable

metabolite class. In the compound class of glycerophospholipids,

all metabolites had stable concentrations on CP for at least 24 h.

Concentrations in 2 out of 10 lysoPCs (lysoPC a C28:0 and lysoPC

a C28:1) were even stable at RT for 24 h. 32 of 36 PC aa

concentrations and all PC ae concentrations remained stable at

RT. The compound class of sphingolipids was the most stable one,

as all analyzed sphingolipid concentrations were stable on CP and

at RT for at least 24 h.

All significantly increased or decreased metabolite concentra-

tions during shipment simulation in serum showed similar

tendencies in plasma samples over time on CP (see figures S3,

S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, and

S17). In plasma, a larger number of metabolites had stable

concentrations for 24 h on CP as compared to serum. In total, 140

of 159 serum metabolites had stable concentrations on CP for at

least 24 h. 19 metabolites showed significant changes in serum

concentration during storage on CP within the first 24 h (table 1).

14 metabolite concentrations increased significantly with time

(figure S13, S14, S15, S16, and 17), whereas five metabolite

concentrations decreased significantly (arginine, putrescine*,

Figure 4. Stability of metabolites in serum during shipment simulation. Example of (A)-(C) increasing and (D) decreasing metabolite
concentration during transportation simulation of serum samples on cool packs (CP). Stars in boxplots indicate significant difference in concentration
compared to baseline (0 h). (Wilcoxon signed rank test, significance level p,0.01).
doi:10.1371/journal.pone.0089728.g004
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serotonin*, spermidine* and hexose). Figure 4 shows examples of

altered metabolite concentrations in serum. In concordance with

plasma samples, the group of amino acids was the least stable one

in serum metabolites.

Effect of tube type on serum metabolites. In multicenter

studies, the use of serum gel-barrier tubes is preferred due to the

easy handling at the blood collection site and persistent separation

of serum during shipment of tubes. In this study, possible

interactions of the gel with the metabolites in human serum

samples were analyzed. Blood was drawn into serum gel-barrier

tubes and serum W tubes with clotting activator only (control).

After centrifugation, whole gel-barrier tubes and separated serum

from serum W tubes were frozen until analysis.

Methionine sulfoxide showed significantly increased concentra-

tions in serum gel-barrier tubes as compared to serum W (see

figure 5). For all other investigated metabolites, serum gel-barrier

tubes had no significant effect on concentration, compared to

serum W tubes.

Effect of freeze-thaw cycles on serum

metabolites. Repeated freezing and thawing of samples is

sometimes inevitable due to a limited number of aliquots. When

serum samples were subjected to two freeze-thaw cycles, most

metabolite concentrations were stable. Except methionine sulfox-

ide, all 159 investigated metabolites of this panel maintained stable

concentrations after one freeze-thaw cycle. Only eleven out of 159

metabolites revealed significantly decreased concentrations after

two freeze-thaw cycles, including C10:1, three amino acids

(isoleucine, tryptophane and valine), five phosphatidylcholines

(PC aa C32:2, PC ae C36:2, PC ae C36:5, PC ae C40:1 and PC ae

C42:0), acetylornithine and SM C16:0 (table S7).

Power calculation. The minimal effect size (i.e. absolute

difference in metabolite concentration) that could be detected for

each metabolite with a given power of 0.8 was calculated for

selected sample pairs. table S3 gives estimates of detectable effect

sizes for individual metabolites in our study. This information

should be informative for planning future studies. This study was

not powered to significantly detect smaller effects than those

displayed.

Figure 5. Effect of tube type on serum metabolites. Stars in boxplots indicate significant differences in concentration between methionine
sulfoxide in serum W tubes with clotting activator and serum gel-barrier tubes. (Friedman test, significance level p,0.01).
doi:10.1371/journal.pone.0089728.g005
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Discussion

Reliability of Serum and Plasma Metabolite
Concentrations
The analysis of three fasting blood samples within a 14 day

period showed that most of the 159 metabolite levels remained

stable within the same individual. In serum and plasma

metabolites, 80% of WCV and 70% of BCV values were below

0.25 and showed good reliability within individuals, independent

of the characteristics of the study population. An ICC above 0.50

has been defined as good reliability [2]. In our study, more than

75% of metabolites in serum and plasma samples fulfilled this

criterion. Compared to a population-based approach, our ICC

values were artificially low due to the homogeneous study cohort.

Metabolites with good reliability included saturated short- and

medium acylcarnitines, amino acids, biogenic amines, glyceropho-

spholipids, sphingolipids and hexose. These findings are in line

with Floegel et al. [2].

