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Abstract
Telomeres are located at chromosome ends and their length (TL) has been associated with

aging and human diseases such as cancer. Whole blood DNA is frequently used for TL

measurements but the influence of preanalytical conditions and DNA isolation methods on

TL quantification has not been thoroughly investigated. To evaluate potential preanalytical

as well as methodological bias on TL, anonymized leftover EDTA-whole blood samples

were pooled according to leukocyte counts and were incubated with and without actinomy-

cin D to induce apoptosis as a prototype of sample degradation. DNA was isolated from

fresh blood pools and after freezing at -80°C. Commercially available kits using beads (Invi-

trogen), spin columns (Qiagen, Macherey-Nagel and 5prime) or precipitation (Stratec/Invi-

sorb) and a published isopropanol precipitation protocol (IPP) were used for DNA isolation.

TL was assessed by qPCR, and normalized to the single copy reference gene 36B4 using

two established single-plex and a new multiplex protocol. We show that the method of DNA

isolation significantly affected TL (e.g. 1.86-fold longer TL when comparing IPP vs. Invitro-

gen). Sample degradation led to an average TL decrease of 22% when using all except for

one DNA isolation method (5prime). Preanalytical storage conditions did not affect TL with

exception of samples that were isolated with the 5prime kit, where a 27% increase in TL

was observed after freezing. Finally, performance of the multiplex qPCR protocol was com-

parable to the single-plex assays, but showed superior time- and cost-effectiveness and

required > 80% less DNA. Findings of the current study highlight the need for standardiza-

tion of whole blood processing and DNA isolation in clinical study settings to avoid preanaly-

tical bias of TL quantification and show that multiplex assays may improve TL/SCG

measurements.

Introduction
Telomeres are DNA sequences defining the ends of chromosomes [1]. They are present in
almost all species with linear chromosomes [2] and consist of repetitive hexameres
(TTAGGG)n oriented from 5’ to 3’ as well as a heterogeneous group of associated telomere-
binding proteins [3]. Their size is highly dynamic spanning from less than 500 bp to more than
20 kbp [4]. Telomere shortening has been suggested as an intrinsic clock [5], limiting somatic
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cell divisions (known as the “Hayflick limit” [6]) before entering the stage of “replicative senes-
cence” [3, 7]. Decreased telomere length has also been associated with obesity and smoking [8,
9], as well as genomic instability [10]. Moreover, an association of decreased telomere length
with several diseases, such as increased risk of cancer [11], idiopathic pulmonary fibrosis [12],
bone marrow failure and/or liver cirrhosis [13], acute myeloid leukemia, and myelodysplastic
syndrome [14–16] has been demonstrated.

For assessment of telomere length, different methods have been established. The first tech-
nique was the Terminal Restriction Fragment (TRF) length analysis by Southern blot gel elec-
trophoresis [4, 17]. This method utilizes restriction enzymes to fully digest genomic DNA
while sparing telomeres due to their repetitive sequences, resulting in short genomic DNA
pieces and long telomeric sequences. Although this technique is still considered the gold stan-
dard for telomere analysis, it has several limitations and disadvantages, for example the high
DNA amounts required for the analysis as well as the complex and time-consuming methodol-
ogy [2]. Alternative approaches were aimed to overcome these limitations, such as the Single
TElomere Length Analysis (STELA), a single molecule ligation PCR-based method [18], and
quantitative fluorescence in situ hybridization (Q-FISH) using digital fluorescence microscopy
[19–21].

To facilitate high-throughput telomere length measurements, PCR-based assays were devel-
oped which normalize TL to a single copy gene [2, 22]. Although this method is fast, scalable
[20], and the cost per sample is significantly lower compared to TRF, standardization is diffi-
cult and results from different laboratories may not be directly compared [23, 24]. Further-
more, there is evidence that qPCR-based TL quantification may also be affected by DNA
isolation methods [25].

