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Optomechanical systems can exhibit self-sustained limit cycles where the quantum state of the
mechanical resonator possesses nonclassical characteristics such as a strongly negative Wigner density, as
was shown recently in a numerical study by Qian et al. [Phys. Rev. Lett. 109, 253601 (2012)]. Here, we
derive a Fokker-Planck equation describing mechanical limit cycles in the quantum regime that correctly
reproduces the numerically observed nonclassical features. The derivation starts from the standard
optomechanical master equation and is based on techniques borrowed from the laser theory due to Haake
and Lewenstein. We compare our analytical model with numerical solutions of the master equation based
on Monte Carlo simulations and find very good agreement over a wide and so far unexplored regime of
system parameters. As one main conclusion, we predict negative Wigner functions to be observable even
for surprisingly classical parameters, i.e., outside the single-photon strong-coupling regime, for strong
cavity drive and rather large limit-cycle amplitudes. The approach taken here provides a natural starting
point for further studies of quantum effects in optomechanics.
DOI: 10.1103/PhysRevX.4.011015 Subject Areas: Nanophysics, Quantum Physics

I. INTRODUCTION

Optomechanical systems provide a test bed to study a
broad range of paradigmatic quantum optical processes at
so far unexplored meso- and macroscopic mass and length
scales [1–3]. That quantum effects can play an important
and even dominating role in the dynamics of these systems
has been shown in a number of recent experiments
demonstrating cooling to the quantum ground state [4,5],
ponderomotive squeezing of light [6,7], backaction noise-
limited position sensing [8,9], coherent state transfer [10],
and entanglement [11].
In the most elementary optomechanical setup, a single

cavity mode couples to a single mechanical oscillator
through, e.g., radiation-pressure or dipole-gradient forces.
The dynamics of the system depends crucially on the
frequency of the external driving field applied to the cavity:
For the purpose of position or force sensing, as inRefs. [8,9],
the driving field is chosen resonant, while for backaction

cooling or state transfer, the field is tuned below (to the red
side of) the cavity frequency [4,5,10]. For blue detuning,
the system exhibits a rather complex nonlinear behavior.
When the driving field is swept from the red to the blue
side, the nonlinear dynamics sets in as a parametric
amplification process where phonons and photons are
created as correlated in pairs [12]. This correlation lies
at the heart of the recently reported generation of opto-
mechanical entanglement [11]. The amplification will
finally go over into a regime of self-sustained limit cycles
due to the nonlinearity inherent to the optomechanical
coupling. The classical dynamics in this regime has been
observed experimentally [13–18] and is well studied
theoretically [19–22]. Motivated by the impressive progress
toward quantum effects in optomechanical systems, the
quantum regime of optomechanical limit cycles also
received significant attention in theoretical studies [23–29].
In particular, a recent numerical study of the full opto-

mechanical master equation in the limit-cycle regime
showed that theWigner function of themechanical oscillator
can become strongly negative [27]: Negativities of the
Wigner function occur for driving fields at the blue side-
bands and—more pronouncedly—also occur for resonant
drive. Limit-cycle states with negative Wigner density even
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exist in regions of red detuning where a (simple) classical
model would not predict limit cycles at all. The numerical
findings were independently confirmed in Ref. [28]. This
reference predicts negative Wigner density even on higher
sidebands and compares the extent of negativity found for
different detunings in more detail. In view of these findings,
it is important to strive for a deeper understanding of these
effects and the underlying mechanisms on the basis of an
appropriate analytical model.
The transition from parametric amplification to opto-

mechanical limit cycles can be understood in analogy to the
threshold behavior of a laser (or maser) cavity [30–32]
where the roles of the laser cavity and the laser medium are
played by, respectively, the mechanical oscillator and the
optomechanical cavity [33]. Along this line, a semiclassical
rate-equation model was derived in Refs. [21,33] for
optomechanical systems. Rodrigues and Armour [25,26]
developed a quantum mechanical treatment employing a
truncated Wigner-function approach to derive a Fokker-
Planck equation (FPE) for the mechanical oscillator. The
FPE predicted, in particular, a sub-Poissonian, or number-
squeezed, phonon statistics in the limit cycle when the
driving field is blue detuned from the cavity resonance by
the mechanical oscillation frequency.
In the present article,we apply the laser theory due toHaake

and Lewenstein [31,32] to describe optomechanical limit
cycles in the quantum regime.Ourmodel correctly reproduces
the characteristics of limit cycles mentioned above. It iden-
tifies general requirements on system parameters (such as
coupling strength, driving power, sideband resolution, tem-
perature, etc.) for the occurrence of sub-Poissonian phonon
statistics and negative Wigner functions, and establishes a
tight connection between the two phenomena. We find that
negative Wigner functions can also be achieved in rather
classical parameter regimes where the coupling per single
photon g0 is smaller than the cavity linewidth, and where the
cavity is driven strongly and limit-cycle amplitudes are large.
The associated small Fano factors are lower bounded by, and
can reach, the sideband parameter κ=ωm (ratio of cavity
linewidth to mechanical resonance frequency) for sufficiently
strong optomechanical cooperativity.
Starting from the standard optomechanical master equa-

tion [1,2], an effective FPE is derived for the quasiprob-
ability distribution (such as, e.g., the Wigner, P, or Q
function) of the mechanical oscillator under adiabatic
elimination of the cavity mode. The nonlinearity of the
optomechanical interaction gives rise to nonlinear drift and
diffusion coefficients in the FPE that describe, respectively,
the (classical) nonlinear physics of limit cycles [19,20] and
the impact of quantum noise of the cavity. The approach
taken here permits us to work in a picture that interpolates
between the dressed-state picture introduced inRefs. [34,35]
through a polaron transformation and the bare-state picture
of the standardmaster equation [1,2,25,28,36]. Remarkably,
in analogy to the polaron picture, this intermediate picture

explicitly separates the optical Kerr nonlinearity inherent to
the radiation pressure from the optomechanical interaction.
In contrast to the polaron picture, the interaction term is not
removed from the master equation, and both the mechanical
oscillator and the cavity remain separate systems, as in the
standard master-equation picture. The entanglement of
cavity and oscillator in the polaron picturewould complicate
the study of them as separate systems, as required in the
context of limit cycles. As wewill show, the novel treatment
of the optomechanical Kerr nonlinearity presented in this
article can become essential to understanding the physics of
limit cycles.
The effective FPE derived here exactly reproduces the

one of Rodrigues and Armour [25,26] when neglecting the
different description of the Kerr nonlinearity of the cavity,
which is treated in the standard master-equation picture
there. In comparison to Refs. [25,26], our approach does
not require truncation of higher-order derivatives and gives
a consistent and natural account of the Kerr nonlinearity.
The article is organized as follows: In Sec. II, we give an

executive summary of the main results, as far as they relate
to the appearance of nonclassical mechanical states. In
Sec. III, we introduce the main idea of Haake and
Lewenstein’s laser theory in the context of optomechanics
and apply it to derive the effective FPE for the mechanical
oscillator. In Sec. IV, we discuss the implications of the
FPE equation for optomechanical limit cycles in the
quantum regime. In principle, each of these sections can
be read independently. Readers who are interested only in
one particular aspect are encouraged to jump directly to the
respective section of interest.

II. PREVIEW OF THE MAIN RESULTS

The aim of this section is to give a preview of our most
important results and to indicate how these results could be
derived in a relatively simple (quantum-noise) approach.
The main idea is to find the width of the mechanical limit
cycles in phase space and to deduce from that the spread in
phonon numbers. For simplicity, we will assume here that
the optomechanical interaction dominates (i.e., formally
zero mechanical damping). The full optomechanical laser-
theory analysis will go significantly beyond this simplified
model, but it will reproduce the features discussed here.
In the following, we will find it convenient to character-

ize the optomechanical coupling in several ways: as the
cavity-frequency shift per displacement G, via the single-
photon coupling strength g0 ¼ GxZPF, and via the dimen-
sionless ratio η ¼ 2g0=ωm. xZPF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωm

p
is the

zero-point amplitude of the mechanical oscillator with
massm and frequencyωm.We start by assumingmechanical
oscillations at a fixed amplitude r such that xðtÞ ¼
xZPFRe½re−iωmt�. At each instant of time, the radiation-
pressure force F ¼ ℏGa†a (a is the photon-annihilation
operator) will feed energy into the mechanical oscillations
at a rate (power) P ¼ FðtÞx: ðtÞ. Following the classical
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approach [19], we can predict the slow drift of the mechani-
cal oscillation amplitude by calculating the average power
input hPðtÞi. Here, the angled brackets denote the quantum
expectation value, while the overbar averages over a time
window comprising several oscillation periods.We note that
the power-balance equation is analogous to the loss-gain
equations in a laser and that the laser analogywill be heavily
used throughout the manuscript.
In addition to this drift, however, there will be diffusion

of the mechanical oscillator’s energy, due to the funda-
mental radiation-pressure shot-noise fluctuations. The
energy-diffusion constant is given by DE ¼
1
2

Rþ∞−∞ dτhδPðtþ τÞδPðtÞi, where δPðtÞ ¼ PðtÞ − ¯hPðtÞi
denotes the fluctuations. In order to discuss the quantum
dynamics of optomechanical limit cycles, it turns out to be
crucial to study the behavior of this diffusion constant as a
function of cycle amplitude. In particular, we will show that
the appearance of nonclassical mechanical states can only
be understood by a rather subtle cancellation of some term
that would usually dominate, leaving the diffusion constant
small and leading to a narrowing of the phonon distribution
by the sideband ratio κ=ωm (where κ denotes the cavity-
amplitude decay rate).
Our task of calculating this diffusion constant is compli-

cated by the fact that we are dealing with shot noise inside
an optical cavity whose resonance frequency oscillates
sinusoidally. We thus have to solve the equation for the
light field inside such a mechanically driven cavity, i.e.,
da=dt ¼ f−i½Δ −GxðtÞ� − κgaþ ffiffiffiffiffi

2κ
p

ainðtÞ, where Δ ¼
ωL − ωc is the detuning between the laser at frequency ωL
and the bare cavity resonance atωc. The solution foraðtÞ can
be expressed via the extra phase θðtÞ ¼ ηIm½re−iωmt� accu-
mulated in the cavity field due to the oscillations. It reads

aðtÞ ¼ e−iθðtÞ
Z

t

−∞
dt0χcðt − t0Þeiθðt0Þainðt0Þ; (1)

where χcðtÞ ¼
ffiffiffiffiffi
2κ

p
exp½ðiΔ − κÞt� is the standard cavity

filter function (and θ ¼ 0 recovers the usual case).
The light intensity oscillates at harmonics of themechani-

cal motion. αðtÞ ¼ eiθðtÞhaðtÞi ¼ P
nαne

inωmt is the average
cavity amplitude (modulo the phase) that can be obtained
by evaluating Eq. (1). For a constant laser drive, with
an amplitude

ffiffiffiffiffi
2κ

p haini≡ E, we obtain αn ¼
Ee−inϕJ−nðηrÞ=hn, where hn¼κþiðnωm−ΔÞ. These αn
are the Bessel amplitudes that also determine the appearance
of multiple stable attractors in the classical analysis of the
optomechanical instability [19]. These attractors can be
found by noting that the drift of the amplitude r is governed
by the power input ¯hPðtÞi, as the energy of the mechanical
oscillator is givenbymω2

mr2=2. In the regimeof interest here,
this drift can be approximated as

r
: ≡ μðrÞ ¼

¯hPðtÞi
mω2

mr
≃ 2κg0E2

ω2
m

Δ
Δ2 þ κ2

J0ðηrÞJ1ðηrÞ: (2)