Creatinine was found to have the lowest WCV and highest

reliability in plasma. In muscle cells, the ring closing of creatine

forms creatinine in a chemical equilibrium [20]. As the quantity of

creatine per unit of skeletal muscle and the reaction to creatinine is

constant [21], the produced amount of creatinine is dependent on

the muscle mass. Concentration of creatinine is therefore constant

and within-person variability is relatively low in healthy people, as

long as the muscle mass remains constant.

Reliability of metabolites was slightly higher in serum compared

to plasma. 101 metabolite concentrations were significantly higher

in serum samples compared to plasma. 86 of these metabolites

showed similar results in Yu et al. Two of the 101 metabolites

(C10:2 and PC aa C40:2) were excluded by Yu et al. and 12 of

these 101 metabolites were not part of the metabolite panel of Yu

et al. In our study, SM (OH) C24:1 showed significantly higher

concentrations in serum compared to plasma. This finding is not

in line with Yu et al. [22,23]. Ladenson et al. found a 5% lower

glucose concentration in plasma compared to serum [23].

Although glucose concentration was lower in plasma samples,

the difference between serum and plasma levels of glucose was not

significant in our study. We found no effect of sex and last meal

composition before overnight fasting in contrast to other studies

[24–26]. This could be explained by the sample size and the

unbalanced ratio of men to women.

Our study goes beyond previous investigations by using a

broader metabolite panel and measuring three samples per

individual at the same time, in a well-established and validated

targeted metabolomics approach. The observed high reliability of

amino acids was consistent with the results of Floegel et al. [2].

However, reliability for six additional amino acids was shown in

our study. The good repeatability of phospholipid measurements

in plasma samples observed by Ma et al. was in line with our

observations [1]. Classification of reliability of acylcarnitines,

glycerophospholipids, sphingolipids and hexose was concordant

with that of Floegel et al. [1]. Widjaja et al. in concordance with

our study showed that a single measurement of glucose is sufficient

in plasma samples [3].

No analytical duplicates were measured. Therefore, it was not

possible to further divide the total within-person variability into

biological and analytical variability. However, regarding the

between and within-plate CVs derived from repeated measure-

ments of reference samples (table S2), analytical variance can be

assumed to be low. Only samples of healthy subjects were

analyzed, therefore variability in non-healthy patients could vary

from these results.

In sum, we found that most metabolite concentrations in a

targeted approach are highly stable over time in a fasted

individual. The WCVs obtained in this study can help to judge

whether single measurements of a metabolite are sufficient to

describe differences between groups of human subjects. They can

also assist with the interpretation of the effects of a medication or

another intervention on an individual’s serum or plasma

metabolome.

Stability of Metabolites during Shipment Simulation
Simulated shipment on cool packs and at room

temperature. The majority of the analyzed metabolites had

stable concentrations for at least 24 h on CP (plasma and serum)

and at RT (plasma). In plasma and serum samples, no significant

changes in concentration during transportation for 24 h on CP

and at RT were detected for PC ae’s and sphingolipids. The

compound class of amino acids was most fragile during simulated

transportation. Plasma and serum metabolite stability showed

good coherence.

Within the group of acylcarnitines, Yang et al. showed

decreasing concentrations of C8:0, C18:1 and C18:2 and stable

concentrations of carnitine and eight other acylcarnitines (C2, C3,

C4, C5, C6, C14, C16, C16:1) after 24 h at 37uC. The stability of
carnitine, C2, C3, C4 and C5 for 24 h at 37uC is in line with our

results (24uh at RT), whereas C18:1 and C18:2 showed an

opposing trend. Stability of C14 and C16 was not confirmed in

our study. In contrast to Yang et al., our results showed stability of

C8 for 24 h at RT. The reason for these partly contradictory

results could be the small size of three subjects in Yang et al. and

the different origin of specimen (rat in Yang et al.) [11]. LC-MS

measurement of 18 amino acids in porcine cerebrospinal fluid,

stored at RT for up to 2 h, showed increased concentrations in ten

amino acids (alanine, asparagine, glycine, glutamate, histidine,

isoleucine, phenylalanine, serine, threonine, tyrosine), which is in

line with our observations, except that glycine concentration is

stable in our experiments [8]. Yang et al. showed stability of nine

amino acids for up to 24 h at 37uC in rat plasma. [11]. Only valine

and tryptophane stability is in accordance with our results in

human plasma samples. The decreasing levels of four PC aa’s and

increasing levels of eight lysoPCs during storage at RT could be

explained by the hydrolysis of phosphatidylcholine to yield a

lysophospholipid and free fatty acid, catalyzed by a phospholipase

[27]. This result shows remaining activity of phospholipase in non-

centrifuged plasma samples at RT but not at 4uC. Increasing

lysoPC levels at RT were also observed in Yang et al. [11].

