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The timing of T cell priming and 
cycling
Reinhard Obst*

Institute for Immunology, Ludwig-Maximilians-University Munich, Munich, Germany

The proliferation of specific lymphocytes is the central tenet of the clonal selection 
paradigm. Antigen recognition by T cells triggers a series of events that produces 
expanded clones of differentiated effector cells. TCR signaling events are detectable 
within seconds and minutes and are likely to continue for hours and days in vivo. Here, I 
review the work done on the importance of TCR signals in the later part of the expansion 
phase of the primary T cell response, primarily regarding the regulation of the cell cycle 
in CD4+ and CD8+ cells. The results suggest a degree of programing by early signals for 
effector differentiation, particularly in the CD8+ T cell compartment, with optimal expan-
sion supported by persistent antigen presentation later on. Differences to CD4+ T cell 
expansion and new avenues toward a molecular understanding of cell cycle regulation 
in lymphocytes are discussed.
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iNTRODUCTiON

The priming of naive T cells, i.e., their activation following a primary recognition of specific peptide–
MHC complexes, consists of a series of biophysical, biochemical, genetic, and proliferative events 
that lead to populations of expanded clones of differentiated effector cells, some of which have the 
potential to become long-lived memory cells. This clonal lymphocyte expansion is at the center of the 
still ruling clonal selection paradigm of adaptive immunity by Talmage, Lederberg (1, 2), and Burnet 
who hypothesized that lymphocyte “proliferation will be initiated of all those clones whose reactive 
sites correspond to the antigenic determinants on the antigen used” (3). Soon after its proposal, it 
was observed that indeed a proportion of small parental lymphocytes transferred into neonatal F1 
hosts enlarge, become “pyroninophilic,” i.e., express large amounts of mostly ribosomal RNA, and 
incorporate tritiated thymidine, i.e., proliferate, before the recipients succumb to graft-versus-host 
disease 2–3 weeks later (4, 5). Quickly, such results were translated to in vitro proliferation assays 
for the detection of immunoresponsive cells among splenocytes from immunized animals (6) or 
human allo-reactive lymphocytes (7). The identification of the TCR proteins and genes and how to 
trigger T cell responses by monoclonal antibodies and second messenger agonists set the stage for 
closer analyses of the molecular events initiating proliferation (8–10) for which the mutagenesis of 
T cell tumor cell lines has been an especially fruitful approach (11). The adoptive transfer of TCR-
transgenic T cells and the use of tracking dyes visualized cell populations expand and contract in vivo 
(12, 13). The detection of endogenous T cells of defined specificities by restimulation or tetramer 
assays also confirmed that the key driver of adaptive immunity is antigen (14, 15).

Research on the biophysics of TCR-peptide/MHC interaction (16, 17), the biochemistry of 
signal transducers (17, 18), transcription (19), and proliferation has naturally focused on differ-
ent time frames of seconds, minutes, hours, and days, respectively, while an overall integration 
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of these events, as noted recently, is still missing (20). The TCR 
signals convert a small metabolically inactive resting cell into an 
expanded group of descendants with newly acquired migratory 
and effector functions. While the dominant function of CD8+ T 
cells is the deletion of cells infected by intracellular pathogens 
like viruses and bacteria, their CD4+ counterparts differentiate 
following microenvironmental cues into discrete lineages pro-
filed by cytokines expressed (21, 22). Over the following weeks, 
T cell numbers decline and a residual population survives as 
memory cells. Important in this context is that differentiation 
and proliferation coincide but are molecularly not necessarily 
coupled (23).

Here, we discuss the effects and requirements of TCR signaling 
for T cell proliferation in the primary response: What aspects of 
T cell differentiation follow analog versus digital logics of signal 
processing? Is T cell proliferation programed early on or is it 
maintained by continued antigen triggers? These questions have 
been addressed in a variety of experimental systems. The data 
further our understanding of the nature of immune responses to 
complex pathogens and our capability to design more immuno-
genic T cell vaccines (24).