The limit-cycle amplitude is thus fixed at the zeroes of the
Bessel function, in the absence of additional mechanical
damping. This observation will be crucial further below.
In addition, there are the electromagnetic vacuum

fluctuations δainðtÞ ¼ ainðtÞ − haini entering the cavity.
In order to evaluate the mechanical energy-diffusion con-
stant that is governed by those fluctuations, we need the
force-force correlator hFðtÞFðt0Þi, i.e., ultimately the shot-
noise (irreducible) part of the photon-number correlator. By
using the vacuum-noise correlator hδainðtÞδa†inð0Þi ¼ δðtÞ,
we find directly

ha†ðtÞaðtÞa†ðt0Þaðt0ÞiSN ¼ eiΔðt−t0Þ−κjt−t0jα�ðtÞαðt0Þ:
For a constant α, this equation reduces to the shot-noise
correlator employed in the quantum-noise approach to
optomechanical cooling [37]. Now, we can proceed to
evaluate the energy-diffusion constant DE introduced
above. The resulting slightly lengthy expression
[Eq. (B20) in Appendix B] can be simplified in the regime
of interest here to

DW≡ DE

ð2ℏωmrÞ2
≃κ

g20E
2

ω4
m

�
1

2

ω2
m

κ2þΔ2
J20ðηrÞþJ21ðηrÞ

�
: (3)

Here,wehave introducedDW as thediffusion constant for the
amplitude r of the limit cycle. This amplitude is connected to
the energy viaE ¼ ℏωmr2, such that one obtains the relation
betweenDE andDW shown here. It is now crucial to observe
that the diffusion constant has a minimum right at the first
limit cycle. This is because the first contribution in Eq. (3),
which dominates at smaller amplitudes, is completely sup-
pressed at the limit cycle, where J0ðηrÞ ¼ 0; see Eq. (2).
Thus, only the second term survives, which is suppressed by
a factor κ2=ω2

m, i.e., the sideband ratio squared. We show in
the main text that this suppression is caused by squeezing
terms that exactly cancel the corresponding incoherent
diffusion terms in leading order.
Now, we can combine these results to discuss the width

σ2 of the distribution in the amplitude r. The compromise
between the diffusion at rate DW and the restoring force
that drives r back to the limit cycle results in a width
σ2 ¼ −DW=μ0. For a fixed limit-cycle amplitude, both
diffusion and drift scale as g20E

2, such that the laser power
and the optomechanical coupling drop out of this expres-
sion. This will change in the presence of mechanical
damping and thermal fluctuations, but it still correctly
describes the behavior once the optomechanical damping
rate overwhelms the thermal fluctuations.
In order to estimate when the limit cycle may turn into a

nonclassical mechanical quantum state, we will now look
at the variance of the phonon number VarðnÞ. Since r is
already measured in terms of the zero-point amplitude xZPF,
we have r2 ¼ n. Thus, VarðnÞ ¼ 4hniσ2. This expression
can be minimized by choosing an optimal detuning
(Δ ¼ κ), where we find VarðnÞ ¼ hniðκ=ωmÞ. In other
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words, in the resolved-sideband regime (κ ≪ ωm), one can
get close to a mechanical Fock state VarðnÞ < 1, as long as
the limit cycle is sufficiently small hni < ωm=κ. Note that
the optomechanical-coupling strength g0 enters indirectly
here, since (in the absence of mechanical damping) the
limit-cycle amplitude is determined by J0ðηrÞ ¼ 0, with
η ¼ 2g0=ωm. Taking this observation into account,
VarðnÞ < 1 is equivalent to g20=ωmκ > 1.4. However, it
turns out that it is easier to produce a nonclassical state, i.e.,
one where the Wigner density has negative components.
For the type of states relevant here, we numerically find that
it is sufficient to have VarðnÞ < 0.6hni0.7 for this purpose.
Thus, the condition for nonclassicality reads approximately

g0
κ
> 2

�
κ

ωm

�
0.7
; (4)

which is less stringent than the condition for achieving a
Fock state, since one could still admit g0=κ < 1 if the
sideband ratio ωm=κ is sufficiently large.
In the simplified description given here, we have

neglected several factors that will be discussed in our full
analysis. This includes the effects of the mechanical
damping, which will decrease the limit-cycle amplitude
(shifting away from the point of the minimum diffusion
constant). In addition, thermal fluctuations will add to the
diffusion. Nevertheless, this effect can be overcome if the
scale of the optically induced damping rate γopt ≃ μ0ðrÞ ∝
g20E

2=ω3
m dominates the influx of thermal phonons

jγoptj ≫ γn̄; (5)

where n̄ is the thermal phonon number of the bath and γ is
the mechanical damping rate. This condition is equivalent
to the condition for ground-state cooling but here applied
for the instable regime. It does not involve the coupling per
single photon g0 but only the linearized coupling g ∝ g0E,
such that Eq. (5) essentially represents a condition on the
strength of the driving field.
Another important aspect neglected here is the shift of

the cavity resonance by the Kerr effect. This shift leads to
an effective detuning Δeff that will enter all expressions
instead of Δ. The impact of this change is especially large
near Δ ≈ 0, which is precisely the regime that we find to be
optimal for nonclassical states.
The heuristic reasoning applied here and the resulting

conditions (4) and (5) for achieving nonclassical mechanical
stateswill receivea rigorous justificationinSec. IVonthebasis
of the Fokker-Planck equation derived in the next section.

III. LASER THEORY FOR OPTOMECHANICS

A. Haake-Lewenstein laser-theory
ansatz in optomechanics

Master equation.— The standard master equation of an
optomechanical system is [1,2]

d
dt
ρ ¼ ðLm þ Lc þ LintÞρ; (6)

where

Lmρ ¼ −i½ωmb†b; ρ� þ γðn̄þ 1ÞD½b�ρþ γn̄D½b†�ρ; (7)

Lcρ ¼ −i½−Δa†a − iEða − a†Þ; ρ� þ κD½a�ρ; (8)

Lintρ ¼ −i½−g0a†aðbþ b†Þ; ρ�: (9)

The three Liouvillians Lm, Lc, and Lint refer to the
mechanical oscillator, the cavity, and their interaction,
respectively. a and b denote the annihilation operators of
the cavity and the mechanical oscillator. The frequency of
the mechanical oscillator is ωm, its amplitude damping rate
is γ ¼ ωm=Qm, and its mean phonon number in thermal
equilibrium is n̄. We use the notation D½A�ρ ¼ 2AρA† −
A†Aρ − ρA†A for Lindblad operators. κ is the cavity-
amplitude decay rate, and Δ ¼ ωL − ωc is the detuning
from cavity resonance at ωc of the driving field E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κPL=ℏωL

p
with power PL and frequency ωL. The master

equation is written in a frame rotating at the frequency ωL
of the driving field. The optomechanical coupling per
single photon is denoted by g0 and essentially determines
the dispersive shift of the cavity frequency with the
displacement of the oscillator in units of the mechanical
zero-point amplitude [38].
Note that in contrast to, e.g., Refs. [19,23,27], the

definitions of γ and κ used here refer to the decay rate
of the amplitude and will be used for all analytical results,
in order to make the equations more readable. The
corresponding decay rates for the energy κE ¼ 2κ and
γE ¼ 2γ are the standard convention from Ref. [1]. For
comparison to most experimental and numerical studies,
we also provide the energy decay rates in the numerical
results.
Our primary aim is to derive an effective equation of

motion for the mirror based on the assumption that the
dynamics of the cavity adiabatically follows the mechanical
oscillator. This assumption will strictly be valid when the
cavity decay rate κ is larger than the characteristic coupling
strength of the oscillator and the cavity mode (i.e., g0 or the
linear coupling g ¼ g0α enhanced by the mean cavity field
α at the position of the limit cycle). As we will see, the
resulting effective equation of motion for the mechanical
oscillator also gives good results for the stationary state
when this condition is barely fulfilled, and even when it is
mildly violated.
Quasiprobability distribution.—Most importantly, we

will not assume the usual linearization of the optomechan-
ical coupling when we perform the adiabatic elimination.
This is achieved by means of an ansatz inspired by laser
theory [31,32] that allows us to use a different adiabatic
reference state of the cavity field for each point in the phase
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space of the mechanical oscillator. The idea is to switch to a
phase-space representation for the mechanical degree of
freedom. In principle, any quasiprobability distribution
(e.g., P distribution, Wigner function, etc.) can be used,
but wewill in the following mostly focus on the (Husimi)Q
function that yields the simplest formulas for the calcu-
lation presented below. In this formalism, the density
operator ρ is replaced by

σðβ; β�Þ ¼ 1

π
hβjρjβi;

where jβi is a coherent state of the mechanical oscillator.
In the Appendixes A and B, we provide an extension
and comparison of the present approach based on the Q
function to a general (s-parametrized) quasiprobability
distribution, including the P distribution and Wigner
function as special cases. σðβ; β�Þ is a density operator
for the cavity field and a quasiprobability distribution for
the oscillator over the complex phase-space variables
ðβ; β�Þ. The reduced density operator for the cavity is
obtained by integrating over phase space

ρc ¼ trmfρg ¼
Z

d2βσðβ; β�Þ;

and the quasiprobability distribution (Q function) for the
oscillator follows on taking the trace over the cavity

Qðβ; β�Þ ¼ trcfσðβ; β�Þg: (10)

σðβ; β�Þ itself still contains all information about the state
of both systems and is fully equivalent to the density
operator ρ. For the Q function, the replacement rules [32]

b†ρ → β�σðβ; β�Þ; bρ → ðβ þ ∂β� Þσðβ; β�Þ (11)

and their adjoints can be applied to the master equation (6)
in order to arrive at an equivalent description in phase space
of the oscillator. We use the notation ∂β to denote the partial
derivative with respect to a variable β. The translated
equation of motion is

∂tσðβ; β�; tÞ ¼ ðLm þ Lc þ LintÞσðβ; β�; tÞ; (12)

with

Lmσ ¼ ½∂βðγ − iωmÞβ þ c.c.�σ þ 2γðn̄þ 1Þ∂2
ββ�σ; (13)

Lcσ ¼ Lcσ − i½−g0ðβ þ β�Þa†a; σ�
¼ −if−½Δþ 2g0ReðβÞ�a†a − iEða − a†Þ; σg
þ κD½a�σ;

Lintσ ¼ −ig0ð∂βσa†a − ∂β�a†aσÞ: (14)

The Liouvillian Lm affects only the mechanical oscillator
and is just the Fokker-Planck version of Eq. (7). A crucial
point in this formalism is that the nonlinear optomechanical
interaction Lint from Eq. (9) makes a contribution to both
the new Liouvillian for the cavity Lc and the new
interaction Lint. Parts of the interaction can thus formally
be treated as a shift of the detuning by 2g0ReðβÞ that
depends on the phase-space variables ðβ; β�Þ. Note that
Eq. (12) is still exactly equivalent to Eq. (6).
A semipolaron transformation.—The parametric

dependence of the cavity detuning on the phase-space
variables can be transformed into one of the driving field E
by means of a transformation

~σðβ; β�; tÞ ¼ eηðβ−β�Þa†a=2σðβ; β�; tÞe−ηðβ−β�Þa†a=2
¼ eiθðβ;β�Þa†aσðβ; β�; tÞe−iθðβ;β�Þa†a; (15)

with

θðβ; β�Þ ¼ ηImðβÞ; η ¼ 2g0
ωm

:

When transforming the equation of motion (12), care has to
be taken on commuting the unitary operators in Eq. (15)
with derivatives with respect to ðβ; β�Þ in Lm and Lint due to
the β dependence of θ. Details are given in Appendix C.
The resulting equation of motion for ~σðβ; β�; tÞ can be
written again in the form of Eq. (12):

∂t ~σðβ; β�; tÞ ¼ ðLm þ ~Lc þ LintÞ ~σðβ; β�; tÞ; (16)

where Lm and Lint remain unchanged as in Eqs. (13) and
(14), and the Liouvillian operator for the cavity becomes

~Lc ~σ ¼ −i½−Δa†a − Kða†aÞ2 − iEðe−iθðβ;β�Þa − H.c.Þ; ~σ�
þ κD½a� ~σ: (17)

In this picture, the phase of the driving field is different for
each point in phase space [via θðβ; β�Þ], and the cavity
acquires an effective Kerr nonlinearity of strength

K ¼ g20
ωm

:

We point out that the effective Kerr nonlinearity of the
optomechanical interaction gives rise to ponderomotive
squeezing of light, as was recently observed in Refs. [6,7].
The equation of motion for ~σðβ; β�; tÞ [Eq. (16)] is an

approximation. In principle, it contains further terms that
are of order Q−1

m and whose explicit form is given in
Appendix A1. For high-quality oscillators, these terms
provide only small corrections and, therefore, will be
dropped in the following. Apart from this approximation,
Eq. (16) still contains the full nonlinear dynamics of the
system, while the aspect of the optical Kerr nonlinearity
is explicitly separated from the nonlinearity in the
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optomechanical interaction. It is also important to note that
the quasiprobability distribution for the reduced state of the
oscillator still follows from the transformed state ~σðβ; β�; tÞ
in Eq. (15) by taking the partial trace over the cavity

Qðβ; β�Þ ¼ trcf ~σðβ; β�Þg: (18)

Semipolaron versus polaron transformation.—The
transformation in Eq. (15) has many parallels with the
polaron transformation [39] that has been applied fruitfully
to optomechanical systems in order to describe single-
photon strong-coupling effects [34,35]. The polaron trans-
formation is effected by a unitary transformation of the
density operator

~ρpol ¼ eηðb−b†Þa†a=2ρe−ηðb−b†Þa†a=2 (19)

that should be compared to the transformation in Eq. (15).
Instead of fulfilling Eq. (6), the transformed state ~ρ fulfills a
transformed master equation

~ρ
:

pol ¼ ðLm þ ~LcÞ~ρpol; (20)

~Lc ~ρpol ¼ −i½−Δa†a − Kða†aÞ2
− iEðe−ηðb−b†Þ=2a − H.c.Þ; ~ρpol�
þ κD½e−ηðb−b†Þ=2a�~ρpol; (21)

where Lm is given in Eq. (7). This equation is again correct
up to terms of order Q−1

m . It is instructive to compare the
master equation in the polaron picture (20) to the equation of
motion (16) attained in our “semipolaron transformation.” In
both equations of motion, the Liouvillians for the cavity
[Eqs. (17) and (21), respectively] exhibit a Kerr nonlinearity
and contain a driving field whose phase depends on the
momentum of the oscillator. Crucially, the polaron trans-
formation changes the jump operator describing cavity
decay from a to eiηðb−b†Þ=2a and entirely removes the
interaction term (9). Moreover, since the polaron picture
corresponds to a transformation into dressed states of the
optomechanical system, the partial trace of ~ρpol over the
(dressed) cavity mode does not give the reduced state of
the mechanical oscillator; cf. Eq. (19). In contrast, the
semipolaron transformation introduced here retains a non-
linear interactionLint [Eq. (14)], leaves the jump operator for
cavity decay unchanged, and conserves the important
relation (18). These properties are crucial in order to perform
second-order perturbation theory in Lint and to derive an
effective equation of motion for the mechanical oscillator as
a separate system. For further comments on the semipolaron
transformation, we refer to Appendix C.

B. Fokker-Planck equation for the
mechanical oscillator

Interaction picture.—Our goal is now to adiabatically
eliminate the cavity field from the dynamics, similar to the
analysis of sideband cooling [36]. This elimination requires
that the cavity dynamics, governed by ~Lc in Eq. (17) with a
dominant characteristic time scale κ, is fast as compared to
all other time scales in Lm and Lint. Since we aim to also
cover, in particular, the resolved-sideband regime ωm > κ,
we move to an interaction picture with respect to the free
harmonic motion of the mirror. The equation of motion is
still given by Eq. (16), where Lm describes thermal decay
only:

Lmσ ¼ γ½∂ββ þ ∂β�β
� þ 2ðn̄þ 1Þ∂2

ββ� �σ;

and ~Lc and Lint become explicitly time dependent:

~Lcσ ¼ −i½−Δa†a − Kða†aÞ2 − iEðe−iθðβ;β�;tÞa − H.c.Þ; σ�
þ κD½a�σ;

Lintσ ¼ −ig0ðeiωmt∂βσa†a − H.c.Þ: (22)

The phase of the driving field is θðβ; β�; tÞ ¼ ηImðβe−iωmtÞ.
In the adiabatic elimination, it is assumed that the cavity

essentially remains in the (quasi)stationary state of its
undisturbed (by Lint) dynamics

ρ
:
c ¼ ~Lcρc; (23)

with ~Lc given by Eq. (22). This Liouvillian describes
the dynamics of a Kerr nonlinear cavity driven by an
amplitude- and phase-modulated field

Eeiθðβ;β�;tÞ ¼ E
X∞
n¼−∞

Jnð−ηjβjÞeinðωmt−φÞ; (24)

where Jn are Bessel functions. Note that the partial
amplitudes depend on the mechanical phase-space variable
β ¼ jβjeiϕ. We do not attempt to exactly solve Eq. (23).
While, in fact, an exact solution for the stationary state of a
Kerr nonlinear cavity exists [40] for the case of a constant
driving field (i.e., θ≡ const), no such state can be expected
for the present situation. Because of the periodic modula-
tion of the driving field, the cavity will not settle into a
strictly stationary state but rather to a quasistationary state
with a periodic time dependence. If the Kerr nonlinearity is
neglected, an exact solution for this quasistationary state
can be constructed by means of a Floquet-series ansatz
[41]. However, in the present case, both aspects, modulated
drive and Kerr nonlinearity, are important and shall be
taken into account.
In order to arrive at an approximate solution of Eq. (23)

that can serve as a (β-dependent) reference state for the
adiabatic elimination of the cavity, we will follow two
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complementary approaches in the paragraphs below: In the
first one, we assume the cavity is driven to a state of large
mean amplitude that we determine self-consistently from
an essentially classical nonlinear dynamics. The fluctua-
tions around this mean field will be treated in a linearized
model as Gaussian noise. The second approach concerns
the case of weak driving fields for which the cavity
essentially stays close to its ground (vacuum) state that
corresponds to the regime considered in Refs. [25,26]. In
this case, the master equation [Eq. (23)] can be expanded
and directly solved on the low-lying Fock states.
In both cases, we aim to retain a nonlinear dynamics

for the mean cavity amplitude and use a linearized
description for fluctuations. Formally, this derivation is
done by switching to a displaced frame, defining
~~σ ¼ D½αðtÞ� ~σD†½αðtÞ�, where DðαÞ ¼ expðαa† − αaÞ. We
choose αðtÞ ∈ C such that the terms of dominant order in α
are canceled from the transformed master equation for ~~σ. In
the case of jαðtÞj ≫ 1 [jαðtÞj ≪ 1], we cancel the terms of
third [up to first] order in α and then neglect the terms up to
first [of third] order in α. The full equation of this trans-
formation may be found in Eq. (A13) of Appendix A; we
proceed here with its most important features.
Displaced frame for the limit jαðtÞj ≫ 1.—In the limit

jαðtÞj ≫ 1, we identify αðtÞ with the long-time solution of

α
: ðtÞ ¼ −fκ − i½Δþ 2KjαðtÞj2�gαðtÞ þ Eeiθðβ;β�;tÞ (25)

that formally follows from the requirement that terms of
third order in α in the resulting master equation for the
displaced state ~~σ are canceled. Because of the Kerr non-
linearity, the dynamics described by this equation of motion
can be bistable. On assuming a single stable solution, we
preclude bistable regimes from our description. For a
constant phase θ, bistability occurs only for driving fields
that are red detuned with respect to the cavity resonance for
detuningsΔ < − ffiffiffi

3
p

κ; see Ref. [40]. For the present case of
a modulated drive, no such simple condition can be given.
However, it is reasonable to expect that bistability will
become an issue only when the driving field has sufficient
spectral weight for frequencies with a detuning below
− ffiffiffi

3
p

κ. In the following, we are mainly concerned with the
cases of resonant or blue detuned drive, for which it turns
out that bistability is not an issue [42–44].
From Eqs. (25) and (24), we can expect that in the long-

time limit, the cavity amplitude will be of the form

αðβ; β�; tÞ ¼
X∞
n¼−∞

αnðβ; β�Þeinωmt: (26)

Inserting this expression into Eq. (25), one sees that the
effective detuning experienced by the cavity will be
dominantly given by the dc component of jαðtÞj2, such
that it is useful to define an effective detuning

Δeffðβ; β�Þ ¼ Δþ 2K
X
n

jαnðβ; β�Þj2: (27)

Equation (27) has to be read as a nonlinear equation for
Δeff . In regimes where more than one solution exists, the
system will be bi-or multistable, and we have to expect
large photon-number fluctuations. The validity of our
approach will thus be limited to regions where only a
single stable solution for Δeff exists, as discussed above.
We seek an approximate solution to Eq. (25) by assuming a
fixed effective detuning Δeff , such that

αn ¼
E
hn

Jnð−ηjβjÞe−inϕ; (28)

hn ¼ κ þ iðnωm − ΔeffÞ; (29)

where we follow the notation of Refs. [25,26]. In total, αðtÞ
in Eq. (26) depends on the mechanical phase-space variable
β through both Δeffðβ; β�Þ and the β-dependent driving
field Eeiθðβ;β�;tÞ. We will see that the β dependence in
Δeffðβ; β�Þ is a crucial effect for the case of resonant cavity
drive (for which Δeff ≲ κ).
The Liouvillians after the transformation with D½αðtÞ�

are

Lmσ ¼ γ½∂ββ þ ∂β�β
� þ 2ðn̄þ 1Þ∂2

ββ� �σ
− ig0½∂βeiωmtjαðtÞj2 − H.c.�σ; (30)

~Lcσ ¼ −if−½Δþ 4KjαðtÞj2�a†a − K½αðtÞ2a†2 þ H:c:�; σg
þ κD½a�σ; (31)

Lintσ ¼ −ig0feiωmt∂βσ½α�ðtÞaþ αðtÞa†� þ H.c.g: (32)

