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Abstract: The ability of Bacillus cereus to cause foodborne toxicoinfections leads to 

increasing concerns regarding consumer protection. For the diarrhea-associated 

enterotoxins, the assessment of the non-hemolytic enterotoxin B (NheB) titer determined by 

a sandwich enzyme immunoassay (EIA) correlates best with in vitro cytotoxicity. In general, 

the regulation of enterotoxin expression of B. cereus is a coordinately-regulated process 

influenced by environmental, and probably also by host factors. As long as these factors are 

not completely understood, the currently-applied diagnostic procedures are based on indirect 

approaches to assess the potential virulence of an isolate. To date, sandwich EIA results 

serve as a surrogate marker to categorize isolates as either potentially low or highly toxic. 

Here, we report on a single amino acid exchange in the NheB sequence leading to an 

underestimation of the cytotoxic potential in a limited number of strains. During the 

screening of a large panel of B. cereus isolates, six showed uncommon features with low 
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sandwich EIA titers despite high cytotoxicity. Sequence analysis revealed the point-mutation 
Glu151Asp in the potential binding region of the capture antibody. Application of this antibody 

also results in low titers in an indirect EIA format and shows variable detection intensities 

in Western-immunoblots. A commercially-available assay based on a lateral flow device 

detects all strains correctly as NheB producers in a qualitative manner. In conclusion, isolates 

showing low NheB titers should additionally be assayed in an indirect EIA or for their in vitro 

cytotoxicity to ensure a correct classification as either low or highly toxic. 

Keywords: Bacillus cereus; non-hemolytic enterotoxin B; Duopath®; point mutation  

 

1. Introduction 

B. cereus sensu stricto, is one of eight closely related species forming the B. cereus sensu lato group, 

additionally comprising B. thuringiensis, B. weihenstephanensis, B. mycoides, B. pseudomycoides,  

B. cytotoxicus, B. toyonensis and, finally, the potentially bio-terroristic agent B. anthracis. Aside from 

its ability to cause food spoilage, the ubiquitous soil organism B. cereus is progressively involved in 

food poisoning [1]. Within the European Union the number of outbreaks increased by 122% in 2011 [2]. 

Among the frequently-detected B. cereus isolates, a broad variety of strains exists, ranging from highly 

toxic to atoxic ones [3,4]. Determining the toxic potential of an uncharacterized isolate is, therefore, an 

urgent demand with regard to food safety concerns. The widely used culture-based methods on selective 

media, like PEMBA or MYP, are based on the quantification of typical colonies resulting in the diagnosis 

of presumptive B. cereus (International Organization for Standardization - ISO7932). This definition 

indicates that not only B. cereus sensu stricto but also other members of the B. cereus sensu lato group 

might be present. The procedure reflects well that enterotoxins are also produced by other B. cereus 

group members. Especially B. thuringiensis strains have been reported to express the non-hemolytic 

enterotoxin (Nhe) as well as hemolysinBL (Hbl) [5]. On the other hand the ISO method does not include 

an approach to address toxicity and is, therefore, not suited to categorize different isolates according to 

their toxic potential towards humans. Such a classification will become necessary in the future [6], as 

ubiquitous B. cereus cannot completely be eradicated from the food chain.  

The gastrointestinal illnesses associated with B. cereus, and resulting in diarrheal symptoms, are 

mainly caused by two enterotoxin complexes. The Nhe toxin [7], consisting of the components NheA, 

NheB, and NheC, is present in almost all isolates [8] whereas the Hbl complex [9] is found in 

approximately 50% of the isolates. To characterize a B. cereus strain with regard to the presence of the 

enterotoxins, a broad panel of methods is available. Classical [10,11] or real-time [12] PCR-based 

approaches serve to determine the genetic background of toxin profiles. Due to the improvements of 

primer pairs applied, the former problem of false-negative results could be overcome [13] 

To address the question of toxin expression on the protein level, commercial, or in-house test systems 

based on immunochemical detection methods must be used. The commercially-available assays are:  

(i) a reversed passive latex agglutination assay (Oxoid™ RPLA, Wesel, Germany), (ii) the Bacillus 

diarrheal enterotoxin visual immunoassay (BDE VIA™ Tecra, St. Paul, MN, USA), and (iii) the Duopath® 
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Cereus Enterotoxins test (Merck, Darmstadt, Germany). The latter assay is based on gold-labeled 

monoclonal antibodies in a lateral flow device.  

