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Abstract

Dietary composition largely influences pig’s gastrointestinal microbiota and represents a useful prophylactic tool against
enteric disturbances in young pigs. Despite the importance for host-microbe interactions and bacterial colonization, dietary
responses of the mucosa-associated bacterial communities are less well investigated. In the present study, we characterized
the mucosa-associated bacterial communities at the Pars non-glandularis of the stomach, ileum and colon, and identified
shifts in these communities in response to different dietary calcium-phosphorus (Ca-P) contents (100% versus 190% of the
Ca and P requirements) in combination with two basal diets (wheat-barley- or corn-based) in weaned pigs. Pyrosequencing
of 16S rRNA genes from 93 mucosal samples yielded 447,849 sequences, clustering into 997 operational taxonomic units
(OTUs) at 97% similarity level. OTUs were assigned to 198 genera belonging to 14 different phyla. Correlation-based
networks revealed strong interactions among OTUs at the various gastrointestinal sites. Our data describe a previously not
reported high diversity and species richness at the Pars non-glandularis of the stomach in weaned pigs. Moreover, high
versus adequate Ca-P content significantly promoted Lactobacillus by 14.9% units (1.4 fold change) at the gastric Pars non-
glandularis (P = 0.035). Discriminant analysis revealed dynamic changes in OTU composition in response to dietary cereals
and Ca-P contents at all gastrointestinal sites which were less distinguishable at higher taxonomic levels. Overall, this study
revealed a distinct mucosa-associated bacterial community at the different gut sites, and a strong effect of high Ca-P diets
on the gastric community, thereby markedly expanding our comprehension on mucosa-associated microbiota and their
diet-related dynamics in weaned pigs.
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Introduction

Diet is an important environmental factor shaping animal’s

microbiota. In pigs, the microbial ecosystem undergoes massive

fluctuations in the time after weaning, and pigs are prone to

enteric dysbiosis until a stable autochthonous microbiota has been

developed [1]. One of the most abundant beneficial bacterial

groups in pig’s gastrointestinal tract (GIT) that are reduced after

weaning is the genus Lactobacillus [2]. A lack of these beneficial

bacteria associated with the mucosa allows pathogens to adhere to

enterocytes and to proliferate with negative consequences for gut

health [3]. In view of the public demand to reduce antibiotic use in

animal production, enhancing porcine gut health after weaning by

dietary intervention has been receiving more and more attention

[4,5]. Because of their importance for pig’s microbial eubiosis, it

was postulated that effective dietary strategies should benefit the

lactobacilli community and reduce enterobacterial abundance

[1,6]. Modulation of dietary protein level, carbohydrate compo-

sition, and feed additives such as pre- and probiotics are among

today’s dietary strategies implemented to support a healthy GIT

microbiota in weaned pigs [1,6].

A promising dietary strategy to modulate pig’s intestinal

eubiosis, which received much attention in human research

recently using rat models, is dietary calcium and phosphorus (Ca-

P). In fact, an improved colonization resistance against intestinal

pathogens and promotion of lactobacilli in ileal digesta and at the

ileal mucosa has been observed with Ca-P rich diets in rats [7]. In

pig nutrition, Ca-P contents, included in the diet at levels above

the requirements, are regarded as disadvantageous for weaner

pig’s health by potentially compromising gastric barrier function

[8]. Yet, evidence emerges that dietary Ca-P may modulate the

porcine bacterial microbiota as well [9,10]. 16S rRNA gene

sequencing surveys have deeply enlarged our knowledge on the

porcine GIT microbiota and led to a more comprehensive view of

the response of the porcine GIT microbiota towards dietary

changes [11,12,13]; however, studies almost exclusively focused on

luminal bacteria so far. Despite the importance of the mucosal
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community for bacterial intestinal colonization, pathogen resis-

tance, and host-microbiota cross-talk [14], the porcine mucosa-

associated microbiota and their diet-related changes at different

GIT sites were not investigated at this degree until now.

The major objectives of this study were to characterize the

mucosa-associated bacterial communities in the Pars non-glandularis

of the stomach, ileum and colon of weaned pigs, and to investigate

the impact of dietary Ca-P content in combination with two

different basal diets (one based on wheat-barley, the other based

on corn) on community shifts at different mucosal GIT sites. The

reason behind feeding two different basal diets was the differing

carbohydrate fractions of the selected cereals which may interfere

in Ca-P effects due to different stimulation of bacteria caused by

bacterial substrate (carbohydrate) preferences. We obtained more

16S rRNA gene sequences using Roche/454-sequencing for the

mucosa-associated microbiota than previously possible to obtain

using cloning and Sanger sequencing [15–19], implicating a huge

complexity of pig’s mucosal microbiota even at this very young

age. Diet-induced community shifts showed a considerable

stimulating effect of Ca-rich diets on Lactobacillus-OTUs at the

Pars nonglandularis of the stomach.

Materials and Methods

Ethics Statement
All procedures involving animal handling and treatments were

approved by the institutional ethics committee of the Vetmeduni

Vienna and the national authority according to 18ff of Law for

Animal Experiments, Tierversuchsgesetz – TVG (GZ 68.205/

0222-II/3b/2011).