The Liouvillian for the mechanical oscillator Lm acquires
an additional drift term [second line in Eq. (30)] with a
nonlinear drift coefficient∝ eiωmtjαðβ; β�; tÞj2 that contains,
in particular, the nonlinear dc force and dynamic back-
action effects (i.e., optical damping and frequency shifts),
as will be discussed below. In the Liouvillian for the cavity
~Lc, terms of order αðtÞ and lower are dropped. The leading
terms of order α2 describe squeezing dynamics and an
effective detuning. Finally, in Lint, only the term of linear
order in α is kept. Note also that when moving to the
displaced frame, commutators of the (β-dependent) dis-
placement operators and derivatives with respect to β have
been neglected. They would add corrections to the
Liouvillians of higher order in g0. We have now removed
the driving field from the dynamics of the cavity. The
remaining Liouvillian (31) describes the Gaussian evolu-
tion of fluctuations.
The ponderomotive squeezing of the light field is

naturally contained in the α2a†2 term and its Hermitian
conjugate. While in this article we will study parameters for
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which this squeezing is negligible, the effect of ponder-
omotive squeezing back on the mirror after the adiabatic
elimination of the cavity is an interesting perspective for
future applications of our new formalism: In the adiabatic
elimination of the cavity, one would have to use a squeezed
reference state that can possibly introduce additional
diffusion terms in the motion of the mirror. Applied to
the situation of limit cycles, this additional diffusion may
cause the state of the oscillator to become more classical.
Curiously, the Kerr nonlinearity induces a different

effective detuning for the mean field α than for the
fluctuations [compare Eqs. (25) and (31)]. This is consis-
tent with results for a Kerr nonlinear cavity [40]. We
therefore define

~Δeff ¼ Δþ 4K
X
n

jαnj2: (33)

The fast decay rate to the vacuum is still given by κ from
the original master Eq. (8).
This fact can be used in order to adiabatically eliminate

the cavity, taking into account second-order effects in the
optomechanical interaction ∝ g0 [Eq. (32)], very much in
the spirit of laser-cooling theory [36]. Details of the
calculation can be found in Appendix B. The result is
an effective equation of motion for the mechanical oscil-
lator in the form of a Fokker-Planck equation

Q
: ðβ;β�Þ¼g20

X
n

�
∂β�∂β

α�nαn
~hn−1

−∂β�∂β�
α�n−2αn
~hn−1

�
Qðβ;β�Þ

þH:c:þ ig0
X
n

ð∂β�α
�
n−1αnÞQðβ;β�ÞþH:c:

þγ½∂ββþ∂β�β
�þ2ðn̄þ1Þ∂2

ββ� �Qðβ;β�Þ (34)

for the Q function of the mechanical oscillator. In analogy
to hn, we define ~hn ¼ κ þ iðnωm − ~ΔeffÞ, with ~Δeff given
in Eq. (33).
The drift and diffusion coefficients in the Fokker-Planck

equation (34) do not depend on the phase of β as a
consequence of the rotating-wave approximation involved
in its derivation. We therefore transform the Fokker-Planck
equation to polar coordinates β ¼ reiϕ and focus on the
time evolution of the oscillator amplitude r by integrating
out the phase variable ϕ. The time evolution for r is then a
one-dimensional Fokker-Planck equation (on a half-space)

Q
: ðrÞ ¼ −∂rμðrÞQðrÞ þ ∂2

rDðrÞQðrÞ; (35)

with drift μðrÞ and diffusion coefficient DðrÞ

μðrÞ ¼ −γrþX
n

g0E2Im

�
Jn−1ðηrÞJnðηrÞ

hn−1h�n

�
; (36)

DðrÞ ¼ γðn̄þ 1Þ
2

þ
X
n

g20E
2

2

×

�
κJnðηrÞ2

jhnj2j ~hn−1j2
− Re

�
Jn−2ðηrÞJnðηrÞ
~hn−1h�n−2hn

��
: (37)

The details of the transformation may again be found in
Appendix B. Equation (35) admits a potential solution in
the steady state that is given by (up to normalization)

QðrÞ ∝ eIðrÞ

DðrÞ ; IðrÞ ≔
Z

r

0

μðr0Þ
Dðr0Þ dr

0: (38)

This solution is valid for any value of Δ, such that it covers
both the regime of optomechanical cooling and the regime
of self-induced oscillations. In Ref. [36], an effective
equation of motion for the oscillator was derived in order
to study the limits of sideband cooling under linearization
of the dynamics and adiabatic elimination of the cavity
using a coherent state as a reference state. The present
approach generalizes this calculation to the nonlinear
regime by using a different reference state for each
phase-space point of the oscillator. The nonlinear quantum
dynamics has been described analytically using a method
based on the classical theory for limit cycles [45] and by
means of Langevin equations [25], and has been applied in
great detail to limit cycles but also to the cooling regime
[26]. The results of our calculation reproduce these results
in the regime of a negligible Kerr term and provide suitable
extensions in those cases where the Kerr nonlinearity of
the cavity becomes a dominant effect. In the next section,
we will compare the analytical expression for the steady
state of the mechanical to numerical solutions of the exact
master equation (6) to study the limit-cycle regime. We
conclude this section by briefly stating the corresponding
results for the limit of small intracavity field amplitude,
followed by a comparison of limit cycles studied in
different laser setups.
Displaced frame and adiabatic elimination for the limit

jαðtÞj ≪ 1.—In the case of jαðtÞj ≪ 1, all steps can be
performed in analogy. The difference is that we need to
cancel the terms up to first order in α and then neglect the
terms of third order in α. The effective detuning is now
given by

Δeff ¼ Δþ K; (39)

i.e., the bare detuning is just shifted by the constant Kerr
term in this extreme regime. No distinction between Δeff
and ~Δeff needs to be made. The adequate choice for the
displacement amplitude is the long-term solution of

α
: ðtÞ ¼ −½κ − iΔeff �αðtÞ þ Eeiθðβ;β�;tÞ: (40)
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The result of the adiabatic elimination is structurally the
same; αn and hn are given as in Eqs. (28) and (29) but with
the effective detuning now given as in Eq. (39). In Eq. (37),
the ~hn are simply replaced by hn.
Quantum limit cycles in lasers.—It seems natural to base

a model of optomechanical limit cycles on theory used in
the context of lasers [30–32], where quantum limit cycles
have been extensively studied most prominently. The
standard laser system consists of a reservoir of many atoms
that forms a bath for the cavity mode. The pumped atoms
will drive the laser mode to a high-amplitude limit cycle,
where it settles into a coherent state with random phase.
A setup that can be driven to highly sub-Poissonian

states is the regularly pumped laser [46,47], where excited
atoms fly through a cavity. The mechanism works in the
situation, where at each time approximately only one atom
interacts with the light mode and the interaction is a
swapping of excitations. In the case of more regular than
Poissonian statistics of the pump, the fluctuation of the
transmitted energy decreases and the light mode will have
sub-Poissonian phonon statistics. This setup is sometimes
also referred to as a one-atom laser, or as a micromaser,
because the events when more than one atom interacts with
the field can be neglected.
The one-atom laser is different from the one-and-the-

same–atom laser [48], where a single atom is trapped inside
a cavity and drives the laser mode. Also, in this setup, a
sub-Poissonian steady state can be reached, and the
explanation again relies on counting the number of inter-
actions exchanged between the atom and the cavity [49].
In our optomechanical system, a single laser mode is

the bath driving the mechanical oscillator. The bath con-
sisting of only a single mode is in analogy to some extent to
the micromaser, as stressed in Ref. [28], and is even more
similar to the one-and-the-same–atom laser. Even though
we also describe sub-Poissonian boson statistics, the
analytical techniques developed, e.g., in Ref. [49] cannot
be readily applied to our situation because they crucially
rely on the preservation of total excitations by the inter-
action, which is not given in the optomechanical setup. Our
analytical model in Sec. III is based on Ref. [31], which
was first developed for the standard setup without sub-
Poissonian statistics.
For the creation of non-Gaussian states, a nonlinearity is

required. In the optomechanical setup, the nonlinearity
stems from the interaction, while in the one-and-the-same–
atom laser, it stems from the two-level nature of the bath,
which is equivalent to a highly nonlinear cavity.

IV. OPTOMECHANICAL LIMIT CYCLES
IN THE QUANTUM REGIME

A. Introduction

As an introduction to our study, we sum up some known
results on limit cycles that the rest of the article refers to.

First, we introduce the theory for the amplitude of classical
limit cycles, as developed in Refs. [19,23], and then we
recapitulate the numerical results on nonclassical states of
quantum limit cycles, as reported in Ref. [27]. When
comparing these findings to our analytical treatment, we
will mainly be concerned with the special case of the close
to resonant driving field Δeff ≃ κ ≪ ωm. Therefore, we
start out by stating some approximate expressions for
this case.
Close to resonant drive.—In the sideband-resolved

regime and with a detuning close to the resonance, i.e.,
Δeff , κ ≪ ωm (but not necessarily Δeff ≪ κ), we keep only
the terms with n ¼ 0, 1 in the expression for the drift
coefficient [Eq. (36)] and approximate

μðrÞ≃−γrþ g0E2

ω2
m

2κΔeffðrÞ
Δ2

effðrÞ þ κ2
J0ðηrÞJ1ðηrÞ: (41)

In the sideband-resolved regime, the equation for the
effective detuning [Eq. (27)] becomes a third-order poly-
nomial in Δeff , and in the limit Δeff ≪ κ, it even simplifies
to a simple and explicit expression

ΔeffðrÞ≃ Δþ 2
KE2

κ2
J20ðηrÞ: (42)

Classical limit cycles.—The theory for classical opto-
mechanical limit cycles from Ref. [19] is reproduced by the
drift part of the Fokker-Planck equation [Eq. (36)] when
neglecting the diffusion and using a constant effective
detuning ΔeffðrÞ ¼ Δeff ≡ const. Disregarding the diffu-
sion, the oscillator amplitude rðtÞ evolves fully determin-
istically and obeys

r
: ¼ μðrÞ ¼ −γeffðrÞr; γeffðrÞ ¼ γ þ γoptðrÞ:

Following Eq. (41), the combined intrinsic and optically
induced damping of the oscillator γeffðrÞ close to resonance
is then given as the sum of the intrinsic mechanical
damping γ and the amplitude-dependent optical damping

γoptðrÞ ¼ − g0E2

ω2
m

2κΔeff

Δ2
eff þ κ2

J0ðηrÞJ1ðηrÞ
r

: (43)

Note that the sign of the optically induced damping at r ¼ 0
coincides with the sign of Δeff . For negligible intrinsic
damping γ ≪ γopt, one can then expect limit cycles to
always start for Δeff > 0 (whereas the dynamics will be
stable for Δeff < 0). The possible amplitudes r0 for limit
cycles are given by the conditions γeffðr0Þ ¼ 0 and
γ0effðr0Þ > 0. The first condition is equivalent to

J0ðηrÞJ1ðηrÞ
r

¼ γ
ω2
m

g0E2

Δ2
eff þ κ2

2κΔeff
: (44)
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The left-hand side of this equation has infinitely many
roots, as the Bessel functions oscillate at a constant
amplitude; cf. Fig. 1(a). The envelope is given by the
r−1 decay. As illustrated in Fig. 1(a), the exact position of
the limit cycle and the number of possible amplitudes are
then determined by the right-hand side of Eq. (44).

