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We present a new impurity solver for dynamical mean-field theory based on imaginary-time evolution of
matrix product states. This converges the self-consistency loop on the imaginary-frequency axis and
obtains real-frequency information in a final real-time evolution. Relative to computations on the real-
frequency axis, required bath sizes are much smaller and no entanglement is generated, so much larger
systems can be studied. The power of the method is demonstrated by solutions of a three-band model in the
single- and two-site dynamical mean-field approximation. Technical issues are discussed, including details
of the method, efficiency as compared to other matrix-product-state-based impurity solvers, bath
construction and its relation to real-frequency computations and the analytic continuation problem of
quantum Monte Carlo methods, the choice of basis in dynamical cluster approximation, and perspectives
for off-diagonal hybridization functions.
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I. INTRODUCTION

Dynamical mean-field theory (DMFT) in its single-site
[1–3] and cluster [4,5] variants is among the most widely
employed computational techniques for solving quantum
many-body problems. Fundamentally, DMFT in its sim-
plest version becomes exact in the limit of high co-
ordination numbers and was originally applied to simple
model Hamiltonians. At least over the past decade, DMFT
has been applied increasingly to more realistic models of
materials, also of low dimensionality. To this purpose, the
initial setup of a single impurity site coupled to a single
band has been replaced by impurities consisting of multiple
sites and multiple local orbitals. The degree of realism of
DMFT is mainly determined by progress made in the size
of these generalized impurities.
At the core of a numerical solution of DMFT is an

impurity solver: an algorithm for solving a quantum
impurity problem. The size of the impurity problem that
can be treated is essentially limited by progress in the
power of the impurity solver, which emerges as the key
limitation of DMFT. The purpose of this paper is to present
a new impurity solver and its power to address problems
hitherto inaccessible to DMFT. The most prominent

examples of impurity solvers are the continuous-time
quantum Monte Carlo (CTQMC) methods [6–8], exact
diagonalization (ED) [9–11], the numerical renormalization
group (NRG) [12], and the density matrix renormalization
group (DMRG) [13]. Other recent suggestions for impurity
solvers [14–19], including, in particular, the computation-
ally inexpensive density matrix embedding theory [20], are
promising but have not been tested in detail.
While all methods have their strengths, key limitations

mean that fundamentally important classes of problems
have not yet been adequately addressed. Many of the
approaches have been developed in the context of the
single-band Hubbard model (one spin-degenerate orbital
per site and a correspondingly simple structure for the
electron-electron interaction), but in many correlated elec-
tron materials of current interest (for example, metallic Fe
or Co, or the heavy fermion compounds and the iron
arsenide family of high transition temperature supercon-
ductors), the physics involves electrons in partly filled d or
f shells where multiplet effects associated with orbital
degeneracy and its partial lifting by ligand fields and
interactions play a crucial role. Our current ability to treat
these effects is limited to the single-site approximation and
to situations in which the correlated orbitals have a large
point group symmetry. Further, intersite correlations
beyond the scope of the single-site approximation are
believed to play a crucial role in materials with strong
electronic anisotropy (“low-dimensional systems,” such as
the high-Tc cuprates, iron arsenide materials, or the
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dicalcogenides). This has been explicitly demonstrated
in cluster dynamical mean-field solutions of the two-
dimensional single-orbital Hubbard model, but the tech-
niques used in this case rely on simplifications associated
with the interaction structure of the single-orbital Hubbard
model, and no efficient generalization to the multiorbital
situation is known. Intersite correlations are believed to be
of somewhat less importance for three-dimensional materi-
als, but the question of their importance simply cannot be
addressed with current techniques. Thus, in summary, new
methods are needed to go beyond (or at least validate) the
single-site dynamical mean-field approximation and lift
the restriction to the single-orbital or high point symmetry
situations.
CTQMC is widely employed, but its application to

situations involving low point symmetry, non-Hubbard
interactions, or multiple relevant orbitals is limited by
the fermionic sign problem. Reaching low temperatures
becomes highly computationally expensive while calculat-
ing real-frequency information requires analytical continu-
ation, a numerically ill-posed procedure fraught with
practical difficulties.
ED makes no assumption on the interaction and does not

have a sign problem. It is limited by the size of the Hilbert
space that can be studied, meaning in practice that it is
restricted to a small number of correlated sites to which
only a small number of bath sites can be attached. Recently,
improvements have been achieved by considering only
restricted subspaces of the Hilbert space [21–24], but the
size of the problem remains a significant limitation.
NRG converges the DMFT loop on the real-frequency

axis and very effectively obtains real-frequency informa-
tion in the low-frequency limit. Current applications have
been to relatively small problems (the most recent achieve-
ment is a solution of the single-site DMFT approximation
to a three-band model [25]) and it remains to be seen how
far the method can be extended.
DMRG [26] is a set of algorithms operating on the space

of matrix product states (MPS) [27]. It has been found to be
extremely powerful for the calculation of ground states of
one-dimensional quantum systems [27,28]; it was very
successfully extended to the calculation of spectral func-
tions which, in contrast to NRG, it obtains with equal
resolution across the spectrum (see, e.g., Refs. [29,30]). In
pioneering work the method was applied as a DMFT solver
by García et al. [13] and Nishimoto et al. [31] with
important further work done by these and other authors
[32–38]. However, the method has not been widely
accepted, perhaps because high-quality data were presented
only for the single-site approximation to the single-band
Hubbard model. Recently, the method was shown to
provide a reliable and highly efficient solver for the
two-site dynamical cluster approximation (DCA) approxi-
mation to the single-band Hubbard model [39], and insights
into the entanglement of the impurity problem make it even

more powerful [40]. In view of these advances, DMRG
now is a promising candidate for a highly flexible low-cost
impurity solver, which can, in addition, be efficiently
employed in the nonequilibrium formulation of DMFT
[40–42]. However, the key issue of the ability to treat a
multiorbital, multisite, low symmetry situation has not yet
been demonstrated.
This paper takes a further step forward in the develop-

ment of DMRG as a tool to study systems with multiple
relevant orbitals and important intersite correlations. The
important technical advance is a reformulation of the
method on the imaginary-time axis. As we show, this
strongly reduces entanglement and requires smaller bath
sizes, enabling treatment of a large class of problems,
including some that are unreachable by other methods, due,
e.g., to the sign problem, the size of the correlated cluster,
or the number of bands. The price to be paid is a reduced
resolution on the real-frequency axis (not needed for
converging the DMFT equations or obtaining thermody-
namic quantities and phase boundaries), which we study in
detail by comparing with calculations that converge the
DMFT loop on the real-frequency axis.
The paper is organized as follows. Section II presents the

basics of the method. Section III compares the new
imaginary-axis formulation with existing real-axis formu-
lations and documents the reduction in bath sizes and the
implications for real-axis spectra. We illustrate the method
with calculations for three-band models in the single-site
and two-site DMFT approximation in Sec. IV and sum-
marize our work in Sec. V. We append discussions of the
optimization of typical DMFTHamiltonians (Appendix A),
the entanglement in different representations of the
DCA, including a discussion of off-diagonal hybridization
functions (Appendix B), and general aspects regarding
the computation of Green’s functions using MPS
(Appendix C).