As a proof of functionality the in vitro cytotoxicity of a strain can finally be determined in cell-based 

systems [14]. For ethical reasons, these assays have replaced in vivo cytotoxicity tests, e.g., the rabbit 

ileal loop test [15] or the vascular permeability assay [16]. Namely, Vero cells are used in these assays, 

but applicability has also been shown for several other cell lines [4]. Especially, the NheB titers detected 

in a sandwich EIA correlate well with the cytotoxic effects on Vero cells [4,15] and can, therefore, 

indicate the potential virulence towards humans. For the second enterotoxin complex (Hbl), EIA titers 

of the L1 and the B-Component correlate best with the in vitro cytotoxicity [4]. Recently, it was reported 

that the regulation of enterotoxin production is highly complex and not yet fully understood [17]. As long 

as no further virulence markers are identified the NheB titers are still best-suited to categorize an isolate. 

According to the correlation of NheB titers and in vitro toxicity levels B. cereus isolates are currently sorted 

as having high toxicity or low toxicity. This artificial categorization is based on the amount of 

enterotoxin (detected on the protein level) produced under defined laboratory conditions optimized for 

toxin expression, and the subsequent determination of in vitro cytotoxicity. However, recently a small 

proportion of strains (approx. 2%) was observed, which does not fit these categories. Those strains show 

low titers in the in-house sandwich EIA despite a medium-to-strong cytotoxic potential towards Vero 

cells. As a corollary, such an isolate will be underestimated during risk-assessment or in an outbreak 

investigation scenario, in the event that only the NheB protein level, and not the cytotoxic potential,  

is assayed. Based on our long-standing experience on antibody-based detection systems and the large 

number of B. cereus strains characterized we hypothesized that at least the epitope of one of the 

antibodies applied is altered in the “suspicious” strains. A systematic approach comprising nheB sequencing, 

EIAs, Western blot, and cytotoxicity assays now enables us to understand this surprising phenomenon.  

2. Results 

2.1. B. Cereus Strains with Uncommon Reactivity Pattern 

During the typing of more than 200 strains from the collections in Munich and Freising we became 

aware of six isolates with a strong discrepancy between sandwich EIA titers and cytotoxicity levels on 

Vero cells. All strains were solely Nhe-producers as tested by EIAs. The two parameters (EIA titers and 

cytotoxicity level) are known to correlate well, thus enabling the discrimination of strains with high and 

low toxicity. This discrepancy prompted us to elucidate the background of this rare and uncommon 

phenomenon. The Nhe-high producing strain MHI 241 (NVH0075/95; Nhe-reference strain) and one 

further strain (MHI3178) known to express Nhe at very low levels, were additionally included as 

controls. Furthermore, the present study comprised three strains, which showed an intermediate 

reactivity in the NheB-specific sandwich-EIA during a former project but have neither been tested in the 

indirect EIAs nor in the cytotoxicity assays so far. The background information on the origin of the 

strains, as well as the most important sequencing results introduced later in detail, are summarized in 

Table 1.  
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Table 1. Strains investigated in this study. The last column shows the results of sequencing. 

WB: Western blot. 

Strain 
Number 

Origin Type 
AA or Mutation at 

Position 151 

MHI 241 stew with vegetables high toxicity Glu 
MHI 3178 infant food low toxicity Glu 
MHI 1440 unknown 151mutant Glu › Asp 
MHI 1541 unknown 151mutant Glu › Asp 
MHI 1668 infant food 151mutant Glu › Asp 
MHI 2970 milk powder 151mutant Glu › Asp 
MHI 3173 human faeces 151mutant Glu › Asp 
MHI 3225 coffee cream 151mutant Glu › Asp 
MHI 1430 unknown intermediate performance in EIA and WB Glu 
MHI 1444 unknown intermediate performance in EIA and WB Glu 
MMI 1758 unknown intermediate performance in EIA and WB Glu 

Table 2 summarizes the performance of the Vero cytotoxicity assays, the results of the different  

in-house EIAs applied, and Duopath® test.  

Table 2. Cytotoxicity and toxin titers. All strains have been tested by the Vero, as well as 

CaCo-2 cytotoxicity assay, an in-house sandwich EIA, and two in-house indirect EIAs. 

Titers indicated are means and SD of triplicates. The strains reacted positively in the 

Duopath® test; Duopath® tests were performed twice. 