LeSSONS LeARNeD FROM iNTRAviTAL 
iMAGiNG

Experiments using intravital 2-photon microscopy showed that 
in the steady state, a dendritic cell (DC) interacts with 500–5000 
T cells per hour, which migrate within lymph nodes with a 
velocity of 10–12  μm per min, thereby scanning uncounted 
peptide/MHC complexes (25–27). Interestingly, CD4+ and 
CD8+ T cells employ different strategies of surveillance: The 
interaction times of CD4+ T cells with DCs depend on MHC 
class II (MHC-II) molecules while CD8+ T cells traverse a LN 
slower and regardless of self-peptide/MHC-I complexes. They 
scan 160–200 and 300 DCs per hour and, thus, stay in a lymph 
node approximately for half a day and a day, respectively (28). 
Considering natural precursor frequencies, it has been assessed 
that at least 85 antigen-presenting DCs per lymph node are nec-
essary to initiate a CD4+ T cell response (29). When confronted 
with a DC presenting antigen, specific T cells stop migrating and 
stay in touch with an individual DC for around a day (30–33). 
Within this period, the T cells undergo changes classically 
summarized as “blasting”: They increase in size, double their 
protein contents, increase their total RNA contents 30-fold, 
induce the expression of around 1300 mRNAs, and change their 
metabolism before proliferation ensues 24 h later (34–40).The 
stable interaction with one DC can be preceded by a phase of 
transient interactions with several APCs, the length of which 
is inversely correlated with APC density and antigen dose (41). 
Interestingly, it has been shown that, for CD8+ T cells, the phase 
of stable pairing with one DC is not necessarily required for 
expansion of effector clones, while memory differentiation is 
affected. These findings indicated that the memory potential of 
CD8+ T cells can be programed within the first 24 h of priming 
(36). The data also supported the relevance of observations that 
T cells can “memorize” sequential sub-threshold interactions 

with different APCs and accumulate such signals over time, 
perhaps via AP1 or NFAT (42–46).

COUNTiNG PReCURSORS AND 
eFFeCTORS TO ASSeSS THe LeveL OF 
eXPANSiON

The end result of priming is a population of expanded clones, the 
numerology of which has recently been assessed with great preci-
sion. It turned out that the precursor frequency of specific cells 
in the naive repertoire is a critical parameter for the magnitude 
of a T cell response. Even for “strong” antigens with unusually 
high precursor frequencies like alloantigens, estimates using 
classical techniques like limiting dilution analysis have been 
notoriously variable by several orders of magnitude (47), before 
the actual frequency of around 10% could be clarified with cell-
tracking dyes in vivo (48, 49). However, the much lower precursor 
frequencies to standard antigens could not be determined until 
peptide/MHC tetramers were employed for enriching the naive 
precursors from unimmunized animals. This technology is likely 
geared toward the detection of high-affinity T cells and will evolve 
further (50–53). For CD8+ T cells, precursor frequencies were 
found between 1 and 100 cells per 106 cells, while the numbers 
were three to five times lower for CD4+ T cells in both mouse and 
man (54, 55), confirming previous findings based on single-cell 
transfers and comparisons with expanded cells derived from 
the endogenous repertoire (56). Such numbers are important 
as they can partially predict the T cells’ clonal burst size and an 
individual’s immunological potential, though other mechanisms 
like antigen presentation efficiency, peptide/MHC stability, kind 
of APC, inflammation, niche issues, and self-reactivity likely con-
tribute (57–65). Importantly, the traficking and microfluidics of 
the secondary lymphoid organs are arranged to make priming an 
efficient process so that all existing rare precursors are recruited 
into an immune response rapidly and efficiently (29, 33, 66). 
Tetramer and restimulation assays have allowed for a determina-
tion of the T cells’ clonal burst size and, thus, the determination 
of their proliferative capacity.