II. METHOD

A. Overview: Green’s functions in DMRG

The computational key challenge in DMFT is the
computation of the full frequency dependence of the
Green function of a quantum impurity model involving
an essentially arbitrary bath. The “size” (number of
correlated sites Lc) of the impurity model should be as
large as possible and the kinds of interaction that can be
treated should be as general as possible. The Green
function is used in a self-consistency loop, which may
require many iterations for convergence. The solution
should be as inexpensive as feasible, and must run
automatically, without need for manual optimization of
parameters or procedures. In this section, we present a
qualitative discussion of the issues involved in computing
the Green function using DMRG methods, to motivate the
work described in detail below.
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Within DMRG one computes Green’s functions by first
representing the system ground state jE0i as a MPS. One
then generates a one-electron (one-hole) excitation jψ>

0 i ¼
d†jE0i ðjψ<

0 i ¼ djE0iÞ by applying a creation (annihila-
tion) operator d† (d) to jE0i. While the state jψ≷

0 i is at most
as entangled as the ground state jE0i [30], in order to
compute a Green function one has to perform further
operations on jψ≷

0 i. These operations typically increase
entanglement and by that the bond dimension of a MPS,
which ultimately limits all computations.
Let us be more concrete and consider a general MPS of

bond dimension m for a system with L sites and open
boundary conditions. Defining Aσi , Bσi ∈ Cm×m for i ≠ 1,
L and Aσ1 ∈ C1×m, BσL ∈ Cm×1, where σi ∈ f0;↑;↓;↑↓g
labels a local basis state of the Hilbert space, any MPS can
be represented as [27]

jψMPSi ¼
X

σ1;…;σL

Aσ1… AσlSBσlþ1… BσL jσ1;…; σLi; ð1Þ

where S ¼ diagðs1;…; smÞ is a diagonal matrix and Aσi are
left normalized and Bσi are right normalized, respectively:X

σi

Aσi†Aσi ¼ I;
X
σi

BσiBσi† ¼ I: ð2Þ

Here, I are identity matrices. Left and right normalization
make Eq. (1) the Schmidt decomposition of jψMPSi that is
associated with partitioning the system at bond ði; iþ 1Þ.
The bond entanglement entropy for the associated reduced
density matrix can therefore simply be read off from
Eq. (1) [27]:

Sentði;iþ1Þ ¼
Xm
ν¼1

s2ν ln s2ν: ð3Þ

When subsequently we refer to an entanglement growth
associated with repeated operations on jψMPSi, this implies
the need to adjust the bond dimension m such that jψMPSi
still faithfully represents a physical state. If entanglement in
the physical state becomes too large, we have to choose m
so large that computations with MPS become impractical.
Since the first suggestion for computing spectral func-

tions within DMRG [43], the field has evolved by the
important development of the correction vector method
[44,45]. The subsequent understanding of the connection
between DMRG and MPS [27] opened the door to many
further approaches to computing spectral and Green’s
functions, in particular, time evolution and subsequent
Fourier transform [46,47], an improved Lanczos algorithm
[48], and the Chebyshev recursion [29,30,49]. All of these
are formulated for the calculation of spectral functions at
T ¼ 0, as considered in the present paper, and came at
much cheaper computational cost than the correction vector
method [29,30]. We note that for T > 0, there are

perspectives for even more powerful algorithms: it was
recently demonstrated that the numerically exact spectral
function of a molecule consisting of several hundreds of
interacting spins could be computed [50].
These developments (see Appendix C for more details)

make MPS-based solvers an attractive possibility for
dynamical mean-field theory. However, the growth of
entanglement arising in all calculations of the Green
function has limited the system sizes that have been
addressed to date. Also, in MPS computations manual
adjustments, for example, choosing optimal broadening
[29] or combining results of different systems sizes [48], are
still common practice. In the rest of this section, we show
that these problems can, to a large degree, be circumvented
by computing Matsubara Green’s functions using
imaginary-time evolution. The imaginary-time framework
naturally extends existing techniques based on real-time
evolution [38,40], which have been shown to provide the
currently most efficient algorithmic approach to compute
real-frequency spectral functions [30].

B. Imaginary-time computation

The central objects of technical interest in this paper are
the greater and the lesser correlation functions ~G≷, which
we define for imaginary time τ:

~G≷ðτÞ ¼ hψ≷
0 je∓ðH−E0Þτjψ≷

0 i; ð4aÞ

~G≷ðitÞ ¼ hψ≷
0 je∓iðH−E0Þtjψ≷

0 i: ð4bÞ

In the second line, we evaluate ~G≷ðτÞjτ¼it and by that
obtain a correlation function for real time t, which will be
useful later on. The functions ~G≷ carry spin and orbital
indices associated with the spin and orbital indices of the
single-particle (hole) excitation jψ≷

0 i, but these indices are
not explicitly written here. We discuss the relationship of
~G≷ to the physical Green’s functions (which we denote
by G) below.
While it is not essential in principle, we evaluate Eq. (4)

using a Krylov algorithm [51], which represents the time-
evolution operator in a local Krylov space and is able to
treat Hamiltonians with long-ranged interactions. Before
performing a time-evolution computation, one has to
compute the initial state jψ≷

0 i using a MPS optimization
of the ground state. As impurity models come with open
boundary conditions, this is well suited for DMRG. We
discuss this optimization for typical DMFT Hamiltonians
in Appendix A 1.
Figure 1 presents representative results based on param-

eters obtained from a two-site DMFT solution of the
Hubbard model. Figure 1(a) shows the time evolution of
~G≷ðτÞ out to times as long as 350 times the basic time scale
(inverse half-bandwidth D) of the model, which suffices to
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converge ~G≷ðτÞ to a precision of 5 × 10−4. Figure 1(b)
demonstrates the key advantage that makes this computa-
tion possible: the lack of growth of maximal bond dimen-
sionsm with time of the associated imaginary-time evolved
states jψ≷ðτÞi ¼ e−ðH−E0Þτjψ0

≷i. The imaginary-time evo-
lution operator does not create entanglement as it projects
on the lowly entangled ground state.
Figure 1(a) reveals additional information about the

nature and rate of convergence of ~G≷ðτÞ. In the insulating
phase, H has a gap and ~G≷ðτÞ decays exponentially
irrespective of whether one considers a finite system or
the thermodynamic limit. In the metallic phase, ~G≷ðτÞ
decays algebraically in the thermodynamic limit. For a

finite system though, there always remains a small gap, and
even though the decay resembles an algebraic decay for
short times, it always becomes exponential at long times.
The exponential decay can be exploited to speed up
computations considerably by a simple technique known
as linear prediction [30,47,53,54]. This technique is an
efficient formulation of the fitting problem for the ansatz
function fðτÞ ¼ P

nαne
βnτ, αn, βn ∈ C, τ ∈ R, which can

then be used to reliably extrapolate functions with an
exponentially decaying envelope. This is illustrated by the
dashed black line in Fig. 1(a), which is fitted to match
~G≷ðτÞ for τD ∈ ½150; 200� and is then extrapolated for
higher times. The solid green line, by contrast, is the result
of the MPS computation. Agreement can be seen to be
perfect.