Strain 
Cytotoxicity 

titer  
(Vero cells) 

Cytotoxicity 
titer  

(CaCo-2 cells) 

Sandwich  
EIA titer 

Indirect  
EIA 1E11 

titer 

Indirect 
EIA 2B11 

titer 
Duopath® 

MHI 241 1381 (±8.0) 358 (±46.2) 27072 (±2841.9) 2669 (±128.7) 118 (±0.7) + 
MHI 3178 16 (±4.2) 4 (±0.3) 192 (±7.8) 113 (±9.2) 27 (±2.8) + 
MHI 1440 218 (±20.5) 202 (±39.2) 5.4 (±0.2) 583 (±33.9) 2.6 (±1.3) + 
MHI 1541 533 (±46.0) 198 (±22.4) 19 (±1.4) 775 (±76.4) 6.7 (±1.1) + 
MHI 1668 628 (±36.8) 157 (±26.6) 47.5 (±0.7) 2330 (±753.1) 47.5 (±0.7) + 
MHI 2970 755 (±4.2) 345 (±80.2) 41.5 (±2.1) 1204 (±125.2) 11 (±1.3) + 
MHI 3173 1210 (±253.1) 271 (±46.3) 38.5 (±2.7) 1682 (±14.1) 5.7 (±2.0) + 
MHI 3225 1274 (±247.5) 200 (±10.2) 36.5 (±0.7) 1692 (±14.1) 6.9 (±1.3) + 
MHI 1430 679 (±89.0) 280 (±15.4) 467 (±26.9) 2383 (±501.3) 51 (±9.9) + 
MHI 1444 740 (±162.3) 508 (±60.9) 445 (±85.6) 2591 (±413.0) 47 (±2.8) + 
MHI 1758 1053 (±215.0) 699 (±109.0) 961 (±56.6) 2755 (±166.2) 52 (±4.2) * 

+ positive reaction; * not analyzed. 

For the classically high- and low-producing strains MHI 241 and MHI 3178, a consistent reaction 

pattern was observed showing either high or low titers in the different EIA setups, which correspond 

well to the high or low cytotoxicity data, respectively.  

In contrast, six strains (MHI 1440, 1541, 1668, 2979, 3173, and 3225) revealed medium-to-high 

cytotoxicity on Vero cells levels despite a weak performance in the sandwich EIA, as well as in the 

indirect EIA based on mAb 2B11. On the other hand, results obtained in an indirect EIA based on mAb 
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1E11 showed medium to high titers. The three further strains (MHI 1430, 1444 and 1758) revealed an 

intermediate performance in the sandwich EIA as well as in the mAb 2B11-based indirect assay. The 

corresponding titers obtained in the mAb 1E11-based indirect EIA, as well as the levels of cytotoxicity, 

were high. Furthermore, all supernatants were assayed on CaCo-2 cells revealing lower titers than on 

Vero cells, but an overall similar reaction pattern. Statistical analysis by t-test showed that the very low 

titers received from the six strains in the sandwich and the mAb 2B11-indirect EIA differ significantly 

(p < 0.001) from those of the three intermediate performing strains. On the other hand, cytotoxicity 

levels did not show significant differences (p = 0.72). These results gave a first hint that the poor 

sandwich- and 2B11-based indirect EIA performance, despite high cytotoxicity, might be caused by 

impaired reactivity of mAb 2B11.  

Therefore, all strains under study were subjected to sequencing of the nheB gene in order to search 

for mutations in the putative antibody epitopes.  

2.2. Sequencing of the NheB Gene Unravels a Point Mutation at Position 151 

Results were subsequently translated to the amino acid sequence and compared by the Clustal Omega 

program [18] (Figure 1A). The most prominent difference consistently found in all six strains showing 

a uncommonly weak 2B11 reactivity was a single amino acid (aa) exchange at position 151 (E151D).  

In Figure 1B,C this position is highlighted in the structural model of NheB. The recently-resolved structure 

of NheA (PDB-ID: 4K1P) [19] served as a template to create a NheB model on the SWISS-MODEL 

server (Swiss Institute of Bioinformatics and University of Basel, Basel, Switzerland).  

The three strains with an intermediate performance (MHI 1430, MHI 1444, and MHI 1758) did not 

bear this mutation, although they have amino acid exchanges between position 230 and 250  

(see: complete alignment in the Supplementary file (Figure S1)). 

2.3. Performance of the Mutant Strains in a Lateral Flow Device 

In order to assay the consequences of the point mutation in a further test system, the Duopath® assay 

was performed. Interestingly, all strains under study reacted positively in the Duopath® test (Table 1, 

examples depicted in Figure 2A). Only when a dilution series of the supernatants was applied, the signal 

of the mutant strains faded out earlier than that of the low-producer MHI 3178 (comparatively depicted 

for MHI 2970 in Figure 2B). These results are interesting since the mAbs included in the Duopath® test 

are the 1E11 and 2B11.  