Animals, Diets and Sampling
Thirty-two barrows ((Landrace6Large White)6Piétrain) ran-

domly taken from 16 sows and with similar body weight at

weaning (day 28 of age) were used in a 262 factorial arrangement

of dietary treatments in a block-randomized design. Experimental

diets (Table S1) were formulated to meet or exceed current

recommendations for nutrient requirements for 10–20 kg pigs

[20]. The four diets comprised either wheat and barley or corn as

basal cereal sources and contained two levels of Ca-P: i) wheat-

barley diet with adequate Ca-P content; ii) wheat-barley diet with

high Ca-P content; iii) corn diet with adequate Ca-P content; and

iv) corn diet with high Ca-P content. The Ca-P content of the

adequate Ca-P diets was formulated to contain 100% of the actual

Ca and P requirement [20]. The high Ca-P diets were formulated

to contain a Ca-P content of about 190% of the actual Ca and P

requirements [20]. The experimental diets were fed ad libitum for

14 days. Pigs (average body weight 9.560.11 kg) were individually

housed in stainless steel metabolism cages with free access to

demineralized water. The experiment was divided into four runs

that were carried out one after another and every run included

eight pigs. Two pigs per run received one of the four experimental

diets resulting in eight observations per diet over the whole

experiment. Siblings did not receive the same experimental diet.

Diets were analyzed for dry matter, crude protein, crude fiber,

crude ash, neutral detergent fiber, acid detergent fiber, Ca, P [21],

xylose and mixed-linked b-glucan (Megazyme International Ire-

land Ltd, Bray, Ireland).

On day 15 pigs were anesthetized and euthanized. After

opening the visceral cavity, esophagus and rectum were clamped

to avoid spilling of gastrointestinal digesta and thus contamination

of other intestinal parts. Immediately after removing the GIT from

the visceral cavity, stomach, ileum and mid-colon (colon was

divided into three equal parts) were separated by clamping to

avoid mixing of digesta from adjacent segments of the GIT.

Subsequently, intestinal segments were disclosed at the mesentery

with sterile instruments and digesta was removed. The luminal

sites were individually rigorously washed with sterile ice-cold

phosphate-buffered saline until the mucosa was completely

cleaned from digesta. The mucosa was rinsed with sterile ice-

cold phosphate buffered saline several times to remove remains of

free-floating bacteria. Mucosa scrapings from the Pars non-

glandularis (stomach), ileum and mid-colon were collected asepti-

cally by scraping off the mucosa using scalpel blades. Mucosal

scrapings were kept on ice until being stored at 220uC. In total,

31 pigs were sampled (one pig fed the wheat-barley diet with high

Ca-P content was excluded because it developed meningitis at the

start of experiment), resulting in a total of 93 samples from the Pars

non-glandularis of the stomach, ileum, and colon.

DNA Extraction, Preparation of 16S rRNA Gene Amplicon
Libraries and Pyrosequencing

Genomic DNA was extracted from 250 mg of mucosal

scrapings (stomach, ileum, and colon) using the PowerSoil DNA

Isolation kit (MoBio Laboratories, Carlsbad, CA, USA) according

to manufacturer’s instructions. DNA concentration was deter-

mined by a Qubit fluorometer (Invitrogen, Carlsbad, CA, USA)

and adjusted to 25 ng/ml. 16S rRNA genes were amplified using

FLX 454 one way read fusion primers with the template specific

sequence F27–AGAGTTTGATCCTGGCTCAG [22] and

R357–CTGCTGCCTYCCGTA [23] targeting the V1–V2 hy-

pervariable region of the 16S rRNA gene (Lib-L kit, Primer A,

Primer B, Roche 454 Life Science, Branford, CT, USA) (Table

S2). For each sample, a PCR mix of 50 ml was prepared

containing 16Fast Start High Fidelity Buffer, 2.5 U High Fidelity

Enzyme, 200 mM dNTPs (Roche Diagnostics, Mannheim, Ger-

many), 0.4 mM barcoded primers (Eurofins MWG, Ebersberg,

Germany), 2.5 mM MgCl2, PCR-grade water (Roche Diagnos-

tics) and 125 ng total genomic DNA. Thermal cycling conditions

were initial denaturation at 95uC for 3 min followed by 38 cycles

of denaturation at 95uC for 45 s, annealing at 56uC for 45 s and

extension at 72uC for 1 min with a final extension of 7 min at

72uC. Amplicons were purified and collected using a denaturing

HPLC on a WAVE apparatus (Transgenomic Inc., Omaha, NE,

USA) and eluted using a linear gradient (typically 12–17%) of

acetonitrile in 0.1 M triethylammoniumacetate over 10 min at

50uC. Amplicon DNA was purified on NucleoFastH 96 PCR

plates (Macherey-Nagel, Düren, Germany) by using a vacuum

pump according to manufacturer’s instructions and eluted in 30 ml

elution buffer (Qiagen, Hilden, Germany). Amplicon DNA

concentrations were determined using the Quant-iTTM Pico-

GreenH dsDNA Assay Kit (Life Technologies, Carlsbad, CA,

USA) according to manufacturer’s instructions. After quantifica-

tion, 30 barcode labeled amplicons were pooled equimolar and

analyzed on a 2100 Bio Analyzer (Agilent Technologies, Wald-

bronn, Germany) using a DNA 7500 kit (Agilent Technologies).

Sequencing of the equimolar pool of 30 samples on a quarter Pico

Titer Plate was performed using the GS FLX Titanium

Sequencing Kit XLR70 (Roche 454 Life Science) according to

manufacturer’s instructions. Library preparation and sequencing

was performed at the Center for Medical Research, Core Facility

Molecular Biology, Medical University of Graz (Graz, Austria).

Processing, Phylogenetic Assignment of Sequence Reads
and Statistics

All reads derived from pyrosequencing (93 samples; 447,849

reads) were processed together using the software package mothur

Porcine Mucosa-Associated Bacteria
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[24], according to the procedure described by Schloss et al. [25].