C. Physical Green’s functions

Of particular interest in the rest of this paper are the
imaginary-time Green functions GmatðτÞ defined via

GmatðτÞ ¼ −θðτÞ ~G>ðτÞ þ θð−τÞ ~G<ðτÞ; ð5Þ

whose Fourier transform gives the Matsubara Green
function [we distinguish the Fourier transform GmatðiωnÞ
ofGmatðτÞ only by its argument to keep the notation simple]

GmatðiωnÞ ¼
Z

∞

−∞
dτeiωnτGmatðτÞ; ð6Þ

at zero temperature, where ωn ¼ ð2nþ 1Þπ=β and β → ∞.
We are also interested in the retarded real-time Green
function,

GretðtÞ ¼ −iθðtÞ½ ~G>ðitÞ þ ~G<ðitÞ�; ð7Þ

from which the retarded frequency-dependent Green func-
tion is obtained as [again, we distinguish the Fourier
transform GretðωÞ of GretðtÞ only by its argument]

GretðωÞ ¼
Z

∞

−∞
dteiðωþi0þÞtGretðtÞ: ð8Þ

This allows one to obtain the spectral function as
AðωÞ ¼ −ð1=πÞImGretðωÞ.
In numerical practice, we evaluate the Fourier transforms

leading to Eqs. (6) and (8) approximately as

GmatðiωnÞ ¼ −
Z

τmax

0

dτ ~G>ðτÞeiωnt þ
Z

0

−τmax

dτ ~G<ðτÞeiωnt;

GretðωÞ ¼ −i
Z

tmax

0

dt½ ~G>ðitÞ þ ~G<ðitÞ�eiωt; ð9Þ

with cutoff times τmax and tmax. This approximation is
controlled only if we are able to reach long enough times

FIG. 1. (a) Imaginary-time correlation functions ~G≷ðτÞ defined
in Eq. (4a) for an impurity model arising in the context of the two-
site dynamical cluster approximation to the single-band Hubbard
model on the square lattice with next-nearest neighbor hopping
t0=t ¼ 0.3, half-bandwidth D ¼ 4t, interaction U ¼ 2.5D, and
band filling n ¼ 0.96 in the paramagnetic phase. See Ref. [52] for
definition of the model and the meaning of the orbital (patch)
quantum number K ¼ �. The dashed line is obtained using linear
prediction for times τD ≥ 200. (b) Maximal bond dimensionm of
time-evolved states. The MPS computation uses a Hamiltonian
representation of the discrete (approximate) impurity model with
Lc ¼ 2 correlated sites and Lb ¼ 14 bath sites. The hybridization
function of the impurity model Λdiscr is fitted using Eq. (13) for
βeff ¼ 315=D and α ¼ 0. For the ground state optimization, we
enforce a maximal bond dimension ofm ¼ 300. The Krylov time
evolution uses a time step of Δt ¼ 0.1=D and allows for a
maximal global truncation error of 10−4 at each time step,
adjusting bond dimensions automatically. This leads to an
immediate decay of m at τ≃ 0 from m ¼ 300 down to
m≃ 110, as seen in (b). We use the global SU(2) symmetry
of the Hamiltonian to reach these low values of the bond
dimension.
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τmax and tmax, such that ~G≷ðτÞ and ~G≷ðitÞ have converged
to zero to any desired accuracy.
In contrast to a computation on the imaginary axis,

reaching arbitrarily long times tmax on the real axis is
prohibited by a logarithmic growth of entanglement, which
comes with a power-law growth of bond dimensions. In
addition, finite-size effects are a severe source of errors
because the long-time behavior is determined by the bath
size. For a numerically exact computation, one has to
choose the system large enough to observe exponential
“pseudoconvergence" of ~G≷ðitÞ to zero [30]. This means
that—after an initial regime—the envelope of ~G≷ðitÞ
decays exponentially up to the time at which finite-size
effects begin to be resolved. In the context of the present
paper, we deal with small system sizes and will never
observe pseudoconvergence. In particular, there is no
exponential pseudoconvergence, so that linear prediction
cannot be employed [30]. Therefore, when computing the
real-frequency spectral function after converging the
DMFT loop, one has to use the further approximation of
damping the finite-size effects that emerge at long times by
computing, instead of GretðωÞ in Eq. (9),

Gret
η ðωÞ ¼ −i

Z
∞

0

dt½ ~G>ðitÞ þ ~G<ðitÞ�eiωte−η2t2=2; ð10Þ

which yields the broadened spectral function AηðωÞ ¼
−ð1=πÞImGret

η ðωÞ ¼ ð1= ffiffiffiffiffiffi
2π

p
ηÞ R dω0Aðω0Þe−ðω−ω0Þ2=2η2 .

Instead of a Gaussian damping and broadening, one could
also use an exponential damping leading to Lorentzian
broadening, which damps out the original time-evolution
information more strongly, though.
Before presenting detailed benchmark results for the

solution of DMFT using imaginary-time evolution of MPS,
let us clarify the price we have to pay for profiting from the
great advantage of not facing entanglement growth. We do
this by comparing the imaginary-time approach (ITMPS) to
approaches that solve the DMFT loop on the real axis.

III. COMPARISON OF IMAGINARY-AXIS
WITH REAL-AXIS COMPUTATIONS

The self-consistency equation in DMFT relates an
impurity model specified by a hybridization function and
a self-energy to a lattice model specified by a lattice
Hamiltonian and the same self-energy. We discuss the
issues using the example of the dynamical cluster approxi-
mation to the single-band Hubbard model:

Glatt
K ðzÞ ¼ Nc

N

X
k∈PK

1

zþ μ − εk − ΣKðzÞ
;

¼! ½zþ μ − εK − ΣKðzÞ − ΛKðzÞ�−1
¼ Gimp

K ðzÞ: ð11Þ

Here, εk denotes the single-particle dispersion of the lattice
and μ is the chemical potential. In the dynamical cluster
approximation, the Brillouin zone, consisting in N momen-
tum vectors k, is covered by Nc (for single band Lc ¼ Nc)
equal-area tiles (patches), labeled here by PK and the self-
energy ΣKðωÞ is taken to be piecewise constant, with
ΣKðωÞ being a potentially different function of frequency in
each tile. The impurity model is specified by the on-site
energy εK and the hybridization function ΛKðzÞ, which is to
be determined using a fixed point iteration referred to as the
DMFT loop. This works as follows. Make an initial guess
for ΛKðzÞ, then compute ΣKðzÞ using a MPS calculation of
Gimp