2.4. Western Blot Reactivity of the Mutants 

To further assay the antibody performance under denaturing conditions, Western immunoblots were 

carried out on samples adjusted to equal amounts of NheB according to the results of the indirect EIA 

(mAb 1E11). One membrane was probed with mAb 1E11 to control the loading of equal protein 

amounts. A second membrane was probed with mAb 2B11. Results depicted in Figure 3 show that, 

except for the low NheB producer MHI, 3178 mAb 1E11 reacts equally well with all strains under study. 

Interestingly, NheB is detectable in all strains to varying degrees irrespective of the weak performance 

in the 2B11-based EIAs wherein—under non-denaturing conditions—the protein is targeted by the antibody. 
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Figure 1. (A) Partial NheB sequences comprising amino acid 121–180. The complete 

Clustal Omega alignment file is given as Figure S1. Although several primers were applied, 

sequencing of MHI 3225 was only partially possible for unknown reasons. The most 

prominent difference is the point mutation at position E151D compared to the reference strain 

MHI 241. This mutation is not present in a formerly-published rNheB fragment, which 

always tested negative in EIA and Western blot; (B) position of the aspartic acid residue in 

the structural model of NheB; and (C) the glutamic acid residue is protuding more and 

slightly rotated in the model.  
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Figure 2. (A) Examples of the Duopath® Assay results for the mutant strains MHI 2970, 

MHI 1668, and MHI 1541. Undiluted supernatants were added to the lateral flow device.  

All strains showed a positive reaction for Nhe; (B) dilution series of a typical low-producer  

(MHI 3178) compared to one of the mutant strains (MHI 2970). A positive reaction is  

visible up to a dilution of 1:100 for the low-producer but only up to 1:10 for the mutant strain. 

The arrows point to the NheB band; the pink C on the device shows control band. 

3. Discussion and Conclusions 

Due to its increasing contribution to food poisoning outbreaks in recent years, B. cereus has become 

a hygienic and technological problem in the food industry. The total elimination of this ubiquitous 

microorganism from the food chain cannot be guaranteed. All B. cereus isolates described so  

far—including the probiotic strain B. cereus var. toyoi [20]—possess the genetic background for at least 

one of the three-component enterotoxin-complexes. Together with the increasing knowledge on the 

complex regulatory network of toxin expression and the diverse lifestyle of B. cereus isolates [21], 

several approaches aim to elucidate which parameters lead to disease in humans. For risk assessment of 

uncharacterized isolates the herein proposed artificial categorization of “highly“ and “low” toxic strains 

based on defined and optimized laboratory conditions is a promising approach to address the protein 

level. Assaying the genetic background by PCR as a rapid and high-throughput method tends to be 

advantageous for epidemiological tests during an outbreak scenario. Thus, both methods have their 

special qualification. 

On the one hand, the number of ingested bacterial cells or spores seems to be important to progress 

from a coincidental contamination to gastrointestinal disease [22]. On the other hand, recent 
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developments aim to characterize a strain in order to find predictive markers for its cytotoxic potential. 

These efforts include the search for additional virulence factors, e.g., HlyII, InhA1, NprA [23], or 

sphingomyelinase [24], as well as studies on the survival of bacterial cells and productivity of toxins 

under conditions mimicking the gastrointestinal tract [25]. For the Nhe-toxin complex the highest 

predictive value on the protein level with regard to the potential cytotoxicity is given by the amount of 

the NheB component [4]. As all of the strains introduced in the present study are solely Nhe-producers 

the contribution of Hbl to the total cytotoxicity could be ruled out.  

 

Figure 3. Western blot results of the membranes probed with mAB 2B11 (upper panel) and 

1E11 (lower panel). Except for the low-producer, for which an adjustment of the NheB 

amounts was impossible, all strains reacted similarly with mAb 1E11. Loaded amounts were 

adjusted to contain similar NheB levels as calculated based on the indirect EIA results.  

Under denaturing conditions mAb 2B11 is capable of detecting NheB in all supernatants, 

with varying intensities. Mean signal for the probed membrane with mAb 1E11 was 219 RLU 

(±18.5), and 145 RLU (±70.2) for mAb 2B11, thus indicating a lower reactivity, as well as 

a higher degree of variability for this antibody. 