Primers, barcode sequences and sequences of low quality and

length were trimmed with a minimum average quality score of 35

(using a window size of 50 bp) and a minimum length of reads of

162 bp (Text S1). Sequencing error was reduced using the

‘‘pre.cluster’’ algorithm. Chimeric sequences were excluded using

‘‘chimera.uchime’’. 408,171 sequences (91%) with a median

length of 198 bp passed the quality control. The remaining high

quality reads were classified using the RDP naı̈ve Bayesian rRNA

classifier (confidence threshold = 80%) [26] with the SILVA

reference database [27]. Based on this alignment, uncorrected

pairwise distances were calculated using ‘‘dist.seqs’’. These

pairwise distances served as input for the assignment to

operational taxonomic units (OTUs). OTUs were assigned using

a cutoff ( = distance limit) of 0.03. OTUs with less than 10

sequences assigned were removed (4,658 OTUs were removed;

the mean sequence number was 2.2). Consensus taxonomy for

OTUs was given with the ‘‘classify.otu’’ command and the OTUs

were split up per sample. Before estimating the total number of

species in GIT sites, data were normalized by a random selection

of the same sequence number per sample. The sequence number

was determined based upon the sample with the least number of

sequences (n = 1,291 sequences). The ‘‘summary.single’’ command

was used for calculating the nonparametric estimate Chao1, the

diversity indices Shannon and Simpson and Bray-Curtis similarity.

Raw pyrosequencing data are available in the EMBL SRA

database under the accession number ERP002312.

For generating summarized, smooth rarefaction curves per GIT

site, an algorithm previously described [28] was modified. A table

was generated including the number of OTUs identified for every

20 sequences up to 500 followed by every 500 after that. At every

point where a sample ’dropped out’, calculated weighted values

were multiplied to balance the overall mean values. The weighted

value was equal to the overall mean at the position of the drop-out,

divided by the mean at the position before.

The assigned OTUs and the diversity indices were subjected to

ANOVA using the PROC MIXED of SAS (Text S1) (Statistical

Analysis System 9.2, SAS Inst. Inc., Cary, NC, USA). The

procedure PROC CORR was used to estimate Pearson’s

correlation coefficient between gastric, ileal and colonic pH and

OTU abundance at the mucosa of the Pars non-glandularis in the

stomach, ileum and colon. Significance was declared at P#0.05

and 0.05,P#0.10 was defined as a trend. Results are presented as

least squares means 6 standard error of the mean.

Each OTU containing .1,000 sequences was blasted against

the NCBI GenBank excluding uncultured/environmental sample

sequences in the search set. In total 50 OTUs were blasted and

annotated with its closest reference strain, accession number and

sequence similarity. Correlation networks were created in

MENAP (http://ieg2.ou.edu/MENA; molecular ecological net-

work analysis pipeline) [29] and visualized with Cytoscape version

3.0 [30]. Heatmaps were created using JColorGrid [31]. For the

illustration of microbial shifts on community level discriminant

analysis was done in JMP Pro (SAS Institute, NC, USA) with the

50 most abundant OTUs as covariates and diet as the categorical

variable.

Results

Pyrosequencing Data, OTU Classification and Phylum
Affiliation

All reads deriving from pyrosequencing of 93 samples were

processed together. In total, 408,171 sequences (91%) with a

median length of 198 bp passed the quality control. On average,

4,437 sequences per sample were obtained. Throughout all

samples, 997 OTUs could be assigned with .10 sequences per

OTU (4,658 OTUs with ,10 sequences were excluded). This

OTU classification was used for all further downstream analyses.

50 OTUs contained .1,000 sequences (up to 65,633 sequences).

In Table 1, the 50 most abundant OTUs are listed including

sequence number, relative abundance and closest reference strain

and similarity (NCBI BLAST). All closest reference strains among

cultivated bacteria of OTUs were previously described to belong

to the commensal porcine GIT microbiota [17].

Throughout all GIT sites 14 phyla were identified, Firmicutes,

Proteobacteria and Bacteroidetes being the most abundant ones: 96% of

all reads affiliated to these three phyla. In the Pars non-glandularis of

the stomach Firmicutes, in the ileum Proteobacteria, and in the colon

Bacteroidetes was the dominating mucosa-associated phylum

(Figure 1).

Assessment of Diversity and Surveys of the Microbial
Community Structure in the Porcine GIT

Before performing diversity and richness estimations of GIT

communities, the reads of all samples were normalized to the

lowest number of sequences in a sample (n = 1,291 sequences) by

random selection. Diversity estimations for the Pars non-glandularis

of stomach, ileum and colon are depicted in Figure 2A: Rank

abundance curves indicated that samples contained a low

proportion of highly abundant OTUs, whereas the bulk of the

present diversity was composed of rare organisms. 29 OTUs in the

Pars non-glandularis of the stomach, 30 OTUs in ileum and

18 OTUs in colon reached relative abundances of .0.5%. For

the determination of completeness of the diversity sequenced,

rarefaction curves were calculated for all samples and summarized

to GIT sites means. They revealed high diversity coverage,

particularly for stomach and ileum samples, with rarefaction

curves reaching asymptotes. The trend in rarefaction curves

towards increased species richness in the colon and the higher

richness at the Pars non-glandularis of the stomach vs. ileum were

supported by Chao1 (P,0.01, PROC MIXED of SAS; Figure 2B).

The Simpson index differed between colon vs. ileum (P,0.01,

PROC MIXED of SAS), but not for stomach vs. ileum and

stomach vs. colon. The Shannon index, reflecting both richness

and evenness, differed between colon vs. ileum and colon vs.

stomach, but not for stomach vs. ileum (P,0.01 for colon vs.

ileum, P = 0.03 for colon vs. stomach, PROC MIXED of SAS).