Therefore, it was the aim of the current study to evaluate the effect of five different commer-
cial DNA isolation kits (from Invitrogen, Qiagen, Macherey-Nagel, 5prime and Stratec/Invi-
sorb) as well as one published isopropanol precipitation protocol (IPP) in combination with
different preanalytical sample treatments, such as sample freezing and degradation, on telo-
mere length. TL was analyzed with an established single-plex protocol, normalizing TL to the
single copy reference gene 36B4 [22] and compared to a novel, multichrome multiplex assay
allowing high throughput parallel analysis

Materials and Methods

Study design and sample preparation
Anonymized left-over whole blood from routine laboratory analyses from 800 patients was
pooled. Guidelines of the LMU ethics comittee do not require a specific ethics statement for
this type of study. Samples were pooled at the day of collection according to patients’ sex and
white blood cell numbers classified in quartiles according to absolute leukocyte counts (4 male
pools and 4 female pools; Fig 1, S1 Fig). No significant differences were found with respect to
age of patients composing the different pools (data not shown). A cell count was performed in
all pools using a Sysmex XT 2000i automated hematology analyzer and pools were kept in
movement at 4°C until processing or freezing. Each pool was divided in 4 aliquots, of which
two were incubated with 5 μg/ml actinomycin D for 24 hours at 37°C to induce apoptosis [26,
27] as well as subsequent DNA degradation [28, 29] as previously described. After incubation,
an additional cell count was performed (S1 Fig). Two aliquots per pool (one with and one with-
out actinomycin D treatment) were processed directly, while the remaining two aliquots were
stored at -80°C for 5 to 14 days before DNA isolation. Frozen samples were thawed for 30 min-
utes before DNA isolation. The study design is summarized in Fig 1.
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DNA isolation
DNA isolation was performed using 7 ml aliquots of fresh or frozen whole blood (Fig 2;
n = 192). Maxi DNA extraction kits from 5 different suppliers (GeneCatcher gDNA Kit from
Invitrogen, QIAamp DNA Blood Maxi Kit from Qiagen, NucleoSpin Blood XL Kit from
Macherey-Nagel, PerfectPure DNA Blood Kit from 5prime and Invisorb Blood Universal Kit
from Stratec) as well as one published isopropanol precipitation protocol (IPP) [30, 31] were
used. DNA extraction kits used magnetic beads (Invitrogen), large (Marcherey-Nagel, Qiagen)
and small (5prime) spin columns or precipitation (Stratec, IPP). DNA isolation was performed
according to the manufacturers’ instructions and DNA was eluted in 300 μl (5prime kit),
600 μl (IPP), 1000 μl (Marchery-Nagel, Qiagen), 1400 μl (Stratec) or 1500 μl (Invitrogen).
After elution, DNA was quantified using OD measurements performed in duplicates for each
sample on a NanoDrop ND-1000 spectrophotometer (Fisher Scientific) and was stored at
-20°C until further use. An overview about the characteristics of the kits can be found in
Table 1. Before qPCRs, samples were diluted to a DNA concentration of 10 ng/μl and quanti-
fied with the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen) on a SpectraMax Paradigm
Multi-Mode Microplate Detection Platform (Molecular Devices) before subsequent analyses.
One sample was lost due to handling errors.

Quantitative PCR
For TL measurement, a qPCR-based method was adapted from the protocol used by Cawthon
[22]. Quantification was performed using the SensiMix SYBR No-ROX Kit (Bioline) and Ct-
values were calculated according to Pfaffl [32]. Data were normalized to the single copy gene
(SCG) 36B4, which was quantified using published primers [22, 31] and fold changes were cal-
culated accordingly. Characteristics of both assays are provided in Table 2. qPCRs were per-
formed in 384-well plates on a ViiA7 (Life Technologies). A multiplex-assay was established
for simultaneous measurement of TL and SCG in a single well. To this end, a probe with 5’-
LC610 fluorophore and 3’ BHQ-2 labelling (Eurofins-MWG) was used to detect the single
copy gene. The sequences for probe and primers are as following: Tel1b: 5’- CGG TTT GTT
TGG GTT TGG GTT TGG GTT TGG GTT TGG GTT -3’; Tel2b: 5’- GGC TTG CCT TAC
CCT TAC CCT TAC CCT TAC CCT TAC CCT -3’; 36B4 fwd: 5’- CAG CAA GTG GGA

Fig 1. Study design. Leftover EDTA-whole blood samples were pooled according to the patients’ sex and leukocyte counts (n = 8). Each pool was divided in
4 aliquots (n = 32). The first aliquot (Aliquot 1; n = 8) was directly frozen. The second aliquot (Aliquot 2; n = 8) was processed directly without incubation (Day
1), while the rest was stimulated with actinomycin D (5 μg/ml). After 24 hours (Day 2), the third aliquot (Aliquot 3; n = 8) was frozen, while the last aliquot
(Aliquot 4; n = 8) was processed. Before freezing, a white blood cell count was performed. Frozen aliquots (Aliquots 1 and 3) were processed within 5 to 14
days (Day X).

doi:10.1371/journal.pone.0143889.g001
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AGG TGT AAT CC -3’; 36B4 rev: 5’- CCC ATT CTA TCA TCA ACG GGT ACA A -3’; 36B4
probe: 5’- LC610—CGG ATT TCT TCA GCT TGT GCT TGT CTC CCT—BHQ2–3’. Due to
the different light absorption and emission maxima from SYBR green I (495 nm and 520 nm,
respectively) and LC610 (590 nm and 610 nm, respectively), telomeres and SCG were detected
simultaneously without signal interferences when performing qPCR.