A recent publication described the differential contribution of the Nhe and Hbl-toxin complexes to 

the total cytotoxicity on different cell lines. On Vero cells, Nhe accounts for approx. 60% of the total 

toxicity, whereas Hbl accounts for the remaining 40%. On CaCo-2 both enterotoxin complexes 

contributed equally [4]. This prompted us to consider Vero cells as the cell line of choice because of its 

sensitivity and because of the fact that all strains presented herein are solely Nhe producers. 

The low reactivity of six strains in an in-house-sandwich EIA, despite high cytotoxicity, is an 

uncommon phenomenon and it was reasonable to assume that the binding of at least one of the mAbs 

applied was impaired. The epitope which is targeted by mAb 1E11 (NSLLQNVDSISPNDLVFIKE) has 

been mapped in a former study [26] is not mutated in any of the strains. In the same publication the 

potential 2B11 epitope could only be assigned to a broad range of amino acids (aa 122–151) and 

conformation dependency could not be excluded completely. By unraveling the point mutation E151D in 

the six mutant strains the assumption on the epitope location made earlier was confirmed and further 

supported by the fact that mAb 2B11 was never reactive towards a recombinantly-expressed NheB 

fragment (N5—described in detail also in [27]) deleted by 151 aa from the N-terminus. Interestingly, 

mAb 2B11 is able to detect NheB of the mutant strains, to varying degrees, under the denaturing 
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conditions of a Western blot (Figure 3). This feature is in good accordance with the results published earlier. 

It further indicates that the impaired antibody binding due to the point mutation can partially be 

overcome by SDS and Reducing agent® (Biorad, Hercules, CA, USA) causing protein denaturation 

under Western immunoblotting conditions. Thus, the reactivity of mAb 2B11, aside from the primary 

amino acid sequence, also seems to be conformation dependent.  

In Figure 1B,C, the critical amino acid exchange is highlighted in the structural model of NheB. 

Although glutamic acid and aspartic acid are both characterized by an additional carboxyl-group, and 

the total charge is not affected, the more protruding glutamic acid seems to be important for effective 

antibody binding. To the best of our knowledge, impaired antibody binding as a consequence of this 

mutation has not been described in the literature. However, the occurrence of altered enzyme or protein 

function, as well as viral tropism due to respective single amino acid exchange, has been reported [27–29]. 

The fact that the mutant strains are still detectable in the Duopath® assay can be explained by the technical 

setup of the lateral flow device. Herein, the undiluted supernatant is applied and washing steps are not 

included. Thus, the weakly-bound mAb 2B11 is not prone to being washed off. The less-stable binding of 

mAb 2B11 due to a mutated NheB becomes obvious when diluted supernatants of mutants were applied 

in the Duopath® test. For comparison, diluted supernatants of the low-producing/low toxicicty MHI 3178 

were also tested. The NheB-specific band of the low-producer is still detectable at higher dilutions 

(Figure 2B upper panel), although the amount of protein is lower, whereas the signal of a mutant strain 

already faded out (Figure 2B lower panel). It is suggested that this is the case because the lower amount 

of NheB present in MHI 3178 will be compensated by a stronger binding of 2B11.  

The uncommon reaction pattern of six NheB mutant strains in an in-house sandwich EIA point out a 

problem that could be faced when a categorization of a B. cereus isolate of high toxicity or low toxicity 

under conditions optimized for toxin expression is intended, but only a fast and easy to accomplish 

sandwich EIA is performed. Strains showing low sandwich EIA titers might be sorted to be weakly toxic 

by relying only on a general correlation between NheB titers and in vitro toxicity. This phenomenon was 

observed in a minor percentage of strains (app. 2%) investigated in this study, which is in agreement 

with an analysis of 142 genome sequences of Bacillus cereus sensu lato [30], revealing the presence of 

this mutation in three strains. 

As long as no other markers for the categorization in high and low toxin producers are available,  

a solution of the problem could be as follows: uncharacterized isolates being “suspicious” due to a poor 

performance in the sandwich EIA should, additionally, be assayed by an indirect EIA based on mAb 1E11 

and/or by in vitro cytotoxicity assays. An important result of the present study is that mutant strains will 

not go completely undetected since they react positively in the Duopath® test. Thus, they will be correctly 

typed as Nhe producers, though only qualitatively. 

4. Experimental Section 

4.1. Bacterial Strains and Culture 

Prior to inclusion in this study all strains were tested to express the Nhe-toxin complex components 

but not Hbl, as determined by EIA. For toxin production, a 1% inoculum of overnight cultures was 

subcultured at 32 °C in casein-hydrolysate yeast broth supplemented with 1% glucose. After six hours, 
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bacterial supernatants were harvested by centrifugation at 4000 g at 4 °C for 20 min, supplemented with 

1 mM EDTA and passed through a 0.2 µm sterile filter (Millipore, Darmstadt, Germany). Aliquots of 

the cell-free supernatants were stored at −20 °C. 