In responses to several epitopes derived from lymphocytic 
choriomeningitis virus (LCMV), an acute viral infection that 
triggers exceptionally strong T cell responses, CD8+ T cells divide 
about 15 times (14, 15) and 16–19 times in response to the Gram-
positive intracellular bacterium Listeria monocytogenes (67). 
More recently, two studies on clones derived from individually 
labeled CD8+ T cells responding to Listeria showed, on average, 
15 divisions, but also a wide, and mysterious, variation of 10–20 
divisions that was independent of TCR specificity (58, 59). By 
contrast, tetramer studies determined the division numbers of 
CD4+ T cells to 7 on average, with different specificities falling 
between 4 and 10 divisions (54, 55, 68). This difference between 
CD4+ and CD8+ T cells confirms earlier studies in LCMV, vac-
cinia and Sendai virus infections where CD8+ T cells expand to 
a much greater extent than their CD4+ counterparts (69–71) and 
an intrinsic difference between the cell types, regarding their 
proliferative potential, had been suggested early on (72, 73).

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 5633

Obst Timing of T cell priming

Frontiers in Immunology | www.frontiersin.org

AUTOPiLOT eXPeRiMeNTS: CD8s

Early immunizations of TCR-transgenic cd28-deleted animals 
had suggested that the costimulatory requirements of CD8+ T 
cell priming can be overcome by prolonged antigen presentation 
(74). However, since it was quickly seen that TCR-transgenic 
animals are no models of T cell expansion (75, 76), more physi-
ological systems were developed. To investigate the role of antigen 
persistence in the process of T cell priming the TCR signal has to 
be interrupted experimentally. The first approach to do this was 
to prime naive CD4+ T cells in plates coated with peptide/MHC 
complexes and transfer the cells to uncoated wells at different 
times, with the effects of costimulation, APC, and responder cell 
types assessed as well. The authors concluded that sustained TCR 
signaling is the key parameter for the priming of naive CD4+ T 
cells (77).

These results provoked work on the antigen dependence of 
CD8+ T cell expansion that projected a different picture. Naive 
P14 TCR-transgenic T cells primed for 24  h continued their 
proliferation in antigen-free cultures and upon transfer into 
antigen-free recipients (78). Experiments with OT-1 T cells 
primed with fibroblast transfectants or antibodies showed that a 
priming period as short as 2 or 2.5 h was sufficient for the T cells to 
continue their divisions over the following days in vitro (79, 80). 
In a follow-up study, however, it was shown that a 20-h period of 
priming was necessary for the quantitative maintenance of the 
cells upon transfer into recipient animals, indicating that prolif-
eration in vitro can reflect an incomplete level of activation that 
leaves the cells ill-equipped for survival in secondary lymphoid 
organs (81). Not entirely consistent was the later observation 
that the 4-h-primed cells survive sufficiently to protect recipients 
against an OVA-expressing tumor (82).

The difference between the 2001 and 2003 studies by the 
Schoenberger group done in vitro and partially in vivo (79, 81) 
was later shown to be based on a factor working in trans between 
T cells cultured at high densities, namely IL-2 (83). Importantly, 
the merely accessory role of IL-2 for primary T cell expansion 
in vivo has been demonstrated in several infectious, transplanta-
tion, and vaccination models (84). For antigen-independent pro-
liferation of CD8+ T cells, IL-2 has a role in vitro, but not in vivo 
(80, 85). Though IL-2 has been used for culturing T cell lines 
and clones in the laboratory for decades, in vivo it mostly affects 
the maintenance of CD25+ regulatory T cells (86–88), which 
are the only T cells where IL-2/STAT5 signaling can be detected 
following immunization (89), and the programing of an efficient 
secondary response (90, 91). However, the contribution of IL-2 
signals to T cell expansion in vivo is not 0 and its actions may 
transmit signals from regulatory T cells and the inflammatory 
microenvironment (57, 92–94).

The results of the 2001 “autopilot” publications had been 
foreshadowed by experiments using the timed application of 
ampicillin to remove intracellular antigen-delivering L. monocy-
togenes bacteria from infected animals. The expansion of CD8+ T 
cells specific for two Listeria-derived epitopes continued, despite 
the efficient removal of live bacteria 24 h p.i. (95). In hindsight, 
one may ask what the half-life of residual antigen presentation, 
which has been reported in several infection models since, might 

have been. However, the swift disappearance of T cell antigen 
from Listeria-infected animals within a day after antibiotic treat-
ment was shown later by T cell transfers and in vitro assays and 
supported the initial conclusion that CD8+ T cell proliferation 
is programed in vivo within the initial 24 h of priming (96, 97). 
The observation that T cell contraction is programed as well 
strengthened this view (98, 99).