Statistics
Statistical analysis was done using GraphPad PRISM (Version 6.02, GraphPad Software) and
Microsoft Excel (Version 2010). Normality of distribution was tested using the Kolmogorov-
Smirnov test. Comparison of two groups was done using Mann-Whitney U test for non-nor-
mally distributed data, Welch’s t-test or Student’s t-test for normally distributed data with
unequal or equal variances, respectively. Bonferroni correction was applied for multiple testing.

Fig 2. Sample preparation and analysis procedure. For comparison of preanalytical conditions and DNA isolation kits, EDTA-whole blood aliquots (8
pools, each in 4 different conditions) were processed using 6 different procedures. DNA concentration was harmonized in all 192 samples to 10 ng/μl and
qPCR was performed with 1 μl sample in a total reaction volume of 10 μl. Each sample was analyzed using both a multiplex and a single-plex assay for
telomere length quantification.

doi:10.1371/journal.pone.0143889.g002
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DNA extraction efficiency was tested by using linear regression as provided in GraphPad
PRISM. The ΔCt and ΔΔCt method was calculated as described previously [32].

Results
We first assessed the DNA yields obtained with the different isolation protocols. A total of 89–
532 μg DNA were isolated with the different DNA isolation kits (Fig 3A). As expected, the

Table 1. Specifications of DNA isolationmethods and required laboratory equipment.

Invitrogen
GeneCatche
gDNA Kit

Qiagen QIAamp
DNA Blood Maxi

Kit

Macherey-Nagel
NucleoSpin Blood

Kit

5prime
PerfectPure DNA

Blood Kit

Stratec/ Invisorb
Blood Universal

Kit

DNA isolation
protocol (IPP)

according to [31]

Method Beads Spin Column
Large

Spin Column large Spin Column small Precipitation Precipitation

Hands-on time 1.5 hours 1.5 hours 1.5 hours 1.5 hours 1.5 hours 2 hours

Incubation/
elution times

1 hour - - - 1 hour overnight incubation

Yield according to
supplier

300 μg 15–600 μg 200–300 μg 150–250 μg up to 400 μg up to 500 μg

Suggested elution
volume

1000–1500 μl 1000 μl 1000 μl 300 μl 1400 μl 300–600 μl

Expected DNA
fragment size

larger than 50 kb 100 bp up to 50
kb, maximum at

30 kb

200 bp until approx.
50 kb

larger than 50 kb no data available no data available

Centrifuge (50 ml
tubes)

- x x x x x

Centrifuge (1.5 ml
tubes)

- - - x - -

Water bath (50 ml
tubes)

x x x - - x

Thermomixer(50
ml tubes)

- - - - x x

Thermomixe (1.5
ml tubes)

- - X - - -

Additionally
required

equipment

Magnetic Rack for
50 ml tubes

- - - - -

“x”- required; “-“—not required.

doi:10.1371/journal.pone.0143889.t001

Table 2. Comparison of a published single-plex assays for quantification of TL and SCG andmultiplex assay (adapted from [22, 31]).

Single-plex assay according to [31] Multiplex assay Advantages of multiplex assay

Telomere analysis 25 μl/reaction with 12.5 μl Taq-Pol MM* 10 μl/reaction with 5 μl Taq-Pol MM* 80% reduction of Taq-Pol MM*

Single Copy Gene
analysis

25 μl/reaction with 12.5 μl Taq-Pol MM* LC610-labelled probe added to TL
assay

Identical input DNA, thus better
standardization

Sample DNA
required

30 ng DNA/reaction (2 assays x triplicate
values = 180 ng DNA)

10 ng DNA (multiplex assay in
triplicates = 30 ng DNA)

> 80% less DNA required for parallel TL
and SCG measurement

Throughput 32 samples on Rotorgene Q (Qiagen) in
triplicates according to [31]

384well plate compatibility, 126
samples in triplicates

4x higher throughput

Time on thermal
cycler

~ 80 minutes/reaction (2 reactions = 160
minutes)