Diversity indices were not different among basal cereal diets and

Ca-P contents for all GIT sites (P.0.1, PROC MIXED of SAS).

Figure 2C depicts the actual number of OTUs detected per GIT

site after quality control. Interestingly, at the Pars non-glandularis of

the stomach ,185 OTUs were found; however, gastric diversity

had a high variance (13–378 OTUs) and was not influenced by

diet (P.0.1, PROC MIXED of SAS). In the ileum and colon, 132

and 198 OTUs were assigned, respectively. The Venn diagram of

Figure 2C displays a low number of unique GIT-site OTUs and a

high overlap-pattern for all GIT sites. From 997 OTUs assigned

throughout all samples, 701 OTUs (70%) were shared between

the mucosa of the Pars non-glandularis of the stomach, ileum and

colon. Despite the high number of overlapping OTUs, the Bray-

Curtis similarity showed clear differences between GIT sites,

indicating individual microbial community structures (Figure S1).

Gastric pH-values (Figure S2) weakly correlated with OTUs

detected at the Pars non-glandularis (r = 0.39, P = 0.03, PROC

CORR of SAS). To reveal interactions among OTUs, a

correlation-based network was built for each GIT site (r.0.5,

P,0.001, Figure 3). Network analysis were performed with

reduced datasets (top 10% of all OTUs per GIT site) to improve

Porcine Mucosa-Associated Bacteria
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Table 1. The 50 most abundant OTUs over all GIT sites.

OTU
No.of
sequences

Relative
abundance Closest reference strain (GenBank accession no.)1 Similarity

351 65633 16.5% Helicobacter rappini (AY034817) 99%

1 47856 12.0% Lactobacillus johnsonii (JN012223) 100%

2 19108 4.8% Lactobacillus amylovorus (EF120375) 100%

12 18037 4.5% Prevotella copri (AB649279) 100%

4 16732 4.2% Lactobacillus delbrueckii (AB680073) 100%

5 10444 2.6% Prevotella copri (AB649279) 97%

8 9484 2.4% Prevotella copri (AB649279) 96%

20 7407 1.9% Escherichia coli (FN821375) 99%

3 7266 1.8% Lactobacillus mucosae (AB425938) 100%

41 7086 1.8% Clostridium mayombei (FR733682) 99%

23 6890 1.7% Pseudomonas trivialis (HF585483) 100%

624 6849 1.7% Campylobacter lanienae (JX912520) 99%

3685 6633 1.7% Helicobacter suis (AB498800) 98%

26 6282 1.6% Prevotella stercorea (NR_041364) 98%

22 6233 1.6% Bacteroides dorei (AB714352) 99%

2498 5091 1.3% Prevotella ruminicula (AF218618) 99%

16 4946 1.2% Prevotella copri (AB649279) 95%

11 4792 1.2% Streptococcus alactolyticus (EU728776) 99%

383 4119 1.0% Campylobacter jejuni (JX912519) 99%

21 3637 0.9% Bacteroides massiliensis (AB510703) 99%

6 3583 0.9% Lactobacillus reuteri (GU292563) 100%

1439 3366 0.8% Acinetobacter johnsonii (EU337121) 100%

1853 3094 0.8% Clostridium rectum (X77850) 99%

4808 2816 0.7% Acinetobacter johnsonii (EU123856) 99%

18 2491 0.6% Prevotella copri (NR_040877) 95%

34 2370 0.6% Clostridium perfringens (JX267106) 99%

2489 2196 0.6% Prevotella ruminicula (AF218618) 99%

52 2177 0.5% Fusobacterium gonidiaformans (GU429478) 99%

4692 2132 0.5% Acinetobacter johnsonii (JQ435689) 100%

1151 2105 0.5% Citrobacter freundii (KC211308) 99%

14 2056 0.5% Clostridium sp. 826 (AB739699) 99%

95 2049 0.5% Prevotella oulorum (NR_029147) 90%

35 2044 0.5% Haemophilus parainfluenzae (EU083530) 99%

49 2029 0.5% Prevotella stercorea (NR_041364) 99%

63 1819 0.5% Haemophilus sp. D191-1 (FJ463822) 94%

945 1809 0.5% Prevotella ruminicola (AF218618) 99%

29 1688 0.4% Proteus mirabilis (KC211292) 99%

27 1642 0.4% Lachnospiraceae bacterium DJF_RR61 (EU728764) 98%

56 1517 0.4% Acidovorax ebreus (CP001392) 99%

360 1410 0.4% Bacteroides dorei (NR_041351) 99%

4809 1345 0.3% Acinetobacter bouvetii (KC514127) 99%

155 1240 0.3% Prevotellaceae bacterium DJF_VR15 (EU728784) 99%

24 1185 0.3% Clostridium sp. 2ER371.1 (JQ248565) 99%

51 1151 0.3% Streptococcus porcorum (FN908166) 100%

137 1138 0.3% Faecalibacterium prausnitzii (HQ457032) 99%

89 1137 0.3% Eubacterium sp. F1 (EU281854) 86%

36 1121 0.3% Clostridiales bacterium 80/4 (FJ748580) 99%

59 1121 0.3% Staphylococcus epidermidis (KC443110) 100%

7 1117 0.3% Lactobacillus mucosae (EU728797) 99%

Porcine Mucosa-Associated Bacteria
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pattern visualization. Additionally, pairwise correlation was