These observations are widely cited and considered seminal 
(100–103). The behavior of CD8+ T cells to execute a program 
set in place within the first day of priming has been illustratively 
summarized as being “on autopilot” or “programed” (100, 102). 
However, there are a significant number of publications that do 
not fit the scheme. Curtsinger et al. showed that adoptively trans-
ferred OT-1 T cells primed in vitro 16 h earlier did not proliferate 
and accumulate in antigen-free hosts compared to previously 
vaccinated ones (104). It is possible that in these experiments 
the programing threshold at 24 h had not yet been reached. The 
paper also showed that inflammatory stimuli can affect CD8+ T 
cell expansion, in agreement with experiments using P14 TCR-
transgenic cells whose cognate antigen Db/LCMV-GP33–41 has 
a short half-life in  vivo. Comparing animals immunized with 
peptide, virus-like particles, and live virus, CD8+ T cell expan-
sion correlated with antigen persistence, clearly arguing against 
an “autopilot” model (105). In the Listeria model, it was reported 
that ampicillin treatment between 24 and 60 h p.i. affected both 
endogenous CD4+ and CD8+ T cell expansion when read out in 
a peptide restimulation assay (106). The main difference to the 
earlier reports from four different laboratories was that they had 
used adoptive transfers of TCR-transgenic T cells, allowing for 
a clearly defined starting point of the expansion phase, and had 
visualized the proliferating T cells directly by fluorescent tracking 
dyes (78, 80, 85, 96, 97).

In immunizations with irradiated Plasmodium yoelii sporozo-
ites, it was shown that a T cell antigen derived from them can 
persist for months. Using consecutive transfers of TCR-transgenic 
T cells specific for P. yoelii between recipients immunized with P. 
yoelii or Plasmodium falciparum, it was shown that antigen pres-
entation beyond day 4 significantly contributes to the number of 
memory cells detectable a month later, implying that it supported 
a better primary response and revising an earlier interpretation 
(107, 108).

Another approach to limit the time of antigen exposure is the 
delayed T cell transfer of naive T cells into recipients infected 
days earlier. This procedure necessarily varies both parameters, 
dose and time, of priming antigen. In addition, the transferred 
cells face a rising competition of endogenous effector cells (109). 
All these parameters are likely to contribute to the result that the 
CD8+ T cells transferred at the peak of the response to vaccinia 
virus on day 7 exhibit overall inefficient priming with lower levels 
of division, survival, and memory differentiation (110).

The ablation of DCs from CD11c-diphtheria toxin receptor 
(DTR)/green fluorescent protein (GFP) transgenic animals is 
another way to interrupt the interactions between T cells and 
APCs (111, 112). Such animals express a fusion protein of the DTR 
and GFP on the surface of DCs. Mice are naturally resistant to 
diphtheria toxin as they lack a receptor for this toxin, so that only 
transgene-expressing DCs and some macrophages are depleted 
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(113). Since the expression of such conventional transgenes 
is, like many others, mosaic, the depletion of DCs from such 
animals is incomplete. In addition, the fact that the depletion of 
large numbers of DCs in transgenics directly modifies lympho-
cyte homing to lymph nodes via high endothelial venules is an 
unintended consequence (114). Thus, the procedure employed 
by Prlic et al., who sorted DTR/GFP+ DCs, transferred them after 
peptide loading, and depleted them at different time points of 
a T cell response, avoided these potential pitfalls. Responding 
TCR-transgenic cells accumulated linearly with the delay of the 
depletion, while their functionality in primary and secondary 
responses remained unchanged (115). Similar results were pre-
sented in an elegant study that terminated TCR signals by turning 
off a tetracycline-inducible lck gene during the expansion phase 
of endogenous cells responding to vaccinia virus (116). Also, the 
expansion of cells primed in vitro was significantly supported only 
in recipients that underwent an infection with the cognate antigen 
(117). Thus, these three datasets supported the interpretation that 
the differentiation of CD8+ T cells is programed within the initial 
24 h of priming, but not their quantitative accumulation.