4.2. DNA Preparation and Sequencing of NheB 

The cell pellets of 200 µL overnight cultures were subjected to genomic DNA extraction (Blood and 

Tissue kit, Qiagen, Hilden, Germany) according to the manufacturer’s protocol optimized for Gram-positive 

bacteria. Sequencing of the nheB genes was performed by GATC Biotech GmbH (Konstanz, Germany). 

Translation of nucleotide sequences and Clustal Omega alignment was carried out via the web service 

of the EMBL-EBI [18]. 

4.3. Indirect and Sandwich EIA 

Maxisorb microtitre plates (Nunc, Wiesbaden, Germany) were coated overnight at room temperature with 

serial dilutions of cell-free B. cereus supernatants. After 45 min of blocking in 3% (w/v) casein-phosphate 

buffered saline (PBS) primary antibodies (1µg/mL of 1E11; 2 µg/mL of 2B11) were incubated for 1 h 

at room temperature. After four washing steps with 150 mM NaCl 0.025% Tween 20, rabbit-anti  

mouse-HRP conjugate (DAKO, Hamburg, Germany) at a dilution of 1:2000 was applied for 1 h. Plates 

were washed five times followed by 3,3′,5,5′-tetramethylbenzidine (TMB) (Sigma, St. Louis, MO, USA) 

incubation for 20 min. After adding 100 µL 1 M H2SO4, OD was determined in a TECAN (Männedorf, 

Switzerland) EIA reader at 450 nm with a 620 nm reference filter. For the sandwich EIA, plates were 

coated with mAb 2B11 (5 µg/mL) overnight. After blocking, serially-diluted samples (dilution buffer 0.5% 

Tween-PBS) were added for 1 h at room temperature. Three washing steps in 150 mM NaCl 0.025% 

Tween 20 were followed by incubation with mAb 1E11-HRP (1:2000) for another hour. Signal 

development and recording was done as described for the indirect EIA.  

4.4. Duopath® Cereus Enterotoxins Test 

Supernatants of all strains under study were twice-subjected to Duopath® Assay (Merck, Darmstadt, 

Germany) according to the manufacturer’s instructions. Additionally, the dilution series of the supernatants 

were assayed in this system. The latter procedure is not recommended by the manufacturer but it was 

necessary to elucidate different binding properties of mAb 2B11 as described in the results section. 

4.5. Western Blot 

SDS-PAGE was carried out twice on 12% Criterion Gel (Biorad, Hercules, CA, USA). Subsequent 

semidry blotting was followed by an incubation of the membrane in 3% (w/v) casein-phosphate buffered 

saline (PBS) for 1 h at room temperature. After this blocking step either mAb 1E11(1µg/mL) or mAb 

2B11 (2 µg/mL) was applied on the membranes for 1 h. A rabbit anti-mouse-HRP secondary antibody 

(1:2000 (DAKO, Hamburg, Germany)) was added for 1 h after three times washing in 0.05% (v/v)  

PBS-Tween. Membranes were washed three times in PBS-Tween and twice in PBS. After addition of 

SuperSignal femto chemiluminescence substrate (Pierce, Schwerte, Germany), signals were recorded 

using a Kodak Image Station (Eastman Kodak, Rochester, NY, USA). Background corrected signal 



Toxins 2015, 7 4665 

 

 

intensities were determined as relative light units (RLU) by the means of TotalLabTM software (Version 

2003.03, TotalLab, Newcastle upon Tyne, UK, 2003). Means and SD, as well as mean difference comparing 

results obtained with mAb 2B11 versus 1E11 were calculated. 

4.6. Cytotoxicity Assay 

Vero cells used in the cytotoxicity assays were maintained in MEM medium (Biochrom AG, Berlin, 

Germany) supplemented with 1% FCS (Sigma, St. Louis, MO, USA), 1% Na-Pyruvat (Biochrom AG, 

Berlin, Germany), and Pen/Strep (Biochrom AG, Berlin, Germany). CaCo-2 cells were cultured in RPMI 

medium supplemented with 10% FCS. After trypsinizing and adjusting the cell number to 15,000/well 

for Vero cells and 20,000/well for CaCo-2 cells, respectively, cell-free B. cereus supernatants were 

serially diluted on the microtiter plates and allowed to rest 24 h on the cells. Metabolic activity of the 

cells was determined after addition of 10 µL/well WST-1 reagent (Roche, Mannheim, Germany) for  

2 h. Optical density at 450 nm with 620 nm reference filter was recorded on a TECAN (Männedorf, 

Switzerland) reader. 