B. Outline

In the following subsections, we will explain two
features of limit cycles on resonance that can be heavily
influenced by the Kerr term.
First, in Sec. IVC, we show that in the strong driving

limit jαj2 ≫ 1, the phase transition between optomechan-
ical cooling and self-induced oscillations is crucially
determined by the dynamical dependence of the effective
detuning on the intracavity amplitude and its corresponding
nonlinear dependence on the cycle amplitude; cf. Eq. (42).
This behavior can also be explained in a classical picture.
We then develop an explanation of the interesting

numerical result for limit cycles in the quantum regime
reported in Refs. [27,28]: For approximately resonant
driving fields Δ≃ 0, and at the blue detuned sideband
resonance Δ≃ ωm, the steady state of the mechanical

oscillator can have a Wigner function with a negative area.
The requirement on the strength of the optomechanical
coupling g0 is more stringent at the sideband than on
resonance, where nonclassical limit cycles already appear
for weaker coupling. Curiously, on resonance, the numeri-
cal solution to the master equation also predicts (non-
classical) limit cycles for parameters where classically the
effective detuning Δeff < 0, and one would expect a stable
cooling dynamics. Figure 2 shows the steady-state
Wigner function of the mechanical oscillator for such
parameters.
We will use the analytical description of limit cycles with

the Fokker-Planck equation to explain the features dis-
played in Fig. 2 and to predict general requirements on
system parameters to achieve a nonpositive Wigner func-
tion. In Sec. IVE, we show that the occurrence of negative
Wigner functions, in turn, is intimately linked to achieving
a small variance of the phonon statistics, as characterized
by a small Fano factor F ¼ hΔni2=hni, along with a small
cycle amplitude r0. We analyze the variance of the phonon
number in Sec. IVD and find that the conditions for a small
Fano factor are favorable at the Δ ¼ 0 resonance.
In Sec. IVF, we describe the numerical method used to

check the analytical predictions. It allows us for the first
time to numerically study quantum features of optome-
chanical limit cycles in the regime of large mechanical
amplitudes and strong laser drive, populating many states

(a)

(b)

FIG. 1 (color online). (a)EffectivedampingγeffðrÞ ¼ γ þ γoptðrÞ
from Eq. (43) in units of γ0 ¼ ðg0E2=ω2

mÞ=ð2κΔeff=Δ2
eff þ κ2Þ

versus cycle amplitude r in units of zero-point fluctuation and η.
The blue and red lines are two examples for different intrinsic
dampings γ. Limit cycles are stable at roots of the total dampingwith
a positive slope. This condition is fulfilled only once for the red line
withγ ¼ 0.1γ0, corresponding toonlyonepossibleamplitudefor the
oscillation. For the blue line with γ ¼ 0, many such intersections
occur and the oscillator amplitude will, in general, jump between
those different metastable points. (b) The optical part of the
diffusion from approximation (48) for κ=ωm ¼ 0.1 and Δeff ¼ κ
in units of D0 ¼ κg20E

2=ω4
m. Note that the dominant part of the

diffusion from Eq. (48) is exactly canceled at the position of
the limit cycle for γ ¼ 0, as indicated by the vertical line. This
cancellation explains the strongly sub-Poissonian phonon sta-
tistics for such parameters.

FIG. 2 (color online). Wigner functionW of the lowestmetastable
limit cycle of the mechanical oscillator for parameters ðg0; κE ¼
2κ; γ; E;Δ; KÞ ¼ ð0.275; 0.1; 0; 0.15;−0.026; 0.076Þ × ωm. As
there are fewer than 0.03 photons in the cavity, we are in the regime
of jαj2 ≪ 1, where Δeff ¼ Δþ K; cf. Eq. (39). Choosing the bare
detuning to minimize the Fano factor (F ¼ 0.1 at the attractor with
lowest amplitude, which is depicted in this plot) implies that
according to Eq. (50), Δ ¼ κ − K, which for the strong optome-
chanical coupling of this example gives the negative numerical value
Δ ¼ −0.026.Note thatclassicallyorexcludingtheKerreffect, a limit
cyclewould not even start for these parameters. Theminimal valueof
W in this plot is −0.02.
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of the cavity. We find that the analytical model can still be
applied, and even for g0 < κ, the negativity of the Wigner
function can be observed.

C. Drift and dynamical detuning

In this section, we study in detail the time evolution of
the mean amplitude r̄, which is determined by the drift μðrÞ
in Eq. (41). In particular, we show how the dynamical
dependence of ΔeffðrÞ on r gives new results that are not
observed in any model based on a static detuning (like the
one we used above). We focus on the regime where r̄ is
larger than its standard deviation Δr, such that we can
derive the time evolution of r̄ via r̄

: ¼ μðr̄Þ directly from
Eq. (41) as

r̄
: ¼ −γr̄þ 2κgE2

ω2
m

Δeffðr̄Þ
Δeffðr̄Þ2 þ κ2

J0ðηr̄ÞJ1ðηr̄Þ: (45)

These assumptions are fulfilled for small η ¼ 2g0
ωm

because
ηr̄ is the argument of the Bessel functions, and
hence r̄ ∝ 1

η.
With the oscillator initially in the ground state, it is the

sign of Δeffð0Þ that determines if the limit cycle starts at all:
For Δeffð0Þ < 0, the optical damping is initially positive
and no oscillation starts, but for Δeffð0Þ > 0, it is negative
and may be larger than the intrinsic damping γ, so that self-
induced oscillations can start. The oscillator arrives at its
steady state, when r̄

: ¼ 0. Neglecting the small corrections
due to γ, this is equivalent to the condition
Δeffðr̄ÞJ0ðηr̄ÞJ1ðηr̄Þ ¼ 0. If the effective detuning Δeff is
independent of r, the smallest root of this product is always
the first root of J0. This corresponds to the standard
situation (as discussed above) valid for a negligible Kerr
parameter or in the weak driving limit; cf. Eq. (39).
In the converse case, for large amplitudes jαj2 ≫ 1 and a

non-negligible Kerr parameter, the dynamic nature of the
effective detuning can become important: The smallest root
of the product Δeffðr̄ÞJ0ðηr̄ÞJ1ðηr̄Þ is then determined
either by J0 or Δeff, depending on the sign of Δ. If the
bare detuning is on the blue (heating) side Δ≳ 0, the
condition for the limit cycle is still J0ðηr0Þ ¼ 0, as in
the case of a static detuning. However, if the bare detuning
is on the red (cooling) side Δ < 0, the effective detuning
for a small cycle amplitude can still be positive as
Δeffð0Þ ¼ Δþ 2KE2=κ2; cf. Eq. (42). This situation is
the case, in particular, for a driving field E larger than a
critical value of Ecrit ¼ κffiffi

2
p

g0

ffiffiffiffiffiffiffiffiffiffiffiffiffijΔjωM

p
. The sign of ΔeffðrÞ

will then depend on, and ultimately change with, the increas-
ing amplitude r of the oscillation, since Δeff ¼Δ<0 at the
roots of J20ðηrÞ. With increasing oscillator amplitude r, the dc
component of the cavity occupation and hence (via the Kerr
nonlinearity) also the shift of the detuning drop. The steady-
state amplitude r0 of the limit cycle is reached when
Δeffðr0Þ ¼ 0. Using again approximation (42), the condition

Δeffðr0Þ ¼ 0 is equivalent to J0ðηr0Þ ¼ κffiffi
2

p
g0E

ffiffiffiffiffiffiffiffiffiffiffiffiffijΔjωM

p
.

Thus, the Kerr nonlinearity smoothens the transition from
cooling to amplification. This smoothing is in contrast to
models with a static detuning where a sharp transition occurs
at Δeff ¼ 0.
We numerically check the dynamical nature of the

detuning by integrating the equations of motion

α
: ¼ iΔαþ g0ðβ þ β�Þα − καþ E;

β
:
¼ ig0jαj2 − iωmβ − γβ (46)

that are the classical analogue to the master equation (6).
Figure 3 illustrates the time dependence of the detuning
with an example of a time evolution where the bare
detuning Δ < 0, so that the limit-cycle amplitude r0 in
the steady state is determined by the condition ΔeffðrÞ ¼ 0.
Figure 4 shows that this condition gives a good prediction
for r0 as a function of Δ.
An approximation similar to Eq. (45) for the case of a

laser drive close to the first blue sideband Δ ≈ ωm shows
that there the position of the limit cycle does not depend on
the exact value of Δ. It is approximately given by the first
root of J1ðηrÞ. Thus, the limit-cycle amplitude is generally
smaller on resonance than on the sideband. We will use this
observation in Sec. IVE, where we will see that a small
limit-cycle amplitude is favorable for the occurrence of a
negative area in the Wigner function.

(a) (b)

(c)

FIG. 3 (color online). Example of the oscillator time evolution
for the classical equations of motion [see Eq. (46)], with initial
condition r ¼ 0 for Δ≲ 0 but Δeffðr ¼ 0Þ > 0. (a) Effective
detuning ΔeffðtÞ with a scale on the left (blue) axis, (b) oscillator
amplitude rðtÞ, and (c) dc shift in position with a scale on the
right (black) axis. A positive effective detuning at r ≈ 0 ensures
that the limit cycle starts. With increasing oscillator amplitude,
the intracavity photon number

P
njαnj2 from Eq. (27) drops,

and hence also Δeff . As μ ∝ Δeff [see Eq. (41)], the oscillator
settles into the steady state as soon as this drop reaches Δeff ¼ 0.
The parameters in this plot are ðE; g0; κE ¼ 2κ; γE ¼ 2γÞ ¼
ð4.0; 0.05; 0.3; 2 × 10−5Þ × ωm.
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D. Diffusion and Fano factor

Having discussed the conditions for a limit cycle to
start and having derived the mean amplitude in the steady
state for the Δ≃ 0 resonance, we now consider the
fluctuations caused by the diffusion D around this mean
value to derive a prediction for the Fano factor
F ¼ ðhn2i − hni2Þ=hni ¼ hΔni2=hni, which is a measure
for number squeezing: For a coherent state, the phonon
distribution is Poissonian, so that hΔni2 ¼ hni and F ¼ 1.
A state with sub-Poissonian phonon variance can hence be
characterized by F < 1.
We will use the term Fano factor in the context of limit

cycles as follows: For generic parameters, an optomechan-
ical system can exhibit several limit cycles, such that the
Fano factor of the full density matrix is typically larger
than 1. The oscillations at each of these attractors are
metastable, such that it is possible to consider the phonon
statistics at a particular limit cycle. Especially in the
relatively classical regime, where g0=ωm is not too large,
the cycles will be well separated. When we refer to a Fano
factor, we will implicitly always mean the Fano factor of
one particular attractor.
We obtain the mean and variance of the phonon number

n via [32]

hfarða†Þsgsymi ¼
Z

d2αWðα; α�Þαrðα�Þs; (47)

where Wðα; α�Þ is the Wigner function. We use here the
Wigner function because it gives better agreement with the
numerical analysis for the statistics of the phonon number
than other quasiprobability distributions. Drift and diffu-
sion coefficients for the Wigner function are calculated in
Appendix A along the same lines as shown above for theQ
function. In particular, close to resonance, the radial
diffusion coefficient as relevant to the Wigner function is

DW ¼ γð1þ 2n̄Þ
4

þ κg20E
2

ω4
m

�
J21ðηrÞ þ

1

2

ω2
m

κ2 þ Δ2
eff

J20ðηrÞ
�
;

(48)

where we apply to Eq. (B20) the same approximations as in
Sec. IVA for the drift coefficient.
For most amplitudes, the J20 term is dominant, as it is

enhanced by at least ðωm=κÞ2 over the J21 term. For
parameters where the optical antidamping is much stronger
than the intrinsic mechanical decay, a curious cancellation
of the diffusion occurs in the steady state: The limit cycle
will then settle exactly at the first root of J0, as discussed in
Sec. IVC. There, the term proportional to J21, which is
suppressed by ðκ=ωmÞ2, becomes the only relevant term
in the diffusion. This suppression is illustrated in Fig. 1(b)
and can be intuitively explained: The last two terms in
Eq. (B21) [or equivalently Eq. (B20)] are the [coherent]
squeezing terms. For n ¼ 1, they exactly cancel the
corresponding [incoherent] diffusion terms ∝ ∂β�∂β� in
leading order, and only the higher-order terms in κ2=ω2

m
remain. Because of this suppression of diffusion in the
sideband-resolved regime, one can obtain a very small Fano
factor of the mechanical oscillator, as we show below.
The phase-space distribution in the steady state is given

by Eq. (38). In the limit of small g0=ωm, where Δn ≪ hni,
and for the case of only a single stable limit cycle centered
around a position r0 with μðr0Þ ¼ 0, we linearize μðrÞ ≂
μðr0Þ þ μ0ðr0Þðr − r0Þ around this r0 and setDðrÞ≃Dðr0Þ
so that the corresponding solution for W is approximately