K ðzÞ via

ΣKðzÞ ¼ zþ μ − εK − ΛKðzÞ − ½Gimp
K ðzÞ�−1; ð12aÞ

then update ΛK using the first line of Eq. (11) via

ΛKðzÞ ¼ zþ μ − εK − ΣKðzÞ − ½Glatt
K ðzÞ�−1; ð12bÞ

and repeat this procedure until convergence.
We discuss two aspects of the comparison of real-

and imaginary-frequency solutions of the DMFT self-
consistency equation (11). The first has to do with the
number of bath sites needed to obtain a solution of the self-
consistency equation. The second is the accuracy to which
the spectral functions of physical interest can be reproduced.
The DMFT self-consistency equation (11) defines the

hybridization function ΛK as a continuous function in terms
of the difference between the computed self-energy and the
inverse of the lattice Green function. In DMRG-type
methods, the hybridization function ΛK is approximated
as the hybridization function Λdiscr

K (a sum of poles) of a
discrete impurity model with a finite number Lb of bath
sites. If the number Lb of bath sites is too small, one cannot
construct a meaningful approximation on the real axis [55]
and a DMFT loop cannot be converged. For this reason,
DMRG-based solutions of DMFT up to now [13,31–40],
all of which were real axis computations, have been
performed using numbers of bath sites of at least
Lb=Lc ≳ 30, and in the case of the single-band Hubbard
model, even much more, Lb=Lc ≳ 120. Use of such a large
number of bath sites means that with modest broadening
the hybridization function can be reasonably approximated
as a continuum, enabling a stable solution of Eq. (11).
By contrast, formulating the problem on the imaginary

axis (as is typically done in standard ED solvers where the
number of bath sites is strictly limited) automatically
smoothens the hybridization function Λdiscr

K and permits
a stable solution. From the imaginary-axis solution, one
must then determine the discrete set of bath parameters to
represent Λdiscr

K . This is typically done [9,11,56] by numeri-
cal minimization of a cost function defined as
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χ2 ¼ 1

Nfit

XNfit

n¼1

ω−α
n jΛKðiωnÞ − Λdiscr

K ðiωnÞj2: ð13Þ

Here, α defines a weighting function ω−α
n . Choosing α > 0,

e.g., α ¼ 1, attributes more weight to smaller frequencies
[11,56,57], which we find helpful when using small bath
sizes Lb=Lc < 5. To define the frequency grid for the fit
ωn ¼ ð2nþ 1Þπ=βeff , one defines a fictitious inverse tem-
perature βeff , which has no physical significance. We
further employ a cutoff frequency ωc, which implies a
finite number Nfit of fitted Matsubara frequencies.
If one tries to define an analogous cost function for the

real axis, the result is useless as then Λdiscr
K ðωþ i0þÞ is a

sum of poles, whereas the hybridization function
ΛKðωþ i0þÞ, as encountered in Eq. (11), is continuous
[55]. One can overcome this problem only when using a
Lindbladt formalism [58], which increases the complexity
of the problem substantially.
The minimization of Eq. (13) is done using standard

numerical optimization. The optimization in the initial
DMFT iteration should be done using a global optimization
scheme [59], and in subsequent iterations using a local
optimization scheme (e.g., conjugate gradient), which takes
as an initial guess for the new bath parameters the values of
the previous iteration. Figure 2 shows the convergence of
the fit of the hybridization function with the number of bath
sites Lb=Lc. For Lb=Lc ¼ 7, one already obtains errors as
little as≃10−3, and for values Lb=Lc ≳ 9, the quality of the
fit already stops improving. It is at this point, where we (and
all ED-like techniques) face the problem of “analytic
continuation” encountered in imaginary-time CTQMC
methods, namely, that Green’s functions on the imaginary
axis encode information in a much less usable form than on
the real axis.
Consider again the example of the two-site DCA for the

single-band Hubbard model on the square lattice. In
Ref. [39], this problem has been solved entirely on the

real axis using Lb=Lc ¼ 39 bath orbitals. Here, we con-
verge the DMFT loop on the imaginary axis and compute
the spectral function in a final real-time evolution using
Lb=Lc ¼ 3, 5, 7 bath orbitals. We compare both solutions

FIG. 2. Fit of the hybridization function in the two-site DCA
problem studied in Figs. 1 and 3, but here for the caseU ¼ 0. The
minimization [Eq. (13)] is done using α ¼ 0 and a frequency grid
defined by βeff ¼ 100=D and a cutoff frequency of ωc ¼ 6D.
Evidently, the quality of the fit does not improve any more for
Lb=Lc ≳ 9.

FIG. 3. Real- and imaginary-frequency Green’s functions
computed by converging the DMFT self-consistency equation
[Eq. (11)] for the two-site dynamical cluster approximation to the
single-band Hubbard model on the square lattice with next-
nearest neighbor hopping t0=t ¼ 0.3, half-bandwidth D ¼ 4t,
interaction U ¼ 2.5D, and band filling n ¼ 0.96 in the para-
magnetic phase (as in Fig. 1). See Ref. [52] for definition of the
model and the meaning of the orbital (patch) quantum number
K ¼ �. (a)–(c) Electron spectral function AþðωÞ (a) and A−ðωÞ
(b) obtained by converging on imaginary-frequency axis
(ITMPS) using number of bath sites and different broadenings
as specified in the figure, and compared to unbroadened (η ¼ 0)
real-frequency axis computation using Lb=Lc ¼ 39 bath sites per
correlated site of Ref. [39]. (d) Converged Matsubara Green’s
function for number of bath sites shown, compared to numeri-
cally exact quantum Monte Carlo result of Ref. [52], computed at
β ¼ 200=D.
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in Fig. 3(a). Whereas for the (central) momentum patch
“þ” shown in Fig. 3(a), we find satisfactory agreement of
the imaginary-axis with the real-axis calculation, this is not
the case for the (outer) momentum patch “−” shown in
Fig. 3(b), even though the corresponding imaginary-axis
Green function is well reproduced; see Fig. 3(d). Evidently,
in Fig. 3(b), the central peak and the pseudogap at the Fermi
edge are smeared out by a broadening η ¼ 0.2D that hides
finite-size effects to a large degree. Reducing the broad-
ening to η ¼ 0.05D, as shown in Fig. 3(c), again reveals the
pseudogap and the central peak, but together with unphys-
ical finite-size effects. We observe that the nature of these
finite-size effects is qualitatively comparable when using
different numbers of bath sites, Lb=Lc ¼ 3, 5, 7. On the
imaginary axis, by contrast, Lb=Lc ¼ 5, 7 still improve
over Lb=Lc ¼ 3 and almost agree with the numerically
exact QMC data for β ¼ 200=D of Ref. [52]; see Fig. 3(d).
However, we emphasize that even with the modest number
of bath sites used here, the basic features of the spectral
function are reproduced (for example, the areas in given
frequency ranges).