Sphingomyelins, which were found to play an important role in b-
cell function [28], were the most stable compound class both in

plasma and serum samples in this study. This finding indicates low

enzymatic activity of sphingomyeline degrading and synthesizing

enzymes at 4uC and RT. Decreasing hexose concentration during

storage due to glycolysis, especially at RT, is consistent with the

literature [9].

Effect of tube type on serum metabolites. The use of

serum gel tubes was investigated by comparing samples drawn in

serum W tubes and serum gel-barriertubes. Only methionine

sulfoxide showed significant changes in concentration in gel-

barrier tubes compared to serum W tubes. This indicates a

possible interaction of the gel with the investigated metabolite.

Thus, based on our data, the use of serum gel-barrier tubes should

be avoided if the measurement of methionine sulfoxide is of

interest. However, the use of serum gel-barrier tubes is preferred

for all other analyzed metabolites in multicenter settings due to the

advantages for sample handling.
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Effect of freeze-thaw cycles on serum

metabolites. Except methionine sulfoxide, all 159 investigated

metabolites of this panel had stable concentrations after one

freeze-thaw cycle. Only eleven metabolites showed significantly

decreased concentrations after two freeze-thaw cycles. Targeted

and non-targeted analyses have investigated the stability of several

serum and plasma metabolites in repeated freeze-thawing

experiments [29–31] and showed only minor changes in

metabolite concentration due to thawing. Cuhadar et al. showed

stability of creatinine and glucose in serum samples for up to ten

freeze-thaw cycles, which is in line with our results [31]. In the

study of Zivkovic et al. serum samples were exposed to one, two or

three freeze-thaw cycles [30]. Concentrations of lysoPC a C16:0

were significantly altered after two freeze-thaw cycles (p = 0.048),

which is not in line with our results, as we used a significance level

of p = 0.01. The stability of phosphatidylcholine PC 15:0, PC 16:0

and PC 18:0 for up to three freeze-thaw cycles, which was shown

by Zivkovic et al., is in line with our results.

Based on our data, the optimal method of sample shipment in

multicenter trials is to collect samples in serum in gel-barrier tubes,

to centrifuge them on site and to ship the samples while frozen, as

at higher temperatures some amino acids and biogenic amines are

not stable in both serum and plasma. Shipment of non-processed

serum or plasma results in instability of more metabolites, but can

be a simple and cost-effective alternative for selected questions.

Supporting Information

Figure S1 Median ICC with confidence intervals of
plasma metabolites. (A) Metabolites with median ICC-values

below 0.62 and (B) metabolites with median ICC values above

0.62 are displayed.

(TIFF)

Figure S2 Histogram of WCV in plasma with mark at
CV=0.25.
(TIFF)

Figure S3 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) C 10:2,

(B) C14*, (C) C14:1-OH* and (D) C16. Stars in boxplots indicate

significant difference in concentration compared to baseline (0 h).

(Wilcoxon signed rank, significance level p,0.01).

(TIFF)

Figure S4 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) C18*,
(B) C18:1, (C) C18:2 and (D) C4:1. Stars in boxplots indicate

significant difference in concentration compared to baseline (0 h).

(Wilcoxon signed rank, significance level p,0.01).

(TIFF)

Figure S5 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) Alanine,
(B) Asparagine, (C) Aspartate and (D) Histidine. Stars in boxplots

indicate significant difference in concentration compared to

baseline (0 h). (Wilcoxon signed rank, significance level p,0.01).

(TIFF)

Figure S6 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) Isoleu-
cine, (B) Leucine, (C) Lysine and (D) Methionine. Stars in boxplots

indicate significant difference in concentration compared to

baseline (0 h). (Wilcoxon signed rank, significance level p,0.01).

(TIFF)

Figure S7 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) Orni-

thine, (B) Phenylalanine, (C) Proline and (D) Serine. Stars in

boxplots indicate significant difference in concentration compared

to baseline (0 h). (Wilcoxon signed rank, significance level p,

0.01).

(TIFF)

Figure S8 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) Thre-
onine, (B) Tyrosine, (C) Acetylornithine and (D) ADMA. Stars in

boxplots indicate significant difference in concentration compared

to baseline (0 h). (Wilcoxon signed rank, significance level p,

0.01).