WðrÞ ∝ exp

�
− ðr − r0Þ2

2σ2

�
; (49)

with σ2 ¼ −Dðr0Þ=μ0ðr0Þ. One can then derive the approxi-
mate expression F≃ 4σ2 for the limit ωm=g0 > σ. In the
sideband-resolved regime and with the limit-cycle position
at the first root of J0, this gives

F≃
�
γð1þ 2n̄Þ

4
þ ζ

κg20E
2

ω4
m

�
=
�
γ

4
þ 2κΔeffðr0Þ
Δeffðr0Þ2þ κ2

ζ
g20E

2

ω3
m

�
;

(50)

FIG. 4 (color online). Amplitude r0 for the first stable limit
cycle versus bare detuning Δ. In the limit of an amplitude-
independent effective detuning (red lines), the values for large
amplitudes are predicted correctly. It is known from Ref. [19] that
for small amplitudes at the onset of limit cycles, the amplitude
follows a square root (red lines). With the inclusion of the
dynamical effective detuning ΔeffðrÞ (blue line), the limit-cycle
amplitude r0 follows J0ðηr0Þ ¼ κffiffi

2
p

g0E

ffiffiffiffiffiffiffiffiffiffiffiffiffijΔjωM

p
, both limit cases

are reproduced, and the whole transition between the regimes of
damping and antidamping can be described. In this figure, we
compare the predictions with the numerical solution (dots) of the
classical equation. The parameters of this plot are ðE; g0; κE ¼
2κ; γÞ ¼ ð0.5; 0.25; 0.3; 0.0Þ × ωm.
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where ζ ≃ 0.27 is the numerical value of J21 at the position
of the limit cycle. The Fano factor is minimal at an effective
detuning Δeffðr0Þ ¼ κ, where it takes on the value

F≃
�
γð1þ 2n̄Þ

4
þ ζ

κg20E
2

ω4
m

�
=
�
γ

4
þ ζ

g20E
2

ω3
m

�
: (51)

Note first that Eq. (51) implies that the Fano factor is
lower bounded by the sideband resolution

F >
κ

ωm
(52)

and that this bound is achieved for a sufficiently large driving
field E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κPL=ℏωL

p
(laser power PL). Furthermore,

Eq. (51) implies that the condition for sub-Poissonian
statistics 1 > F is exactly equivalent to ðg20E2=ω3

mÞ
ð1 − κ

ωm
Þ > ðγn̄=2ζÞ. This can be interpreted as a condition

for the driving power that for small κ=ωm becomes

PL

ℏωL
>

ω3
m

4ζκg20
γn̄: (53)

It is also instructive to express this condition in terms of the
(thermal, linearized) cooperativity parameter

C ¼ 4g20α
2

κγð2n̄þ 1Þ ¼
8g20

ω2
mγð2n̄þ 1Þ

PL

ℏωL
; (54)

wherewe use that the relevant average intracavity amplitude
at the optomechanical limit cycles is α ¼ α1 ≃ E=ωm;

cf. Eq. (28). Condition (53) then takes the form (in the limit
n̄ ≫ 1)

C >
1

ζ

ωm

κ
: (55)

Note that Eq. (55) is essentially a requirement on the
linearized optomechanical coupling (g ∝ g0E) and not on
the coupling per single photon g0. The condition in Eqs. (53)
and (55) and the lower bound in Eq. (52) are the main results
regarding sub-Poissonian phonon statistics.
The possibility of a sub-Poissonian number distribution

was discussed in Refs. [25,26] for the resonance at the first
(and higher) blue sidebands. The prediction of the analyti-
cal model is especially good for the regime with small g0
that results in larger limit-cycle amplitudes. In Fig. 5, which
compares the Fano factors as derived from our analytical
model and from solving the master equation, good agree-
ment can be seen. For larger g0 (not depicted in Fig. 5), the
condition necessary for adiabatic elimination is less sat-
isfied and also the linear approximation (49) gets worse
because Δn ≈ hni. Thus, the quantitative agreement gets
worse. Still, the resonances for F at Δ ≈ 0, ωm are
qualitatively reproduced.
In Refs. [25,26], the Fano factor has been calculated with

a derivation using the truncated Wigner-function approxi-
mation and solving the resulting Langevin equation. If we
use the Wigner function as the phase-space distribution, our
calculation, which does not rely on this truncation, gives
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∆[ωm]

102
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n
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(c)

−0.15 0.00

0.00 0.05 0.10 0.15 0.20
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∆[ωm]

(d)
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FIG. 5 (color online). (a),(b) The Fano factor F versus (bare) detuning Δ and bath occupation number n̄. Note that by varying n̄, we
automatically vary the crucial quantity γn̄ appearing in Eqs. (50) and (51). (a) Plot of the simple analytical expression (50). (b) The
numerical result obtained with Monte Carlo trajectories for 30 000 mechanical oscillations. (a) and (b) are in good agreement despite
the fact that in the parameter regime considered here, some of the approximations are barely fulfilled. Note that the color scale in the
numerical prediction for the Fano factor is slightly shifted up by 0.01, possibly hinting at some additional diffusion process not
considered in the analytical model. (c) The prediction for Wigner-function negativity (defined as the quotient of the most negative and
the most positive values of W) obtained by extrapolating the results for F from (b) using the function from Fig. 6. (d) The Wigner-
function negativity as directly extracted from the numerical result of the Wigner function. The constant parameters in all
plots are ðg0; κE ¼ 2κ; γE ¼ 2γ; EÞ ¼ ð0.05; 0.1; 10−7; 1.56Þ × ωm. The approximate average number of photons in the cavity is 1.5
in these plots.
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the same result in the regime where the Kerr parameter K is
negligible.
For limit cycles with the cavity close to its ground state,

different approaches to treat the Kerr effect have been taken
in the literature: Ref. [28] uses the classical part of the
Kerr effect, as derived with the standard master-equation
approach, to introduce a renormalized detuning with a shift
proportional to the cavity occupation. An additional con-
stant (independent of the cavity occupation) shift of the
detuning by K ¼ g20=ωm was numerically observed in
Ref. [26] and then introduced by hand, to match the
numerical data. It is one of the main results of the
semipolaron approach, that the separate Kerr term for
the cavity is naturally derived for limit cycles. It causes
exactly the additional quantum shift of Δ observed in
Ref. [26] that is most striking in the jαj ≪ 1 limit;
cf. Eq. (39).

E. Nonpositive Wigner function

Finally, we use the Fano factor to predict the occurrence
of a negative area in the Wigner function. For a Fock state,
the Fano factor F is of course zero, and, except for the
vacuum, all Fock states have a pronounced negativity of the
Wigner function. Both F and the Wigner function are
continuous functions of the state ρ. Hence, for a given mean
phonon number n0, there is a critical value Fc, such that for
a state with F < Fc, the Wigner function has a negative
area. For simple set of ansatz states given by a density-
matrix diagonal in the Fock basis with Gaussian probability
distribution

PðnÞ ∝ exp

�
− ðn − n0Þ2

V

�
; (56)

we numerically determine the corresponding critical Fano
factor Fc. The result is illustrated in Fig. 6. We use this
particular ansatz because the typical steady-state density
matrix of our problem is approximately of this form when
g0=ωm is not too large. In Ref. [26], the steady state as a
Gaussian distribution in Fock states is derived in more
detail.
Figure 6 shows that this threshold Fc is smaller for larger

amplitude r0. We infer that in order to see the negativity of
the Wigner function in the steady state, small limit-cycle
amplitudes with small Fano factors are favorable. Applied
to the results of Refs. [27,28], this explains the more
favorable condition for negativity at theΔ≃ 0 resonance as
compared to the Δ≃ ωm resonance because the limit cycle
there has a smaller amplitude [given by the first root of
J0ðηrÞ as compared to J1ðηrÞ, as discussed in Sec. IVC].
Independently of Δ, the amplitude scales with the inverse
of g0=ωm, such that for a large ratio g0=ωm, a nonpositive
Wigner function is already achieved for larger Fano factors.
More precisely, we can conclude from Fig. 6 that

Fc ≃ ξr−s0 ; s≃ 0.6; (57)

where the constant ξ depends on how negative the Wigner
function should be. In order to achieve a ratio of minimal to
maximal values of the Wigner function of, e.g., −0.1, this
constant is found to be ξ≃ 0.6. As a comparison, this
negativity ratio can reach (approximately) −2.5 for odd
Fock states and −0.4 for even Fock states.
Since the amplitude of the first limit cycle is r0 ≃ ωm=g0,

the condition F < Fc, together with Eqs. (51) and (57), is
equivalent to (ζ ≃ 0.27)

g20E
2

ω3
m

�
ξ

�
g0
ωm

�
s − κ

ωm

�
>

γð2n̄þ 1Þ
4ζ

− ξγ

4ζ

�
g0
ωm

�
s
: (58)

Thus, one necessary condition for a negative Wigner
function is that the square bracket on the left side is
positive. This is a condition on the single-photon opto-
mechanical coupling g0 that can be written equivalently as
both

g0
ωm

>

�
κ

ξωm

�
1=s

;
g0
κ
>

1

ξ1=s

�
κ

ωm

�ð1−sÞ=s
: (59)

Note that this condition for the occurrence of a quantum
state is weaker than the condition g0=κ > 1 that one would
have naively expected.
Assuming this condition to be well fulfilled, we can drop

the second terms on both the left- and right-hand sides of
Eq. (57) and get the power requirement

FIG. 6 (color online). Maximal negativity of the Wigner
function (defined as the quotient of the most negative and the
most positive values ofW) as a function of the Fano factor F and
the mean amplitude r0 for a phonon distribution as in Eq. (56).
From this plot, one can read of how small the Fano factor needs
to be for a given r0 to see a negative value in the Wigner
function. Implicitly, this is also a requirement on g0 because
r0 ∝

ωm
g0
; see Sec. IVC.
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PL

ℏωL
>

ω3
m

4ξζκg20

�
ωm

g0

�
s
γ

�
n̄þ 1

2

�
: (60)

Note that Eq. (60) is stronger than the requirement (53) for
sub-Poissonian statistics, as one would expect. In terms of
the cooperativity (for any n̄), Eq. (60) becomes

C >
1

ξζ

�
ωm

g0

�
s
: (61)

Note also that even for zero temperature n̄ → 0, there is
now a threshold for the power (cooperativity) in contrast to
the condition for sub-Poissonian statistics. Condition (59)
on the strength of the optomechanical coupling per single
photon and condition (60) [or (61)], which reproduces the
heuristically derived condition (4) [or (5)] from Sec. II, are
the main results regarding negative Wigner functions.