IV. THREE-BAND CALCULATIONS

A. Three-band model in single-site DMFT

We now demonstrate the power of the method by
applying it to three-band problems in the single-site
approximation (where comparison to existing calculations
can be made) and the two-site approximation. Both have
hitherto not been accessible to DMFTþ DMRG
computations.
We study the three-band Hubbard-Kanamori model with

Hamiltonian (omitting the site index i in the following
definition of Hloc;i)

H ¼
X
k;a;b;σ

εabk d†k;a;σdk;b;σ þ
X
i

Hloc;i;

Hloc ¼ −X
a;σ

ðμ−ΔaÞna;σ þ
X
a

Una;↑na;↓

þ
X
a>b;σ

½U0na;σnb;−σ þ ðU0 − JÞna;σnb;σ�

−
X
a≠b

Jðd†a;↓d†b;↑db;↓da;↑ þ d†b;↑d
†
b;↓da;↑da;↓ þH:c:Þ;

ð14Þ

where i labels sites in a lattice and k labels wave vectors in
the first Brillouin zone, ni;a;σ ¼ d†i;a;σdi;a;σ is the density of
electrons of spin σ in orbital a on site i, μ is the chemical
potential, Δa is a level shift for orbital a, εabk is the band
dispersion, U is the intraorbital and U0 the interorbital
Coulomb interaction, and J is the coefficient of the
Hund coupling and pair-hopping terms. We adopt the
conventional choice of parameters, U0 ¼ U − 2J, which
follows from symmetry considerations for d orbitals in free

space and holds (at least for reasonably symmetric sit-
uations) for the t2g manifold in solids [60].
We study the orbital-diagonal and orbital-degenerate

case (Δa ¼ 0) on the Bethe lattice, i.e., the noninteracting
density of states is semielliptic,

Aa;0ðωÞ ¼
1

πt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ω

2t

�
2

s
: ð15Þ

In the single-site approximation, the impurity Hamiltonian
used within DMFT is given by

H ¼ Hloc þHcoupl þHbath;

Hcoupl ¼
X
l;a;σ

Vl;a;σd
†
a;σcl;a;σ þ H:c:;

Hbath ¼
X
l;a;σ

εl;a:σc
†
l;a;σcl;a;σ; ð16Þ

where c†l;a;σ creates a fermion in the bath orbital l, Vl;a;σ

describes the coupling of the impurity to the orbital l, and
εl;a:σ denotes the potential energy of orbital l. The hybridi-
zation function is then given by

Λdiscr
a;σ ðzÞ ¼

XLb=Lc

l¼1

jVl;a;σj2
z − εl;a:σ

: ð17Þ

Figure 4 compares the dependence of the particle density
n on the chemical potential μ obtained by the MPS methods
used here to those obtained by numerically exact CTQMC
methods [61]. The plateaus in nðμÞ are the Mott insulating
regimes of the phase diagram. The agreement is very good
in general, confirming the reliability of our new procedure
even with only three bath sites per correlated site. This
leads to an extremely cheap computation, for which a single
iteration of the DMFT loop takes about 30 min on two
2.8-GHz cores (see Appendix A 2 for more details).
In Fig. 5(a), we show a more stringent test, namely, the

dependence of the self-energy on Matsubara frequency, in a
parameter regime where the self-energy was previously
found [62] to exhibit an anomalous ω1=2 frequency
dependence and (in some regimes) a nonzero intercept
as ω → 0. These phenomena are associated with a spin-
freezing transition [61,62].
Figure 5(a) shows that the low-frequency ω≲ t self-

energy obtained using CTQMC is already accurately
reproduced even for the computationally inexpensive
choice of Lb=Lc ¼ 3, although one observes deviations
for the high-frequency behavior. The deviations at high
frequency decrease as the number of bath sites is increased,
although full convergence at all frequencies has not been
demonstrated. Figure 5(b) shows that the deviations are
linked to the impossibility of fitting the hybridization
function equally well for all frequencies using only a small
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number of bath sites. The large deviations at high frequen-
cies are due to the choice α ¼ 1 in Eq. (13), which enforces
good agreement for low frequencies and allows us to
successfully reproduce the metal-insulator transition
(MIT) in Fig. 4. Increasing the number of bath sites to
Lb=Lc ¼ 5 leads to a much better approximation of the
hybridization function also for high frequencies, with
concomitant improvement in the self-energy [Fig. 5(a)].

B. Three-band model in two-site DCA

We now present results obtained using a two-site DCA
approximation to the three-band model of the previous
section. For this problem there are no low-temperature
results available in the literature. The size of the problem is
beyond the scope of standard ED. The truncated configu-
ration interaction (CI) impurity solver [20] allows one to
access a relatively high number of bath sites but is limited
in the number of correlated sites: for example, in Ref. [24],
a problem with Lc ¼ 3 and Lb ¼ 30 was computed, and in
Ref. [56], one with Lc ¼ 4 and Lb ¼ 20. The three-band
two-site DCA though has Lc ¼ 6 correlated sites and it
remains to be seen whether this is in reach for the CI solver.
The problem is also challenging for standard CTQMC.
Recent technical improvements on mitigating the sign
problem [63] enabled Ref. [64] to treat this model at the
temperature of T ¼ 0.025D, with D the half-bandwidth,
although large computational resources were required. As
the authors noted, this temperature is high relative to the

effective Fermi energy. In a study of a simpler two-band
two-site model the authors reached T ¼ 0.0125D, but this
is not yet low enough to resolve a Fermi liquid phase (if one
exists for these parameters) [63].
We study the model on the two-dimensional square

lattice, i.e., using εabk ¼ −2tðcos kx þ cos kyÞδab. We use
the momentum patching of Ref. [52]; this definition is also
used in the single-band computations of Figs. 1 and 3. We
note that this model is not directly relevant to layered
materials where the t2g orbitals are relevant, because in the
physical situation the two dimensionality will break the
threefold orbital degeneracy. However the system is well
defined as a theoretical model and is useful to demonstrate
the power of our methods.
As is the case for the CI method, the DMRG method we

use here is easily able to treat a large number of bath sites if
the number of correlated sites is small: for Lc ¼ 1, DMRG
has already often be proven to treat Lb > 120 bath sites,
and for Lc ¼ 2, Lb > 80 is easily accessible [39,40].
However, for more correlated sites, the number of bath

FIG. 5. (a) Imaginary part of Matsubara axis self-energy Σ and
(b) imaginary part of hybridization function Λ for densities
shown obtained from converged ITMPS solution of single-site
DMFT for three-band Hubbard-Kanamori model [Eq. (16)] for
U ¼ 8t and J ¼ U=6. Crosses represent ITMPS data and black
circles depict CTQMC data from Fig. 3 of Ref. [62], computed at
inverse temperature β ¼ 100=t. We choose all parameters as
described in the caption of Fig. 4; in particular, for the bath fitting
[Eq. (13)], we use βeff ¼ 100=t, ωc ¼ 6t, and α ¼ 1. Choosing
α ¼ 1 enforces agreement for low frequencies at the price of
disagreement at high frequencies, which is observed in both (a)
and (b). In (b), Λ denotes the hybridization function that is fitted
with the hybridization function Λdiscr of the discrete impurity
model.