calculated and depicted for the 20 most abundant OTUs at each

GIT site (Figure S3). Network topology revealed correlations at all

GIT sites, with a remarkably high correlation pattern of Prevotella/

Paraprevotella-OTUs in the Pars non-glandularis of the stomach. A

very high correlation with r.0.9 was calculated for correlation

between Bacteroides-OTU 21 and Bacteroides-OTU 22, between

Acinetobacter-OTU 4808 and Acinetobacter-OTU 1439, as well as

between Escherichia-OTU 20 and Bacteroides-OTU 22 in the

stomach. Interestingly, in the Pars non-glandularis lactobacilli

correlated only weakly in the stomach, indicating a varying

species-abundance pattern in the colonization of Lactobacillus due

to inter-animal differences in the lactobacilli community. The

weak correlation among Lactobacillus-OTUs also indicates that

different Lactobacillus species can occupy the same ecological niche

in individual pigs. The same two Bacteroides-OTUs (i.e., OTU 21

and OTU 22) that highly correlated in the stomach, also highly

correlated (r.0.9) in the ileum. In the colon, the highest denseness

of network correlations could be described, with high correlation

among Prevotella/Paraprevotella. Using pairwise correlation analysis,

the highest interaction was shown between Prevotella-OTU 12 and

Prevotella-OTU 16 and between Lactobacillus-OTU 4 and Lachnos-

pira-OTU 27 in the colon (r.0.6).

Due to the importance of Lactobacillus for gut health in weaned

pigs and the weak correlation of Lactobacillus-OTUs, a maximum

likelihood tree including OTUs and closest reference full-length

sequences was built for an approximate phylogenetic placement of

Lactobacillus OTUs (Figure S4). The locations of the OTUs in the

tree confirmed highly diverse Lactobacillus species in our samples,

clustering to 22 different reference full-length sequences.

GIT Site-related Shifts on OTU and Genus Level
Relative OTU abundances per GIT site are shown in Figure 4A.

In total, the 50 most abundant OTUs accounted for 72.9% of all

sequences and 64% of the 50 most abundant OTUs differed

significantly in their relative abundances over all GIT sites (details

in Table S3). At the Pars non-glandularis of the stomach four highly

abundant OTUs (relative abundance .5%) were present, all

matching to Lactobacillus reference strains. They accounted for over

50% of sequences at this GIT site and were significantly increased

at the Pars non-glandularis of the stomach compared to the lower

GIT sites. In the stomach, a notable high number of 21 OTUs

reached a relative abundance between 5% and 0.5%. The

Escherichia-OTU was clearly associated with the stomach and

ileum, showing a significant decrease in the colon. Interestingly, in

the ileum, OTU 351, matching closest to Helicobacter rappini, was

highly abundant (29.6%). OTU 1 (best BLAST hit: Lactobacillus

johnsonii) had a relative abundance of 5.1%, followed by 30 OTUs

between 5% and 0.5%. In the colon, again OTU 351 was the most

abundant (16.6%), followed by four OTUs between 5.4% and

8.6%. These OTUs matched to Prevotella and Campylobacter species.

Although most Prevotella-OTUs were more abundant in the colon

compared to the other sites, it should be mentioned that some

Prevotella-OTUs were moderately abundant in the ileum and also

affiliated to the Pars non-glandularis of the stomach (e.g. OTU 945,

2489).

Figure 1. Relative abundances of bacterial phyla attached to
the gastrointestinal mucosa independent of diet. (A) Phyla
detected in stomach, ileum and colon mucosa samples with .0.5%
mean abundance were shown for the total V1–V2 region and for each
gastrointestinal site separately. (B) Relative abundances of rare phyla.
Error bars represent standard deviation from the mean.
doi:10.1371/journal.pone.0086950.g001

Table 1. Cont.

OTU
No.of
sequences

Relative
abundance Closest reference strain (GenBank accession no.)1 Similarity

30 1068 0.3% Xylanibacter oryzae (AB588018) 87%

All OTUs were blasted against NCBI GenBank nr. Closest reference strains, accession numbers and similarity values are listed.
1BlastN against the NCBI nr excluding uncultured/environmental sample sequences.
doi:10.1371/journal.pone.0086950.t001

Porcine Mucosa-Associated Bacteria
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Additionally to the overview on phylum and OTU level we

combined all OTUs to their respective genus to get insights into

cumulated shifts on genus level. Correlation networks and

scatterplot matrices of the pairwise correlation analyses (Figure 3,

Figure S3) confirmed that highly abundant OTUs belonging to a

genus did not correlate in most cases. Several OTUs seemed to be

exchangeable within high abundance genera and therefore

analyses on genus level are ecologically worthwhile. In total,

997 OTUs could be assigned to 198 genera. In Figure 5, the most

abundant genera at the different GIT sites are depicted (details in

Table S4).

Diet-related Shifts on OTU and Genus Level
Using discriminant analysis with the first 3 principal compo-

nents, community-shifts between the four diets could be clearly

depicted (Figure 6). It revealed structural changes in all GIT site-

microbiota in response to cereal source and Ca-P level of diets. In

ileum and colon, clusters of corn diets with adequate- and high-

Ca-P overlapped, indicating less discrimination than clusters of

wheat-barley diets.