Blocking antigen presentation in  vivo with peptide/MHC-
specific antibodies has been difficult as only few reagents with 
a sufficiently high affinity exist. Blair et  al. used antibodies 
specific for Kb/Ova257–264 and Ab/Eα52–68 to block the priming of 
TCR-transgenic T cells with the respective specificities following 
systemic infections with modified VSV. The results showed that 
both CD4+ and CD8+ T cell responses were affected. Though the 
antibodies blocked T cell expansion only incompletely, the results 
argue against the autopilot mode of T cell expansion (118).

These discrepancies cannot easily be explained by experimen-
tal details and modes of infection. We are left with two groups of 
publications of about equal numbers, arguing for and against an 
antigen-independent phase of CD8+ T cell expansion. Perhaps 
one is left with the understanding that CD8+ T cell proliferation 
and differentiation is initially programed, but is not hardwired 
and can be modified by later TCR signals (21). Several more 
recent studies looking at the effects of viral antigen presented 
locally support this view.

In the first 2 days of a pulmonary influenza infection, alveolar 
DCs migrate to the draining lymph nodes for priming (119, 120). 
The remaining DCs and macrophages can be partially depleted 
by i.n. application of clodronate-containing liposomes. By using 
this technique, McGill et al. showed that CD8+ T cells expand in 
response to antigen presented by such APCs in the lung, suggest-
ing a “two-hit model” of CD8+ T cell expansion (121, 122). The 
depletion of DCs from CD11c-DTR/GFP transgenics on day 6 
p.i. also reduces the number of CD8+ effector cells in the lungs 
significantly (123). An additional role of antigen presentation 
following day 7 for the CD8+ memory cell functionality was 
shown by León et al. in the same system. This paper with insight 
showed that late antigen presentation depended on specific IgG 
and FcγR+ DCs, suggesting that immune complexes are cross-
presented to CD8+ T cells late in the primary response and affect 
proper memory cell differentiation (124). A division of labor 
for effector and memory cell differentiation was also shown 
for two migratory DC types, one expressing CD103, the other 
CD11b, arguing for more nuanced T cell-APC interactions via 

costimulatory molecules, here CD24 (119). In the LCMV infec-
tion model, Kang et al. followed primed T cells at the peak of the 
response entering the CNS and found them synthesizing DNA, 
implying that they left the secondary lymphoid organs while 
actively cycling. In the CNS, the cells established long-lived inter-
actions with local DCs and T cell transfers into MHC-I-negative 
recipients showed that it is local antigen presentation that sup-
ports additional divisions within the CNS (125). These data from 
infection models stress the role late antigen presentation has on 
CD8+ T cell proliferation.

AUTOPiLOT eXPeRiMeNTS: CD4s

The initial in  vitro experiments by Iezzi et  al., reporting the 
necessity of antigen persistence for several days, were done with 
CD4+ T cells exposed to peptide/MHC complexes for limited 
periods of time and then recultured in new dishes (77). These 
findings were reproduced in experiments with antigen-loaded 
APCs by interrupting the TCR signals with MHC-specific anti-
bodies (126–128) and then in vivo in the Listeria model where 
the antigen removal by ampicillin affected the CD4+ T cell 
responses much more than those of the CD8+ T cells (96, 97). 
A careful study using a heterologous rechallenge extended these 
findings to secondary responses and established that CD4+ T 
memory cells do not acquire an “autopilot” phenotype (129). A 
direct demonstration of antigen dependence of the CD4+ T cell 
response was possible by using transgenic mice in which the 
presentation of an MHC-II restricted antigen by DCs could be 
controlled by doxycycline in vivo. Antigen withdrawal quickly 
arrested proliferation of adoptively transferred T cells (130). 
These findings were in agreement with results of Celli et  al. 
who transferred antigen-presenting DCs consecutively and 
showed the enhanced expansion and effector differentiation of 
CD4+ T cells and, importantly, visualized the stable contacts 
between DCs and T cells at later stages in the priming process 
by intravital microscopy (131, 132). Also the residual antigen 
left behind following the resolution of an influenza infection 
and still visible to CD4+ T cells supports their memory dif-
ferentiation (133).