(TIFF)

Figure S9 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) alpha-
AAA, (B) Serotonin*, (C) Spermidine* and (D) Taurine. Stars in

boxplots indicate significant difference in concentration compared

to baseline (0 h). (Wilcoxon signed rank, significance level p,

0.01).

(TIFF)

Figure S10 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) total

DMA, (B) lysoPC a C16:1, (C) lysoPC a C17:0 and (D) lysoPC a

C18:0. Stars in boxplots indicate significant difference in

concentration compared to baseline (0 h). (Wilcoxon signed rank,

significance level p,0.01).

(TIFF)

Figure S11 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) lysoPC
a C18:1, (B) lysoPC a C18:2, (C) lysoPC a C20:3 and (D) lysoPC a

C20:4. Stars in boxplots indicate significant difference in

concentration compared to baseline (0 h). (Wilcoxon signed rank,

significance level p,0.01).

(TIFF)

Figure S12 Changes in metabolite concentration during
transportation simulation of plasma samples. (A) PC aa

C30:0, (B) PC aa C32:1, (C) PC aa C32:2 and (D) PC aa C34:3.

Stars in boxplots indicate significant difference in concentration

compared to baseline (0 h). (Wilcoxon signed rank, significance

level p,0.01).

(TIFF)

Figure S13 Changes in metabolite concentration during
transportation simulation of serum samples. (A) C18:1,

(B) C18:2, (C) Arginine and (D) Asparagine. Stars indicate

significant difference in concentration compared to baseline

(0 h). (Wilcoxon signed rank, significance level: p,0.01).

(TIFF)

Figure S14 Changes in metabolite concentration during
transportation simulation of serum samples. (A) Aspar-

tate, (B) Glutamate, (C) Glycine and (D) Leucine. Stars indicate

significant difference in concentration compared to baseline (0 h).

(Wilcoxon signed rank, significance level: p,0.01).

(TIFF)

Figure S15 Changes in metabolite concentration during
transportation simulation of serum samples. (A) Lysine,
(B) Ornithine, (C) Phenylalanine and (D) Serine. Stars indicate

significant difference in concentration compared to baseline (0 h).

(Wilcoxon signed rank, significance level: p,0.01).

(TIFF)

Figure S16 Changes in metabolite concentration during
transportation simulation of serum samples. (A) Threo-
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nine, (B) Putrescine*, (C) Sarcosine and (D) Serotonin*. Stars

indicate significant difference in concentration compared to

baseline (0 h). (Wilcoxon signed rank, significance level: p,0.01).

(TIFF)

Figure S17 Changes in metabolite concentration during
transportation simulation of serum samples. (A) Spermi-

dine*, (B) Taurine and (C) Hexose. Stars indicate significant

difference in concentration compared to baseline (0 h). (Wilcoxon

signed rank, significance level: p,0.01).

(TIFF)

Table S1 List of all metabolites. Metabolites that did not

pass quality control (#) and metabolites that had a coefficient of

variance (CV) across all plates above 25% in reference samples (*)

are marked appropriately.

(XLS)

Table S2 Within-and between plates CV. CVs are

calculated on the basis of multiple reference samples on each plate.

(XLS)

Table S3 Effect size and mean concentrations for each
metabolite in plasma and serum samples. Given are

minimum absolute differences in concentration [mM] for each

metabolite in selected settings that are detectable given the sample

size of 20, the observed variance in metabolite concentration

changes, a power of 0.8 and a significance level of 0.01. Mean

metabolite concentrations [mM] for plasma-direct and serum gel-

barrier (06 thawed) are given as a comparison.

(XLS)

Table S4 ICC(1), WCV and BCV with confidence
intervals (CI) in serum and plasma metabolites.
(XLS)

Table S5 Comparison of the median metabolite con-
centrations in serum and plasma samples. Serum W and

plasma-direct baseline samples that were collected on three days

within 20 subjects were tested in a pairwise manner using

wilcoxon-signed rank test (p,0.01).

(XLS)

Table S6 Impact of transportation simulation on me-
tabolite concentrations in plasma samples. Changes in

concentration after 3, 6 or 24 h on CP or at RT after 24 h and

acceptable delay time for each metabolite during transportation

(Wilcoxon signed rank test, comparison with baseline, significance

level p,0.01).

(XLS)

Table S7 Significant changes in serum metabolite
concentrations due to freeze-thawing cycles. Overall

significant changes in metabolite concentrations in serum gel

tubes (Friedman test, significance level p,0.01) and changes after

one and two freeze-thaw cycles, each one tested against serum gel

control (Wilcoxon signed rank, significance level p,0.01).

(XLS)
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