OTU and genera abundances separated per diet at the three

GIT sites are shown in the heatmaps of Figure 4B (detailed

abundance coefficients are in Table S5) and Figure 5 (exact values,

SEM and P-values are available in Table S6), respectively. It is

Figure 2. Diversity of mucosa-associated bacteria. (A) Rarefaction and rank abundance curves based on an OTU definition threshold of 0.03
16S rRNA distance are shown. Rarefaction and rank abundance curves were calculated for each sample and depicted as mean per gastrointestinal site
(Pars non-glandularis of the stomach, ileum and colon mucosa). Sequence numbers of samples were normalized by random selection before
calculation. (B) Species richness and diversity estimates for bacteria at gastrointestinal mucosa. Significant differences between GIT sites, calculated
with PROC MIXED of SAS, were listed. Significance was declared at P#0.05. (C) Number of OTUs detected per gastrointestinal site and Venn diagram
showing the number of shared OTUs between GIT sites. The size of the circles is in proportion to the number of OTUs detected in each
gastrointestinal site.
doi:10.1371/journal.pone.0086950.g002
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interesting to note that dietary Ca-P content and the composition

of the basal diets, i.e. cereal composition, affected different OTUs

at the different GIT sites. Significant shifts are seperately shown in

Figure 4C: Of particular importance for gut health may be the

increase in gastric lactobacilli-OTUs which are typically associated

with the porcine gut by high versus adequate Ca-P diets. Together,

these lactobacilli-OTUs accounted for 61.6% and 43.1% of the

50 most abundant OTUs at the gastric mucosa with the high Ca-P

diets compared to the adquate CaP-diets, respectively. By contrast,

there was a general reduction in certain Prevotella-OTUs associated

with the gastric mucosa by high versus adquate Ca-P diets

decreasing the percentage of these OTUs by 7.8% units with high

Ca-P diets compared to adequate Ca-P level. More specifically, in

the stomach OTU 3 (Lactobacillus mucosae) significantly increased by

6.2%-units (2.8 fold change) and OTU 4 (L. delbrueckii) tended to

be more abundant by 6%-units with high Ca-P diets compared to

the adequate Ca-P diets. OTU 5 (Prevotella copri) decreased by 1.2%

units (2.6 fold change) with high Ca-P diets compared to the

adequate Ca-P diets. Dietary Ca-P content also modified the

bacterial community at the ileal mucosa but changes in the

bacterial abundance were smaller than in the stomach. In the

ileum, OTU 1151 (Citrobacter freundii) significantly increased by

1.6% units (4.9 fold change) with high Ca-P diets. In the colon,

OTU 12 (Prevotella copri) showed a significant increase by 3.6%

units (1.5 fold change) with high Ca-P vs. adequate Ca-P diets.

Shifts on genus level were in accordance with shifts based on OTU

level. Particularly, dietary Ca-P content caused measurable effects

on the gastric mucosa-associated bacterial genera. At genus level,

the stimulating effect of the high Ca-P content on gastric

Lactobacillus was confirmed increasing this genus by 14.9% units

(1.4 fold change) compared to the adequate Ca-P content. In

contrast, high vs. adequate Ca-P content decreased gastric

Prevotella (P,0.1), Campylobacter (P,0.1) and Phocaeicola

(P = 0.042). In the ileum high vs. adequate Ca-P content increased

Clostridium cluster XI by 6% units (3.3 fold change, P = 0.042) and

Citrobacter by 1.6% units (4.9 fold change, P = 0.016), as well as

Clostridium sensu stricto and Klebsiella by 0.8 and 1% units (P,0.1).

In the colon, high vs. adequate Ca-P content decreased

Campylobacter by 5.8% units and increased Lachnospiraceae incertae

sedis by 0.35% units (P,0.1).

In the stomach, the basal diet did not cause significant shifts in

the microbial community, but OTU 6 (Lactobacillus reuteri) showed

significant two-way-interaction between Ca-P content and basal

diet by a shift of 1.3% units (2.4 fold change). In the ileum, OTU

49 (Prevotella stercorea) significantly increased with corn vs. wheat-

barley diets (0.2% units, 4 fold change). In the colon, OTU 49

showed a similar response towards the basal diets as in the ileum.

OTU 2 (Lactobacillus amylovorus) significantly increased by 5.5%

units (4.9 fold change), whereas OTU 11 (Streptococcus alactolyticus)

decreased by 0.1% units with wheat-barley vs. corn diets.

Interestingly, basal diet-related shifts on genus level slightly

differed from basal diet-related shifts based on OTU level.

Whereas the dietary cereal source did not influence the bacterial

community in the stomach and ileum, the genus Streptococcus

increased (P = 0.048) by 0.1% units in the colon of pigs fed corn

diets compared to pigs fed wheat-barley diets.

Discussion

The present pyrosequencing study revealed characteristic

changes in the mucosal bacterial composition in relation to gut

site and dietary treatment, particularly in response to differences in

dietary Ca-P level. Interestingly, dietary cereal source only slightly

influenced the bacterial mucosal abundance and the effect was

restricted to the ileal and colonic mucosa.

Figure 3. Correlation networks for the microbial communities at the mucosa of (A) the Pars non-glandularis of the stomach, (B) the
ileum and (C) the colon. The network depicts correlations between the top 10% of all OTUs per GIT site (r .0.5, P,0.001). OTUs belonging to the
10 most abundant genera are shown in the same color. Correlation networks were calculated in MENAP (http://ieg2.ou.edu/MENA; molecular
ecological network analysis pipeline) and visualized with Cytoscape.
doi:10.1371/journal.pone.0086950.g003
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Figure 4. Relative abundance of OTUs per GIT site and diet-related shifts. (A) OTUs with an abundance of .0.5% are shown per GIT site.
OTUs with ,0.5% abundance were summed up and denoted as ‘‘others (,0.5%)’’. (B) Heatmap with relative abundances of the 50 most abundant
OTUs in the gastrointestinal tract of pigs fed wheat-barley or corn diets including adequate or high Ca-P. Diets were abbreviated as follows: 1a)
Wheat-barley diet with adequate Ca-P content; 1b) Wheat-barley diet with high Ca-P content; 2a) corn diet with adequate Ca-P content; 2b) Corn diet
with high Ca-P content. (C) Diet-induced shifts on OTU level that reached statistical significance were shown. Diets were abbreviated as follows: 1a)
wheat-barley diet with adequate Ca-P content; 1b) wheat-barley diet with high Ca-P content; 2a) corn diet with adequate Ca-P content; and 2b) corn
diet with high Ca-P content. Significant differences between GIT sites are calculated with PROC MIXED of SAS. Significance was declared at P#0.05.
doi:10.1371/journal.pone.0086950.g004
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Correlation network topology revealed correlations between