4.7. Statistics 

T-tests were performed on SigmaPlot version 8.0 (SPSS Inc., Chicago, IL, USA, 2002). 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/2072-6651/7/11/4655/s1. 

Acknowledgments 

This research project was supported by the German Ministry of Economics and Technology (via AiF) 

and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn, Germany). Project AiF 18677 N.  

Author Contributions 

Andrea Didier performed most of the experiments and wrote most of the manuscript; Nadja Jeßberger 

prepared strains for sequencing and analyzed the results, Victoria Krey observed the uncommon reaction 

pattern and wrote parts of the manuscript, Richard Dietrich established and characterized the NheB 

reactive mAbs and planned the experiments, Siegfried Scherer and Erwin Märtlbauer critically reviewed 

the results and the manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References  

1. Teufel, P.; Bräuning, J.; Hartung, M.; Kleer, J.; Schütt-Abraham, I. Mikrobiologische Aspekte der 

Ernährung. In Ernährungsbericht 2004; DGE Medien Service: Bonn, Germany, 2006. 



Toxins 2015, 7 4666 

 

 

2. Anonymous. The european union summary report on trends and sources of zoonoses, zoonotic 

agents and food-bourne outbreaks. EFSA J. 2013, 11, 3129. 

3. Dietrich, R.; Moravek, M.; Burk, C.; Granum, P.E.; Martlbauer, E. Production and characterization 

of antibodies against each of the three subunits of the Bacillus cereus nonhemolytic enterotoxin 

complex. Appl. Environ. Microbiol. 2005, 71, 8214–8220. 

4. Jessberger, N.; Dietrich, R.; Bock, S.; Didier, A.; Martlbauer, E. Bacillus cereus enterotoxins act as 

major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon 2013, 

77, 49–57. 

5. Kyei-Poku, G.; Gauthier, D.; Pang, A.; van Frankenhuyzen, K. Detection of Bacillus cereus 

virulence factors in commercial products of bacillus thuringiensis and expression of diarrheal 

enterotoxins in a target insect. Can. J. Microbiol. 2007, 53, 1283–1290. 

6. Ehling-Schulz, M.; Messelhausser, U. Bacillus “next generation” diagnostics: Moving from 

detection toward subtyping and risk-related strain profiling. Front. Microbiol. 2013, 4, 32. 

7. Lund, T.; Granum, P.E. Characterisation of a non-haemolytic enterotoxin complex from Bacillus 

cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 1996, 141, 151–156. 

8. Wehrle, E.; Moravek, M.; Dietrich, R.; Burk, C.; Didier, A.; Martlbauer, E. Comparison of 

multiplex PCR, enzyme immunoassay and cell culture methods for the detection of enterotoxinogenic 

Bacillus cereus J. Microbiol. Methods 2009, 78, 265–270. 

9. Beecher, D.J.; Macmillan, J.D. Characterization of the components of hemolysin BL from Bacillus 

cereus. Infect. Immun. 1991, 59, 1778–1784. 

10. Hansen, B.M.; Hendriksen, N.B. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis 

strains by PCR analysis. Appl. Environ. Microbiol. 2001, 67, 185–189. 

11. Guinebretiere, M.H.; Broussolle, V.; Nguyen-The, C. Enterotoxigenic profiles of food-poisoning 

and food-borne Bacillus cereus strains. J. Clin. Microbiol. 2002, 40, 3053–3056. 

12. Wehrle, E.; Didier, A.; Moravek, M.; Dietrich, R.; Martlbauer, E. Detection of Bacillus cereus with 

enteropathogenic potential by multiplex real-time PCRbased on SYBR green. Mol. Cell Probes 2010, 

24, 124–130. 

13. Guinebretiere, M.H.; Velge, P.; Couvert, O.; Carlin, F.; Debuyser, M.L.; Nguyen, C. The Ability of 

Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation 

(groups I to VII) rather than species affiliation. J. Clin. Microbiol. 2010, 48, 3388–3391. 

14. Moravek, M.; Dietrich, R.; Buerk, C.; Broussolle, V.; Guinebretiere, M.H.; Granum, P.E.;  

Nguyen-the, C.; Martlbauer, E. Determination of the toxic potential of Bacillus cereus isolates by 

quantitative enterotoxin analyses. FEMS Microbiol. Lett. 2006, 257, 293–298. 