FIG. 4. Density per orbital as function of chemical potential for
three-band Hubbard-Kanamori model Eq. (14) using the semi-
elliptic density of states Eq. (15) and U ¼ 12t, obtained from
single-site DMFT approximation evaluated using imaginary-time
MPS (crosses) and CTQMC data (circles, Fig. 1 of Ref. [61],
inverse temperature β ¼ 50=t). In the DMRG computations the
bath fitting is performed using βeff ¼ 100=t, ωc ¼ 6t, and α ¼ 1,
with three bath sites per correlated site (Lb=Lc ¼ 3). The
maximal matrix dimensions is m ¼ 300 for the ground state
calculation, exploiting the SU(2) symmetry, which leads to the
high precision hðH − EÞ2i≃ 10−14. For the time evolution, we
compute ~G≷

a ðτÞ in Eq. (4a) in steps of Δτ ¼ 0.1=t allowing for a
global truncation error of 5 × 10−4 per step, up to imaginary time
τmax ¼ 100=t, and use linear prediction for higher times.
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sites that can be added at given computational cost
decreases. For Lc ¼ 6, we use Lb ¼ 18, i.e., Lb=Lc ¼ 3,
which we showed to be sufficient to produce reliable results
(previous sections). The solution does not require overly
large computation resources (computation time of several
hours per DMFT iteration on two cores).
We test the two-site calculation by converging the DMFT

loop for the three-band Hubbard model Eq. (16) with U0

and J ¼ 0 and comparing the results with a corresponding
two-site single-band DCA. Perfect agreement is obtained
(not shown). Nonzero values of U0 and J create additional
entanglement and make computations more costly. It is
then a decisive question whether a real-space or a momen-
tum-space representation of the impurity cluster is less
entangled. We discuss this in Appendix B, finding that for
the single-band Hubbard interaction both representations
yield similar entanglement, whereas for the Hubbard-
Kanamori interaction, the real-space representation is much
less entangled. Computational cost is therefore tremen-
dously reduced by using the real-space representation,
which comes with an off-diagonal hybridization function.
This is the opposite behavior as observed for the QMC
method, where the off-diagonal hybridization function
creates a severe sign problem. We further note that in
the real-space representation, strong interactions yield a
less and less entangled impurity problem, as electrons
become more and more localized.
We now present results for the more physically relevant

case, U0 ¼ U − 2J with J ¼ U=4. For these parameters, at
half filling the critical interaction for the MIT in the single-
site DMFT approximation is Uc ≃ 1.3D [65]. Figure 6(a)
shows that our results are consistent with this estimate: the
dashed lines depict the single-site (1s) results, showing a
metallic solution (spectral function nonzero at ω ¼ 0) for
U ¼ D, and an insulating solution (spectral function zero at
ω ¼ 0) for U ¼ 2D. In the two-site (2s) DCA (solid lines),
by contrast, the critical value Uc for the MIT is lowered.
Even at U ¼ D, the ω ¼ 0 spectral function is zero [the
small nonzero value in Fig. 6(a) is an effect of broadening,
as seen in Fig. 6(b)]. The different nature of the metallic and
insulating solutions is also visible on the imaginary axis in
the different nature of the decay of the imaginary-time
Green function. This is plotted in Fig. 6(c) for U ¼ D;
clearly, a power-law decay is observed for the metallic
solution obtained in the single-site DMFT, whereas an
exponential decay is obtained for the insulating solution
obtained within the two-site DCA.
The much higher value of the critical interaction

strength in the single-site approximation is due to the
complete neglect of intersite correlations (here, mainly
antiferromagnetic). These are known to have a crucial
effect on the critical interaction strength, and the two-site
approximation accounts for this. Furthermore, for example,
Ref. [66] shows that the critical interaction strength of
the two-site approximation is much closer to those of the

four- and eight-site approximations than to the single-site
approximation.

V. CONCLUSION

This paper introduces an imaginary-time MPS (ITMPS)
solver for DMFT and shows that it can treat complex
models, not easily accessible with other methods, at modest
computational cost. This development establishes DMRG
as a flexible low-cost impurity solver for realistic problems,
such as those encountered in the study of strongly corre-
lated materials. The crucial advance stems from the fact that
imaginary-time evolution does not create entanglement, and

FIG. 6. Comparison of results obtained using imaginary-time
MPS with Lb=Lc ¼ 3 for single-site (1s) and two-site (2s) DMFT
approximations to the Hubbard-Kanamori model [Eq. (14)] on
the two-dimensional square lattice with half-bandwidth D ¼ 4t,
εabk ¼ −2tðcos kx þ cos kyÞδab, U0 ¼ U − 2J, J ¼ U=4, and n ¼
3 (μ ¼ 5U=2 − 5J), that is, in the particle-hole symmetric case.
(a) Spectral functions for broadening η ¼ 0.2D; (b) broadening
η ¼ 0.05D. In (c), we show the imaginary-time evolution of
~G>ðτÞ as defined in Eq. (4a), confirming by comparison to a
calculation for a smaller bath Lb=Lc ¼ 2 that this quantity has
been converged with respect to the bath size. The maximal bond
dimension for the ground state search is m ¼ 1000.
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hence allows one to compute Green’s functions numerically
exactly, provided a ground state calculation is feasible. We
note that this reduces the computational cost to the same
level as necessary for the density matrix embedding theory
[20], although the latter requires a smaller bath due to a
different self-consistency condition.
The method can be improved in many ways. In particu-

lar, different representations of the impurity problem
exhibit different degrees of entanglement, so optimizing
the representation of the impurity problem is a promising
route. Ideas from ED approaches for constructing relevant
subspaces [21–24] of the Hilbert space may lead to further
improvements. Such techniques have been successfully
combined with MPS [67]. Another route to reduce com-
putational effort and by that reach even more complex
models could consist in performing computations for the
reduced dynamics of the impurity [68]. Extending the
method towards nonzero temperature requires the calcu-
lation of Green’s functions at nonzero temperature, for
which numerous MPS-based techniques have already been
developed. At very low temperatures one could combine a
strategy based on Lanczos algorithms [10] with its MPS
implementation [43,48] or use minimally entangled typical
thermal states [69]. The most frequently used method is
purification [70,71], whose usefulness for the calculation of
spectral functions, combined with linear prediction, has
been amply demonstrated [54,72–74]. At very high temper-
atures, an extremely cheap algorithm for computing
Green’s functions has been presented in Ref. [50].
Finally, we note that using MPS as an impurity solver
makes using entanglement as a quantity for understanding
the properties of the embedded impurity cluster very easily
accessible. Proposals in this direction have been made for
cellular DMFT [75] and for impurity models gener-
ally [76].
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APPENDIX A: FURTHER TECHNICAL DETAILS