OTUs at all GIT sites, with the denseness of the correlation

network increasing from the stomach to the colon. In particular,

correlations for the colonic mucosa-associated bacteria confirm

substantial interactions between different bacterial species in the

lower part of the GIT. Although we use the term mucosa-

associated bacteria, this bacterial community does not directly

adhere to the epithelium but colonizes the outer loosely adherent

mucus layer, whereas the inner-mucus layer is devoid of bacteria

separating bacteria-rich lumen and epithelium [14].

One major finding of the present study was the high diversity of

the bacterial community at the Pars non-glandularis of the stomach

which has not been reported before. We can largely exclude a

contamination of the Pars non-glandularis with bacteria originating

from GIT digesta, because GIT sites were separated by clamping

before opening of the gut segments, and the mucosa was rigorously

washed and rinsed before sampling. Furthermore, distinct

clustering of samples per respective GIT site in the Bray-Curtis

similarity matrix provided strong evidence for distinct microbial

community structures at the various GIT sites. Due to the

particular impact of the mucosa-associated microbiota on the host

animal [14], it may be assumed that a highly diverse mucosa-

associated microbiota in the Pars non-glandularis may be an

indicator for gastric health in weaned pigs. Previous studies

indicated that bacteria usually found in the lower sites of the GIT

are present in digesta of the stomach [10,32]. Yet, acidic

conditions in the stomach usually impair the development of a

very diverse community restricting bacterial colonization to acid-

tolerant species like Lactobacillus sp. [33,34]. Due to the compart-

mentalization of pig’s stomach into four distinct mucosal regions,

luminal conditions are less acidic at the mucosa of the Pars non-

glandularis, which is an extension of the esophagus and thus

different to conditions in the secretory fundus region of the

stomach [35]. It is generally accepted that Lactobacillus is the

dominating genus in the stomach of pigs. The present range of

Lactobacillus-OTUs, which dominated at the mucosa of the Pars

Figure 5. Relative abundances of microbial genera attached to the GIT mucosa. Relative abundances of the 30 most abundant genera are
visualized over all GIT sites, per GIT site (Pars non-glandularis in the stomach, ileum and colon) and per diet at different GIT sites. Diets were
abbreviated as follows: 1) wheat-barley diet; 2) corn diet; a) adequate Ca-P content; and b) high Ca-P content. Genera analyses were based on OTU
classification. Significant differences between GIT sites are calculated with PROC MIXED of SAS. Significance was declared at P#0.05. Error bars
represent standard deviation from the mean.
doi:10.1371/journal.pone.0086950.g005
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non-glandularis in the current study (i.e., L. johnsoni, L. amylovorus, L.

delbrueckii and L. mucosae) are typical phylotypes inhabiting the

porcine GIT [17,19,36]. Interestingly. lactobacilli communities

correlated only weakly among pigs indicating substantial inter-

animal differences and occupation of the same ecological niche by

various Lactobacillus species in different pigs.

Prevotellaceae are known to be a dominant complex carbohydrate-

degrading bacterial group in the lower GIT [37] with low

abundance or absence in the upper GIT. Yet, our present data

demonstrated that the mucosa of the gastric Pars non-glandularis in

weaned pigs may be inhabited by Prevotella. Apparently, Prevotella

species may tolerate luminal conditions at the mucosa of the Pars

non-glandularis and the presence of our most abundant Prevotella-

OTU (P. copri) indicate that bacterial degradation of dietary

hemicelluloses [38] may already begin at the gastric mucosa of

young pigs. Similar to humans, Helicobacter species may act as

gastric pathogens in pigs [39]. Yet, in our study, Helicobacter was

rare at the gastric mucosa and was predominately assigned to the

Figure 6. Discriminant analyses with the first 3 principal components for (A) the Pars non-glandularis of stomach, (B) ileum and (C)
colon, dependent on various diets. For the calculation the 50 most abundant OTUs were used as covariates and the diet as the categorial
variable. Diets were abbreviated as follows: 1a) wheat-barley diet with adequate Ca-P content; 1b) wheat-barley diet with high Ca-P content; 2a) corn
diet with adequate Ca-P content; and 2b) corn diet with high Ca-P content. For the ileal and colonic mucosa, clusters of corn diets overlapped,
indicating less discrimination than in wheat-barley diets.
doi:10.1371/journal.pone.0086950.g006
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ileum and colon. The most abundant OTU (best BLAST hit: H.

rappini) may cause illness in humans [40], but information for pigs

is missing.