15. Spira, W.M.; Goepfert, J.M. Bacillus cereus-induced fluid accumulation in rabbit ileal loops.  

Appl. Microbiol. 1972, 24, 341–348. 

16. Glatz, B.A.; Spira, W.M.; Goepfert, J.M. Alteration of vascular permeability in rabbits by culture 

filtrates of Bacillus cereus and related species. Infect. Immun. 1974, 10, 299–303. 

17. Jessberger, N.; Krey, V.M.; Rademacher, C.; Bohm, M.E.; Mohr, A.K.; Ehling-Schulz, M.; Scherer, S.; 

Martlbauer, E. From genome to toxicity: A combinatory approach highlights the complexity of 

enterotoxin production in Bacillus cereus. Front. Microbiol. 2015, 6, 560. 



Toxins 2015, 7 4667 

 

 

18. Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; 

Remmert, M.; Soding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence 

alignments using clustal omega. Mol. Syst. Biol. 2011, 7, 539. 

19. Ganash, M.; Phung, D.; Sedelnikova, S.E.; Lindback, T.; Granum, P.E.; Artymiuk, P.J. Structure of 

the nhea component of the nhe toxin from Bacillus cereus: Implications for function. PLoS ONE 

2013, 8, e74748. 

20. Williams, L.D.; Burdock, G.A.; Jiménez, G.; Castillo, M. Literature review on the safety of 

Toyocerin, a non-toxigenic and non-pathogenic Bacillus cereus var. toyoi preparation.  

Regul. Toxicol. Pharmacol. 2009, 55, 236–246.  

21. Ceuppens, S.; Boon, N.; Uyttendaele, M. Diversity of Bacillus cereus group strains is reflected in 

their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol. Ecol. 2013, 

84, 433–450. 

22. Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food 

poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. 

23. Cadot, C.; Tran, S.L.; Vignaud, M.L.; De Buyser, M.L.; Kolsto, A.B.; Brisabois, A.; Nguyen-The, C.; 

Lereclus, D.; Guinebretiere, M.H.; Ramarao, N. InhA1, NprA, and HlyII as candidates for markers 

to differentiate pathogenic from nonpathogenic Bacillus cereus strains. J. Clin. Microbiol. 2010, 48, 

1358–1365. 

24. Doll, V.M.; Ehling-Schulz, M.; Vogelmann, R. Concerted action of sphingomyelinase and  

non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS ONE 2013, 8, e61404. 

25. Ceuppens, S.; Rajkovic, A.; Hamelink, S.; van de Wiele, T.; Boon, N.; Uyttendaele, M. Enterotoxin 

production by Bacillus cereus under gastrointestinal conditions and their immunological detection by 

commercially available kits. Foodborne Pathog. Dis. 2012, 9, 1130–1136. 

26. Didier, A.; Dietrich, R.; Gruber, S.; Bock, S.; Moravek, M.; Nakamura, T.; Lindback, T.;  

Granum, P.E.; Martlbauer, E. Monoclonal antibodies neutralize Bacillus cereus Nhe enterotoxin by 

inhibiting ordered binding of its three exoprotein components. Infect. Immun. 2012, 80, 832–838. 

27. Makins, C.; Pickering, A.V.; Mariani, C.; Wolthers, K.R. Mutagenesis of a conserved glutamate 

reveals the contribution of electrostatic energy to adenosylcobalamin Co–C bond homolysis in 

ornithine 4,5-aminomutase and methylmalonyl-CoA mutase. Biochemistry 2013, 52, 878–888. 

28. Nice, T.J.; Strong, D.W.; McCune, B.T.; Pohl, C.S.; Virgin, H.W. A single-amino-acid change in 

murine norovirus NS1/2 is sufficient for colonic tropism and persistence. J. Virol. 2013, 87, 327–334. 

29. Parent, A.; Caux-Thang, C.; Signor, L.; Clemancey, M.; Sethu, R.; Blondin, G.; Maldivi, P.; Duarte, V.; 

Latour, J.M. Single glutamate to aspartate mutation makes ferric uptake regulator (Fur) as sensitive to 

H2O2 as peroxide resistance regulator (PerR). Angew. Chem. Int. Ed. 2013, 52, 10339–10343. 

30. Böhm, M.L.; Huptas, C.; Krey, M.L.; Scherer, S. Massive horizontal gene transfer, strictly vertical 

inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin 

operons hbl, cytK and nhe. BMC Evol. Biol. 2015, in press. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