1. Ground state optimization

The main challenge in solving the ground state problem
of a typical cluster-bath Hamiltonian as encountered in
DMFT stems from the fact that DMRG is a variational
procedure that is initialized with a random state, which is

then optimized locally. A local optimization procedure is
slow when optimizing a global energy landscape. In
addition, the local optimization is prone to getting stuck
in local minima, if no “perturbation steps that mix sym-
metry sectors” are applied. The standard perturbation
techniques for single-site DMRG [77–79] rely on “pertur-
bation terms” that are produced by contracting the
Hamiltonian with the MPS. If the Hamiltonian itself does
not contain terms that mix the symmetry sector, these
methods do not work.
A typical cluster-bath Hamiltonian has both features, a

global variation of the potential energy and parts that are
not connected with symmetry-mixing terms, such as in
the three-band Hubbard-Kanamori model at J ¼ 0. This
situation is sketched in Fig. 7.
In Ref. [39], the models under study allowed one to solve

this problem using the noninteracting solution. For the
general models studied in the present paper, an unbiased
numerical technique has to be employed. What we do in
practice is to first find the ground state of a system with
additional symmetry-mixing couplings (denoted as red
solid lines in Fig. 7) that are then adiabatically switched
off. In practice, we sweep 5–10 times with additional
hoppings of 10% magnitude of the physical hoppings, and
another 5–10 times with additional hoppings of 1%
magnitude. After these preliminary sweeps, the quantum
number (e.g., particle number) distribution has globally
converged, and we can continue with converging the
ground state of the exact Hamiltonian.

2. Convergence of DMFT iteration

The calculations for the three-band single-site DMFT in
Sec. IVA are only trivially parallelized using one core to
compute the imaginary time evolution of each the particle
(>) and the hole (<) Green functions ~G≷ðτÞ.
In Fig. 8, we show the converged DMFT loop for the

single-site DMFT for the three-band Hubbard-Kanamori
model as studied in Fig. 5. Figure 8(a) shows the con-
vergence of the Matsubara Green function down to a
precision of 10−3. Figures 8(b) and 8(c) show the con-
vergence of the density and of the ground state
energy per particle, respectively. Figure 8(d) shows the

FIG. 7. Sketch of a typical cluster-bath Hamiltonian (Lc ¼ 3,
Lb ¼ 6) when it is mapped to a one-dimensional chain. Dashed
lines depict couplings that do not mix symmetry sectors, and solid
lines depict couplings that mix symmetry sectors.
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computation time. An iteration on the Matsubara axis
takes about 30 min. The final real-axis computation
(iteration 31) is considerably more expensive, but can still
be optimized.

APPENDIX B: LEAST-ENTANGLED
REPRESENTATION AND OFF-DIAGONAL

HYBRIDIZATION FUNCTIONS

1. Geometry and general considerations

In Ref. [40], some of us showed that the star geometry of
the impurity problem can have substantially lower entan-
glement than its chain geometry. In the star geometry,
DMRG profits from the small entanglement of the almost
occupied states with low potential energy with the almost
unoccupied states with high potential energy. A high
weight for the superposition of a low- with a high-energy
state is physically irrelevant. In the star geometry, DMRG is
able to eliminate these superpositions as potential energy is
separated locally, i.e., in the same basis in which DMRG
optimizes the reduced density matrix in order to discard
irrelevant contributions. In principle, as mentioned in
Appendix C, ideas from basis-selective approaches in exact
diagonalization are a different method to account for the
fact that many states in the Hilbert space have a negligible
weight for the computation of the Green function and only
few physically relevant states occupy a small fraction of the
Hilbert space. Among these are the truncated configuration
interaction [20,23,24,56], the basis-selective ED [21], or

the coupled cluster methods in quantum chemistry. As
these methods can be combined with DMRG [67], they
might be a further route to construct efficient representa-
tions of the impurity-cluster problem.
In the present paper, the question of the least entangled

representation of the impurity problem is restricted to the
question of which basis to choose in a DCA calculation.
This is of high relevance also in another context: In the real-
space representation, the hybridization function becomes
off-diagonal. For the CTQMCmethod, this generates a sign
problem. In our approach, this does not affect computa-
tional cost much in the single-band Hubbard model. It even
leads to a tremendous reduction of computational cost for
the three-band Hubbard-Kanamori interaction.

2. DCA in momentum or real space

The complexity of the interaction determines whether the
real- or the momentum-space representation of the cluster-
bath Hamiltonian is less entangled. In real space, the
interaction has a simple form, but the hybridization function
has off-diagonal contributions, which result in additional
couplings of cluster and bath sites. In momentum space,
the hybridization function is diagonal but the interaction
becomes off diagonal. The additional couplings induced by
that depend on the complexity of the interaction.
Let us be more concrete. For the two-site case, the

discrete Fourier transform yields the even and odd super-
position of the real-space cluster.

~d†1 ¼
1ffiffiffi
2

p ðd†1 þ d†2Þ; ðB1Þ

~d†2 ¼
1ffiffiffi
2

p ðd†1 − d†2Þ; ðB2Þ

where the index of ~d†K labels momentum patches K and the
index of d†i labels real-space cluster sites i. There might be
further indices labeling spin or orbital.
In real space, the hybridization function has the form

ΛijðzÞ ¼
XLb

l¼1

V�
ilVjl

z − εl
; ðB3Þ

where the symmetry of the real-space cluster imposes
ΛijðzÞ ¼ ΛjiðzÞ. In momentum space, the hybridization
function is diagonal,

~ΛKðzÞ ¼
XL0

b

l¼lK¼1

~V�
Kl
~VKl

z − ~εKl
; ðB4Þ

and symmetry is reflected in the reduced number of bath
sites per patch, L0

b ¼ Lb=Lc, where Lc ¼ 2 is the number
of momentum patches.