Another major finding of this study was that the high Ca-P diets

had the potential to distinctly increase the abundance of

Lactobacillus-OTUs at the mucosa of the Pars nonglandularis

compared to the adequate Ca-P diets. Especially the promotion

of the Lactobacillus-OTU related to L. mucosae (OTU 3) by 5.2%

units in high Ca-P diets is of interest because this species is strongly

associated with the mucus layer of the intestinal mucosa in pigs

[41] and enforcing their adherence by Ca-P may contribute to

reduce attachment of opportunistic pathogens by steric hindrance

of mucosal binding sites. Divalent ions can influence bacterial

attachment to the mucosa [42]. As recently demonstrated in in vitro

studies using different cell lines, free Ca++ ions appear to promote

the mucosal adhesion of various probiotic Lactobacillus strains

[43,44]. Due to their general ability to suppress the growth of

opportunistic pathogens, such as enterotoxigenic E. coli, by very

effective bacteriocin and organic acid production [45,46,47], Ca-P

related promotion of Lactobacillus may be beneficial in supporting

the gastric barrier. The decrease in gastric gram-negatives

(Prevotella, Campylobacter and Phocaeicola) due to the high Ca-P

content might have been caused by competition with Lactobacillus

for mucosal binding sites. Gram-positive and gram-negative

bacteria differ in their cell wall structure; therefore, it might be

also feasible that free Ca++ ions lowered the binding of gram-

negative Prevotella species to the mucosa.

Ninety percent of the Ca and P absorption takes place in the

small intestine [48,49]. Nevertheless, more Ca and P was available

in the intestinal lumen along the GIT with the high versus

adequate Ca-P diets as indicated by the higher faecal excretion of

Ca and P in these pigs (data not shown). However, except for the

stomach, Ca-P mostly exists in the gut in a dynamic equilibrium of

free ions and non-dissociated amorphous Ca-phosphate complex

at pH values of above six. Amorphous Ca-phosphate exerts

buffering properties and cytoprotective effects in the intestinal

lumen by precipitating components in the intestinal lumen, like

bile acids, lactic acid and volatile fatty acids [50]. Therefore, acid-

sensitive bacterial genera, e.g. Citrobacter, might have thriven at the

ileal mucosa when more toxic components were precipitated.

Because Ca and P are also essential nutrients for bacteria since

they are needed for a variety of metabolic processes in the

bacterial cell [51], differences in the intestinal availability may

have provided growth-advantages for certain bacterial species and

genera, such as Citrobacter, Klebsiella, Clostridium cluster XI,

Clostridium sensu strictu at the ileal mucosa. These genera are well

known commensals of pig’s ileum and large intestine [12,17]. In

this study, an increase in the ileal mucosa-associated fraction could

be achieved with high Ca-P levels. Growth-advantages for

Citrobacter and Klebsiella may be ecologically worthwhile.

Competition among enterobacteria may reduce pathogenic E.coli

which are mainly the causative agent in postweaning diarrhea

[17]. Interestingly, commensal Clostridium species belonging to

cluster XI have been recently described to be significantly

increased in pathologically altered ileocaecal lymph nodes of pigs

compared to healthy ones [52]. Higher mucosal abundance of

these Clostridium groups might lead to an increased bacterial

translocation from the intestinal mucosa to lymph nodes under

certain conditions thereby causing an inflammatory immune

response in lymphatic tissues.

Dietary carbohydrate composition only sporadically interacted

with the dietary Ca-P content indicating that Ca-P effects can be

mostly seen independently of the basal diet provided to the pigs.

Differences in carbohydrate composition (e.g. starch, arabinoxylan

and b-glucan) of the basal diets likely influenced the abundance of

Lactobacillus, Streptococcus and Prevotella OTUs attached to the ileal

and/or colonic mucosa. Substrate availability due to progressing

digestion, absorption and fermentation, transit time as well as

physiological conditions (e.g. luminal pH and bile acids) changes

along the passage of digesta throughout the GIT [14]. Therefore,

bacteria attached to the Pars non-glandularis of the stomach had the

greatest nutrient availability which progressively degraded to the

mid-colon. In the lower parts of the GIT, mainly highly complex

non-starch polysaccharides, such as arabinoxylans and cellulose,

remain in intestinal digesta, and mucus becomes a more important

bacterial substrate. Interestingly, compared to the corn diets,

wheat-barley diets promoted the colonic mucosal abundance of

Lactobacillus amylovorus (OTU 2) which is involved in starch

degradation in the upper GIT by 5.3% units [53]. It can be

assumed that dietary starch was mostly digested until the distal

ileum and proximal large intestine. Therefore, complex carbohy-

drates other than starch might have supported mucosal abundance

of L. amylovorus and also of Streptococcus alactolyticus (OTU 11). It

might be also thinkable that wheat-barley diets modified the

glycocalix of the mucosa leading to a different microbe-host

interaction benefiting certain phylotypes. Because of the predom-

inance of L. amylovorus in the porcine GIT [17], information on its

growth behavior in vivo is vital to characterize bacterial responses

to differently composed diets [54]. By contrast, changes in the

availability of complex hemicelluloses and cellulose likely en-

hanced mucosal abundance of Prevotella stercorea (OTU 49) in the

colon with corn vs. wheat-barley diets [38].

Interestingly, bacterial genera that include potential opportu-

nistic pathogens could be detected at all GIT sites (e.g.

Campylobacter, Fusobacteria and Clostridia), representing a substantial

proportion of the whole mucosa-associated community. Yet, all

pigs included in our analyses did not show signs of enteric or

systemic disease (data not shown). Similar observations were

recently made in indoor versus outdoor reared piglets [19]. These

findings indicate that a large pool of disease-associated species is

commonly present in pig’s GIT awaiting critical changes in

environmental conditions to become virulent.

In conclusion, the present data provided a comprehensive

overview of the mucosa-associated microbiota in weaned pigs;

thereby extending our understanding of the mucosal bacterial

communities at different GIT sites. We reported a very high

diversity of the microbiota attached to the Pars non-glandularis of the

stomach which might be a sign for gastric health in young pigs.

Accordingly, by enhancing attachment of Lactobacillus species to

the gastric mucosa, Ca-P-rich diets may support gastric and overall

gut health. Present data provide a fundamental basis for future

research on diet-microbe-host interactions in weaned pigs.
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