~ 50 minutes > 65% less time on thermal cycler

*MM- Taq-Polymerase Mastermix SensiMix SYBR No-ROX Kit (Bioline).

doi:10.1371/journal.pone.0143889.t002
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isolated DNA amount was proportional to the number of leukocytes in the respective DNA
pools. Higher WBC counts, however, decreased the overall DNA extraction efficiency as
shown in S2 Fig. Highest DNA amounts were extracted using the IPP (28% higher than aver-
age) and the kit from Qiagen (22% higher than average) as well as the kit from Stratec (10%
higher than average, Fig 3A). Overall, freezing did not lead to a statistically significant effect on
DNA yield, except for the 5prime kit, where a significant 30% decrease in DNA recovery was
detected (S2 Fig).

In contrast to freezing, sample degradation significantly impaired DNA recovery (Fig 3C).
This effect was particularly pronounced for the Invitrogen kit using magnetic beads (DNA
extraction decrease by 79%, p< 10−4), but also noticeable when using the 5prime kit (decrease
by 48%) and the IPP (decrease by 45%). Freezing in addition to degradation did not further
decrease DNA extraction efficiency (overall 9% decrease compared to degraded, non-frozen
samples; not significant, Fig 3D, S2 Fig).

Fig 3. Effect of freezing and degradation on DNA isolation efficiency. Amounts of DNA isolated from 7 ml whole blood aliquots from 8 pools (M/F; n = 4/
4) depending on preanalytical conditions. Actinomycin D was used for apoptosis-induced sample degradation. (A) Non-frozen, non-degraded samples. (B)
Frozen, non-degraded samples. (C) Non-frozen, degraded samples. (D) frozen, degraded samples.

doi:10.1371/journal.pone.0143889.g003
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For TL measurement, an established method [22, 31] was adapted as a multiplex assay as
described in the material and methods section. To investigate the technical performance of the
multiplex test, we generated a pool from all DNA samples (n = 192) that were previously
isolated with the 6 different DNA isolation methods. Using this control pool in different con-
centrations (1-32ng DNA per qPCR), we showed that the multiplex assay revealed a good lin-
earity when compared to the analysis of TL and SCG 36B4 using single-plex assays (Fig 4A and
4B). qPCR efficiency was comparable between the multiplex and the single-plex assay (> 95%)
and a high correlation of TL (r2 = 0.983; Fig 4C) and SCG (r2 = 0.922; Fig 4D) quantification
was shown. Using all 192 DNA samples at a defined concentration (for details see Materials
and Methods), a correlation of r2 = 0.759 between the TL/SCG ratio of both assays was
demonstrated (p< 10−4, Fig 4E). Compared to the published assay [31], an 80% reduction of

Fig 4. Comparison of TL and SCG quantification using single-plex assays and amultiplex assay. For evaluation of telomeres, qPCRs were performed
as described previously [22, 31] with adjustments as described in Material and Methods. Dilutions of a control pool sample were used as standard curve.
Standard curves for telomere (A) or single copy gene 36B4 (B) qPCR assays using the single-plex (green) or multiplex (grey) assay. Correlation between the
multiplex and the single-plex assays for TL (C) and SCG (D). (E)Correlation of TL/SCG ratio in 192 DNA samples.

doi:10.1371/journal.pone.0143889.g004
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Taq-Polymerase mastermix was achieved when using the multiplex protocol in the 384-well
format (Table 2). Furthermore, the input DNA was reduced by> 80% compared to the original
assay and the analysis time was reduced by> 60% (Table 2).

Next, we investigated the effects of DNA isolation procedures on TL and SCG quantifica-
tion. To detect whether the single-plex and the multiplex assays performed equally, qPCR anal-
yses were run with both assays (Fig 5). To this end, we analyzed the TL/SCG ratio in 192 DNA
samples in relation to a pooled reference sample. As shown in Fig 5A and 5B, different DNA
isolation methods significantly affected the TL/SCG ratio already (S1 Table); in non-frozen,
non-degraded samples, the strongest changes in TL were ranging from 1.65 to 0.88 when com-
paring the Invitrogen kit to the IPP protocol. Notably, freezing had generally minor effects on
TL quantification (< 5%, not statistically significant; Fig 5C and 5D and S3 Fig). A detailed
comparison of TL quantification in frozen and non-frozen samples is provided in S3 Fig. The