F. Numerical analysis

In this section, we compare the predictions from the
sections above with the numerical result for the master
equation of Eq. (6). To do the calculation for a large
Hilbert-space dimension, we apply the Monte Carlo wave-
function method from Refs. [50–52] as implemented in
QuTiP [53,54], the quantum toolbox for Python. The
advantage is that one needs to simulate only wave functions
and not density matrices, so that the Hilbert-space dimen-
sion required for the simulation scales only with the
number of possible pure states N instead of N2. In this
method, the individual trajectory of an initially pure state is
calculated, conditioned on the history of fictive photon and
phonon counters measuring the particles leaking out of the
system.With this knowledge of the environment, an initially
pure state stays pure. The density matrix is then retrieved by
averaging over a large ensemble of such conditional states.
Theensembleaveragecanbe replacedby the timeaverage for
calculating a steady-state density matrix.
Our implementation is done with an adaptive Hilbert

space, where the Fock states are not only limited from
above but also from below, and after each mechanical
oscillation, the Hilbert space is updated so that it is centered
around the current state. To make sure that not too much of
the Hilbert space is truncated, the number of states to be
used is scaled with the standard deviation in energy of the
state in the previous step. This flexibility of the Hilbert
space during the calculation allows us to run the simulation
without much a priori knowledge of the steady state, and
even fewer basis states are required.
Thesolutionisobtained in thefollowingsteps:Foraspeed-

upof thecalculation, the initial state is chosen tobeacoherent
statewith an amplitude close to the expected steady state. It is
thenevolvedforsomeperioduntil,ata time t0, theconditional
state’s amplitude and Fano factor stop to drift and only
fluctuate.We thenmakeuseof the fact that in the steady state,

the time average corresponds to the ensemble average, and
calculate the steady state of the oscillator as

ρM ¼
Z

t0þT

t0

trcðjψ tihψ tjÞdt; (62)

where jψ ti is the conditional state at time t andT spansmany
mechanical oscillations.
This procedure is performed many times in parallel on a

cluster, and the resulting matrices ρM are averaged. The
deviation of the individual ρM provides an error estimate for
the method. As a further benchmark and control, we also
calculate the steady state with the biconjugate-gradient
steady-state solver from SciPy [55] that is, however, limited
to a comparably small Hilbert-space dimension.
The algorithm described above allows us for the first

time to numerically study optomechanical limit cycles in
the experimentally relevant regime of large amplitudes of
the mechanical oscillator (as caused by a relatively small
g0=ωm) and with more than only a few photons in the
cavity. In previous studies, the question was posed as to
whether the analytical theory can be applied to this regime
[26] and if the nonclassical features survive [28] for more
than one photon in the cavity. We answer this question in
the affirmative: Fig. 7 shows an example of a Wigner
function in this regime with a small Fano factor and some
negative density.
Strictly speaking, the steady state calculated here is only

metastable if γ is so small that there ismore than one attractor
for the limit cycle; cf. Fig. 1. The time scale for switching
between different attractors is much longer than the time to
relax in a given metastable steady state. Thus, it is not
considered in this article. In order to choose the metastable
attractor for the numerical simulation, we choose an initial
state in the vicinity of our preferred attractor, in this case, the

FIG. 7 (color online). Radial part of a Wigner function for
parameters with high amplitude and many photons (ha†ai ≈ 8)
in the cavity featuring a very small Fano factor (F ¼ 0.07) and
some negative density. The parameters are ðg0; κE ¼
2κ; γ; E;ΔÞ ¼ ð0.033; 0.1; 0; 3.5; 0.03Þ × ωm. The blue and red
lines are the results of two independent runs (each averaging 5000
mechanical oscillations) of the Monte Carlo-based steady-state
solver.
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limit cycle with the lowest possible amplitude. Also, in the
analytical expressions for the Fano factor, we always treat
possibly metastable states as steady states. For very large
g0=ωm, different metastable attractors start to merge and the
analysis becomes more involved. This merging of attractors
and its effect on nonclassical features was studied in detail
in Ref. [28].

V. CONCLUSIONS

We studied the quantum regime of optomechanical limit
cycles. Based on the laser theory of Haake and Lewenstein
[31], we derived an effective Fokker-Planck equation for an
optomechanical system. The analytical prediction for the
oscillator’s steady state is in agreement with the work of
Rodrigues and Armour [25,26] for driving fields on the first
blue sideband.
Our treatment naturally also includes the Kerr effect,

which becomes important for large g20=ωm. One conse-
quence important for the quantum theory of limit cycles is
the shift of the detuning of Eq. (39) that occurs even
without photons in the cavity and had to be introduced
phenomenologically in Ref. [26]. This shift explains the
possibility of limit cycles on the blue sideband in Ref. [27]
or for the parameters of Fig. 2.
The effective cavity detuning is usually approximated as

a static variable. Within our framework, one can describe its
dynamical nature, which is a classical phenomenon scaling
proportional to the Kerr parameter. Figures 4 and 3 show
how this smoothens the phase transition between opto-
mechanical cooling and self-induced oscillations.
We studied the quantum limit cycles on resonance and

found the simple analytical expression (50) that predicts the
possibility of very small values for the Fano factor F of the
mechanical oscillator.We found that in the sideband-resolved
regime, a large value of ðg20E2=ω3

mγn̄Þ, i.e., a large linearized
optomechanical coupling, is required to minimize F.
We then established a relation between sub-Poissonian

phonon statistics and negativity of the Wigner density for
typical parameters of limit cycles: The oscillator’s steady
state has an approximately Gaussian number distribution at
each metastable limit cycle. For these states, the require-
ment on F to see the negativity of the Wigner function is
given by the function of Fig. 6.
Using a Monte Carlo method with an adaptive Hilbert

space, we numerically checked this scaling even for limit
cycles with very large amplitude and many photons in the
cavity, where an ordinary steady-state solver cannot be
applied. The numerical simulation depicted in Fig. 5 shows
that, indeed, the criterion of a small Fano factor can predict
the negativity of the Wigner function. For currently more
feasible experimental parameters with even smaller g0=ωm,
the negativity disappears according to Fig. 6 but the very
small Fano factors remain.
We believe that the present approach provides a suitable

starting point for further studies of optomechanical systems

in the limit of strong couplings. We point out once more
that in the “semipolaron picture” introduced here, the Kerr
nonlinearity and the optomechanical interaction occur as
independent terms. This enables us, in principle, to take
into account the squeezed noise of the cavity when deriving
effective equations of motion of the mechanical oscillator.
black While for the parameters considered in this article we
could neglect this effect, additional diffusion for the
mechanical oscillator is to be expected for a very strong
laser drive. This would apply to the case of limit cycles but
could also become important in the cooling regime.
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APPENDIX A: TRANSFORMATIONS FOR
GENERAL PHASE-SPACE DISTRIBUTION

1. Semipolaron transformation

In the main text, we introduced the semipolaron
transformation only for the special case of the Q function,
to make the equations more readable. Here, we drop
this restriction and assume the more general case of an
s-parametrized phase-space distribution Ps with
s ∈ ½−1; 1�. For the convenience of the calculation, we
define p ¼ sþ1

2
∈ ½0; 1� and q ¼ 1 − p. Note that for q ¼ 0,

this definition corresponds to the Glauber-Sudarshan P
representation, for q ¼ 1

2
to the Wigner representation, and

for q ¼ 1 to the Husimi Q representation.
Starting from the standard optomechanical Hamiltonian

and Lindblad operators, we first switch to a displaced
and rotating frame with frequency ωm for the mechanical
oscillator so that b → β0 þ be−iωmt and introduce
the shorthand notation bt ¼ be−iωmt. This transformation
also leaves the Lindblad operators unchanged, and the
Hamiltonian transforms to

H ¼ ðωm þ iγÞβ�0bt þ ðωm − iγÞβ0b†t − g0ðβ0 þ β�0Þa†a
− Δa†a − g0a†aðbt þ b†t Þ − iEða − a†Þ: (A1)

Using the translation rules

bρ → ðβ þ q∂β� Þσ; b†ρ → ðβ� − p∂βÞσ;

we obtain the translated equation of motion σ
: ðβ; β�Þ ¼

Lcσ þ Lmσ þ Lintσ. With the shorthands βt ¼ βe−iωmt and
∂βt ¼ ∂βeiωmt, this gives
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Lcσ ¼ −i½−g0ðβ0 þ β�0Þa†a − Δa†a − g0a†aðβt þ β�t Þ; σ�
− i½−iEða − a†Þ; σ� þ Lcσ; (A2)

Lintσ ¼ −ig0½ðq∂βt − p∂β�t Þσa†a − ðq∂β�t − p∂βtÞa†aσ�;
(A3)

Lmσ ¼ −iðωm þ iγÞβ�0∂β�t σ þ iðωm − iγÞβ0∂βtσ þ Imσ;

(A4)

with

Im ¼ γð∂ββ þ ∂β�β
�Þ þ 2γðn̄þ q2 þ pqÞ∂β�∂β; (A5)

Lc ¼ κD½a�: (A6)

In analogy to transformation (15), we apply the more
general

~σðtÞ ¼ exp½−iθðtÞa†a�σðtÞ exp½iθðtÞa†a�;
with parameters λ ¼ λr þ iλi ¼ g0

ωmþiγ and θðtÞ ¼
iðλβe−iωmt − λ�β�eiωmtÞ, which gives

Lcσ ¼ −i½−Δa†a − g0λrða†aÞ2
− iEðeiθðtÞa − e−iθðtÞa†Þ; σ� þ Lcσ

þ 2γjλj2
�
n̄þ q2 þ pqþ q − p

2

�
D½a†a�σ; (A7)

Lintσ¼−ig0½ðq∂βt −p∂β�t Þσa†a−ðq∂β�t −p∂βtÞa†aσ�
þ2γðn̄þq2þpqÞfðλ�∂βt −λ∂β�t Þ½a†a;σ�g; (A8)

Lmσ ¼ Imσ − iðωm þ iγÞβ�0∂β�t σ þ iðωm − iγÞβ0∂βtσ

(A9)

and includes terms of order 1
Q. After dropping these terms as

an approximation, this is, with K ¼ g2
0

ωm
,

Lcσ ¼ −i½−Δa†a − Kða†aÞ2 − iEðeiθðtÞa − e−iθðtÞa†Þ; σ�
þ Lcσ; (A10)

Lintσ ¼ −ig0½ðq∂βt − p∂β�t Þσa†a − ðq∂β�t − p∂βtÞa†aσ�;
(A11)

Lmσ ¼ Imσ − iðωm þ iγÞβ�0∂β�t σ þ iðωm − iγÞβ0∂βtσ:

(A12)

We now transform to a displaced frame ~σ ¼
D†ðαÞσDðαÞ with parameter αðβ; tÞ ∈ C. For a master
equation of the form

ρ
: ¼−if−Δa†a−Kða†aÞ2− i½EðtÞa−E�ðtÞa†�;ρgþLcρ;

the transformation to a displaced frame ~ρ ¼
D†½αðtÞ�ρD½αðtÞ� gives

~ρ
:
¼ L~ρ

− if−ðΔþ 4Kjαj2Þa†a − Kða†aÞ2
− K½α2ða†Þ2 þ ðα�aþ αa†Þa†aþ H:c:�
− i½ðα: þ ðκ − iΔ − i2Kjαj2Þα − EÞa† − H:c:�; ~ρg:

(A13)

Depending on whether one wants to study the regime
jαj ≫ 1 or jαj ≪ 1, either the terms with low or high order
in α can be neglected at this point and a different choice of
αðtÞ is required to cancel all displacementlike terms.