FIG. 8. Single-site DMFT for three-band Hubbard-Kanamori
model as studied in Fig. 5. Here for the case n ¼ 1.77 (μ ¼ 5.0)
and Lb=Lc ¼ 3. To obtain the solution for n ¼ 1.79 as shown in
Fig. 5, we choose μ ¼ 5.1 and start from the n ¼ 1.77 solution.
(a) Convergence of Matsubara Green’s function in the DMFT
loop, starting from the noninteracting solution. (b) Convergence
of the density in the DMFT loop. (c) Convergence of the ground
state energy per particle in the DMFT loop. (d) Computation
time. An iteration on the Matsubara axis takes about 30 min. The
final real-axis computation (iteration 31) is considerably more
expensive, but can still be optimized.
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We choose to use the momentum representation for the
bath discretization, as was done for the real axis in
Ref. [39]. While on the real-frequency axis this is the only
viable option, the bath fitting on the imaginary-frequency
axis via Eq. (13) is possible also for the off-diagonal real-
space case. In real space, e.g., particle-hole symmetry can
be easily imposed in the fitting procedure, while this is not
possible in momentum space.
Given the parameters of the momentum-space represen-

tation obtained by performing a bath fit via Eq. (13), we
define the parameters of the equivalent real-space repre-
sentation as follows: In momentum space, bath parameters
are indexed by lK ¼ 1;…; L0

b, L
0
b ¼ Lb=Lc, and in real

space, bath parameters are indexed by l ¼ 1;…; Lb, then

εl ¼ ~ε1;l1¼l; for l¼ 1;…;L0
b;

εl ¼ ~ε2;l2¼l−L0
b
; for l¼ L0

bþ 1;…;Lb;

V1l ¼ V2l ¼
1ffiffiffi
2

p ~V1;l1¼l; for l¼ 1;…;L0
b;

V1l ¼−V2l ¼
1ffiffiffi
2

p ~V2;l2¼l−L0
b

for l¼ L0
bþ 1;…;Lb: ðB5Þ

Whereas the momentum-space Hamiltonian has Lb
nonzero couplings VKlK , the real-space Hamiltonian has
Lc × Lb couplings Vil. On the other hand, the interaction
part generates Lc × ðLc − 1Þ additional nonlocal couplings
in the momentum-space representation as compared to the
real-space Hamiltonian.
From this one could naively expect that the real-space

representation is less entangled if Lc×ðLc−1Þ>Lc×Lb.
Numerical experiments show that the real-space represen-
tation is much more favorable than this estimate. For a
single-band Hubbard model, we find about the same
entanglement in the real-space and the momentum-space
representation, with slight advantages for momentum
space. In the three-band Hubbard-Kanamori model, the
real-space representation is considerably less entangled and
leads to a tremendous reduction of computational cost.
In particular, we are not able to obtain the results of
Fig. 6 in the momentum-space representation when using
Lb=Lc ¼ 3, only for Lb=Lc ¼ 2 but then at much higher
computational cost.

APPENDIX C: GREEN’S FUNCTIONS
FROM MATRIX PRODUCT STATES

Even though the following discussion is not needed to
set up the imaginary-time MPS impurity solver, it describes
the context of the method.
A computation of AðωÞ ¼ hψ0jδðω − ðH − E0ÞÞjψ0i via

a computation of all eigenstates of H is extremely redun-
dant as only a tiny neighborhood N ¼fjψijhψ jHjψ0i≠0g
of a the single-particle excitation jψ0i contributes in the
sum (inserting identities

P
njEnihEnj) in AðωÞ. In ED, this

is exploited by systematically constructing the subspaceN
by spanning it using particle-hole excitations [20,21],
which might also be a viable route for further developments
within DMRG [67]. In DMRG, one needs to make a
statement about the entanglement of the states in the
subspace N : one might note that these are, in general,
more strongly entangled than the single-particle excitation
jψ0i, but should still be much less entangled than the rest of
the Hilbert space. This is illustrated in Fig. 9.
In Ref. [30], some of us argued that expanding the

spectral function in a family of orthogonal functions is a
natural way to construct a basis for N , starting from the
lowly entangled jψ0i and successively increasing entan-
glement of states and thereby computational complexity in
a sequence of basis states jψni. Reference [30] discussed
the expansion of AðωÞ in Chebyshev polynomials
Tnðω=aÞ ¼ arccos½n cosðω=aÞ�, which are orthogonal with
respect to an inner product weighted by wðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
[80], and in the plane waves exp½iωðn=aÞ� [orthogonal with
weight function wðxÞ ¼ 1], where the energy a is chosen
larger than the support of AðωÞ. The associated generated
sequences of basis states are then

jψChe
n i ¼ 2

�
H−E0

a
þ b

�
jψChe

n−1i− jψChe
n−2i; b ∈ ½−1;1�;

jψ time
n i ¼ exp

�
−iðH−E0Þ

n
a

�
jψ0i; ðC1Þ

and have different entanglement properties. The states
jψ time

n i associated with time evolution are in general less
entangled than the states jψChe

n i associated with the
Chebyshev recursion [30]. This is due to the observation
that error accumulation in the Chebyshev recursion is
worse conditioned than in time propagation [30], which
necessitates keeping the error in a single step of the
Chebyshev recursion much smaller than in the equivalent

FIG. 9. Single-particle excitation jψ0i of the ground state jE0i
and the subspace N ¼ fjψijhψ jHjψ0i ≠ 0g of the Hilbert space
that is relevant for the computation of a single-particle spectral
function of the form hψ0jδðω −HÞjψ0i. The single-particle
excitation is very lowly entangled, the subspace is more strongly
entangled, but still in general more lowly entangled than the rest
of the Hilbert space.
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time-evolution step, which in turn requires the use of higher
bond dimensions in the Chebyshev recursion making it less
efficient. In addition to the statements of Ref. [30], we note
here that the sequence produced by the Lanczos algorithm,

jψLan
n i ¼H−αnjψLan

n−1i− jψLan
n−2i; αn; βn ∈R; ðC2Þ

can be associated with an expansion of the spectral function
in polynomials that are orthogonal with respect to an
inner product weighted by wðxÞ ¼ AðxÞ [81]. This is very
efficient but numerically unstable.
In contrast to the previous methods, which generate an

increasingly complex basis when determining the spectral
function to a higher and higher precision, correction-vector
DMRG aims to optimize a state in frequency space, which
a priori contains contributions that have undergone an
infinitely long time evolution. As time evolution creates
entanglement, these states are much too strongly entangled
for an efficient treatment. They are “far away” from the
controlled, lowly entangled single-particle excitation jψ0i.
In order to still perform a meaningful computation in
frequency space, one introduces a so-called (Lorentzian)
broadening parameter η that damps out contributions from
an infinite time evolution. One then does not obtain the
exact spectral function but a broadened version as in
Eq. (10). The broadening parameter has to be guessed
a priori: If it is chosen too small, high entanglement
prevents convergence of the calculation. If it is chosen too
large, one will be far from the exact version of the spectral
function. In the expansion methods discussed above, by
contrast, one can stop the computation simply when it
becomes too costly. If one has not recovered the exact AðωÞ
at this point, a broadened version can be systematically
constructed with an a posteriori determined η as
in Eq. (10).
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