Fig 5. Telomere length is depending of DNA isolationmethod and preanalytical conditions. 192 samples were analyzed using the single-plex and the
multiplex assay. Results frommale and female pools (n = 8) per preanalytical condition (n = 4) and DNA isolation (n = 6) method were pooled for analysis of
TL/SCG ratio in relation to a pooled reference sample. Absolute differences between both assays were approx. 9% (not significant). (A,B) Non-frozen, non-
degraded samples. (C,D) Frozen, non-degraded samples. (E,F) Non-frozen, degraded samples. (G,H) frozen, degraded samples.

doi:10.1371/journal.pone.0143889.g005
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only kit that revealed significant differences in the TL analysis in frozen and non-frozen sam-
ples was the 5prime PerfectPure DNA Blood Kit, which led to a 27% higher telomere abun-
dance in frozen samples. To exclude handling errors as a source of this result, measurements
were repeated and revealed comparable results (data not shown).

As shown in Fig 5E–5H, sample degradation had a major impact on TL quantification with
an average decrease of 22% compared to non-degraded samples (p< 10−5; S4 Fig). This effect
was especially pronounced when using the Invitrogen GeneCatcher gDNA Kit, where a lower
TL quantification of 40% compared to non-degraded samples was observed. This effect was
also strong but less pronounced for the other kits (34% for the Stratec/Invisorb Blood Universal
Kit, 25% for the Qiagen QIAamp DNA Blood Maxi Kit, 17% for the IPP and 17% for the
Macherey-Nagel NucleoSpin Blood XL Kit compared to non-degraded samples, respectively).
The least differences between degraded and non-degraded material was found using the
5prime kit.

Discussion
In the current study, we systematically evaluated 6 DNA isolation procedures and preanalytical
sample treatments such as freezing and apopotosis-induced degradation with respect to their
effect on telomere length (TL) and SCG quantification using a high throughput multiplex
assay. As major findings, we demonstrate that TL was significantly affected by different DNA
isolation methods and that sample degradation reduced TL when using all but one kit. In con-
trast, sample freezing at -80°C had only minor impacts on TL/SCG quantification with the
exception of one DNA isolation method. Our results underscore the importance of standard-
ized preanaytical and analytical procedures when determining TL in clinical and population
based studies.

Our study is the largest comparison of DNA isolation methods with respect to TL quantifi-
cation to date. Since we required 200 ml EDTA-whole blood to compare the effect of four dif-
ferent preanalytical conditions (non-frozen non-degraded, frozen non-degraded, non-frozen
degraded and frozen degraded) and six different DNAMaxi isolation kits (7 ml each) on TL
quantification, we decided to use pools of anonymized left-over whole blood samples instead
of samples from individual probands. A further advantage of pooling samples is that potential
bias due to inter-individual biological variance is reduced and pooled samples have also been
used by other groups to evaluate technical aspects of TL quantification [23].

With respect to different DNA isolation methods, strongest effects on TL/SCG quantifica-
tion for non-frozen, non-degraded samples were observed for the kits from Invitrogen (24%
higher TL in relation to a pooled reference sample) and the IPP (27% lower TL length than
average). In line with results from the current study, a smaller study by Cunningham et al
showed significant effects of 3 other different DNA isolation methods on TL [25]. In addition
to DNA isolation, preanalytical conditions, such as sample degradation, had major impacts on
TL quantification leading to an overall decrease of 22% on average. This effect was especially
strong in the Invitrogen GeneCatcher gDNA Kit (40% decrease in relation to a pooled refer-
ence sample) and the kit from Stratec (34% decrease in relation to a pooled reference sample).
The kit that showed minor differences was from 5prime (4% increase). This kit, however, did
not reveal consistent results in non-frozen and frozen samples, where a 27% higher TL was
observed after freezing. Koppelstaetter et al have reported changes in TL from tissue after fixa-
tion in formaldehyde [33]. Although incubation with the apoptosis-inductor actinomycin D,
which was used in the current study, as well as formaldehyde fixation represent extreme, artifi-
cial cases of sample degradation, which are probably stronger than expected in vivo, it is likely
that already slighter sample degradation as it occurs at suboptimal storage conditions [34–36]
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does affect TL quantification. This is especially important, since the observed biological differ-
ences between healthy and diseased patients may vary only in a low percent range [37–41].

In contrast, freezing did not have a significant effect on TL measurement with the exception
of the 5prime kit. This is in line with results from Zanet et al., who reported no significant
changes in TL between frozen and non-frozen samples. Since this study was only performed
using only the QIAcube and QIAamp DNAMini Kit from Qiagen [42], our study extends this
important notion to other DNA isolation kits with the caveat that exceptions might exist.