2. Displaced frame for jαj ≫ 1

We can cancel the displacementlike terms, which
include the terms of order Kjαj3, by imposing that αðtÞ
solves

α
: ðtÞ ¼ fi½Δþ 2KjαðtÞj2� − κgαðtÞ þ EðtÞ;

such that in the displaced frame,

~ρ
:
¼ −if−ðΔþ 4Kjαj2Þa†a − K½α2ða†Þ2
þ ðα�aþ αa†Þa†aþ H:c:� − Kða†aÞ2; ~ρg þ L~ρ

(A14)

Neglecting the terms proportional toK up to first order in
α, the Liouvillians are

Lcσ ¼ −if−ðΔþ 4Kjαj2Þa†a − K½α2ða†Þ2 þ H:c:�; σg
þ Lcσ; (A15)

Lintσ ¼ −ig0ðq∂βt − p∂β�t Þσðα�aþ αa†Þ
þ ig0ðq∂β�t − p∂βtÞðα�aþ αa†Þσ; (A16)

Lmσ ¼ −ig0ð∂βt − ∂β�t Þjαj2σ þ Imσ − iðωm þ iγÞβ�0∂β�t σ

þ iðωm − iγÞβ0∂βtσ: (A17)
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Note that now, in analogy to laser theory, Lm reproduces
the classical drift. We have now jLintj ∝ g0jαj ≪
g0ha†ai ≈ g0jαj2, where ha†ai refers to the average before
the transformation.

3. Displaced frame for jαj ≪ 1

If we restrict the analysis to only the lowest two Fock
states, the operators consisting of three creation or anni-
hilation operators resulting from transformation (A13) can
be approximated with just one operator, e.g., aa†a ≈ a.
This time, we neglect the terms proportional to K of third
order in α. By imposing that αðtÞ solves this time

α
: ðtÞ ¼ ½iðΔþ KÞ − κ�αðtÞ þ EðtÞ; (A18)

we can cancel the remaining displacementlike terms. The
Liouvillians are now

Lcσ ¼ − if−Δa†a − Kða†aÞ2 − K½α2ða†Þ2 þ H:c:�; σg
þ Lcσ; (A19)

Lintσ ¼ −ig0ðq∂βt − p∂β�t Þσðα�aþ αa† þ a†aÞ
þ ig0ðq∂β�t − p∂βtÞðα�aþ αa† þ a†aÞσ; (A20)

Lmσ ¼ −ig0ð∂βt − ∂β�t Þjαj2σ þ Imσ −iðωm þ iγÞβ�0∂β�t σ

þ iðωm − iγÞβ0∂βtσ: (A21)

APPENDIX B: DERIVATION OF THE
FOKKER-PLANCK EQUATION

In order to obtain the approximate Fokker-Planck
equation for the mechanical oscillator, we now eliminate
the cavity in second-order perturbation theory. We show
this calculation in detail for jαj ≫ 1 and then briefly write
down the results for jαj ≪ 1.

1. Adiabatic elimination of the cavity
in the jαj ≫ 1 regime

Let us for now ignore Lm and reinclude it later. Defining
σij ≔ hijσjji and cutting off after the index ði; jÞ ¼ ð1; 1Þ,
we get the equation of motion (EOM)

σ
:
00¼2κσ11þ ig0½ðq∂β�t −p∂βtÞα�t σ10−ðq∂βt −p∂β�t Þαtσ01�

þ ig0ð∂β�t α
�
t αtσ00−∂βtα

�
t αtσ00Þ; (B1)

σ
:
11¼−2κσ11þ ig0½ðq∂β�t −p∂βtÞαtσ01−ðq∂βt −p∂β�t Þα�t σ10�

þ ig0ð∂β�t σ11−∂βtσ11Þþ ig0ð∂β�t α
�
t αtσ11−∂βtα

�
t αtσ11Þ;

(B2)

σ
:
10 ¼ −κσ10 þ i ~Δeffσ10 þ ig0∂β�t σ10

þ ig0½ðq∂β�t − p∂βtÞαtσ00 − ðq∂βt − p∂β�t Þαtσ11�
þ ig0ð∂β�t α

�
t αtσ10 − ∂βtα

�
t αtσ10Þ: (B3)

We now adiabatically eliminate σ10 to first order in g0 (note
that σ11 is already of order g20):

σ10ðtÞ ¼
Z

∞

0

dτe−κτþi ~Δeffτig0ðq∂β�t−τ − p∂βt−τÞαt−τσ00ðtÞ

(B4)

¼ ig0
X
n

�
q∂β�eiðn−1ÞωMt αn

~hn−1
− p∂βeiðnþ1ÞωMt αn

~hnþ1

�

× σ00ðtÞ; (B5)

where hn ¼ κ þ iðnωM − ~ΔeffÞ and α ¼ P∞
n¼−∞ αneinωmt,

with αn ¼ Ξne−inϕ. Now, the derivative of the phase-
space distribution is approximately given by P

:

sðβ; β�Þ≈
Tr½σ: 00ðβ; β�Þ þ σ

:
11ðβ; β�Þ�, which gives to second order

in g0

P
:

s ¼
X
n

q2g20

�
∂β�∂β

α�nαn
~hn−1

− ∂β�∂β�
α�n−2αn
~hn−1

�
Ps

þ p2g20

�
∂β�∂β

α�nαn
~hnþ1

− ∂β∂β
α�nþ2αn
~hnþ1

�
Ps

þ pqg20

�
∂β�∂β

�
α�nαn
~hnþ1

þ α�nαn
~hn−1

�
− ∂2

β

α�nþ2αn
~hnþ1

− ∂2
β�
α�n−2αn
~hn−1

�
Ps þ ig0ð∂β�α

�
n−1αnÞPs þ H:c:; (B6)

where we neglect terms ∝ 1
r, as they are negligible at the

position of the limit cycle. Note that the drift term does not
depend on the choice of phase-space distribution. For theQ
function, the equation simplifies to

Q
: ¼g20

X
n

�
∂β�∂β

2κα�nαn
j ~hn−1j2

−∂β�∂β�
α�n−2αn
~hn−1

−∂β∂β
αn−2α�n
~h�n−1

�
Q

þig0
X
n

ð∂β�α
�
n−1αn−∂βαn−1α�nÞQ (B7)

and for the Wigner function to

W
: ¼

X
n

g20κ

j ~hnþ1j2
½∂β�∂βðjαnj2 þ jαnþ2j2Þ

− ∂2
βα

�
nþ2αn − ∂2

β�α
�
nαnþ2�W

þ ig0
X
n

ð∂β�α
�
n−1αn − ∂βαn−1α�nÞW: (B8)
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2. Transformation to polar coordinates

We are finally interested in the EOM for polar coor-
dinates ðr;ϕÞ. When previously

R
dαdα�Psðα; α�Þ ¼ 1, the

new normalization is
R
rdrdφPsðr;ϕÞ ¼ 1. With

∂x ¼ cosðϕÞ∂r − sinðϕÞ
r

∂ϕ; (B9)

∂y ¼ sinðϕÞ∂r þ
cosðϕÞ

r
∂ϕ; (B10)

we get

∂β ¼
1

2
e−iϕ

�
∂r − i

r
∂ϕ

�
; (B11)

∂β� ¼
1

2
eiϕ

�
∂r þ

i
r
∂ϕ

�
(B12)

and

ð2∂βÞ2 ¼ e−2iϕ
�
∂2
r − 2

i
r
∂rϕ þ 2

i
r2
∂ϕ − 1

r
∂r − 1

r2
∂2
ϕ

�
;

(B13)

ð2∂βÞð2∂�
βÞ ¼ ∂2

r þ
1

r
∂r þ

1

r2
∂2
ϕ: (B14)

Integrating out ϕ and again neglecting terms ∝ 1
r, we get,

e.g., for the Q distribution,

Q
: ¼

X
n

g20
2
∂2
r

�
κΞ�

nΞn

j ~hn−1j2
− Re

�
Ξ�
n−2Ξn

~hn−1

��
Q

þ g0∂rðIm½Ξn−1Ξ�
n�ÞQ

− 1

r
∂r

g20
2

�
κΞ�

nΞn

j ~hn−1j2
− Re

�
Ξ�
n−2Ξn

~hn−1

��
Q (B15)

or, in compact form with Jn ≔ Jnð−ηrÞ and including Lm,
this gives the parameters

DQ ¼ γð1þ n̄Þ
2

þ
X
n

g20E
2

2

�
κJnJn

jhnj2j ~hn−1j2
− Re

�
Jn−2Jn

~hn−1h�n−2hn

��
;

(B16)

μQ ¼ −γr −X
n

g0E2

�
Im

�
Jn−1Jn
hn−1h�n

��
(B17)

for the FPE

P
:

s ¼ −∂rμsPs þ ∂2
rDsPs (B18)

that can be solved (up to normalization) as

PsðrÞ ∝
eIsðrÞ

DsðrÞ
; IsðrÞ ≔

Z
r

0

μsðr0Þ
Dsðr0Þ

dr0: (B19)

The corresponding equation for theWigner function has the
same drift coefficient and a diffusion of

DWðrÞ ¼
γð2n̄þ 1Þ

4
þ
X
n

κg20E
2

4j ~hnþ1j2
����� Jnþ2

hnþ2

����
2

þ
���� Jnhn

����
2 − JnJnþ2

hnh�nþ2

− JnJnþ2

h�nhnþ2

�
: (B20)

In both cases, we assume in the steady state that
Psðr;ϕÞ ¼ PsðrÞ; i.e., the distributions are independent
of ϕ.

3. Fokker-Planck equation for jαj2 ≪ 1

The procedure of the adiabatic elimination is in
complete analogy to jαj2 ≫ 1. One only has to replace
Δeff and ~Δeff with ΔK ¼ Δþ K and adjust the solution of
α as in Eq. (A18). With hn ¼ κ þ iðnωm − ΔKÞ, the final
coefficients for the Fokker-Planck equation then have the
same structure but without the distinction between hn and
~hn; e.g., for the Q function, one obtains

DQ ¼ γð1þ n̄Þ
2

þ
X
n

g20E
2

2

�
κJnJn

jhnj2jhn−1j2
− Re

�
Jn−2Jn

hn−1h�n−2hn

��
;

(B21)

μQ ¼ −γr −X
n

gE2

�
Im

�
Jn−1Jn
hn−1h�n

��
: (B22)

APPENDIX C: SEMIPOLARON
TRANSFORMATION

The semipolaron transformation [Eq. (15) in Sec. III] is
introduced in terms of the formalism of quasiprobability
distributions. In view of the similarities of this trans-
formation with the polaron transformation in Eq. (19),
the question arises as to how the semipolaron transforma-
tion in Eq. (15) can be expressed in terms of an ordinary
operator representation. The transformed state ~σ in Eq. (15)
fulfills

LASER THEORY FOR OPTOMECHANICS: LIMIT CYCLES … PHYS. REV. X 4, 011015 (2014)

011015-19



∂η ~σ ¼
�
1

2
ðβ − β�Þa†a; ~σ

�
¼ 1

2
½a†a; ~σβ − β� ~σ�:

When written in the second form, we can apply the
replacement rules (11) to write the last equation in operator
representation

∂η ~ρ ¼ 1

2
½a†a; ~ρb − b† ~ρ�

¼ 1

4
½ðb − b†Þa†a; ~ρ�

þ 1

4
ðD½b† þ a†a� −D½b†� −D½a†a�Þ~ρ

≡ Lsemipol ~ρ:

In the second line, we express the generator for the
semipolaron transformation in terms of a commutator with
a Hamiltonian and three Lindblad terms. The semipolaron
transformation in operator representation is thus

~ρ ¼ expðηLsemipolÞρ:

It becomes equivalent to the polaron transformation if the
Lindblad terms in the generator Lsemipol are dropped. Thus,
the semipolaron transformation is nonunitary. In the con-
text of adiabatic elimination of a cavity mode in the bad
cavity limit, a similar transformation to a “dissipation
picture” was employed in Refs. [56,57].
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