A caveat to these studies was the high numbers of T cells 
transferred, a procedure that can affect the results (67, 134–137). 
However, the antigen dependence of CD4+ T cell expansion was 
also demonstrated by transferring small numbers of transgenic 
T cells (39, 138). An additional in vivo study looking at anti-HY 
responses of polyclonal T cells showed that antigen persistence is 
necessary for CD4+ T cells to expand and license DCs for proper 
CD8+ priming in a system relying entirely on natural precursor 
frequencies (139).

This work supported the model that CD4+ T cells require con-
tact with APCs and TCR signals to keep the cell cycle going for 
several rounds. There are, nevertheless, a number of experiments, 
mostly done in vitro, that show antigen-independent proliferation 
of CD4+ T cells, either supported by cytokines (140) or not (141, 
142). Interestingly, some of them reported a dampening effect of 
antigen presented to CD4+ T cells repeatedly, which drives the 
cells into exhaustion (143), a finding with clear correlates in vivo 
(144) and in man (77, 145).
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COMPARiNG CD4s AND CD8s

The few direct comparisons between CD4+ and CD8+ T cells 
that have been done mostly observe a higher degree of program-
ing in the CD8+ compartment. This was found in experiments 
with Listeria removed by ampicillin (96, 97) and a more recent 
side-by-side comparison of in  vitro-primed CD4+ and CD8+ 
T cells. Here, not just proliferation but also functionality and 
gene expression profiles supported the different consequences of 
interrupted TCR signals by the two subsets (39). These findings 
resonate with a number of observations that intrinsically differ-
entiate the two subsets. First, CD4 has a higher affinity to the key 
signaling molecule lck than CD8 so that different proportions 
of coreceptors are bound by lck (146, 147). Second, it has been 
reported in several systems that CD4/CD8 lineage commitment 
in the thymus is regulated by the kinetics of the positively select-
ing signal (148–150). Third, naive CD4+ T cells traverse lymph 
nodes faster than CD8+ T cells and do so in an MHC-dependent 
way (28). Fourth, tissue-resident CD4+ T memory cells recircu-
late via lymph and blood while their CD8+ counterparts stay put 
in the tissues and persist there in the absence of antigen (151). 
Fifth, the different importance of programing for proliferation 
may explain the different numbers of divisions observed in the 
two subsets mentioned before (54). And sixth, the higher degree 
of plasticity of CD4+ T cells is reflected in the multiplicity of line-
ages they can differentiate into under the guidance of cytokines 
and transcription factors (22).

In addition, there are also cell-extrinsic differences between 
the two subsets: MHC-I molecules are expressed by all nucleated 
cells, but MHC-II by professional APCs only. The substrates of 
antigen presentation via MHC-I may be short-lived defective 
ribosomal products rather than comparably stable proteins for 
the MHC-II pathway (152). Thus, one might speculate that the 
aspect of programing of CD8+ T cells reflects the more tran-
sient antigen presentation by MHC-I (39). Upon activation, the 
stability of MHC-II molecules on DCs is tightly regulated (153, 
154) via ubiquitination (155, 156), presumably by MARCH 
family members (157, 158), while that of MHC-I molecules 
is not (39, 153). There is also increasing evidence that the two 
T cell subsets are primed by different DCs. Antigen targeting 
with the two antibodies DEC205 and 33D1 revealed that CD8+ 
T cells are primed by CD205+CD8+ DCs, while CD4+ T cells 
are engaged best by DCIR2+CD8− DCs (159). These pivotal 
observations were recently confirmed by genetic means: the 
two APC subsets are also differentiated by the transcription 
factors IRF4 and IRF8, respectively (160). Intravital 2-photon 
microscopy of animals systemically immunized with a non-
replicative vaccinia virus has shown directly that the initial 
priming of CD4+ and CD8+ T cells occurs at spatially separate 
sites in the lymph node by different DCs. In later phases of the 
response, CD4+ and CD8+ T cells were seen clustered around 
the same XCR1+ DCs where T cell help is transmitted, which is 
evidenced by the finding that CD8+ T cells primed in XCR1+-
DC-depleted animals display a “helpless” phenotype (161). A 
similar division of labor among priming DCs has been shown 
for local HSV infections where antigen presentation also 
involves migratory DCs (162). A key question in the future 

will be how this spatial separation is accomplished and what 
purpose it might serve.