Especially in large study settings, robust and high throughput methods are warranted for TL
analysis. Since qPCR-based methods for TL quantification are widely established because of
the analysis speed, scalability and costs-per-sample [2, 43], we have focused on the evaluation
of different qPCR methods and have not compared qPCR to Southern blotting or STELA
results. We have adapted the method of quantifying telomere length originally published by
Cawthon [22, 31] and have established a cost- and time-effective multiplex assay, which can be
run in the 384-well format using as little as 10 ng of DNA as opposed to 60 ng [31]. In contrast
to a study by Eisenberg et al. [43], we detected no significant changes of TL quantification with
respect to the position on the PCR plate speaking in favor of the robustness of the multiplex
assay. Additionally, pipetting and other handling errors might also be diminished through the
multiplex assay allowing greater standardization and reliability. Since we did not investigate TL
using other methods, such as Southern blotting or STELA, it remains to be determined whether
results of the current study apply for TL quantification using these techniques, as well.

In the work by Martin-Ruiz et al, the reproducibility of TL quantification in 10 different lab-
oratories was investigated with 3 different techniques (Southern blotting, STELA, qPCR) using
10 human DNA samples and pools [23]. As a main conclusion, the authors suggest to establish
a common set of TL standards to improve comparability of TL quantification between meth-
ods. Currently, there is an ongoing discussion about the comparability and reproducibility of
qPCR, STELA or Southern blotting for TL quantification [23, 44–47]. Whereas the focus of
that work was on comparison of different methods for TL quantification, the primary goal of
our study was to compare the effects of different DNA isolation protocols and preanalytical
conditions. Taken together, previous work and results from our study highlight the need for
standardization of the complete process, starting from blood collection, sample storage and
DNA isolation, up to TL measurement to obtain reliable TL results, especially in large multi-
center study settings.

Supporting Information
S1 Fig. Effect of actinomycin D on white blood cell counts.White blood cell (WBC) counts
were measured in samples with and without induction of apoptosis-mediated cell degradation
with actinomycin D (ActD; 5 μg/ml) for 24 hours at 37°C. Degradation led to an average 10%
WBC decrease. (A) The absolute number of leukocytes measured in the sample with or without
actinomycin D treatment is shown. (B) The relative leukocyte count changes after actinomycin
D treatment are presented.
(PDF)

S2 Fig. DNA extraction efficiency in dependency of WBC count. The DNA abundance was
correlated to the WBC count in each sample. Data are presented as ng DNA per 1000 leuko-
cytes. DNA yields relative to WBC count revealed approx. 3–6 ng DNA/103 leukocytes. Com-
pared to non-frozen, non-degraded samples (A), degradation led to an impaired DNA
extraction efficiency in most kits (C), an effect especially pronounced in the Invitrogen Gene-
Catcher gDNA Kit (DNA extraction efficiency of 21% compared to non-frozen, non-degraded
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samples). The additional effect of freezing (B, D) was minor.
(PDF)

S3 Fig. Effects of freezing on TL quantification.When comparing TL of frozen with non-fro-
zen samples, differences were found to be minor (overall approx. 3%) in both the single-plex
assay (A, C) and the multiplex assay (B, D) and irrespective of the analysis of non-degraded
(A, B) or degraded (C, D) samples. The sole exception was the 5prime PerfectPure DNA Blood
Kit (27% longer TL in frozen samples). Data are given as fold change of the ratio frozen to
non-frozen samples compared to a reference sample.
(PDF)

S4 Fig. Effects of degradation on TL quantification.When comparing degraded to non-
degraded samples, degradation significantly affected TL measurements (p< 10−5) in both the
single-plex assay (A, C) and the multiplex assay (B, D) and irrespective of the analysis of non-
frozen (A, B) or frozen (C, D) samples. These effects were strongest for the Invitrogen Gene-
Catcher gDNA Kit and the Stratec/Invisorb Blood Universal Kit (40% and 34% decrease,
respectively). Data are shown as fold change of the ratio degraded to non-degraded samples
compared to a reference sample.
(PDF)

S1 Table. Statistically significant differences between TL quantification performed by dif-
ferent DNA extraction kits. Corresponding to Fig 5, levels of significance were calculated for
different DNA isolation methods. Bonferroni-correction was applied to correct for multiple
testing, thus a p-value of p< 0.00042 was considered to be statistically significant.
(XLSX)
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