OUTLOOK: New APPROACHeS TO 
iNTeRRUPT TCR SiGNALS AND TO 
viSUALiZe THe CeLL CYCLe OF T CeLLS

The shortcomings of the techniques used to study the role of 
antigen for T cell proliferation so far has recently motivated new 
approaches. To quickly and specifically interrupt TCR signals 
at will have been notoriously difficult, especially in  vivo [e.g., 
Ref. (39)]. Art Weiss’ laboratory has worked toward this goal 
by developing a variant of the indispensible signal transducer 
ZAP70 whose kinase domain is sensitive to the ATP analog 
3-MB-PP1 (163, 164). The combination with a novel Nur77-GFP 
reporter (165) allowed for the visualization of TCR signals and 
their proliferative consequences with ZAP70 abruptly turned 
off at different time points following stimulation in  vitro. The 
experiments demonstrated a clear temporal threshold of 24 h for 
both CD4+ and CD8+ T cells to commit to proliferation that then 
commences, mostly driven by IL-2. Both subsets also continued 
to divide several times following the termination of ZAP70 
signaling (166). Experiments using such techniques in  vivo to 
follow immune responses with signaling terminated abruptly will 
certainly open new windows in the future.

The fact that tracking dyes cannot be resolved by flow cytom-
etry beyond the eighth division, before the expansion of CD8+ 
T cells is finished, calls for other ways to document the prolif-
erative status of cell populations, especially late in the response. 
Classical and novel DNA dyes visualize the cell cycle status of 
heterogeneous cell populations (167, 168) and new antibodies 
against cell cycle components are available, at least for human 
cells (169). The nucleoside analog EdU whose detection is based 
on click chemistry will certainly assist future research on cell 
cycle control in lymphocytes (170). Particularly, the consecutive 
injections of BrdU and EdU allow the precise labeling of cells in 
S phase in vivo even of cells with a complex history: Nussenzweig 
and colleagues showed by this technique that follicular helper T 
cells accelerate the cell cycle of germinal center B cells (171, 172). 
The doxycycline-induced expression of a very stable GFP–H2B 
fusion protein that then gets diluted upon division has been used 
to visualize the proliferative history of cells without liberating 
them from their microenvironment, like hematopoietic stem 
cells and germinal center B cells (171, 173). Another novel 
approach is the use of a double transgenic mouse that expresses 
two different fluorescent dyes under cycle-dependent promoters 
to differentiate G0/G1 from S/G2/M phases (93, 172, 174–176). 
In  vitro, tracking family trees of divided cells by time lapse 
microscopy showed that the division program, called its division 
destiny, is programed prior to the first division and passed on for 
several generations (93). Following CD8+ TCR-transgenic cells 
through a primary response to influenza, Kinjyo et al. observed 
that the cells divide at least eight times in a homogeneous and 
fast manner. At the peak of the response at day 7, however, a 
small CD62Lhi subpopulation emerges that slows down its cell 
cycle and express gene sets similar to memory cells. By following 
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division trees in  vitro, the authors show that phenotype and 
cell cycle duration are inherited to daughter cells, suggesting a 
cell-intrinsic program to diversify the proliferative activity in the 
priming phase of CD8+ T cells along the split between short-lived 
and memory-precursor effector cells (176). These data indicate a 
direction for future research.

Most of the genes analyzed so far are general cell cycle genes 
active in many cell types: cyclin D3 (177), p27kip1 (178, 179), 
CDK5 (180), CDK6 (181), Bcl11b (182), FoxM1 (183), myc (23), 
and Geminin (184). However, the first exception is CTP synthase 
1 that exclusively affects lymphocyte proliferation in individuals 

lacking a functional allele (185). Nevertheless, the molecular 
regulation of the cell cycle in lymphocytes, and, thus, the core 
of the clonal selection paradigm, is still a black box. Since the 
cell cycle of lymphocytes is four to five times faster than that of, 
e.g., Hela cells, one would assume a specific machinery or cell-
type-specific components that run or control proliferation in the 
adaptive arm of the immune system.
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